
Unsupervised Domain Adaptation for Activity Recognition Across
Heterogeneous Datasets

Andrea Rosales Sanabria and Juan Ye

School of Computer Science, University of St Andrews, UK

Abstract

Sensor-based human activity recognition is to recognise human daily activities through a collection

of ambient and wearable sensors. It is the key enabler for many healthcare applications, especially

in ambient assisted living. The advance of sensing and communication technologies has driven the

deployment of sensors in many residential and care home settings. However, the challenge still

resides in the lack of sufficient, high-quality activity annotations on sensor data, which most of

the existing activity recognition algorithms rely on. In this paper, we propose an Unsupervised

Domain adaptation technique for Activity Recognition, called UDAR, which supports sharing and

transferring activity models from one dataset to another heterogeneous dataset without the need of

activity labels on the latter. This approach has combined knowledge- and data-driven techniques to

achieve coarse- and fine-grained feature alignment. We have evaluated UDAR on five third-party,

real-world datasets and have demonstrated high recognition accuracy and robustness against sensor

noise, compared to the state-of-the-art domain adaptation techniques.

Keywords: Human activity recognition, domain adaptation, ensemble learning, variational

autoencoder

1. Introduction

Today we have witnessed an increasing number of smart environment applications in our every-

day life, such as health assessment (e.g., stress and depression detection, and clinical assessment

on cognition and mobility) [25], activity-driven behaviour changing applications (e.g., smoking

cessation) [26], home automation (e.g., automatic heating configurations) [6], and so on. Activity

recognition lies at the heart of these applications, which is the ability to recognise and predict users’

current and future activities from data collected on a wide range of sensors that are embedded in

an environment such as RFID, infra-red positioning sensors, and that are worn on the users such as
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smart watches, glasses, and phones. Based on inferred user activities, applications are designed to

deliver intended services in an automatic and unobtrusive manner. The ability to correctly identify

and predict users’ activities underpins the success of the above applications.

Significant progress has been made in activity recognition over the past few years with the

support of a large number of modern data-driven techniques, including Hidden Markov Models,

Conditional Random Fields, Support Vector Machine [36], and the recent deep learning tech-

niques [23]. To build a robust activity recognition model, most of these existing techniques require

a large number of training data; that is, annotated sensor data with activity labels. However, the

key challenge faced in the current activity recognition community is the lack of sufficient training

data. It often requires a lot of time and effort to annotate sensor data, either relying on users’

constant self-report on what they are doing or recording users’ activities via videos which are later

annotated by the others. These annotation approaches that require highly intensive effort or com-

mitment are only suitable for lab- or testbed-based experiments on a small number of users over a

short period of time.

This paper explores a research question: is it possible to relieve the annotation burden on indi-

vidual users but still be able to build a robust activity recognition model by sharing and transferring

activity models across users, even though the sensor deployments and operating environments are

different? To address this question, we propose an Unsupervised Domain adaptation technique

for Activity Recognition, called UDAR, which supports sharing and transferring activity models

from one dataset to another heterogeneous dataset without the need of activity labels on the latter

dataset. Heterogeneity is featured in different physical environments, different sensor deployments,

and different users. The main contributions and novelty are listed as follows.

• We have designed a workflow that combines knowledge- and data-driven techniques in per-

forming domain adaptation at different stages. We build on a general ontology for smart home

datasets and achieve coarse-grained feature space remapping to link heterogeneous datasets

without the need of labelled data in the target domain. We apply Variational Autoencoder

(VAE) to perform fine-grained feature space alignment. VAE has achieved promising re-

sults in learning effective latent feature representations in computer vision [13] and also in

minimising the distance of source and target feature spaces based on their latent feature

representations [1].
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• We have performed extensive empirical evaluation on five third-party, real-world datasets

that have different spatial layouts and sensor deployments. We have designed different ex-

periments on assessing the effectiveness and robustness of domain adaptation with different

training data percentages and sensor noise settings. The results have demonstrated the

robustness of UDAR as it has consistently outperformed the state-of-the-art domain adap-

tation techniques, including Geodesic Flow Kernel (GFK) [9], Transfer Component Analysis

(TCA) [20], Feature-Level Domain Adaptation (FLDA) [14], Joint Distribution Adaptation

(JDA) [17], Importance-weighting with logistic discrimination (IW) [10], and canonical cor-

relation analysis (CCA) [2].

The rest of the paper is organised as follows. Section 2 introduces the recent research on

transfer learning in activity recognition and compares and contrasts our work from the literature.

Section 3 defines the problem – unsupervised domain adaptation and presents our approach in a

workflow. Section 4 introduces the pre-annotation process with coarse-grained knowledge-driven

feature space remapping and Section 5 describes fine-grained VAE based feature alignment. We

introduce the experiment methodology in Section 6 and discusses the results in Section 7. The

paper concludes in Section 8.

2. Related Work

Domain adaptation is to deal with the limitation of labelling data, where knowledge learned

from a source domain (with labelled data) can be transferred to a target domain (without labelled

data) [21]. Various domain adaptation techniques have been applied to computer vision [16] and

natural language processing [22], and have achieved promising results in reducing annotation efforts.

In recent years, we have witnessed an increasing number of domain adaptation and / or transfer

learning techniques being applied to activity recognition [3].

2.1. Domain Adaptation on Accelerometer Data

Zhao et al. [39] propose a TransEMDT system to transfer accelerometer-based activity recog-

nition models between different users. The idea is to train a decision tree on one user and then

predict activity labels on another user’s accelerometer data. A k-means clustering algorithm is

applied to the classification results, and then the original decision tree model will be updated by
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iteratively resampling the most confident data on the new user. Similarly, Khan and Roy propose

an instance-based transfer boost algorithm with k-means clustering to transfer activity models

between smart phones and smart watch [12].

Maekawa et al. [18] have proposed an unsupervised approach to recognise physical activities

from accelerometer data. They utilise information about users’ characteristics such as height and

gender to compute the similarity between users, and find and adapt the models for the new users

from the similar users.

Wang et al. [31] have proposed a Stratified Transfer Learning (STL) on recognise physical

activities from different users. They first train classifiers on the annotated source domain dataset

and use the classifiers to generate pseudo activity labels on the target domain dataset. Then

they perform intra-class knowledge transfer; that is, map the sensor data of both source and target

domain on the same activity label and use various types of transfer kernels to project both domains’

features space to a common subspace. Then they will re-train classifiers on the common subspaces

to re-label the target domain dataset. This approach has produced promising results when there

is no labelled data in the target domain.

We are using the similar workflow in producing the pseudo activity labels on sensor data. The

key differences are that (1) we are working on binary event sensor data, meaning that we cannot

directly apply the classifiers trained on the source domain to predicting the labels on the target

domain, and (2) instead of using traditional transfer kernels, we are using the recent variational

autoencoder to align the feature spaces in both source and target domain.

2.2. Transfer Learning on Binary Event Sensor Data

Transfer learning on binary event sensor data is different from accelerometer data. Features

generated on accelerometer data are in the same feature space and transfer learning focuses on

transferring the distributions of features between different subjects. However, as each environment

can have a different sensor deployment in terms of the number and the locations of sensors being

placed, sensor features can be drastically different, as shown in Figure 9. This heterogeneity in

feature spaces brings an extra challenge on transfer learning of activity models, and often requires

an intermediate mechanism to bridge the feature spaces in the source and target domain.

