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ABSTRACT

The rapidly evolving nature of Android apps poses a significant challenge to static batch machine
learning algorithms employed in malware detection systems, as they quickly become obsolete.
Despite this challenge, the existing literature pays limited attention to addressing this issue,
with many advanced Android malware detection approaches, such as Drebin, DroidDet and
MaMaDroid, relying on static models. In this work, we show how retraining techniques are able
to maintain detector capabilities over time. Particularly, we analyze the effect of two aspects in the
efficiency and performance of the detectors: 1) the frequency with which the models are retrained,
and 2) the data used for retraining. In the first experiment, we compare periodic retraining with a
more advanced concept drift detection method that triggers retraining only when necessary. In
the second experiment, we analyze sampling methods to reduce the amount of data used to retrain
models. Specifically, we compare fixed sized windows of recent data and state-of-the-art active
learning methods that select those apps that help keep the training dataset small but diverse. Our
experiments show that concept drift detection and sample selection mechanisms result in very
efficient retraining strategies which can be successfully used to maintain the performance of the
static Android malware state-of-the-art detectors in changing environments.

1. Introduction
Drift, which refers to the phenomenon where the statistical properties of the data being analyzed change over time,

can be caused by data drift and/or concept drift. Data drift refers to changes which occur in the distribution of the input
data over time, whereas concept drift or model drift is caused by changes in the relationship between the input data and
the outcome of models, i.e., the conditional probability distribution of the class variable given the input Gama et al.
[2014]. Even if both drift types are interesting and deserve analysis, it has been demonstrated that concept drift is an
urgent issue in Android malware detection since it causes the trained static machine learning (ML) models to experience
a steady decrease of their performance over time Pendlebury et al. [2019], Molina-Coronado et al. [2023], Chen et al.
[2023a]. In this sense, in the rest of this paper, whenever we mention the term drift, we will refer to concept drift.

It is evident that the Android application ecosystem has an evolving nature, because for example, new types of
malware appear or new software features are added to the development framework Molina-Coronado et al. [2023].
However, most current anti-malware research solutions for Android rely on batch ML algorithms Liu et al. [2020].
Under laboratory conditions, these algorithms have demonstrated extraordinary malware detection rates with low
numbers of false positives, which make them a promising solution against malware Ucci et al. [2019]. However, batch
ML algorithms are designed for static environments. They are used to train models offline on large datasets of labeled
samples of malicious and benign apps, which are then used to enable accurate detection of new, previously unseen
malware. Therefore, detectors that rely on these algorithms quickly become obsolete and lose effectiveness due to
concept drift Gama et al. [2014], Bayram et al. [2022].

In recent years, concept drift management methods have emerged as a promising solution to the challenges posed
by drift in non-stationary applications Lu et al. [2019] and in a variety of domains, including fault diagnosis Žliobaitė
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et al. [2016], credit card fraud detection Blázquez-García et al. [2021], network intrusion detection Molina-Coronado
et al. [2020], and game recommender systems Al-Ghossein et al. [2021]. Concept drift management methods can be
classified into two major groups: (1) retraining, which consists of replacing old models with new ones trained on the
latest available data, and (2) incremental algorithms, which continuously update models as new data arrives. While
incremental solutions are specific learning algorithms, retraining offers the advantage of being an agnostic approach
that can be applied to any ML-based detector.

For Android malware detection, several researchers have proposed adaptive solutions to overcome the challenges
posed by concept drift, either relying on incremental algorithms Narayanan et al. [2017], Xu et al. [2019] or retraining
procedures Karbab and Debbabi [2021], Guerra-Manzanares and Bahsi [2022]. These algorithms propose completely
novel detection approaches and ignore the relevance of most available state-of-the-art Android malware detectors,
which rely on static analysis of code to extract the features that represent the apps, and leverage batch ML algorithms to
perform detection Liu et al. [2020]. At this point, it remains interesting whether these existing static detectors can be
enhanced and adapted to changing scenarios using simple retraining mechanisms, avoiding the need to develop new
detectors.

The successful implementation of retraining on existing detectors hinges upon a series of critical implementation
decisions. These decisions involve establishing an retraining policy that determines when and with what data to perform
the model retraining and replacement operations Webb et al. [2016]. An inadequate retraining policy may result in
unnecessary, too frequent, or insufficient retraining operations that render the model unable to adapt to changes in the
distribution of data Baena-Garcıa et al. [2006], Bifet and Gavalda [2007]. Equally crucial is the selection of representative
data reflecting current trends in the distribution but without forgetting reoccurring or stable patterns. New data has to be
continuously stored, analyzed (sometimes manually) and labeled prior to being used for retraining Android malware
detectors. Moreover, as the volume of the new incoming data increases, the storage, labeling efforts and computing
requirements for retraining also increase proportionally Tam et al. [2017].

