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Abstract

The prevalence of a sedentary lifestyle is a major contributor to many chronic

afflictions in modern society. Objective study and monitoring to gain an accu-

rate understanding of situated sedentary behavior, for example when at home,

present considerable challenges, e.g. regarding ecological validity. Non-intrusive

monitoring based on Wi-Fi signals provides a new way to gain insights into pop-

ulations that are at risk of the negative effects of a sedentary lifestyle, or who are

already in functional rehabilitation. In this paper we describe a tracking tech-

nology for everyday activities that consists of two parts: (1) recognizing general

physical activity, as well as the activities of common classes; and (2) measur-

ing the statistical duration of these recognized categories. Employing common

commercial Wi-Fi equipment, we performed validation studies in a typical noisy

family home environment, achieving the following key results: (1) a recognition

rate of the general presence of physical activity of 99.05%, an average recog-

nition rate of 92% when detecting four common classes of activities; and (2)

Kappa coefficient analysis to evaluate the consistency of the statistical duration

of the automatic activity detection based on Wi-Fi signals and manually coded

activity detection based on camera recordings. The coefficient for the presence
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of general physical activity of .93 and the average consistency coefficient of the

classified activity categories of .72 suggest a high reliability of the automatic

detection outcomes. This work aims to support both research and interven-

tions for the prevention, treatment, and rehabilitation of the consequences of a

sedentary lifestyle, by establishing new technologies and methods for observing

everyday functional activities that are crucial for individual independent living

and well-being.

Keywords: Activity Recognition, Wi-Fi, eHealth, Digital Health, Signal

Processing, Sedentary Lifestyle, Situated Research

1. Introduction

1.1. Motivation

Compelling evidence has linked the common sedentary lifestyle that is preva-

lent in modern societies to many diseases or chronic afflictions. Next to extreme

examples, such as being a risk factor for cancer [1], a sedentary lifestyle can5

lead to poor cardiopulmonary function and metabolic disorders [2] and it is also

clearly associated with obesity and diabetes. Increased physical activity can

reduce the risk of such diseases [3, 4]. However, current and future develop-

ments in automation, such as buying groceries over the internet, stand to result

in even lower levels of physical activity, entailing potential further impacts on10

public health [5] with a risk of an increased frequency of cardiovascular diseases

[6]. Research on young men with sedentary diseases in different industries found

that sedentary behavior also has a negative effect on men’s reproductive ability

[7]. In women, sedentary behavior can lead to premature menopause [8]. It can

also lead to obesity in children, with negative carry-over effects on their adult15

health [9]. Studies have found that older adults who exercise regularly will have

healthier breathing systems than those who display more sedentary behavior

[10].

While people who display overly sedentary behavior may be motivated and

guided to become more active in some situations, e.g. when coaches can be20
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present, the sedentary behavior patterns are often resumed in much frequented

places where people spend large parts of their time, such as at home or at work.

It is also difficult to gather objective insights on sedentary, active, or functional

behavior in such situations, although such information is required to inform

research as well as interventions. This motivates the development of motion25

tracking methods that can be employed in situations that are traditionally pro-

hibitive to affordable and longer-term observation. While reliable measurement

devices based on optical, magnetic, or inertia sensors exist [11, 12, 13], they

can be invasive and may lead to biased behavior. Recently, non-invasive human

activity and behavior recognition based on Wi-Fi signals has become a research30

hotspot, and considerable progress has been made [14, 15, 16, 17, 18]. However,

there is still a lack of research on activity recognition in practically relevant but

noisy situated environments. Hence this work explores physically non-invasive

wireless tracking together with methods for activity type and duration recogni-

tion to offer alternative methods for observing patterns of sedentary, or active35

functional behavior in the home. Next to informing basic research, such infor-

mation could be utilized to produce individualized training and rehabilitation

advice to help restore healthy living habits.

1.2. Challenges

Although research on motion tracking and activity recognition based on40

Wi-Fi signals has made considerable progress, the viability of the approach in

real-world application scenarios is still debated. Since wireless signals are easily

disturbed by the external environment, achieving a reliable perception of human

activities is challenging [19]. At present, there is a lack of studies focusing on

either of the following two aspects: (a) in-depth research of activity identifica-45

tion in a noisy situated environment, and (b) gathering additional information

beyond recognizing activity classes (such as the duration of an activity). In

this light, this work is concerned with the following research questions: (1) Can

motion tracking based on wireless signals produce an adequate reliability for the

perception of human activity in noisy situated environments? (2) Can an ad-50
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equately high recognition rate be achieved for different classes of activities that

represent a progression of increasingly intense physical activity even if such ac-

tivities occur rarely? (3) Can the duration of activity episodes be determined

accurately based on Wi-Fi signal analysis? If the proposed methods can lead to

positive findings regarding these research questions it would present a viable ap-55

proach to making the levels of physical activity of people who live a sedentary

lifestyle more measurable, which can further our understanding of their situ-

ated behavior, and it would also facilitate potential interventions that provide

guidance regarding recommended exercises, activity frequency, and duration.

For example, if the amount of overall activity is low, a general suggestion to60

increase overall activity can be issued. For people with less movement of the

lower extremities, it can be suggested that they should focus on executing more

movements that involve the lower limbs, such as walking. Such approaches can

offer support in achieving a more well-regulated balance between activity and

rest, promoting a healthy lifestyle and thus helping with offsetting or preventing65

the onset or progression of common chronic afflictions that are tied to an overly

sedentary lifestyle.