Zheng et al. [40] proposes an algorithm for cross-domain activity recognition that transfers the

labelled data from a source domain to a target domain so that the activity model in the source
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domain can help to complete the similar activity model in the target domain. The similarity is not

only measured on the objects being involved in the activities, but also on their underlying physical

actions. One example in [40] is that the activity ‘Washing-laundry’ is similar to ‘Hand-washing

dishes’ on the action of ‘Hand washing’. They use the web search and apply the information

retrieval techniques to build the similarity function that produces different probabilistic weights of

actions and objects on activities of interest. These weights will be further used to train a multi-class

weighted support vector machine to support activity recognition.

van Kasteren et al. [28] propose a manual mapping between sensors in different households and

learn the parameters of a target model using the EM algorithm to transit probabilities of HMM

models from source to target. Similarly, Rashidi et al. [24] learn sensor mappings based on their

locations and roles in activity models. The role is characterised in mutual information, measuring

the mutual dependence between an activity and a sensor and suggests the relevance of using the

sensor in predicting the corresponding activity. Feuz et al. [7] propose a data-driven approach to

automatically map sensors based on their meta-features, which are mainly about when a sensor

reports, and time intervals between events reported by this sensor and other sensors.

Ye et al. [35] propose shared learning on scarcely and partially annotated data from multiple

users to achieve satisfactory activity recognition accuracies. The hypothesis is that as long as each

user contributes a very small number of labelled examples (even though these examples might not

cover a complete set of activity types), a shared learning approach will learn annotated examples

across all the users and complement each other to build an activity recognition model to cover all

the activities. This approach has the potential of reducing the annotation burden on each user and

has demonstrated its effectiveness when each user contributes to a very small number of annotated

activities. However, the performance of this approach still needs a significant improvement.

The approach presented in this paper is similar to the above work where we employ semantics

between sensors to bridge sensor features between source and target domains. The main difference

is that we use the recent variational autoencoder to refine feature remapping to enhance the quality

of transferring models.
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3. Problem Statement and Overview

In this section, we define the problem of unsupervised domain adaptation, illustrate it in a

concrete example, and present the workflow of our approach UDAR.

3.1. Problem Statement

Recognising everyday routine activities can be challenging, as it involves understanding human

behaviour from a series of observations derived from motion, location, physiological signals and

environmental information. Most of the existing approaches [15, 30] assume that the distribution

of the sensor data is the same as that used in the model training process. However, this assumption

is not always valid. A major challenge in current activity recognition research is to collect sufficient

labelled data in the environment to train classification models. This task can be expensive and

the performance of the classifier can be compromised by the lack of training labelled samples. To

deal with this problem, transfer learning is proposed to apply knowledge learned from the source

domain to the target domain.

In this paper we hypothesise that we can accurately recognise one user’s (referred to as the

target user) activities by performing unsupervised adaptation of activity models from another user

(referred to as the source user). That is, instead of collecting activity labels on the target user,

we can transfer the knowledge on the source user and automatically predict activity labels on the

target users. The main challenge resides in the mapping between heterogeneous feature spaces as

both users can live in different environments that have different spatial layouts and are deployed

with different numbers of sensors or different types of sensing technologies. In transfer learning,

this problem is regarded as unsupervised domain adaptation [8].

Definition 1. Assume that a source and target domain dataset is defined as follows.

• A source domain dataset consists of a collection of labelled instances, {(x(i)
s , y(i))}Nsi=1, where

an instance x
(i)
s (∈ Xs) is labelled with a class label y(i) (∈ {1, 2, ..., C}). Here Xs is a

Ms-dimensional feature space.

• A target domain dataset consists of a collection of unlabelled instances Dt = {x(j)
t }Ntj=1, where

x
(j)
t ∈ Xt. Here Xt is a Mt-dimensional feature space.
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Both source and target domains have different feature spaces but share the same label space; i.e.,

Xs 6= Xt such that they have different dimensions Ms 6= Mt, and their marginal distributions and

conditional distributions are different; i.e., P (Xs) 6= P (Xt) and P (ys|xs) 6= P (yt|xt). Unsupervised

domain adaptation is to predict a label y(j) for each instance x
(j)
t in the target domain dataset and

y(j) ∈ {1, 2, ..., C}.

Figure 1 illustrates the above problem. Two houses A and B are presented, each of which is

deployed with a number of binary event-driven sensors [29]. For example, House A is configured

with infrared passive motion sensors, which report 1 when the presence of an object or a user is

detected. House B is configured with RFID to monitor the presence of an object and switch sensors

to monitor the ‘open’ and ‘close’ states of a cupboard or a door. Our task is to transfer an activity

model from one house (e.g., A) to predict labels in the other house (e.g., B), without the use of

any activity labels on the house B.

Figure 1: The representation of sensor deployments in two different smart homes: House A and House B [29].

A sensor similarity matrix is used to initialise the similarity of sensor features between both houses.

3.2. Overview

A general strategy to address the unsupervised domain adaptation problem is to align feature

spaces from both domains and then find a common subspace where both feature spaces can be

projected onto and minimise their distance [21]. Aligning feature spaces can be done through

matching distributions [21], but this is infeasible as the dimensionality of feature spaces is com-

pletely different here. Another way for alignment is based on class labels; that is, align instances

from both domains when they share the same class label [31]. Since we do not use the target
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domain’s labels, we need to find a way to generate pseudo labels on the instances in the target

domain. In the following, we list the main steps in UDAR.

Step 1 - Knowledge-driven feature remapping between source and target domains, where we use

simple semantics to transfer feature space from the target domain to the source domain;

Step 2 - Pre-annotating on the target domain, where we train a classifier on the source domain

dataset and generate pseudo labels on the semantics-transferred target domain dataset;

Step 3 - Performing domain adaptation, where we align feature spaces in both source and target

domains based on the generated pseudo labels;

Step 4 - Re-annotating on the target domain, where we train a classifier on the transferred target

feature space along with their pseudo labels and predict labels on the target dataset.

4. Knowledge-driven Feature Remapping and Pre-annotating

In this section, we will describe how we generate pseudo labels on the target dataset to prepare

for domain adaptation. Knowledge-driven feature remapping is to map sensor features based

on the sensor semantics; that is, where they are deployed and which objects they are attached

to. This feature remapping has demonstrated promising results in transferring learning between

heterogeneous smart home environments [35], but semantics can be coarse-grained as they ignore

any feature distribution on activities. Therefore, they often cannot lead to accurate and fine-

grained feature space mapping. In this work, we will only use knowledge-driven feature remapping

to generate pseudo labels and then perform more sophisticated domain adaptation later.

4.1. Feature remapping

Ye et al. [37] have presented a general ontology to project sensors in different smart home

environments onto the same location and object ontologies. The location ontologies represent the

spatial containment relationship between location concepts; e.g., Bedroom v SleepingArea. The

object ontologies are extracted from WordNet [19] and represent the semantic relations between

lexical concepts; e.g., Doorv MovableBarrier. Through the conceptual hierarchy of the ontologies,

we can calculate semantic similarity between a pair of sensors based on the similarities between
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their location and object concepts; that is,

sim(ss,i, st,j) = ωL × sim(li, lj) + ωO × sim(oi, oj), (1)

ωO + ωL = 1 (2)

where ωL and ωO are the weights on location and object concepts contributing to the similarity of

sensors, ss,i and st,j are ith and jth sensor in a dataset s and t respectively, and li, lj , oi, oj are

the location and object concepts in the general ontologies that the sensors i and j are mapped to.

The similarity measure between domain concepts is based on their hierarchy [33], which has been

detailed in [37]. The weights are set as 0.5 for both object and location because we consider both

of their contributions to activity recognition are equally important.

For example in Figure 1, consider the sensor node, marked as S A1, is attached to the bedroom

door in House A, and S B1 and S B2 to the bedroom door and bed in House B. When projecting

all these sensors onto the same location and object ontologies: Bedroom – location concepts for

these three sensors, Door – object concepts for S A1 and S B1, and Bed – object concepts for

S B2. Using the above formula 1, we can calculate the similarities between S A1 and both S B1

and S B2, which are 1.0 and 0.8 respectively. In this way, we can produce a similarity matrix

between each pair of sensors from source and target domain. A more detailed description can be

found in [34]. There might exist some sensors in the target domain that cannot find strong matches

in the source domain; i.e., a sensor’s similarity scores with all the sensors in the source domain are

low. We will leave the feature alignment and the re-annotation process to learn the correlation of

these sensors and activity labels.