The purpose of this paper is to investigate the potential of retraining as a valid approach to enhance state-of-the-art
batch Android malware detectors. Indeed we focus on retraining existing detectors and analyze techniques that reduce
the cost of retraining. Particularly, we focus on two critical aspects: (1) the frequency of retraining and (2) the data
used for this operation. Since the factors that cause drifts and thus, model aging, could be diverse and variable, model
performance is monitored to trigger an update procedure whenever a degradation of the performance is observed.
Regarding the training set used for model updates, we propose strategies to keep its size small and reduce the cost
of labeling new data. Thus, minimizing the cost of retraining supervised models. Through a comprehensive set of
experiments, we demonstrate that retraining offers a practical solution to address concept drift in solutions that use
batch ML algorithms for Android malware detection.

The rest of this paper is organized as follows. Section 2 analyzes the literature related to the present work. Section 3
introduces batch Android malware detection and how retraining can easily be applied to achieve model evolution. Then,
in the next two sections, we focus on the specific methods that we analyze in this paper to determine the retraining
frequency (Section 4) and the data used for retraining (Section 5). Section 6 presents our experimental setup, introduces
the three state-of-the-art batch Android malware detectors used in our experiments and describes the evaluation
procedure followed for the analysis. Section 7 presents the obtained results and, finally, we discuss the main findings of
our work, future research lines and conclude this paper in Section 8.

2. Related Work
Learning in evolving environments requires defining two main aspects: 1) the mechanism used to update the model

and 2) the data used to update the model. In this section, we briefly review the related proposals in the area of Android
Malware detection, considering these two axes.

2.1. Adaptative Malware Detectors
As mentioned, the first decisive aspect when building a classifier in environments with drift is the mechanism used

for adapting the model. Indeed, among the proposed adaptable Android malware detectors, we can find incremental
learning algorithms that update their models with each data point, or retraining approaches, that train new models and
replace the existing ones.

In a recent work Guerra-Manzanares and Bahsi [2022] propose the use of a pool of batch RandomForest classifiers
and an anomaly detection model fed with system call features. Detection is performed by majority voting the output of
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the models. Whenever models in the pool disagree, the anomaly detector is used to conclude the class of samples. In
order to enable model adaptation, true labels are assumed to be known and the worst performing RandomForest model
from the pool and the anomaly detector are retrained at fixed time chunks. In Narayanan et al. [2017], the use of an
incremental learning detector that leverages contextual API call information as the feature set is proposed. The model is
updated with every incoming sample. However, it assumes that the true label of every sample is known at real-time.
The detector proposed in Karbab and Debbabi [2021], uses a pool of Convolutional Neural Networks (CNN) fed with
sequences of method, object and field names invoked in the code. Retraining is performed at fixed time chunks and
using only samples for which the predictions are sufficiently reliable, so that labels obtained with majority voting of the
pool are assumed to be accurate. In each retraining round the entire pool of CNN models is replaced. In DroidEvolver
Xu et al. [2019], a pool of incremental linear models is presented. For updates, models with low agreement decisions
with respect to the rest of the models in the pool are adapted. For labeling the data, the approach uses pseudo labels
obtained through majority voting of model decisions.

As mentioned in the introduction, all these approaches are completely novel detectors, which do not leverage any
previously published state-of-the-art batch detector, at least not directly. In this sense, the difference between these
works and our proposal is that we attempt to directly use the existing research using model agnostic retraining policies
to enhance or maintain their performances when concept drift is present. Additionally, these proposals present issues
related to the labeling of samples. For instance, using pseudo labels computed from model decisions has been shown to
cause model contamination over time Kan et al. [2021], while obtaining true labels incurs a cost that is often overlooked.

2.2. Out-of-Distribution Samples
The second aspect that must be taken into account when using retraining policies in drifting environments is the

selection of data used for retraining. This data must be representative of the current concept, but the cost of labeling
this data and retraining the model is proportional to the amount of data we use in this process. In this sense, some data
selection strategies have been proposed in the Android literature.

The most common approach is to use the confidence of the current model in the prediction of a new sample as
a way to analyze whether this new sample has been generated by the same probability distribution or not Yang et al.
[2021a]. Confidence of a new sample can be measured by analyzing the consensus of several classifiers when predicting
its class. In Xu et al. [2019] and Zhang et al. [2020], low confident samples (for which models disagree the most) are
used to update the models. Contrary to these approaches and despite it being potentially detrimental to the adaptation
ability of models, in Narayanan et al. [2017] and Karbab and Debbabi [2021] low-confident data is treated as noisy and
discarded from the update process to avoid model contamination when using pseudo labels. Similarly, Barbero et al.
[2022] presents a decision rejection framework which aims to keep model decisions accurate over time by discarding
unreliable model decisions for drifting samples. The framework presents a non-conformity measure which identifies
drifting samples with respect to a set of reference samples used to train the model.