1.3. The technical scheme frame and thesis structure

The technical scheme that underlies the system called WiFun that is pre-

sented in this article is shown in Figure 1 (the items in the dotted line box70

are beyond the scope of this work but essential to convey the larger picture).It

must be stressed that the recognition model indicated in Figure 1 is a model

trained by channel state information (CSI) information after multiple acquisi-

tion actions, which then forms the basis for the following activity recognition

part. Due to the close relationship between the recognition model and the ac-75

tivity recognition process, we present a combined discussion of both elements in

Section 3. The duration statistics of activities and the consistency evaluation

elements in Figure 1 are discussed in further detail in Section 4. The work

related to this article will be introduced in Section 2. In addition, the activity

evaluation and health persuasion parts that appear in the dotted box are not80
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Figure 1: The technical scheme frame diagram of the WiFun system. Persuasion can be active

(showing recommendations) or passive (showing observed state).

yet implemented. The main purpose of the figure is to illustrate the overarching

goal, and which is approach in follow-up work that is currently ongoing.

1.4. Technical Approach and Contributions

First of all, we use the Bart Watts (BW) for denoising, because the actual

test shows good results. Then we use principal component analysis (PCA) and85

its own heuristic algorithm to extract effective data. Because the extracted data

has burrs and different lengths, then use cubical smoothing algorithms with five

point approximation (CSA) and polyphase filter (PP) to denoise and resample

the data. In the process of feature extraction, we initially use discrete wavelet

transform (DWT) to decompose the signal data and then optimize and reor-90

ganize the best eigenvalue combination according to the characteristics of the

decomposed data. To build the recognition model, we mainly use the channel

state information (CSI) principle of change [20], (when people are detected to

be in the Fresnel zone [17]), to facilitate the use of a hidden Markov model

(HMM). The activity recognition is divided into two parts: (1) general physical95
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activity recognition, which refers to all non-stationary activities and was defined

separately since researchers or practitioners may sometimes just want to know

whether individuals in a room are sedentary or active, a purpose for which a

dedicated model can achieve a high recognition rate and strong robustness, and

(2) specific activity recognition, which can more accurately grasp the details of100

physical activity of potentially sedentary people and can inform targeted di-

agnosis and treatment. In order to encompass different activity intensities we

separate four common activity classes at different levels, which requires identi-

fying motion patterns that cause notable differences in signal frequency.

We have designed a novel algorithm to calculate the duration of general105

physical activity and to detect four common activity classes that is discussed

further in section 3.3. In addition, we innovatively discretize the time domain

space, so that we can calculate a Kappa coefficient for cross-validation with

human evaluators and verify the credibility of the automatically detected sta-

tistical duration of sequences of activity. The main technical contributions of110

this paper are as follows: (1) The novel combination of BW, PCA, effective

data extraction algorithm ( 5.2.1), CSA, PP and DWT is used to preprocess

the wireless signal, while the recognition model is established by combining the

threshold method and HMMs. (2) A heuristic algorithm based on statistical du-

ration is presented, which can produce information on activity duration relying115

only on wireless signals. (3) A method for the discrete processing of continu-

ous signals is introduced which allows the application of Kappa coefficients to

evaluate the quality of the process for determining duration statistics.

2. Related works

2.1. Wearable Technology for Motion Tracking and Activity Recognition120

Wearable devices can sense, record and analyze a wide variety of data, sup-

porting research and interventions targeting the promotion of increased well-

being and a better quality of life. Such wearable devices can be divided into

living health, information consulting, and physical control equipment. To date,
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this kind of technology has produced a considerable number of commercialized125

products, such as smart watches, smart glasses, and gesture control armbands

[21], together with a growing body of research that evaluates these gadgets, their

value as research tools, and different application use-cases. Doron et al. [22]

designed an autonomous wearable device, which can record a subject’s physical

activity (PA) during his/her daily life and estimates the associated energy ex-130

penditure. Experiments show that the system can achieve a correct recognition

rate of 79%, based on a trial in quasi-situated-living conditions. Yingling et

al. [23] sought to explore usage characteristics of PA tracking wearable technol-

ogy among community-based populations within a health and needs assessment.

Garbarino et al. [24] designed a wearable wireless multi-sensor device for real-135

time computerized biofeedback and data acquisition. It has four embedded

sensors: a photoplethysmograph (PPG), electro dermal activity (EDA), a 3-axis

accelerometer, and body temperature. It is not only small, light and comfort-

able, but also suitable for a wide range of real-life applications. Din et al. [25]

use an accelerometer to quantify a comprehensive battery of gait characteristics140

in healthy older adults and people living with Parkinson’s disease, aiming to

support clinical and at-home use. Casale et al. [26] developed a novel wearable

system that is easy to use and comfortable to wear, which is based on a new set

of 20 computationally efficient features and a random forest classifier. The clas-

sification accuracy of human activities with this system is up to 94%. Nam et145

al. [27] developed and evaluated algorithms to recognize physical activities from

data acquired using a 3-axis accelerometer together with a single camera worn

on a body. Experiments show an overall accuracy rate of activity recognition of

92.78% with their method. Sztyler et al. [28] present a new real-world data set

that has been collected from 15 participants for eight common activities where150

they carried seven wearable devices in different positions. Furthermore, they

introduce a device localization method that uses random forest classifiers to

predict the device position based on acceleration data, achieving an F-measure

of 89% across different positions. Fang et al. [29] present BodyScan, a wear-

able system that enables radio to act as a single modality capable of providing155
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whole-body continuous sensing of the user. They introduce radio as a new pow-

erful sensing modality for wearable devices and propose to transform radio into

a mobile sensor of human activities and vital signs. In challenging real-world

settings their system can infer activities with an average accuracy of more than

60% and monitor breathing rate information for a reasonable amount of time160

during each day.