4.2. Pre-annotation

The pre-annotation step is to generate pseudo activity labels on the unlabelled target dataset,

using the classifier trained on the source domain dataset. We aim to predict the labels as accurately

as possible, as we will use the labels to align feature spaces in the source and target domain datasets.

To enhance the accuracies of label generation, we design a stacked ensemble on the source domain

dataset, which is presented in Figure 2a.

First we train a number of independent classifiers on the source domain dataset, and use them

to produce probability distributions on each source instance; that is, Pfi = [pf,1, pf,2, ..., pf,C ]

represents the probability distribution from a classifier fi on each class, given that there exists a
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(a) The stacked ensemble to predict activity labels on

the unlabelled target domain dataset
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representations on the transformed target data zt!s. We use a neural network that has the same

architecture and weights of the encoder in the previous VAE so that we can learn the domain adap-

tive features by mapping the target domain data into the feature distribution of the source domain.

We will then retrain the network with the transformed target data X̂t!s,k. The training objective

is to minimise the KL divergence between the posterior distribution of the latent representations

q✓(zs|x) and q✓(zt!s|x):

DKL(q✓(zt!s|x)||q✓(zs|x)) =
1

2
(tr(⌃�1

s ⌃t!s) + (µs � µt!s)
T⌃�1

s (µs � µt!s) � l + ln
|⌃s|

|⌃t!s|
), (8)

where tr(⌃�1
s ⌃t!s) is the trace function to compute the sum of diagonal of ⌃�1

s ⌃t!s, and l is the

dimension of the latent representation. This process aligns the latent PDF of the transformed target

data to that of the source data by matching their means and the eigenvalues of their covariances.

5.2. Re-annotation

Once we have aligned the source and target feature spaces, we will go back to re-annotate

uncertain instances remaining in the target dataset. To achieve this, we train a classifier fs!l

on the encoded source domain X̂s!l; i.e., X̂s!l = vae.encode(Xs), where l is the latent space

learnt by a VAE. We use this classifier to predict labels on the encoded target domain X̂t!l; i.e.,

X̂t!s!l = vae.encode(X̂t!s). We assume that the newly predicted labels on the target domain are

more reliable than the labels predicted at the pre-annotation step as now the source and target

domains are mapped to the same latent subspace. Then we train a new classifier ft with confident

instances from the target domain; i.e., {(x
(j)
t , y

(j)
t )|(y(j)

t , p(j)) = fs!l(x
(j)
t!s!l), p

(j) � ⌧}, where ⌧ is

the confidence threshold. Then we predict labels for all the remaining unlabelled instances in the

target domain. This process is illustrated in Algorithm 1.

6. Experiment and Evaluation

The objective of UDAR is to evaluate how accurately we can predict activity labels on the target

domain dataset using our proposed unsupervised transfer learning approach. More specifically, we

seek to answer the following questions:

1. Does UDAR enable more accurate domain adaptation than the state-of-the-art domain adap-

tation techniques?
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side of the equation, Eq✓(z|x)[log(p✓(x|z))], is the expected value of the data likelihood, while the
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E[g2]t = �E[g2]t�1 + (1 � �)
@C

@W
2

, (6)

Wt = Wt�1 �
⌘p

E[g2]t

@C

@W , (7)

where E[g] is the moving average of square gradients, @C
@W is the gradient of the cost function with

respect to the weight, ⌘ is the learning rate, and � the moving average parameter.

5.1.2. VAE-based Domain Adaptation

We use VAE to align semantics-based remapped feature spaces in the target domain with the

feature space in the source domain to adjust data distributions in order to achieve fine-grained

feature alignment. The proposed training framework is presented in Figure 2b.

We first train the VAE on the source data to obtain the source domain latent representa-

tions; that is, given the training data Xs,k in the source domain on an activity class k, and

zs ⇠ q✓(zs) the latent representation, the posterior distribution q✓(zs|x) is modelled as a mul-

tivariate Gaussian distribution with the estimated mean µ(Xs,k) and covariance ⌃(Xs,k); i.e,

q✓(zs) = N (zs; µ(X̂s,k),⌃(X̂s,k)).

Second, we transform the target data on the same class k using the sensor similarity matrix;

that is, X̂t!s,k = Xt,kSt⇥s. Then we obtain the posterior distribution q✓(zt!s|x) of the latent

12

Encoder Decoder

Copy encoder 
of VAE

Train 
encoder

Objective

representations on the transformed target data zt!s. We use a neural network that has the same

architecture and weights of the encoder in the previous VAE so that we can learn the domain adap-

tive features by mapping the target domain data into the feature distribution of the source domain.

We will then retrain the network with the transformed target data X̂t!s,k. The training objective

is to minimise the KL divergence between the posterior distribution of the latent representations

q✓(zs|x) and q✓(zt!s|x):

DKL(q✓(zt!s|x)||q✓(zs|x)) =
1

2
(tr(⌃�1

s ⌃t!s) + (µs � µt!s)
T⌃�1

s (µs � µt!s) � l + ln
|⌃s|

|⌃t!s|
), (8)

where tr(⌃�1
s ⌃t!s) is the trace function to compute the sum of diagonal of ⌃�1

s ⌃t!s, and l is the

dimension of the latent representation. This process aligns the latent PDF of the transformed target

data to that of the source data by matching their means and the eigenvalues of their covariances.

5.2. Re-annotation

Once we have aligned the source and target feature spaces, we will go back to re-annotate

uncertain instances remaining in the target dataset. To achieve this, we train a classifier fs!l

on the encoded source domain X̂s!l; i.e., X̂s!l = vae.encode(Xs), where l is the latent space

learnt by a VAE. We use this classifier to predict labels on the encoded target domain X̂t!l; i.e.,

X̂t!s!l = vae.encode(X̂t!s). We assume that the newly predicted labels on the target domain are

more reliable than the labels predicted at the pre-annotation step as now the source and target

domains are mapped to the same latent subspace. Then we train a new classifier ft with confident

instances from the target domain; i.e., {(x
(j)
t , y

(j)
t )|(y(j)

t , p(j)) = fs!l(x
(j)
t!s!l), p

(j) � ⌧}, where ⌧ is

the confidence threshold. Then we predict labels for all the remaining unlabelled instances in the

target domain. This process is illustrated in Algorithm 1.

6. Experiment and Evaluation

The objective of UDAR is to evaluate how accurately we can predict activity labels on the target

domain dataset using our proposed unsupervised transfer learning approach. More specifically, we

seek to answer the following questions:

1. Does UDAR enable more accurate domain adaptation than the state-of-the-art domain adap-

tation techniques?

13

representations on the transformed target data zt!s. We use a neural network that has the same

architecture and weights of the encoder in the previous VAE so that we can learn the domain adap-

tive features by mapping the target domain data into the feature distribution of the source domain.

We will then retrain the network with the transformed target data X̂t!s,k. The training objective

is to minimise the KL divergence between the posterior distribution of the latent representations

q✓(zs|x) and q✓(zt!s|x):

DKL(q✓(zt!s|x)||q✓(zs|x)) =
1

2
(tr(⌃�1

s ⌃t!s) + (µs � µt!s)
T⌃�1

s (µs � µt!s) � l + ln
|⌃s|

|⌃t!s|
), (8)

where tr(⌃�1
s ⌃t!s) is the trace function to compute the sum of diagonal of ⌃�1

s ⌃t!s, and l is the

dimension of the latent representation. This process aligns the latent PDF of the transformed target

data to that of the source data by matching their means and the eigenvalues of their covariances.