Other authors have proposed using specific models based on clustering ideas. Yang et al. [2021b] uses a neural
network based on contrastive learning to group samples into either goodware or a specific malware family. A sample
is identified as drifting if it lies far from all the identified groups in a certain retraining step. This proposal has been
recently improved in Chen et al. [2023b] using a hierarchical contrastive learning classifier that ranks samples according
to the fitness of the CL embedding and the prediction score of the classifier. The aim is to provide a more robust drifting
sample selection in unbalanced scenarios.

All these OOD (out-of-distribution) selection proposals, focus on identifying the best samples to increase the
detection ability of models. However, none of them can be directly used in a simple retraining framework that is model
agnostic (i.e., is built over any detector). Additionally, they are general approaches that do not leverage the particular
behavior of the Android environment to design specific sample selection strategies. In this paper we will analyze, CL
approaches and uncertainty sampling as model-agnostic retraining policies, and an ad-hoc sample selection method
specifically designed for this problem.

3. Preliminary Concepts
We have discussed how most of the published literature on Android malware detection ignored concept drift as a

foundational feature of Android malware detection. This section briefly describes how malware detection is typically
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performed using batch ML algorithms, as well as how these state-of-the-art detectors can be integrated into a retraining
pipeline.

3.1. Batch Malware Detection
Typically, the Android malware detection process using batch ML consists of three main phases: a preprocessing

stage, a training phase and a prediction phase Ucci et al. [2019]. This process is depicted in Figure 1. To begin with
(preliminary step), a set of apps is required, and two tasks must be carried out. First, all the apps must be labeled.
The labeling process consists of analyzing the code, metadata, and application behavior to identify any suspicious
activity or known malware signatures, tagging the applications in the dataset as goodware or malware. Additionally, in
this preprocessing stage, apps are examined, extracting the features indicative of their functionality and representing
them in a structured manner. Examples of these features include permissions, function names, strings in the code, etc.
Once the app labels and their features are obtained, in the training phase, ML algorithms help determine the most
characteristic patterns of goodware and malware. As a result of this training stage, a ML model capable of predicting
the class label (goodware or malware) of new apps is obtained. Finally, the prediction phase consists of extracting
the features identified during the training phase from a new incoming app. Afterwards, these features are fed into the
previously trained ML model so that it determines whether the app is goodware or malware.

Labeling

App dataset

Feature extraction ML algorithm

New apps

Feature extraction

ML model

Predicted labels

Preprocessing phase

Training phase

Prediction phase

Figure 1: Diagram of the batch learning process. (1) Preprocessing phase: a structured feature set and a label is obtained for
each app; (2) Training phase: the structured and labeled training dataset is used to generate a model using ML algorithms;
(3) Prediction phase: the generated model is used during the prediction phase to determine the class of new apps.

3.2. Retraining for Batch Malware Detectors
Retraining mechanisms consider a detector as a black box tool. This means that any existing batch detector can

be integrated into the retraining process without modification. Figure 2 depicts how the retraining mechanism can
be integrated into any existing detector. In order for new models to correctly represent the current data distribution,
the training data has to be continuously updated with representative apps. Since Android malware detectors rely on
supervised algorithms, these apps must be labeled. Retraining is signaled by a supervisor. Whenever the signal is raised,
a new model is trained to replace the old one. This involves preprocessing all (or some) apps in the dataset to extract
their features, training the new model with this information, and replacing the old model.

A very simple retraining policy is to activate the update process at fixed time intervals, for example, once a month.
It can also be triggered whenever a certain number of new labeled apps become available, e.g., when 10 000 new apps
have been identified. Nonetheless, the most effective strategy would be to trigger retraining whenever a drift is detected.
The supervisor can monitor the performance of the model, or measure the degree of dissimilarity between training apps
and incoming apps. In the following sections, we investigate the impact of some of these retraining strategies, as well
as the impact of different retraining data management policies on the efficiency of batch Android malware detectors.
Particularly, we focus on two mechanisms: fixed-period retraining and using a monitor that identifies changes to trigger
updates. In addition, we explore three approaches for managing retraining data: a forgetting mechanism that discards
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Labeling

App dataset

Feature extraction ML algorithm

New apps

Feature extraction

ML model

Predicted labels

Preprocessing phase

Training phase

Prediction phase

(2) Update

Supervisor
(1) Monitor(3) Retraining signal

Figure 2: Diagram of the batch learning process with retraining. The supervisor firstly monitors when changes take place,
once a change is detected, the data is updated to reflect the current trend and a model retraining signal is raised. This
trains a new model with the updated data that is used to replace the old model.

old apps, three active learning methods that select highly-relevant data and a sample selection technique that removes
uninformative data.