From the above research, we can see that a wide range of related work has

employed wearable technology for health monitoring. However, such devices can

be − or can be perceived to be − invasive, causing inconvenience and discomfort.

Therefore, many researchers are now exploring less invasive tracking, monitoring165

and human-machine interaction technologies; wireless signal recognition being

one of them.

2.2. Research on Activity Recognition Based on Channel State Information

Halperin et al. [30] released a CSI activity recognition toolkit in 2011 and

gave a detailed account of its potential use. The CSI toolkit can record the sub-170

carrier information of a pair of transmitting and receiving antennas. Compared

to Received Signal Strength Indication (RSSI), which can only record the energy

information, CSI reflects the change in wireless signal in more detail. Subse-

quent research on CSI is primarily based on this toolkit. Han et al. [31] proposed

a prototype for fall monitoring for older adults. Their experiments show that175

the system has an 87% recognition rate with 18% false positives. Wang et al.

[20] have explored high-precision recognition based on wireless signals. They

identified tiny movements of the mouth that people made while talking. Their

experiments showed that 91% of them are correctly recognized in the case of a

single person saying six different words, and the simultaneous recognition rate180

was 74% in the case of three people. Yang et al. [32] studied the recogni-

tion of family activities. Their experiment was carried out independently in two

different rooms, using the template matching method and obtaining good exper-

imental results. Xi et al. [33] quantitatively analyzed group sizes by analyzing

changes in wireless signal. They used percentage of nonzero elements (PEM)185
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as a measure to construct a relationship between the number of people and the

change in CSI characteristics through a stable monotonic function. Zimu et al.

[34] studied the problem of existence of multi-dimensional space by analyzing

CSI [34] and achieved good experimental results. Wang et al. [14] proposed a

CARM prototype system. Based on CSI analysis, they proposed a CSI-speed190

model and CSI-activity model, quantifying the relationship between the move-

ment speed and the location movement of a body part, revealing a relationship

between the dynamic CSI value and the specific activity. The average recogni-

tion rate of their prototype system is higher than 96%. Li et al. [15] studied

the recognition of fine-grained wireless signals and explored human-computer195

interaction techniques for specific gesture recognition. Their experimental re-

sults showed that the recognition rate of the nine digital gestures of American

Sign Language (ASL) is 90.45%, while the average recognition rate of personal

digital gestures with a maximum of 90 digits can reach 82.67%. He et al. [16]

recognized four simple actions in family life through data pre-processing and200

SVM classification technology, obtaining 92% recognition rate if in line of sight

and 88% if not in line of sight. Ali et al. [35] proposed a method of using

CSI to identify non-contact key gestures. His experiments showed that the

key detection rate is 97.5% and single key recognition rate is 96.4%. Zhou et

al. [36] presented Wi-Dog, a non-invasive physical violence monitoring scheme205

based on commodity Wi-Fi infrastructure, aiming to provide ubiquitous vio-

lence monitoring. Experimental results show the effectiveness of Wi-Dog with

an average detection accuracy of 90%. Li et al. [37] leveraged fine-grained CSI

from commodity Wi-Fi to build an adaptive and robust intrusion detection sys-

tem named AR-Alarm. Zhuo et al. [38] identify non-negligible non-linear CSI210

phase errors and report that IQ imbalance is the root source of non-linear CSI

phase errors. Their experiments show that accurate CSI phase measurements

can significantly improve the performance of splicing and the stability of the

derived power delay profiles. Zhang et al. [17] introduced the Fresnel zone

model originally used to describe the propagation of light waves into the field of215

wireless human behavior recognition and obtained the detection limit of Wi-Fi
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signals. The paper also separately identifies centimeter-level fine-grained ac-

tivities (such as respiration) and decimeter-level coarse-grained activities (such

as the direction of movement), and clarifies that the wireless sensing approach

based on the Fresnel zone model uses Wi-Fi signals to achieve centimeter and220

even millimeter-level human behavior perception. Leveraging the fine-grained

CSI and multi-antenna setting in commodity Wi-Fi devices, Zhang et al. [39]

designed and implemented a real-time, non-intrusive, and low-cost indoor fall

detector, called Anti-Fall. In a related publication, Wang et al. [40] present

the design and implementation of RT-Fall, a real-time, contactless, low-cost yet225

accurate indoor fall detection system using commodity Wi-Fi devices. For the

first time, this system fulfills the goal of segmenting and detecting falls automat-

ically in real-time, which allows users to perform daily activities naturally and

continuously without wearing any devices on the body. Tan et al. [18] discussed

the technology of CSI in human behavior recognition on three different levels230

of granularity, signals, actions and activities and conclude by discussing open

issues around CSI-based behavior recognition. Wang et al. [41] present Phase-

Beat, a system that employs CSI phase difference data to monitor breathing

and heartbeat with commodity Wi-Fi devices. They provide a rigorous analysis

of the CSI phase difference data with respect to its stability and periodicity.235

From the above research, we can see clearly that although wireless signals

have been used for human activity recognition, there is no systematic research

in health monitoring. There is also no detailed explanation of how to perform

noise reduction, feature extraction and modeling in a noisy environment. In

addition, no related work has been found that facilitates detecting the statistical240

duration of activity using wireless signals. This paper takes a novel approach

to these issues, thus furthering the research in this area and more generally in

the processing of wireless signals for human activity tracking.