5.2. Re-annotation

Once we have aligned the source and target feature spaces, we will go back to re-annotate

uncertain instances remaining in the target dataset. To achieve this, we train a classifier fs!l

on the encoded source domain X̂s!l; i.e., X̂s!l = vae.encode(Xs), where l is the latent space

learnt by a VAE. We use this classifier to predict labels on the encoded target domain X̂t!l; i.e.,

X̂t!s!l = vae.encode(X̂t!s). We assume that the newly predicted labels on the target domain are

more reliable than the labels predicted at the pre-annotation step as now the source and target

domains are mapped to the same latent subspace. Then we train a new classifier ft with confident

instances from the target domain; i.e., {(x
(j)
t , y

(j)
t )|(y(j)

t , p(j)) = fs!l(x
(j)
t!s!l), p

(j) � ⌧}, where ⌧ is

the confidence threshold. Then we predict labels for all the remaining unlabelled instances in the

target domain. This process is illustrated in Algorithm 1.

6. Experiment and Evaluation

The objective of UDAR is to evaluate how accurately we can predict activity labels on the target

domain dataset using our proposed unsupervised transfer learning approach. More specifically, we

seek to answer the following questions:

1. Does UDAR enable more accurate domain adaptation than the state-of-the-art domain adap-

tation techniques?

13

representations on the transformed target data zt!s. We use a neural network that has the same

architecture and weights of the encoder in the previous VAE so that we can learn the domain adap-

tive features by mapping the target domain data into the feature distribution of the source domain.

We will then retrain the network with the transformed target data X̂t!s,k. The training objective

is to minimise the KL divergence between the posterior distribution of the latent representations

q✓(zs|x) and q✓(zt!s|x):

DKL(q✓(zt!s|x)||q✓(zs|x)) =
1

2
(tr(⌃�1

s ⌃t!s) + (µs � µt!s)
T⌃�1

s (µs � µt!s) � l + ln
|⌃s|

|⌃t!s|
), (8)

where tr(⌃�1
s ⌃t!s) is the trace function to compute the sum of diagonal of ⌃�1

s ⌃t!s, and l is

the dimension of the latent representation. This process aligns the latent probability distribution

function of the transformed target data to that of the source data by matching their means and

the eigenvalues of their covariances.

5.2. Re-annotation

Once we have aligned the source and target feature spaces, we will go back to re-annotate

uncertain instances remaining in the target dataset. To achieve this, we train a classifier fs!l

on the encoded source domain X̂s!l; i.e., X̂s!l = vae.encode(Xs), where l is the latent space

learnt by a VAE. We use this classifier to predict labels on the encoded target domain X̂t!l; i.e.,

X̂t!s!l = vae.encode(X̂t!s). We assume that the newly predicted labels on the target domain are

more reliable than the labels predicted at the pre-annotation step as now the source and target

domains are mapped to the same latent subspace. Then we train a new classifier ft with confident

instances from the target domain; i.e., {(x
(j)
t , y

(j)
t )|(y(j)

t , p(j)) = fs!l(x
(j)
t!s!l), p

(j) � ⌧}, where ⌧ is

the confidence threshold. Then we predict labels for all the remaining unlabelled instances in the

target domain. This process is illustrated in Algorithm 1.

6. Experiment and Evaluation

The objective of UDAR is to evaluate how accurately we can predict activity labels on the target

domain dataset using our proposed unsupervised transfer learning approach. More specifically, we

seek to answer the following questions:

1. Can UDAR enable more accurate domain adaptation than the state-of-the-art domain adap-

tation techniques?
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(b) Fine-grained feature alignment with VAE

set of classes {1, 2, ..., C} and a collection of classifiers {f1, f2, ..., fF }. Then we concatenate these

probability distributions together [Pf1 , Pf2 , ..., PfF ] and build a neural network on top of them to

learn the correlations of each base classifier’s probability distributions and activity labels.

We map the target domain dataset onto the source domain; i.e., X̂t→s = XtSt×s, where St×s is

the sensor similarity matrix from the target to source domain. Then the trained stacked ensemble

f is applied to predict labels on X̂t→s; i.e., (y(j), p(j)) = f(x̂
(j)
t→s), indicating that the ensemble f

predict a class label y(j) on a jth instance in X̂t→s with a posterior probability p(j). We collect a

collection of confident instances in the target domain whose posterior probability is higher than a

pre-defined threshold τ ; i.e., {(x̂(j)
t→s, y

(j))|(y(j), p(j)) = f(x̂
(j)
t→s), p

(j) ≥ τ}. We assume that a high

confidence score indicates that most classifiers ‘agree’ on the same result. A low confidence value

is an indication of uncertainty. We leave all the uncertain instances unlabelled for now.

5. Domain Adaptation and Re-annotating

Once we generate pseudo activity labels on the target dataset, we align feature spaces from

both source and target domain based on their activity labels and perform in-class transfer. That

is, we align the instances in the source and target datasets if they share the same label, and learn

the affinity between feature spaces for each label. For example, the activity ‘eating’ in House

A and House B is the same for both domains even though it has different distributions and we

assume it should lay on the same intrinsic subspace. Here we introduce how to use a Variational

AutoEncoder (VAE) for in-class transfer to learn the latent representations that reveal meaningful

relationships between the source and target domain.

10



5.1. Domain Adaptation

Domain adaptation is used to match the feature distributions of the source and target domains.

This can be achieved by projecting the feature spaces in the source and target domain onto the same

subspace so as to minimise their distances. Here we perform in-class domain adaptation. For each

class label k (∈ {1, 2, ..., C}), we collect its instances in the source domain; i.e., {(x(i)
s , y

(i)
s )|y(i)s = k},

and its confident instances in the transformed target domain from the pre-annotation process; i.e.,

{(x(j)
t→s, y

(j)
t )|y(j)t = k} and y

(j)
t is a label predicted on the trained stack ensemble f . We denote the

above instances from the source and target domain on the same class label k as Xs,k and X̂t→s,k
respectively. The task of domain adaption is to align these two feature spaces.

5.1.1. Variational AutoEncoders

VAEs are a variational inference approach for an autoencoder based latent factor model [13]. A

VAE is a generative model that draws sample x using latent variable z; pθ(x) =
∫
pθ(z)pθ(x|z)dz,

where pθ(z) is the prior distribution on latent variable z, pθ(x|z) is the conditional distribution of

generating x given z, and θ is the model parameter. pθ(x) is intractable because the likelihood

function pθ(x|z) is complex, which often is modelled as a neural network with a nonlinear hidden

layer [13]. To tackle this problem, VAE introduces an encoder network qφ(z|x) to approximate the

intractable true posterior pθ(z|x). That is, a VAE consists of two networks: an encoder qφ(z|x)

that produces the distribution over the latent representation of the variable z given the input data

x and a decoder pθ(x|z) that produces the distribution over x given a latent representation of the

variable z.

The marginal likelihood of individual data points x(i) then can be rewritten as

log(pθ(x
(i))) = DKL[qφ(z|x(i)))||pθ(z|x(i))] + L(θ, φ;x(i)). (3)

The second term L(θ, φ;x(i)) is called evidence lower bound (ELBO) on the marginal likelihood

of the data point x(i), which can be written as

L(θ, φ;x(i)) = Eqφ(z|x)[log(pθ(x
(i)|z))]−DKL[qφ(z|x(i)))||pθ(z)], (4)

where the decoder pθ(x|z) and the encoder qθ(z|x) are parameterised as the neural networks. The

choice of qθ(z|x) is often a factorised Gaussian distribution. The first term of the right hand side of

the equation is the expected value of the data likelihood, while the KL divergence is a regulariser for

the encoder to align the approximate posterior with the prior distribution of the latent variables.
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The overall model is trained by stochastically optimising the ELBO using the reparameterisa-

tion trick to make the network differentiable [13]. The reparameterisation trick works as follow.