4. Retraining Frequency
In this section, we discuss the two different retraining policies mentioned above: (1) scheduling the update operation

periodically and (2) using a change monitor that triggers the update when the performance of the detector drops.

4.1. Fixed Period Retraining
A naive update policy is to retrain Android malware detectors in batches using a fixed periodicity: weekly, monthly or

any other. This method has several advantages, including ease of implementation and predictability. By following a fixed
schedule, the system can regularly retrain the model to keep it up-to-date with the latest malware trends and behavioural
patterns. However, this approach also has some limitations, because the rate of change of the data distribution might not
be uniform or periodical. Due to the unpredictability of changes in Android data, choosing a fixed update frequency
may be suboptimal. If the time between updates is long, the model may miss malware that has appeared and lasted for a
short period of time. On the other hand, a high retraining frequency would eliminate this problem, but would result in
unnecessary costs if changes in the data distribution are slow Gama et al. [2004].

4.2. Change Detection Mechanisms
An alternative update policy to fixed period retraining is to use a change detection mechanism which monitors the

current data or the performance of the model, triggering an update round only when there is evidence of change.
For this purpose, in this paper we consider the Page-Hinkley (PH) test Page [1954], Hinkley [1970], a popular (and

easy to implement) drift detection algorithm that detects changes by monitoring the performance of the model. The
PH test has several advantages over other change detection methods. First, it is non-parametric and does not make
any assumptions about the underlying data distribution. Secondly, it is computationally efficient and requires minimal
memory, which makes it suitable for monitoring high-speed data streams. Finally, it is also robust to outliers and can
detect gradual changes in the data distribution Bifet and Gavalda [2007].

Cn =

{

0 if n = 1
min (0, Cn−1 + (Ameann − x̄n−1) if n > 1

(1)

x̄n−1 =
∑n−1
t=1 Ameant
n − 1

(2)

Molina-Coronado et al.: Preprint submitted to Elsevier Page 5 of 17



Efficient Concept Drift Handling for Batch Android Malware Detection Models

TPR = TP
P

TNR = TN
N

Amean =
TPR+TNR

2

Table 1
Metrics used in this paper to assess the performance of detectors. TPR = True Positive Rate. TNR = True Negative Rate.

PHn =

{

1 if � + Cn < 0
0 if � + Cn >= 0

(3)

The PH test is applied as follows: it periodically (or whenever a certain batch of new instances are obtained)
monitors a test value calculated based on the performance of the model, in our case, measured by the Amean (see
Table 1). Specifically, at each instant n, the PH method computes the CUSUM (Cn) of the deviations between the current
performance value (Ameann ) and the mean of the performance values obtained in all the previous periodic checks (see
Equations 1 and 2). If the CUSUM of the deviations falls below a pre-defined � threshold (see Equation 3), the PH test
signals a change (PHn = 1) that triggers a model update at instant n. Note that a higher tolerance value may result in a
lower rate of false alarms, but also in a lower performance, as updates can be delayed. When a change is detected, the
values used for the test are reset. This means that the instant n, at which the test flags the change, is set as the starting
point (0) for subsequent calculations of the test.

5. Data Used for Retraining
The effectiveness and efficiency of retraining also depends on the data used to update the models. In this section, we

analyze the use of fixed-size sliding windows and active learning methods such as uncertainty sampling, contrastive
learning OOD methods and a problem-specific sample selection strategy.

5.1. Sliding Windows
In this approach, a fixed-size sliding window is used to select the m most recent instances for retraining. The

window moves forward whenever new data becomes available, and instances that fall within the window are stored and
subsequently used for retraining, while older apps are discarded. We depict this policy in Figure 3. Its implementation
is straightforward, but it may have some drawbacks. First, it assumes that the m most recent apps are sufficiently
representative to generate a good model, which may not always be true: behaviours of discarded apps may reappear
later. Secondly, this method does not consider the characteristics of the instances within the window. A common feature
of the Android app environment is the presence of majority groups, that is, apps that are nearly identical and appear in
large quantities. Not considering the characteristics of the last m apps might result in datasets where some types of apps
are over-represented while others are largely underrepresented, thus leading to biased models which ignore the minority
samples Gonçalves Jr et al. [2014].