2.3. Related Work on Consistency Assessment

There are multiple assessment methods for consistency evaluation. There are245

several common methods: 1. Paired t-test [42]; 2. Pearson Correlation Coeffi-

10



cients [43]; 3. Intraclass Correlation Coefficient (ICC) [44]; 4. Kappa coefficient

[45]. Nowadays, the use of Kappa coefficient is the most extensive method, and

there are many research results similar to those in this paper. Cohen [45] used

the Kappa coefficient in 1960 to measure the deviation between an observed and250

the theoretical inferred value. Tang et al. [46] found that medical diagnoses,

even under the same external conditions, have many different evaluation criteria

and different outcomes depending on personal judgment. The Kappa coefficient

can be employed to indicate the consistency of these evaluations. Arajo et al.

[47] used the Kappa coefficient to evaluate the consistency of different classifica-255

tion algorithms. To distinguish two stages of Rapid Eye Movement (REM) and

Non-Rapid Eye Movement (NREM) Singh et al. [48] collected electrocardiogra-

phy (ECG) signals during sleep to extract the frequency and non-linear features

by a polynomial SVM. Due to existing multiple evaluation perspectives, they

evaluated the consistency of scores and rates by calculating the Kappa coeffi-260

cients. In this paper, the statistical duration of wireless signals is evaluated to

confirm the reliability. We evaluate the credibility of the automatically detected

outcomes by using the Kappa coefficient. The Kappa coefficient is an index to

measure classification accuracy. The results of Kappa computing are −1 ∼ 1,

but usually Kappa falls between 0 ∼ 1, and the consistency of different lev-265

els can be represented by different values. Due to existing multiple evaluation

perspectives, they evaluated the consistency of scores and rates by calculat-

ing the Kappa coefficients. In a similar way, we employ Kappa coefficients to

benchmark the classification accuracy of the activity recognizers, relating their

“judgements” to those of human annotators.270

3. Activity recognition method and model

3.1. Activity Recognition Technology Based on CSI

In essence, orthogonal frequency-division multiplexing (OFDM) works by di-

viding a channel into a number of orthogonal sub-channels in the frequency

domain, followed by modulating each sub-channel by using a subcarrier, and275
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then transmitting the subcarriers in parallel. In wireless communications the

physical layer information on these subcarrier scales is called channel state in-

formation (CSI). It describes how the signal is transmitted from transmitter

to receiver, as well as the characteristics of multipath propagation. It reflects

the weak factors of signals in each transmission path, such as signal scatter-280

ing, environmental degradation and power attenuation with distance. Because

of shadow fading caused by multipath propagation, the RSSI does not follow

the law of increasing distance and decreasing monotony, so the measurement

accuracy is not as high. In addition, each CSI reflects the amplitude and phase

of the signal with different frequencies after multipath propagation. Therefore,285

CSI contains more fine-grained information in the physical layer. CSI describes

the channel state on the subcarrier level and can measure the amplitude and

phase of the subcarrier. For different applications we can also extract repre-

sentative features from the CSI and derive subtle environmental information

from the time and frequency domain. Human activities can cause environmen-290

tal changes, hence it is possible to recognize and track activities through CSI

analysis in environments that are subject to limited change apart from human

movement.

3.2. General Physical Activity Recognition

General physical activity refers to all non-static human activity. This is a295

helpful distinct class because, in many cases, it is not easy to detect all nuances

of an activity. But when someone is generally physically active, the tracking

data is fundamentally different from the static state, making the state difference

easy to discern while gathering reliable information that can be very important

to gain a better understanding of physical behavioral patterns. Since the CSI300

value changes abnormally when human activity occurs, we can derive the recog-

nition of general physical activity with high likelihood from confirming abnormal

sequences in the sensor data.

Before performing the exceptional case detection analysis, we need to elim-

inate noise from the CSI data. Here we use the Butterworth low-pass filter305
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to process the raw data. The Butterworth filter is widely used in electronics

and electrical communication. This filter keeps the low frequency information

which is influenced by movement of the human body and removes most of the

high frequency interference noisy information. The wireless signal is always in

high-frequency, while physical activities is at a low-frequency respectively. For310

this reason, a Butterworth low-pass filter is chosen to eliminate the interference

information in the data flow. Butterworth low-pass filters can guarantee the

low frequency, which is the useful information, will be passed, and the high fre-

quency interference signal will be filtered out. Figure 2 shows an example of the

original subcarrier (raw data) and Figure 3 shows after signal processing with315

the Butterworth low-pass filter. This operation effectively removes most of the

high frequency noise, and retains useful activity information.

Figure 2: Original subcarrier Figure 3: Data sequence chart after filter

Sequences of anomalous activity can then be obtained by calculating the

principal component and the eigenvector of the processed data. By setting the

average value of the sequence as a threshold, the start and end positions of320

the activity can be found according to the algorithm proposed by 5.2.1 of this

article. The data extracted between the start and end points are the data source

of feature extraction for the classification of common activities.

3.3. Feature Extraction and Recognition for Activities of Common Classes

Although we cannot differentiate all potential activities, there are four classes325

of activities plus a static state that can form a helpful basis of reference. The

static state refers to people who are sleeping or engaging in sedentary behav-

ior, such as watching TV, which is characterized by normal breathing but no

gross physical activity. The four classes of activity are: (1) light extremities
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movement stationary : minor movement in hands or legs while seated, which330

means the body does not move and there is only controlled displacement of ex-

tremities (e.g. stretching hands up); (2) intense movement stationary : moving

parts of the body while stationary, which means the extremities and the overall

body may move notably, but the body does not shift location (e.g. squatting

and picking things up); (3) light full-body non-stationary : non-violent activi-335

ties with hands and feet; this roughly equates slow change in location of the

body (such as mopping the floor); and (4) intense full-body non-stationary : in-

tense physical activities; this typically results from strong movements of the

whole body, including additional movement in hands and feet together with

fast changes in location (e.g. playing table tennis or walking / jogging around340

swiftly). The reasons for choosing these four activities are: (1) they represent

an increasing intensity of different activities. One can thus estimate the actual

amounts of different types of activities, along with their duration. Classes 2

to 4 roughly correspond to the different levels of activity that are employed

in the most common physical activity questionnaires, such as the RAPA(The345

Rapid Assessment of Physical Activity) [49, 50, 51]. Hence, the readings can be

compared in categories that are meaningful to the broader research community.