If x ∼ N(µ,Σ), we can standardise it as xstd; i.e µ = 0 and Σ = 1, and revert it to the original

distribution by reverting the standardisation process using x = µ+ Σ1/2xstd.

Having that in mind, we can convert a standard normal distribution into a Gaussian; that is,

z = µ(X ) + Σ1/2(X )ε, (5)

where ε ∼ N(0, 1). In this way, the backpropagation does not depend on z. Finally, the weights

and parameters are updated according to the loss function optimisation.

E[g2]t = βE[g2]t−1 + (1− β)
∂C

∂W
2

, (6)

Wt =Wt−1 −
η√

E[g2]t

∂C

∂W , (7)

where E[g] is the moving average of square gradients, ∂C
∂W is the gradient of the cost function with

respect to the weight, η is the learning rate, and β the moving average parameter.

5.1.2. VAE-based Domain Adaptation

We use VAE to align semantics-based remapped feature spaces in the target domain with the

feature space in the source domain to adjust data distributions in order to achieve fine-grained

feature alignment. The proposed training framework is presented in Figure 2b.

We first train the VAE on the source data to obtain the source domain latent representa-

tions; that is, given the training data Xs,k in the source domain on an activity class k, and

zs ∼ qθ(zs) the latent representation, the posterior distribution qθ(zs|x) is modelled as a mul-

tivariate Gaussian distribution with the estimated mean µ(Xs,k) and covariance Σ(Xs,k); i.e,

qθ(zs) = N (zs;µ(X̂s,k),Σ(X̂s,k)).
Second, we transform the target data on the same class k using the sensor similarity matrix;

that is, X̂t→s,k = Xt,kSt×s. Then we obtain the posterior distribution qθ(zt→s|x) of the latent

representations zt→s on the transformed target data. We use a neural network that has the same

architecture and weights of the encoder in the previous VAE so that we can learn the domain adap-

tive features by mapping the target domain data into the feature distribution of the source domain.
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We will then retrain the network with the transformed target data X̂t→s,k. The training objective

is to minimise the KL divergence between the posterior distribution of the latent representations

qθ(zs|x) and qθ(zt→s|x):

DKL(qθ(zt→s|x)||qθ(zs|x)) =
1

2
(tr(Σ−1s Σt→s) + (µs − µt→s)TΣ−1s (µs − µt→s)− l + ln

|Σs|
|Σt→s|

), (8)

where tr(Σ−1s Σt→s) is the trace function to compute the sum of diagonal of Σ−1s Σt→s, and l is

the dimension of the latent representation. This process aligns the latent probability distribution

function of the transformed target data to that of the source data by matching their means and

the eigenvalues of their covariance.

5.2. Re-annotation

Once we have aligned the source and target feature spaces, we will go back to re-annotate

uncertain instances remaining in the target dataset. To achieve this, we train a classifier fs→l

on the encoded source domain X̂s→l; i.e., X̂s→l = vae.encode(Xs), where l is the latent space

learnt by a VAE. We use this classifier to predict labels on the encoded target domain X̂t→l; i.e.,

X̂t→s→l = vae.encode(X̂t→s). We assume that the newly predicted labels on the target domain are

more reliable than the labels predicted at the pre-annotation step as now the source and target

domains are mapped to the same latent subspace. Then we train a new classifier ft with confident

instances from the target domain; i.e., {(x(j)
t , y

(j)
t )|(y(j)t , p(j)) = fs→l(x

(j)
t→s→l), p

(j) ≥ τ}, where τ is

the confidence threshold. Then we predict labels for all the remaining unlabelled instances in the

target domain. This process is illustrated in Algorithm 1.

Algorithm 1 Re-annotation

Require: a trained VAE vae, labelled source domain data Xs, and unlabelled target domain data Xt

1: map Xs onto the latent space l of vae: X̂s→l = vae.encode(Xs)

2: train a classifier fs→l on X̂s→l

3: map Xt onto the latent space l of vae: X̂t→s→l = vae.encode(XtSt×s)

4: use fs→l to predict labels on X̂t→s→l

5: collect instances in the target domain that are predicted with high confidence: {(x(j)
t , y(j))|(y(j), p(j)) =

fs→l(x
(j)
t→s→l), p

(j) ≥ τ}

6: train a classifier ft on the above target instances {(x(j)
t , y(j)}

7: predict the remaining unlabelled instances in Xt
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6. Experiment and Evaluation

The objective of UDAR is to evaluate how accurately we can predict activity labels on the target

domain dataset using our proposed unsupervised domain adaptation approach. More specifically,

we seek to answer the following questions:

1. Can UDAR enable more accurate domain adaptation than the state-of-the-art domain adap-

tation techniques?

2. Does VAE add extra value to the coarse-grained knowledge-driven mapping?

3. Can UDAR achieve high accuracy of domain adaptation with little training data?

4. Can UDAR perform robustly in the face of sensor noise?

6.1. Datasets

To evaluate the performance of our approach, we select five datasets with different spatial

layouts and deployed with different numbers of sensors and hosting different users, which will

help build a comprehensive profile on UDAR. All of them contain binary sensor data, including

wireless motion sensor, passive infrared, switch, and pressure sensors. The summary statistics of

the datasets are listed in Table 3a.

The first three datasets are curated by the University of Amsterdam (named HA, HB, and

HC respectively in the remainder of this paper) [29]. These three datasets are annotated with

the same set of activities including sleeping, leaving house, toileting, showering, having breakfast,

having dinner, and drinking. On these three datasets, we define six adaptation tasks: A-B, B-A,

A-C, C-A, B-C, and C-B. Here the task A-B means that A acts as the source domain and B

as the target domain. The second two datasets are from CASAS collected by Washington State

University [4, 5], named as Aruba and Twor1. For these two datasets, we look at the common

set of activities including meal preparation, eating, working, sleeping, bed to toilet transition, and

housekeeping. Since the Twor dataset has two residents, we can define four adaptation tasks:

Aruba-R1, Aruba-R2, R1-Aruba, and R2-Aruba.

The rich variety of these datasets will help us evaluate the impact of heterogeneous sensor

features and activity routines on the accuracies of domain adaptation. Figure 3b presents a sensor

1The datasets can be accessed at http://casas.wsu.edu/datasets/
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Dataset No. of Features No. of Activities No. of Instances
HA 14 7 504
HB 22 7 496
HC 23 7 473
Aruba 31 6 22633
Twor - R1 36 6 13231
Twor - R2 35 6 10163

(a) Summary statistics of datasets (b) Sensor similarity matrix between House A and B

similarity matrix between House A and B, which is generated from the smart home ontologies. As

we can see, there is no clean one-to-one mapping between the sensors in these two datasets, where

most of sensors (e.g., B19 and B21) in one dataset can equally map to a collection of sensors in

the other dataset, and some sensors (e.g., B14) cannot find high matches. The similarity matrix

only provides coarse-grained mapping between the sensors to allow them to be linked, while more

precise mapping will be learnt through VAE. With the success of UDAR it will be possible to

significantly reduce the annotation effort in that we only collect and annotate sensor data with

one house and apply UDAR to recognise activities in all the other houses configured with similar

sensing technologies in an unsupervised manner.

6.2. Comparison with Classic Domain Adaptation Techniques

We compare UDAR with another feature alignment technique Canonical Correlation Analysis

(CCA) and five state-of-the-art domain adaptation techniques: Geodesic Flow Kernel (GFK) [9],

Transfer Component Analysis (TCA) [20], Feature-Level Domain Adaptation (FLDA) [14], Joint

Distribution Adaptation (JDA) [17], and Importance-weighting with logistic discrimination (IW) [10].