t

t+1

t+2

Figure 3: Sliding window (dotted line) of size m = 5 which is used to train the model at each instant. Colored cubes
represent apps with different behavioral patterns and whose predominance may vary over time. A model trained at time t
may be biased towards the “yellow” behaviour, while being unable to recognize the “blue” behavior.
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5.2. Uncertainty Sampling
Uncertainty sampling is a technique commonly proposed in the active learning literature to reduce labeling efforts

and improve the learning ability of models Yang et al. [2021a]. The method measures the reliability or uncertainty of
the decisions provided by models for samples. The degree of uncertainty of a sample is computed as the complementary
of the absolute difference of the class (goodware and malware) probabilities returned by a model. Since low confident
decisions for samples result in similar probability values for both classes, the uncertainty value will be high (close to 1),
whereas samples where one class probability dominates the other will obtain low uncertainty values close to 0. The
method assumes that samples with the highest uncertainty are the most representative of changes and better candidates
for learning a new model. Therefore, two alternative criteria can be used to build the training dataset: (1) set a fixed
number n of samples to select and, (2) set a minimum uncertainty value to select the samples. Finally, the selected
samples are added to the samples used for the previous retraining period and a new model is built with all this data.

5.3. Contrastive Learning OOD
More advanced sampling mechanisms use Contrastive-Learning (CL) schemes that rely on an encoder-decoder

architecture to identify drifting samples. The CL model is trained to generate similar embedded representations (or
embeddings) for samples of a same class or malware family, whereas the embeddings for samples of different classes
(malware vs goodware) or malware families are dissimilar. Since the CL encoder identifies the characteristics in the
training data that help to separate the samples that pertain to different classes, CL sampling methods measure the
dissimilarity of new samples according to how their embedding differs from those of the training data Yang et al. [2021b],
Chen et al. [2023b]. Similarly to uncertainty sampling methods, a ranking is constructed based on the dissimilarity
measure and samples are selected by: (1) selecting the n most dissimilar samples, or (2) setting a threshold over the
dissimilarity measure as the minimum sample selection criterion. Afterwards, the selected samples are appended to the
training samples of the previous retraining period.

5.4. Problem Specific Sample Selection
As mentioned previously, in the context of Android malware detection, apps with some specific features may be

more prevalent than others. Recurring malware that fades away and resurfaces is also a reality. To exemplify this,
Figure 4 depicts the distribution of goodware and malware into known and unknown behaviors for every quarter between
January of 2013 and December of 2019. In this context, an app behavior is represented by a particular set of API call
frequencies extracted from its code. We assume that apps with similar behavior present equivalent API call frequencies
in their code. The exact process for the computation of known and unknown behaviors is explained more in detail later
in this section. Green slashed bars represent the proportion of samples on each period that contain similar behaviors
to apps observed in previous periods (known), whereas grey dotted bars represent the proportion of samples whose
behavior has not been observed previously (unknown). As can be seen in Figures 4a and 4b, the apparition of unknown
app behaviors from one period to another confirms the existence of data drift in the Android application ecosystem,
which can cause model degradation Chen et al. [2023a]. It also shows that the incidence of drift is variable (for example,
differences in malware between 2015Q2 and 2015Q3). In this regard, goodware tends to present more novel patterns
over time, whereas malware frequently exhibits more known behaviors that have been observed in preceding periods.
Indeed, the fluctuations observed for the malware follow a common infection pattern. Each time a new form of infection
emerges, the apps (samples) exploiting this method will be initially classified as unknown (see, for example, 2015Q1).
Then, the infection mechanism becomes popular as new malware apps use it. This is shown, for example, by the increase
of known groups in the subsequent periods to 2015Q1. This popularity keeps increasing until the infection pattern is
detected and a new form or a variation of the original exploitation mechanism is developed.

The over-representation of malware with known behaviors during most periods can lead to biased detectors when
retrainingMLmodels, as algorithms are designed to optimize performancemetrics andmay focus solely on thesemajority
groups Zhao et al. [2021]. Hence, using all the data for training can hinder the ability of detectors to accurately distinguish
minority (unknown or new) malware. With the aim of improving the effectiveness of the adaptation mechanism and
producing more reliable malware detectors, we propose the use of an ad-hoc sample selection approach for Android
malware detection. This technique ensures that the retraining data is diverse and informative Molina-Coronado et al.
[2023]. It involves filtering out uninformative or duplicated apps, controlling the size of the dataset, and reducing the
labeling costs and training complexity of ML algorithms.

Particularly, in this work we propose a sample selection method using the continuous clustering process described
in a previous work Molina-Coronado et al. [2023] and initially proposed in Portnoy [2001]. For this algorithm, and
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based on previous findings, we represent the apps as a vector of frequencies of their Android API calls. Then, sample
selection is carried out in two phases: the calibration phase and the online phase.