(2) Following the division by involved body parts we can estimate whether the

body is performing coordinated movements, which can be helpful since intense

movement does not necessarily represent desirable behavior. (3) It is helpful to350

test the sensitivity of the wireless equipment for different speeds and different

spatial positions of activities and to improve these methods of feature extraction

when building the recognition model.

First of all, we use PCA to deal with the original data, then extract activity

information between the corresponding start and end points that were obtained355

in the section ( 3.2). Unfortunately, there are still burrs in the signal, so we use

CSA filtering algorithm for further data preprocessing. Experiments show that

CSA achieve satisfactory results, but different filtering algorithms may be able

to achieve the same effect, the relevant comparison will be carried out in the

future work.360
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In addition, these extracted activity data usually have different lengths that

will result in a workload increase if the eigenvalues are extracted directly using

wavelet analysis. Hence, the activity data has to be re-sampled to obtain data

fragments of the same length. We employ a polyphase filter to re-sample in

the time series, which turns all the data fragments into a fixed-length sequences365

in the same fluctuation range and data trend as before. The polyphase filter

consists of an anti-aliasing low-pass filter designed with the FIR (finite impulse

response digital filter) method. An example of data processed by BW and PCA

is shown in Figure 4. The result of data de-noising using CSA is shown in

Figure 5. Figure 6 is a schematic diagram of 1,000 data points re-sampled from370

3,201 data points.

Figure 4: Data preprocessed

by BW and PCA

Figure 5: After de-noising

with CSA

Figure 6: Re-sampling 1,000

data points

Generally speaking, there is no unified analysis theory or reliable best-

practice for feature extraction based on different application backgrounds and

classification methods to extract varying features. However, there are three prin-

cipal foci: time domain, frequency domain and time-frequency domain analysis.375

Time-frequency domain analysis, such as wavelet transform, is a compromise be-

tween the time and frequency methods selecting different results after wavelet

transform as characteristic vectors depending on application characteristics. For

this paper the energy values of 16 signals were calculated by decomposing the

data into four layers of wavelet packets. The energy values are used as the380

eigenvalues of the current activities after uniformly symbolizing and clustering.

Afterwards, separately constructed hidden Markov models (HMM) are used

to form recognition models for each activity class. While the hidden state N

and the observable state M are fixed or can be directly obtained, the HMM

parameters can be expressed as a triplet (π,A,B), where π represents the initial385
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state probability, A the transfer matrix of the hidden state, and B the confusion

matrix. The key points are to construct a hidden state transition matrix and a

confusion matrix.

If we set an activity having N hidden states, we can acquire a hidden state

transition matrix as an N × N matrix. The activity is then represented by N390

states, i.e. the N hidden state values encode an observation sequence of the

activity. After decomposing of the signal data, the value of the eigenvectors

may not necessarily be an integer. Negative numbers cannot be trained directly

into the model as an observation sequence, so they need to be mapped into

observation symbols. In this paper, there are four specific activities to identify,395

each activity has N states, and only 4N observation symbols can contain all of

the observation states. We can consider the observed state M = 4N , and the

confused matrix as N ×M = N × 4N . We make the following initialization

settings: (1) for each HMM, the initial state probability is π = {1, 0, . . . , 0},

assuming that the probability of the first occurrence of the first state is 1; (2)400

For the hidden state transition matrix, we use a multi-state semi-connected left

and right HMM for activity recognition. In this case, the current state has only

two transition directions and the sum of each row is 1. It is assumed that the

current state is shifted to the next state with a probability of 0.5 and shifted to

the current state with a probability of 0.5; and (3) the sum of each row of the405

confusion matrix is 1, assuming that at some time the probability of observing

the hidden state is X (X = 1 . . . N) and the observed state is Y (Y = 1, . . . ,M)

that is equal to 1/M .

Before we obtain the recognition model and results analysis, each activity is

performed to obtain W group data, that is, after the feature extraction we can410

get the W ×N matrix as the feature vector matrix of the activity. Each activity

selects part of the data (such as W-80 or W-40 group data) as training data

into the HMM. As a result, we obtain four recognition models for activities of

common classes. After the remaining 80 or 40 group data are brought into four

models for analysis and recognition we can calculate the average recognition415

rates.
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4. Activity duration and consistency evaluation

4.1. Algorithm of Activity Duration Based on Wireless Data

The activity levels of a largely sedentary person may be quite readily ob-

served while exercising in a sports clinic or at a designated gym, however it420

is important to gain insights regarding the levels and duration of activities at

home, since these can be important functional indicators.

In the absence of a human observer it is necessary to not only automatically

identify the activity classes, but to also calculate the activity duration. The

duration of general physical activity facilitates a better understanding of the425

sedentary behavior; enabling more telling research insights, or useful interven-

tion control.

Figure 7: The signal processing flow for

both the detection of general physical ac-

tivity (left branch) and the classes of com-

mon activities ( right branch)

Figure 8: Obtaining location of activities in

data streams

The method consists of three algorithmic parts. Figure 7 shows the statis-

tical duration algorithms for detecting the presence of general physical activity

and for classifying the common activity classes. The left branch side in Fig-430
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ure 7 shows the statistical duration of all non-stationary activities. First, the

original CSI data is de-noised, followed by calculating the principal components

and eigenvalues and then calculating the flag value according to the principal

components and eigenvalues (see 5.2.1). According to the flag value and the

algorithm showed in Figure 8, the starting and ending positions and number of435

anomalies can be calculated, so that the total activity duration can be obtained.