6.3. Implementation Details

For the pre-annotation step in Section 4.2, we use three base classifiers: (1) the random forest

classifier with 50 trees, (2) SVM with RBF kernel and the grid parameter searching to find the

optimal values for C and γ, and (3) k -Nearest Neighbour (kNN) with k = 5. All the base classifiers

are from the Scikit-learn library2. These classifiers are vanilla classifiers and their confidence

probabilities are calculated as follows. SVM estimates the multi-class probability via Pairwise

Coupling [32], RF computes the probability as the mean of the predicted class probabilities of

the trees in the forest, and kNN computes the probability as the fraction of classes among the

2Scikit-learn library can be accessed at: https://scikit-learn.org/.
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selected neighbours. On top of these three base classifiers, we build a stacked ensemble, which

is implemented as a neural network consisting of 2 hidden layers and the sparse categorical cross

entropy loss function.

For the domain adaptation step in Section 5.1, all models are implemented with PyTorch,

the loss function of the VAE is minimised using the RMSProp optimisation. The optimizer is

parametrised with a learning rate of 10−2. We use tanh as the activation function except for the

output layer. The mini-batch size is set to 100 instances. In order to choose the best setting for

VAE, we have done the grid search on the number of layers from 1 to 3 and the number of neurons

from S − S/2 to S + S/2, where S is the number of sensor features and choose the setting that

leads to the highest accuracy for each dataset. The implementation of UDAR can be accessed at

https://github.com/An5r3a/UDAR.

7. Results

This section will discuss the experiment results. We first present the effectiveness of domain

adaptation of UDAR, then discuss different design decisions and parameter selections, and study

the impact of training data and sensor noise on UDAR.

7.1. Effectiveness of Domain Adaptation

To assess the accuracy of domain adaptation, we compare with a collection of the state-of-the-art

techniques mentioned in Section 6. We plug each of them in our workflow, run 100 experiments,

and compare averaged F1-scores. For each experiment, we randomly select 80% percentage of

unlabelled target data for training and the remaining data for testing.

Table 1 presents the F1-scores on all the domain adaptation tasks across UDAR and the com-

parison techniques. UDAR has achieved the best accuracy on 7 out 10 tasks with the following

performance improvement: 10.8% (A-B), 2.5% (B-A), 6.9% (A-C), 8.8% (B-C), 22.5% (C-B),

38.5% (Aruba-R1), and 29% (Aruba-R2). This demonstrates that with VAE, UDAR can con-

struct more effective and meaningful latent representations for both domains.

On C-A, UDAR performs worse than GFK by 11.4%, which is because House C is very noisy,

finding a joint subspace that is still discriminative is hard. On the tasks R1-Aruba and R2-Aruba,

F1-scores on UDAR are 23.9% and 8.4% worse than GFK and TCA respectively. The reason is

that the source and target data are substantially heterogeneous; i.e., the number of sensors being
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Table 1: Comparison of F1-scores (%) of domain adaptation with the state-of-the-art techniques. The best

F1-score on each task is highlighted in bold. The background color indicates the difference between the best and the

second best F1-scores. The darker, the larger the difference.

Tasks CCA IW JDA FLDA TCA GFK UDAR
A - B 22.0 14.3 25.7 47.9 35.9 73.8 84.6
B - A 11.9 64.8 67.9 8.9 75.5 26.0 78.0
A - C 24.9 14.4 46.2 38.2 56.1 74.9 81.8
C - A 11.3 11.6 72.3 20.9 61.5 65.0 60.9
B - C 14.9 11.6 64.3 70.0 61.1 82.9 91.7
C - B 23.2 43.4 67.6 62.3 38.5 69.2 91.7

Aruba - R1 12.4 6.4 3.5 50.2 51.4 56.7 95.2
R1 - Aruba 10.9 56.5 8.2 55.8 55.0 83.0 59.1
Aruba - R2 14.9 10.3 5.7 47.6 55.9 58.2 87.2
R2 - Aruba 18.2 56.4 29.5 8.0 63.1 61.1 54.7
Average 16.5 29.0 39.1 41.0 55.4 65.1 78.5

deployed and the spatial layout are different, so even with coarse-grained feature alignment the

divergence between sensor features is still very large compared to that from House A, B, and C,

which makes the task more challenging. Thus, VAE fails minimising the distance between the

source and target domain. However, GFK deals with the large divergence well, as it is able to find

a path along the subspace manifold and at last finds a closed form linear map that projects source

points to target.

Between the state-of-the-art techniques, CCA is the worst, which reflects its limitations. CCA

requires a one-to-one correspondence between data points in the source and target domains. This

correspondence is then used to find the linear transformation to correlate both domains. To align

the dimensions of the data points in both domains during the domain adaptation step, first we

select the instances from a class from the source domain and instance from the target domain on

the same class using the pseudo labels. If the size of instances is different in each domain, we select

a random sample to fit the dimensions. The canonical functions that maximise the correlation

between both domains might depend on the random samples in each set. The sample size per

class is important, when the sample size is small; i.e., if only a few instances in a certain class

are selected, the learnt canonical correlation can be meaningless and not effective. On the other

hand, a smaller number of samples from one domain can be dominated by the samples from the

other domain, leading to statistical significance in all instances. For example, in the A-B task,

the activity ‘drink’ represents 4% and 1% of the activity distribution in House A, and House B,

respectively. CCA requires more instances for the alignment to be possible. When the sample size
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contains less than 5 instances, CCA will struggle to find a meaningful correlation between both

samples.

IW, FLDA, and JDA are less effective than UDAR. Specially in tasks Aruba-R1, and Aruba-

R2, their F1-scores are similar to or worse than random guess. IW generally does not perform

well when the dataset is small, or when there is little overlap between the source and target

domain [14]. The overlap between R1-Aruba and R2-Aruba is very sparse causing IW to fail

finding an optimal setting after estimating the source and target distribution which leads to poor

feature representation.

JDA struggles adapting the marginal distributions and conditional distributions when the

source and target domains are considerably dissimilar. FLDA constructs a feature-level trans-

fer model that calculates the difference between the target and source domain for each feature

individually. However, its working assumption does not suit the problem that we are targeting.

FLDA assumes a strong correlation between features on the corresponding activities in the source

and target domain. For example, given that a sensor S is related to an activity ‘shower’ in House A,

and House A and B have similar sensor features, then FLDA will assume that the mapped sensor

S is only related to the activity ‘shower’ in House B, but not to any other activities. However, this

is difficult to distinguish activities that activate a common set of sensors.

(a) House A to B using UDAR (b) House A to B using TCA

Figure 4: Activity visualisation in transferring House A to B. t-SNE is applied on the feature representations

of (a) the latent feature space on UDAR, and (b) the common subspace learnt on TCA for both the source

and target domain. The activities labels for the source domain are A.0 - Leave Home, A.1 - Toilet, A.2 -

Shower, and for the target domain are B.0 - Leave Home, B.1 - Toilet, B.2 - Shower.

Figure 4 visualises the feature spaces transformed in UDAR and TCA onto a 2D plot using
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t-SNE [27]. As we can see, in Figure 4a, when we encode the feature spaces of the source and

target domain in the latent feature space learnt from UDAR, the data points that correspond to

the same activity are clustered together, implying that the latent representations from the source

and target domains are well aligned. On the contrary, the data points for the same activity are

more separated in Figure 4b, which visualises the latent representations learnt from TCA on both

source and target domains. This means that the latent space of TCA fails to capture inherent

common representations of the source and target domain.

(a) TCA (b) GFK (c) UDAR

Figure 5: Confusion matrices between TCA, GFK, and UDAR on the A-B task.