The objective of the calibration phase is to find the different behavioral groups present in the training data, for both
malware and goodware. To do so, the apps in the training set are chronologically ordered by their publication date and
sequentially assigned to their closest cluster. This assignment is only performed if the sample lies within a predefined �
radius from the cluster’s representative; otherwise, a new cluster is created with the sample as the representative. We
assume that samples within a group contain similar code patterns and thus, that each cluster represents a particular
behavioral pattern. Note that cluster’s representatives are maintained throughout the process. The Euclidean distance is
used to measure the similarity between every pair of samples. Once all the apps are clustered, we label the clusters as
goodware or malware according to the class label of the representative app of that cluster. Within this calibration phase
we compute the average number of apps in all the behavioral clusters found (k). Then, we only keep the most recent k
components (apps) from each cluster. In this way, we try to keep the training set both small (keeping only a few samples
of a given behavior) and diverse (keeping samples of all the different behaviors detected).

During the online phase (concept drift handling), the algorithm assigns each new incoming sample to its closest
cluster if it meets the admission condition (the sample is within the � radius of the representative). If the cluster
already contains k samples, the oldest sample in the cluster is replaced by the new one. This process can be seen as
a multi-window approach in which a sliding window of size k is maintained for each of the behavioral clusters. If a
sample cannot be associated with an existing cluster, a new cluster is created with that sample as its representative. At
the end of the clustering process, we compute the isolation level of clusters as the average Euclidean distance between
the cluster representative and the representatives of other clusters. For labeling, we select the representatives of the lb
most isolated clusters, being lb a labeling budget parameter. Finally, the retraining dataset is constructed by appending
to the samples used on the previous retraining period, the k most recent samples of each labeled cluster. Note that the
apps that are assigned to a cluster are automatically labeled with the class label of the cluster representative. This avoids
labeling many apps.

6. Experimental Framework
This section describes the experimental set-up and the methodology followed to evaluate the different adaptation

mechanisms analysed in this work.

6.1. Dataset
In our experiments, we use the dataset presented in Molina-Coronado et al. [2023]. This dataset consists of eight

years of malware and goodware sorted in a monthly basis, from January 2012 to December 2019. In the preprocessing
step, class labels are assigned based on the number of VirusTotal detections (VTD) Kantchelian et al. [2015]. Apps

(a) Malware diversity (b) Goodware diversity

Figure 4: Diversity of the dataset throughout the evaluation period (2013-2019). The bars represent the percentage of apps
captured in the indicated period that are very similar to apps that have already appeared in previous periods (“Known”), or
apps that exhibit new behaviors (“Unknown”).
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with a VTD value equal to 0 are tagged as goodware, and apps with a VTD value greater than or equal to 7 are tagged
as malware. The remaining apps (those with a VTD value between 1 and 7) are discarded. This labelling methodology
is common in the Android malware literature Zhu et al. [2020], Salem et al. [2019]. The instructions to download the
dataset are available in our GitLab repository1.

Once this is done, we split this dataset into two separate subsets: one for training and one for evaluation. The training
dataset consists of 100 monthly samples of each class, goodware and malware, between January 2012 and December
2012. Note that malware detection on Android is a highly unbalanced problem where malware actually accounts for
about 10% of the apps Pendlebury et al. [2019]. However, the training dataset is compiled offline and, thus, can be
constructed using an unrealistically balanced ratio between the two classes. Contrarily, in order to mimic a real situation,
the remaining 7 years of data (from January 2013 to December 2019), used for model evaluation purposes, will consists
of 10 malware and 100 goodware samples per month over this period, which are obtained by randomly sampling apps
from the original dataset.

6.2. Batch Malware Detectors
For the purpose of this paper, we rely on three state-of-the-art malware detectors, Drebin, DroidDet and MaMaDroid,

that, according to a recent comparison Molina-Coronado et al. [2023], are the best performing batch Android malware
detectors published to date. These detectors were not originally conceived to cope with concept drift and they all rely
on features extracted through static analysis of APK2 files to represent the apps, and on batch models for detection. In
this section we briefly describe their detection mechanisms:

DrebinArp et al. [2014] uses a full set of features extracted fromAPKs, including hardware components, permissions,
application components, intent filters, strings, and a restricted set of API calls. It uses a linear SVM model fed with this
data to perform malware detection.

DroidDet Zhu et al. [2018] relies on data obtained exclusively from the app code to detect malware. More specifically,
it uses a filtered set of requested and required permissions, intent filters and API calls. After the first extraction of all
possible values, the relevance of the features is calculated to eliminate those that are not informative. The most relevant
features are finally used for model generation using the RotationForest algorithm.

MaMaDroid Onwuzurike et al. [2019] constructs a Markov chain of the API calls found in the app code. The
Markov chain represents the transition frequency between each API pair. Actually, the package to which an API call
belongs is used as a higher level abstraction to reduce the number of final features. The RandomForest algorithm is
used to identify malware with this information.