The right-hand side of Figure 7 keeps separate tallies for the duration based on

the recognition of different activities. As mentioned above, this requires com-

puting the starting and ending positions of anomalies, followed by extracting

the data processed by PCA in the corresponding positions. The resulting data440

are resampled after executing cubical smoothing with five-point approximation.

Lastly, each activity type is classified and counted according to the HMM recog-

nition model output to achieve a close estimate of the total duration of physical

movement that falls into each of the activity classes. Figure 8 describes the

algorithm details of the parts that are highlighted with a dotted line in Figure 7.445

The input of the algorithm described in Figure 8 is the sequence of flag values

of activities, and the output is the start and end positions and total number of

all activities. The first step of the algorithm is to traverse all the mark points

and find the initial array of start and end positions according to the average

value β calculated by the flag values. Then, the algorithm “repairs” the array450

by merging the erroneous positions of the start and end points where α is an

integer value set by the density of mark points and experience, which indicate

the minimum possible duration of the activity.

4.2. Consistency Evaluation of Duration Estimations

Whether the results of the duration statistics using wireless data are reli-455

able needs to be evaluated by a robust and credible measurement system. This

problem can be attributed to the consistency test problem which is often faced

in data analysis, that is, judging whether different models or analysis methods

have consistency in the prediction results, and whether the model results are

consistent with the actual results. At present, the paired t-test can only test460
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whether there is any difference, it can’t show the degree of consistency of the

paired data, and the t-test is greatly influenced by the degree of freedom. The

correlation coefficient is insensitive to the system error; it can only show that

the trend of the two cases is consistent, and is insensitive to the errors between

them. The application of ICC is limited by the range of measurement value,465

and sometimes it makes a wrong judgement. A reliable method is using Kappa

coefficients to carry out consistency checking, it has been widely applied in med-

ical, clinical and other practical scenarios. For example, consistency tests are

made for two or more doctors on the diagnosis of the same patient. We draw on

this concept to evaluate the consistency of the duration statistics results of the470

automated analysis of wireless signals as described above with duration statis-

tics that are based on manually coded video recordings of the same activity

sequences. If we find that the Kappa coefficient value between them is large we

can assume that the duration result obtained by using the wireless signal is ap-

proximately consistent with the relatively reliable manual (human rater based)475

measurement result. The main equation for calculating the Kappa coefficient is

as follows:

K =
p0 − pe
1− pe

(1)

P0 =
s

n
(2)

Pc =
a1 × b1 + a0 × b0

n× n
(3)

High K indicates better consistency between two observers, where p0 is the

observation consistency (observed agreement) and pe the expected consistency

(agreement by chance). In order to better use the formula of Kappa coefficient,480

we innovatively discretize the time interval into multiple time slices and then

mark these discrete time slices as 1 if the time slice falls into the active signal

interval and 0 if not. The total number of time slices is n, the same marker

value of two observers is s. The true mark is 1, the value is a1, if 0, the value is
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a0; the analog mark is 1, the value is b1; if 0, the value is b0. We can put these485

statements into the equation elements ( 2) and ( 3) to get the value of p0 and

pe and then use formula ( 1) to calculate the Kappa coefficient.

5. Implementation and evaluation

5.1. Algorithm of Activity Duration Based on Wireless Data

The system consists of a software platform, a signal transmitter, and a sig-490

nal receiver. The software platform is built on the Ubuntu14.04LTS operating

system. The working frequency of the signal transmitter (a dual-band and dual-

antenna TP-LINK router) is 867M (5G) + 300M (2.4G). The signal receiver is

a DELL integrated machine, configured with an i3 CPU, 2GB memory, an Intel

5300 network card, and two receiving antennas. The sampling frequency of the495

whole system is 1300 samples/sec. The consistency evaluation experiment used

two smartphones (VivoX7 and Meizu MX4), as well as SPSS V22 for auxiliary

calculation and analysis.

Figure 9 shows the structure of the exemplary family house that represents

the situated experiment setting. In this experiment, only one participant was500

instructed to move within the dashed line to assure of the control. This loca-

tion is located in Fresnel zone. Trials were conducted over the course of one

week, performing experiments on activity recognition and collecting data at

three different times: morning, noon and evening within each day. This was

understand and control the potential differences in external sources of signal505

disturbance (such as strong electromagnetic emitters being active in neighbor-

ing structures at certain times of the day). The experimenter-participant the

designated activity, with magnitude and speed similar - as much as possible - to

typical executions of such behavior in daily life. In order to observe the exper-

imental results easily, we chose one representative activity from the four kinds510

of activities. 420 sets of raw data were collected within the week. It should be

noted that there were about six or seven different Wi-Fi signals of neighbors
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Figure 9: Floor plan and room layout of the experimental family home scene

present in the experimental environment, representing a common reality of the

simulated real-world situated context “in the wild”.

5.2. Activity Recognition515

5.2.1. Recognition of general physical activity.

Following initial experimental observation, we chose a duration leading to

200 segments to divide the data stream into units, which discretely reflect the

occurrence of activity in the data stream. Raw data was processed with the

Butterworth low-pass filter and the stream of N sampling points was divided520

into N/200 segments (cf. There are 200 points in each segment. Here we

have 1000 sampling points, divided into 5 sections.) before applying principal

component analysis to each segment (cf. Figure 10). Findings: The second

principal component h2 fluctuates less (variance E{h22} is small) when there is

no activity. The second principal component fluctuates with any activity (the525

variance E{h22} is large). The mean difference of the second eigenvector q2

[calculated according to equation( 4)] is less than one. The ratio (flag value) of

variance and mean difference highlights the difference between activity and rest.