In Figure 5 we provide an example of the confusion matrix for TCA, GFK, and UDAR for

the task A-B. Figure 5a demonstrates that TCA struggles in finding a representation between

both domains and classifies all the instances as ‘toilet’ or ‘sleep’. In Figure5b, we see that learnt

representation using GFK has slightly better discriminative power than TCA, however, it is unable

to recognise activities that have less distinctive patterns like ‘Drink’, and cannot find discriminative

features between activities that fire the same sensor; for example ‘Toilet’ and ‘Shower’. Although

UDAR struggles in differentiating ‘Leave Home’ and ‘Shower’ from the other activities, the features

learned by UDAR most often lead to a better classification accuracy than the other techniques.

In summary, UDAR has demonstrated superior performance on domain adaptation over six

state-of-the-art techniques across a range of tasks on five datasets, each with different sensor

deployments and room layouts. Table 2 summarises the main difference between UDAR and the

best performing comparison techniques, which are GFK, FLDA, and TCA. The main advantage of

UDAR over these techniques is that UDAR performs 2-stage intra-class alignment. VAE captures
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intra-class variation using a latent subspace associated with each class. In contrast, GFK computes

an infinite number of subspaces to obtain the overall new feature representations. FLDA focuses

on a feature-level domain adaptation by describing the shift between the target and the source

domain for each feature individually. FLDA fails because it is not able to describe this change

when different activities deploy the same set of sensors. TCA assumes that if two domains are

related to each other, then there may be common components between them. Similar to FLDA,

these common components may contain less discriminative information with activities that deploy

the same sensors.

Table 2: Comparison between domain adaptation techniques

Technique Domain adaptation approach

VAE Embeds information of data from the source domain S into a latent space. Data from

the target domain T is then mapped to the learned embedding. The latent probability

distribution function of T is aligned to that of S by matching their means and the eigenvalues

of their covariance using the KL divergence.

GFK Constructs an infinite-dimensional feature space H∞ that aggregates information on the

source domain S, and the target domain T . This is done by extracting the difference in

angles between the principal components of the source and target domains. The kernel

implicitly maps the data onto all possible subspaces on the geodesic path between domains.

FLDA Assigns data-dependent weight to each feature to model the shift between the source domain

S, and the target domain T . In the first stage, the probabilistic model describes the transfer

from source to target domain for each feature individually. Then, the classifier is trained to

minimise the expected value of the classification loss under the target domain.

TCA Learns transfer components across domains in a Reproducing Kernel Hilbert Space (RKHS)

using Maximum Mean Discrepancy (MMD). This set of common transfer components un-

derlie both domains such that the distance across domains is reduced in a RKHS.

7.2. Design Decisions

Here we will discuss the design of each component in UDAR and their impact on the perfor-

mance of domain adaptation. We will start with quality of pre-annotation steps, and then assess

the advantage of UDAR over coarse-grained feature remapping (i.e., mapping feature spaces only

with semantics). Here we focus our discussion on the tasks of House A, B, and C, and other

datasets present the similar results.
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7.2.1. Quality of Pre-Annotation

The quality of pre-annotating has an important role in achieving effective domain adaptation,

as the feature spaces are aligned based on whether they have the same class label. Therefore, here

we aim to find an approach to achieve high accuracy in pre-annotating. To do so, we will look into

how to select a classifier in generating accurate pseudo labels.

Stacked Ensemble is selected for pre-annotation. We experiment a collection of the base

classifiers, including Random Forest (RF), Support Vector Machine with RBF Kernel (SVM), and k

Nearest Neighbors (kNN), and two ensemble approaches on the three base classifiers: Majority Vot-

ing (MV) [31] and Stacked Ensemble (SE). For each of them, we train the classifier with the source

domain dataset, and predict activity labels on the knowledge-transferred target domain dataset;

that is, X̂t→s. Then we select the predictions with high confidence (e.g., the confidence score is

greater than 80%) and compare with the true labels to calculate the pre-annotation accuracy.
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Figure 6: Comparison of F1-scores in the pre-annotation step between SVM RBF, kNN, RF, MV and SE.

The SE outperforms the other techniques and is selected as the technique for pre-annotating.

Figure 6 presents the F-scores of pre-annotation with the above techniques. The results demon-

strate that the stacked ensemble achieves the highest accuracy in pre-annotation, with an improve-

ment of 11% over RF, 30% over SVM, 12% over kNN, and 7% over MV. In the experiments from

House B to C and from House C to A, SVM performs the worst compared to RF and kNN. The rea-

son is that the datasets we are using is imbalanced and sensor features between activities can have

subtle difference; e.g., showering and toileting, and having breakfast and drinking. This problem

has made the base classifiers and majority voting approaches struggle in differentiating activities

with less distinctive patterns. During the majority process, we face the problem that most of time

the classifiers will ‘agree’ on the same label, meaning that we will not have uncertain instances to

re-annotate later on.
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In the experiment from House C to A, MV achieves the same performance as the base classifiers.

In most of the cases, the base classifiers seem to fail to find meaningful similarities across different

datasets, when the datasets are much noisier. For example, the House B and C datasets are very

noisy in that the activity annotation is not accurate [11] and sensor activation is unexpected for

a certain activity [38]. Also, these two datasets have imbalanced class distribution; e.g., House C

only has 6 instances of the ‘Drinking’ activity. Due to these problems, the experiment results with

A-B, A-C, and C-B are worse than the others. In the experiment from House C to A, MV achieves

the same performance as the base classifiers while SE outperforms. In the end, we consider the

stacked ensemble technique as an ideal choice to achieve high quality of generated pseudo labels.

7.2.2. Impact of Confidence Thresholds in Pre-annotation
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Figure 7: Comparison of the impact of confidence thresholds on domain adaption accuracy.

As we mentioned before, the accuracy of pre-annotations can have a significant impact on the

re-annotation process. To evaluate the impact, we control the confidence threshold from 50% to

85% with a step size 5%, and select the target instances for the re-annotation process only when

their prediction confidence is higher than the threshold. Figure 7 compares the F1-scores of domain
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adaptation on different thresholds with different domain adaptation techniques on selected tasks3.

Again, we can see that UDAR significantly outperforms these comparison techniques on different

threshold settings.

The lower the confidence threshold, the worse UDAR performs. If we set up a threshold lower

than 50% all classifiers will ‘agree’ on the majority class label, and we will have very few or

no uncertain instances to re-annotate later on. On tasks A-B, C-A, and Aruba-R2, we observe

that the accuracy of TCA and GFK drops when the confidences increases, because during the

pre-annotation process, most of the instances, if not all, are classified as uncertain.

7.2.3. Comparison with Coarse-grained Feature Alignment

(a) Comparison of F1-scores between KDFR and

VAE.

(b) Confusion matrix of KDRF on A-B with 80%

training data.

Figure 8: Comparison of performance of UDAR and KDRF at the pre-annotation step

One question arising from our design is: what advantage does fine-grained feature alignment

bring? Aligning features from the two domains based on the sensor ontologies is intuitive and

acts a good baseline to see what additional benefit that VAE-based fine-grained alignment adds to

our approach. To address this question, we compare the accuracy of activity recognition between

UDAR and knowledge-driven feature remapping (KDFR) in Section 4. That is, similar to the

above, we train a stacked ensemble on a percentage p of the source domain dataset, predict labels

on the target domain dataset, and evaluate the prediction accuracy. Figure 8a compares the F1-

scores between UDAR and KDFR with different training data percentages. The label ‘KDFR -

3Due to the space constraints, we only put some results in the paper and all the rest results can be found at

https://github.com/An5r3a/UDAR
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0.2’ means that we predict the labels on target domain data that is transformed via KDFR alone

using the stacked ensemble that is trained with 20% of the target domain dataset. We observe

that UDAR achieves much better F1-scores than KDFR during the pre-annotation step. This

advantage is specially seen in transferring tasks A-B, A-C, and C-B, where the F1-score during the

pre-annotation step is lower than 15% and the performance improvement is over 50%.
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Training 
Percentage CCA IW JDA FLDA TCA GFK UDAR

80% 16.5 29.0 39.1 41.0 55.4 65.1 78.5
60% 15.8 29.0 39.0 40.4 55.3 65.0 78.7
40% 16.1 29.0 37.3 40.7 55.0 65.0 77.9
20% 15.9 28.9 37.0 40.6 55.0 64.9 75.9

Figure 9: Comparison of F1-scores (%)of domain adaptation between UDAR, and the state-of-the-art domain

adaptation techniques such as FLDA, TCA, and GFK in all the tasks.