6.3. Parameter Settings
The baseline (original) detectors have been trained using the default parameters reported in their respective works.

For all configurations, the evaluation and (possible) retraining process is set to quarterly intervals. This choice is a
compromise between obtaining an adequate visualization of the results but restricting the number of new models, since
training the models has a significant experimental cost. In addition, for the change detection method, after preliminary
experiments, we set the � threshold for the PH test to 0.02 based on preliminary results (see Appendix A.1), as a
threshold between detection performance and the number of retraining steps.

In relation to the methods proposed for selecting the data used for retraining, sliding windows of 100, 1000, and 2000
apps are considered in the experimentation. For the problem-specific sample selection strategy, based on preliminary
tests (see Appendix A.2), we set the � radius (the maximum distance allowed to consider any sample as part of an
existing cluster) to 0.01. The k value (the average number of apps in a cluster), has been calculated in the calibration
phase, taking a value of 2. For CL methods (CADE Yang et al. [2021b] and HICL Chen et al. [2023b]), we use the
original implementation and the parameters that reported the best results in their respective papers. Additionally, since
uncertainty and CL methods require setting a criterion for selecting the samples to be labeled and appended to the
retraining dataset, either by taking the n most uncertain samples or by setting a threshold over the uncertainty measure,
we set a labeling budget similar to the average number of samples to be labeled with the problem-specific sample
selection method.

1https://gitlab.com/serralba/concept_drift
2Android Application Package, i.e., the file format used by Android to distribute applications.
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6.4. Evaluation Framework and Metrics
First, all models are trained offline (batch) using the apps in the training dataset (balanced and with data from Jan.

2012 to Dec. 2012). For evaluation purposes, we consider non-overlapping windows of three-month periods. Therefore,
the evaluation dataset is divided into 28 time-ordered subsets, each one covering one quarter.

For the evaluation of the original version of the detectors (pure batch scenario without retraining), the model used is
always the same, i.e., the one obtained in the offline phase. For those scenarios incorporating concept drift management
approaches, model update procedures are subsequently carried out with a subset of recent apps. Note that we assume
that, when a model is updated, the true labels of the samples used to train the new model are known. As the incoming
data are chronologically sorted, we can evaluate the degree of concept drift, as well as the effectiveness of the measures
implemented to address it. This approach is common in the concept drift literature Gama et al. [2014].

In two separate experiments we analyze and compare the effect of: (1) the policies to trigger the updates, and (2)
the data used for retraining. In the first experiment, periodic vs. change detection mechanisms are compared. In this
experiment, the dataset used for training the models grows in each retraining round since all incoming samples are
incorporated to the dataset for retraining. In the second experiment, where the different data selection mechanisms
are studied, the models are retrained at each trimester with the corresponding selection of data (windows of fixed
size, uncertainty samples, OOD samples or cluster representatives). As a baseline for this second experiment, we also
consider the model retrained periodically each trimester using all the data available.

Due to the large amount of data that is available for training and in order to avoid imbalance between the malware
and goodware when retraining the models, for all the possible combinations and methods excepting those using CL or
uncertainty sampling, in each retraining round, goodware is downsampled to reach a balanced ratio between the classes.
Specifically, when the training dataset is constructed using the problem-specific sample selection method, once the
clustering has been carried out and the goodware and malware samples are obtained, the goodware is downsampled to
reach a balanced dataset. Note that this is only done for training, whereas for evaluation the original unbalanced data is
used.

Finally, in all the experiments and for each model, we measure its performance as the average of the TPR and TNR,
known as the Amean value (see Table 1). The Amean is a popular performance metric in the ML literature for unbalanced
scenarios and, contrary to the F1 score, the Amean considers and equally weights the accuracy of models on both positive
(malware) and negative (goodware) samples.

7. Experimental Results
This section shows the results of the different retraining configurations tested for the state-of-the-art malware

detection models: Drebin, DroidDet and MaMaDroid. Code implementations for all these mechanisms are available in
our GitLab repository3.

7.1. Analysis of the Effect of the Retraining Frequency
The results when retraining the detectors at fixed periods and with change detection are shown in Figure 5. The

lines in the figures represent the Amean performance of the models over the evaluation period. In particular, the red
lines show the performance of the detectors when a periodic retraining approach is applied. The blue lines represent the
performance of detectors implementing the change detection mechanism based on the PH test. The vertical dotted blue
lines represent the points at which the PH test has triggered a drift alarm and, thus, a retraining and model replacement
operation has been performed. For comparison purposes, we also include the performance of the (original) batch model
which is trained only once, at the beginning. This is represented by a dashed orange line.