A flag value can be computed for each segment, producing a sequence diagram
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Figure 10: An exemplary sequence diagram of

E{h22} and δq2

Figure 11: The example sequence diagram of

flag values of activities

as shown in Figure 11.530

δq2 =
1

n− 1

n∑
l=1

|q2 (l)− q2 (l − 1)| 1 (4)

The average value β is a threshold value calculated according to the sequence

of activity flag values. The range of the resulting sequence is the interval of the

activity from the flag value greater than β to the flag value less than β ; i.e. an

activity is recognized. We extended the two mark points on the left and right

sides of the interval as the starting and ending point of the abnormality in order535

to cover the whole activity as far as possible. This indicates an activity and its

start and end position.

The total number of samples of each of the four different activities was 420.

The numbers of activities recognized by the above method were 419, 419, 414

and 412 respectively, which means an average recognition rate of 99.05%, as540

shown in Table 1. With this approach we expect to recognize any activity with

high recognition rate as the focus is not a specific activity but the analysis of

abnormal data which ensures a certain degree of universality.

5.2.2. Recognition of common classes of activity.

The data collected can not only be used to establish an HMM recognition545

model, but also for experimental measurement. In order to acquire realistic data

we recorded activity data for one week, with three different sampling times each

1n is the number of subcarriers, which is 120 in this paper
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Table 1: Recognition Rate of General Physical Activity

Activity type Number of samples Actual number of exceptions Recognition rate

Stretch hands upwards 420 419 99.76%

Squat to pick up 420 419 99.76%

Mop floor 420 414 98.57%

Playing table tennis 420 412 98.10%

day (morning, noon, night). Since the total number of experimental data sets

for each activity is 420, we determined the number of training data sets to be

340 (80/20%) or 380 (90/10% training to validation split) and the number of550

test data sets to be 80 or 40 respectively, sampling the performance under two

common training data to validation data split ratios.

In the previous section we showed that we can reliably determine the start

and end position of an activity, so we can construct a clean set of activity data.

In this section we will show how we obtain improved activity type classifica-555

tion rates by analysis and optimization selection of principal component and

eigenvalue.

When designing the data analysis process, we employed 1st, 2nd and 3rd

principal component data for analysis. In test analyses we found that most

of the recognition effects based on the first principal component were better,560

except for the mopping activity. The subsequent analysis of the 4th, 5th and

6th principal components showed that the 4th principal component recognition

works best with the mopping activity example; hence we considered combining

the 1st and 4th dataset. To begin with, the 1st principal component data

and 4th principal component data were extracted, and five eigenvalues were565

calculated according to the design of the four activity states. After merging,

ten eigenvectors are obtained. Using this method and configuration the overall

recognition is stable and the recognition rate is about 83-89%, as shown in

Table 2 and Figure 12.

For better results we continued to perform steps for optimization and im-570

provement of the process. The clustering of 16 energy values after wavelet
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Table 2: Recognition rate of directly-merged eigenvalues for common classes of activities

Extraction of features Number of features Number of training sets
Recognition rate

Stretching Squatting Mopping Playing table tennis Average

Merging eigenvalue of

principal component
10

340 83% 89% 88% 95% 89%

380 83% 83% 79% 88% 83%

Figure 12: Recognition results of the directly-merged eigenvalue of PCA

decomposition of each principal component is intended to reduce the discrim-

ination of the original information; hence we combined the 16 energy values

of the 1st and 4th principal components before clustering and clustered the 32

energy values to obtain an eigenvalue. The experimental results show that a575

92% recognition rate can be achieved when the number of hidden states is five

and the number of training data is 380. Table 3 and Figure 13 show that in the

normal family environment the recognition method optimized for the sedentary

person could be a more accurate estimate of the activity amount.

5.3. Consistency of Activity Duration Recognition580

Since we aimed to evaluate whether the system and method that we report

on in this paper can accurately determine the statistical duration of the physical

activity, a 1 minute video was recorded with two mobile phones from different

angles during each experiment trial that was performed to collect the activity

data, in order to facilitate calculating a measure of reliability without loss of585

generality. The videos contain both segments with and without activity. A total

Table 3: Recognition rate based on the combined energy value for common classes of activities

Extraction of features Number of features Number of training sets
Recognition rate

Stretching Squatting Mopping Playing table tennis Average

Merging energy

eigenvalue
5

340 91% 95% 81.5% 93.5% 90%

380 87% 95.5% 92% 95% 92%
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Figure 13: Recognition results based on combined energy value

of 21 minutes of active video sections was accumulated for the entire seven days

and we also collected the wireless data streams corresponding to the 21 minutes

of video. In order to calculate the Kappa coefficients we discretized the video

and wireless data, making each segment 1 second in size, for a total of 1260 time590

slices. The specific evaluation process is as follows:

(1) Calculate the consistency coefficient between the two video devices by man-

ually observing whether a time slice belongs to the activity time interval,

marking it as 1 if it is within the activity interval, and marking it as 0 oth-

erwise. We find that the number of time slices marked as 1 is 829, with 431595

being marked as 0. Therefore, n = 1260, s = 1260; a1 = 829, b1 = 829; a0 =

431, b0 = 431, then we get K = 1 from equation( 1)( 2)( 3). So we can

conclude that the two observations are exactly the same.