These results demonstrate that fine-grained feature space alignment and re-annotation process

can significantly improve the performance. In terms of the low accuracy on KDFR, during the pre-

annotation process, the classifiers on KDFR struggle in finding meaningful similarities between

instances in the source and target domains. For example, we can see this from Figure 6, where

all classifiers achieve very low accuracy in the tasks of A-B and C-B compared to the other tasks.

This leads to significant distribution difference between domains and increases the transferring

complexity. Furthermore, Figure 8b presents the confusion matrix on the A-B task, where the
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classifier is biased towards one class; that is, the KDRF classifies most of the activities as ‘dinner’.

This activity activates seven sensors, more than the other activities that fire at most 4 sensors.

When few sensors are activated, the original feature representation is more sparse. With knowledge

remapping, the representations will not be sparse any more as each sensor in one dataset can be

mapped to a collection of sensors in the other dataset even with low similarity scores. This adds

noisy to the knowledge-remapped representations and decreases the performance of the classifier.

7.3. Impact of Training Data

We also assess the impact of training data on the effectiveness of domain adaptation. It is

desirable to use less training data while achieving comparable accuracy. Therefore, in this exper-

iment, we vary the percentage of training data in the target domain from 20% to 80% and assess

the impact of the training data on the accuracy of domain adaptation.

Figure 9 compares the F1-scores of domain adaptation on different transfer tasks between

UDAR and the other techniques introduced in Section 6.2. The x-axis indicates the percentage of

the unlabelled target data being used for training. The error bars represent the standard deviation

over the 100 experiments.

From the results, we observe that UDAR achieves better F1-scores across various learning

tasks. UDAR and GFK are stable and can achieve good domain adaptation independently of the

percentage of training data. In contrast, TCA presents a higher variance specially on task C-B

where both datasets are very noisy. GKF require expensive computation for subspace projection

and hyper-parameter selection. This alignment becomes more difficult when the training dataset

is small. On the other hand, FLDA uses all the data in the source domain and suffers less from the

small sample size problem, however it assigns a data-dependent weight to each of the features that

represents how informative this feature is in the target domain. In our problem, some activities

in the datasets have subtle differences in their sensor features, FLDA could assign similar weights

to the sensor features of these activities that leads to a poor discriminative data representation.

FLDA seems not to be affected by the size of the training dataset but fails in assigning weight to

each feature.

7.4. Robustness of UDAR

The performance of the sensors can vary over time affecting drastically the sensor features.

For example, a sensor could break or a wrong calibration can cause signal interference resulting in
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deterioration in the measurement. The sensor configuration can be cost-inefficient for a large-scale

deployment and require a lot of maintenance to calibrate the sensors. Here we aim to assess the

impact of sensor noise on the performance of UDAR and thus to shed light on sensor maintenance

management. To do so, we systematically inject noise to sensor features and compare the accuracy

of the recognition accuracy with the state-of-the-art domain adaptation techniques.
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25% 13.1 18.8 23.6 29.5 37.2 37.1 50.2
50% 12.0 18.7 29.7 23.1 30.2 31.1 50.7
75% 12.0 18.8 29.1 17.9 31.1 24.8 47.1

100% 10.2 18.8 26.3 17.0 30.0 25.9 47.2

Percentage of  Sensors being injected with noise

Figure 10: Comparison of F1-scores (%) of domain adaptation between UDAR, and the state-of-the-art

domain adaptation techniques such as FLDA, TCA, and GFK in all the tasks with Gaussian noise injected.

We inject random Gaussian noise into the target domain data to simulate the real-world situ-

ation where the environment to be adapted to is compromised with unexpected sensor noise. On

the test data of the target domain, we randomly select a number of sensors, and for each randomly

selected sensor we inject it with Gaussian noise. The percentage of sensors is chosen from 25% to

100% with a step size of 25%. The mean and variance of Gaussian noise are randomly sampled

between 0 and 1.
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(a) Original sensor features (b) Transferred features via UDAR (c) Transferred features via TCA

Figure 11: Activity visualisation in transferring House A to B. t-SNE is applied on the feature representations

of (a) activity Leave Home with noise injected in the sensor features, and (b) projected the latent representation via

feature space on VAE, and (c) projected latent representation via TCA after the domain adaptation process. The

labels are A.0 - Leave Home original sensor features, A.0 noise - Leave Home with noise injected the sensor features,

A.0 DA - Leave Home after domain adaptation using UDAR.

Figure 10 has shown that UDAR achieves much better performance than the other techniques

over the 10 transfer tasks. UDAR achieves the most stable results during domain adaptation when

noise is injected to the sensor features. The overall improvement of UDAR is 21.9%, 32.1%, and

29.7% over FLDA, TCA, and GFK respectively.

The results in Figure 10 have presented that injected sensor noise has made domain adaptation

difficult, as the feature alignment can be distorted. We argue that UDAR can capture intrinsic

feature mapping between the source and target domains and filter out random noise during the

domain adaptation process. To demonstrate this argument, we plot the original instances on the

activity A.0 – Leave Home and the same instances but with injected sensor noise in Figure 11a.

As we can see, these instances are now separated due to the noise effect. Now we will check

if the transferred representations via UDAR of both original and noise-injected sensor data can

be mixed. If so, then it suggests that these representations can still be projected onto the same

subspace and thus the domain adaptation is robust to random noise. Figure 11b and 11c plot

the latent representations on UDAR and TCA respectively for both original and noisy instances.

The data points on the UDAR subspace are clustered together, which confirms our assumption.

However, the transferred representations on the TCA subspace are still separated, which shows

that TCA is impacted by the sensor noise. That is, the transferred features are distorted and do
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not resemble the original data any more, which explains why TCA does not achieve high accuracy

in transfer learning in the face of sensor noise.

8. Conclusion and Future Work

This paper presents a workflow to support unsupervised domain adaptation between hetero-

geneous smart home datasets that have different spatial layouts and sensor deployment. The

proposed approach UDAR can be configured with different transfer learning kernels. Here we have

applied VAE to align feature spaces on each type of activity, which results in finer-grained and more

accurate transfer learning, than knowledge-driven feature space remapping. UDAR has achieved

consistent improvement over the other domain adaptation techniques.

We use a lightweight ontology to generate a sensor similarity matrix. To do so, we need to

take the sensor deployment file to map sensors to their corresponding location and object concepts.

This limits the application of this knowledge-driven approach in that our approach works better

in a setting where sensors are more or less fixed deployed and the semantic mapping between a

source and target environment is achievable, rather than an open environment where each sensor is

mobile and can join and leave the environment at any time. For example, when sensors are removed

or moved, or a new sensor is introduced, we will need to remap sensors and re-generate sensor

similarity matrix. This effort is unavoidable in our current design. Also, when two environments

have drastically different sensor deployment with different sensing technologies, the current design

of our approach might not work well, as the complex difference may make the pseudo labels

extremely noisy.

In the future, we will look into the other types of datasets and evaluate the generality of our

approach. Also, we will explore the use of generative models to deal with imbalanced and small-

sized datasets to improve the stability of the model. With the use of generative models, we could

reduce the cost of collecting labelled data and promote the efficient use of very small amounts of

labels in the source domain to improve the transfer learning in the target domain.
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