(2) We calculate the consistency coefficient between the video observer and the

wireless data. The marking process required to use the algorithm is as600

described in Section 4.1 for general physical activity identification. The

experimental results are n = 1260, s = 1222; a1 = 829, b1 = 810; a0 =

431, b0 = 450. Then K = 0.93 can be calculated according to the formula,

which indicates that the two observations are almost identical.

(3) In order to calculate the Kappa coefficients corresponding to the respec-605

tive statistical duration of the four classes of activities, we needed to find

out the“abnormal” data boundaries indicating periods of activity by using

the algorithm in Section 4.1, and then mark them separately. Since this

step resembles the boundary determination described above no calculation
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Table 4: Kappa coefficient and evaluation of the activity classes

Activity classes

Kappa coefficients of

classification activities

Different time of day Stretching Squatting Mopping Playing table tennis

Morning 0.802 0.645 0.712 0.667

Afternoon 0.787 0.721 0.611 0.710

Evening 0.672 1.00 0.652 0.665

Average 0.721 0.754 0.789 0.658 0.681

Consistency evaluation Highly consistent Highly consistent Highly consistent Highly consistent Highly consistent

procedure is given here. The final results are listed in Table 4, with an610

average of 0.721, indicating a high degree of consistency between the two

observations.

In summary, the use of wireless data for statistical duration is plausible. This

innovative approach will allow us not only to recognize human activity using

wireless signals but also to estimate the approximate duration of the activity.615

With these tools we can estimate the amount of at-home activity and activity

details (duration and rough level) in a non-invasive manner that does not re-

quire wearing active measuring devices which can interfere with regular activity

executions and potentially biases users by presenting a physical reminder that

their activities are tracked. The resulting information can inform approaches620

to tackling the societal challenges that were discussed in the motivation of this

paper. Monitoring results can be shared with overly sedentary subjects to issue

reminders and persuade them to attain a certain amount of activity in all parts

of the body so as to maintain good health or to counteract the progression of

chronic afflictions.625

6. Discussion

Although we have taken the instability of the classifier based on wireless

data into account, the situated nature of the evaluation study prevents an im-

mediate generalizability of the recognition model due to the presence of wireless

signal noise and other disturbances. This work provides early evidence and can-630

not yet conclusively prove the universality of the recognition model, although
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the training data was collected at different times. This may make the original

classifier work less or more effective than it otherwise would, as CSI is easily

disturbed by sudden or permanent changes in the experiment environment, in-

cluding wireless interference and many activities and movements of doors and635

windows or furniture or something else., etc. Further study of the potential

contextual adaptation is required. Determining whether a temporary or a per-

manent change due to a sharp drop can be compensated makes for a viable

approach to tackling this challenge. For permanent changes the classifier needs

to be rebuilt. A combination with human-computation for labeling training640

data can potentially facilitate the (re-)construction of on-the-fly models that

are highly adapted to a specific context. But it is difficult to only consider the

statistical method. More importantly, we need to analyze the characteristics of

the Fresnel zone and identify the principle rules. Besides, we can also consider it

combining the signals with those of other sensors (e.g. smart watches), aiming645

for the fusion of multi-sensor data to form a promising approach in this regard.

In the light of estimating impact on chronic afflictions caused by sedentary

or active behavior it appears promising to add MET (metabolic equivalents)

estimations based on energy present in the signal disturbance. To broadly cover

MET classes this requires additional training data recordings. Based on this650

system, an intelligent agent that not only monitors activity but interacts with

the sedentary person might not only perceive and understand physical discom-

fort of the sedentary person, but also persuade and encourage more physical

activity.

While we aim for clearly positive application use-cases in digital health, it is655

clear that potentially covert tracking methods of human activity pose some risk

for misuse. We do not support any application of this technology, if the presence

and the consequences are not clearly communicated to the subjects that are

present in the tracking area, and if all individuals present subject themselves

to the tracking out of their own volition. Since the methods and procedures660

described in this work do not pose a risk of causing direct harm we assume the

position that public research with best intentions in mind is ethically justified,
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as it liberally makes a technological approach available to a larger audience that

would otherwise be developed further by private entities with high likelihood

and few means to estimate the potential consequences of its use.665

7. Conclusion

In this paper, a system and methods for the non-invasive recognition and

quantification of physical activities were presented and evaluated in a representa-

tive situated family home setting. While a generalized approach requires further

study, using the principle of Fresnel zone and multimodal fusion method, with670

longer periods of experiment, and the additional environments for collecting

more avtivities data, an early evaluation of the current system showed promis-

ing results. For a typical environment with various sources of signal disturbance

and noise, we proposed the WiFun prototype based on wireless signals for rec-

ognizing (1) the presence of general activity, (2) the type of activity class, as675

well as (3) for estimating the respective durations. Our work features three core

novel technical aspects: first, we propose the “1 + 4 model” and implementa-

tion technology of recognition in the environment of interference with effective

methods of signal de-noising and feature extraction; second, we propose a novel

statistical method for general duration of physical activity and the duration of680

different activity classes estimation; and third, we use the Kappa coefficient for

judging the consistency of statistical duration. The proposed prototype system

can successfully recognize and quantify physical activity under certain condi-

tions. In our analysis, based on the processing and modeling of wireless data as

described above, the experimental results show that the recognition rate of gen-685

eral physical activity is 99.05% and the average recognition rate of four common

activities is 92%. The Kappa coefficients between automatic detection based on

wireless signals and manually labeled video data are 0.93 (general activity) and

0.721 (activity classes), which are high consistencies for estimating the amount

and level of activity and duration, indicating that the recognition outputs are in690

considerable agreement with the recognition outcomes when employing manual
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labeling by human raters.
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