As can be seen, the orange lines show a decreasing trend over time for all models, confirming the existence of
concept drift. The benefits of using retraining as an adaptation mechanism to counteract the effect of concept drift
in batch malware detectors are readily apparent from the figures. For all adaptive solutions, the performance of the
models is kept stable over time. In fact, the retraining variants of DroidDet (see Figure 5b) show an overall performance
improvement with respect to the static version of 15%, while for Drebin and MaMaDroid this performance increases
23% and 16%, respectively (see Figures 5a and 5c).

Overall, when comparing the two retraining configurations, the figures indicate that applying a change detection
mechanism has a minimal cost in performance (Amean), with an average reduction of 2.3% for all detectors. Conversely,
the change detection method requires a much smaller number of retraining operations compared to retraining at fixed

3https://gitlab.com/serralba/concept_drift
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(a) Drebin (b) DroidDet

(c) MaMaDroid

Figure 5: Evolution of the performance of malware detectors for the period 2013-2019, for different policies to trigger
retraining. Dotted, blue vertical lines indicate a model change triggered by the concept drfit detection mechanism.

periods. In fact, as can be seen, the change detector successfully triggers a drift alarm when the performance of the
detectors decreases. For DroidDet, eight rounds of retraining and model replacement are required, as shown by the
blue dotted lines in Figure 5b, which contrasts with the 28 operations performed with fixed-period retraining. With
equivalent detection performance indicators, only seven drift alarms are triggered in MaMaDroid (see Figure 5c) and
Drebin (see Figure 5a).

7.2. Analysis of the Effect of the Retraining Data
Table 2 shows the average Amean performance of the detectors using different data management policies when

periodically re-training themodels. It is notable that the use of a datamanagement policy obtains very similar performance
values or even outperforms the baseline configuration (the one using all available data) in most cases. From the tested
configurations, using the problem-specific sample selection approach for retraining with a labeling budget of 70% of the
incoming samples seems to be the best approach, followed by HICL and uncertainty methods with similar labeling
budget. In general, except for CADE, the results do not show significant differences among active learning methods,
and even using smaller datasets with 45% of labeling effort, the performance indicators remain very similar or even
outperform the baseline that uses all the data.

Figure 6 shows the results for each individual detector over the entire evaluation period. For clarity of the results, we
only selected the best sliding window policy, contrastive learning OOD method, and problem-specific sample selection
configuration. The red lines represent the baseline, that uses all available data for retraining; the green lines represent the
performance when considering a sliding window of size 1000 for retraining, the orange lines represent the performance
using the HICL method with a labeling budget of 70%; and the blue lines show the performance of the problem-specific
sample selection mechanism with 70% of labeling budget. Using active learning mechanisms to select samples for
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Drebin DroidDet MaMaDroid Avg. Perf. % Labels Req.
All data 0.88 0.79 0.74 0.80 100%
Last 1000 0.85 0.80 0.72 0.79 100%
Last 2000 0.87 0.79 0.72 0.79 100%
Last 100 0.75 0.69 0.68 0.70 30%
Problem-Specific 0.88 0.78 0.82 0.82 70%
CADE Yang et al. [2021b] 0.83 0.76 0.74 0.77 70%
HICL Chen et al. [2023b] 0.88 0.78 0.75 0.80 70%
Uncertainty 0.86 0.79 0.75 0.80 70%
Problem-Specific 0.86 0.76 0.78 0.80 45%
CADE Yang et al. [2021b] 0.77 0.74 0.72 0.74 45%
HICL Chen et al. [2023b] 0.87 0.77 0.75 0.80 45%
Uncertainty 0.83 0.80 0.74 0.79 45%
Problem-Specific 0.84 0.73 0.76 0.78 15%
CADE Yang et al. [2021b] 0.69 0.75 0.70 0.71 15%
HICL Chen et al. [2023b] 0.86 0.75 0.74 0.78 15%
Uncertainty 0.83 0.72 0.73 0.76 15%

Table 2
Average Amean performance throughout the evaluation period for different sample selection policies using fixed period
retraining. The right column refers to the percentage of samples in the buffer that need to be labelled for retraining.

retraining results in improved performance values with respect to the fixed-size configuration for all methods except for
DroidDet, with the problem-specific method yielding slightly better Amean values in most evaluation rounds than the
HICL method.

Beyond detection performance, the effort required to label the samples used in each round of retraining is also an
important factor to measure the efficiency. Considering that a total of 330 apps arrive in each retraining round (300
goodware and 30 malware), the labeling requirements for the strategies “Last 1000” and “Last 2000" are similar to
those of the baseline method, as they involve labeling all new arriving samples before retraining. In contrast, the “Last
100” strategy requires labeling only about 30% of the incoming samples in each evaluation round. Active learning
methods require labeling only 45% of the incoming samples to obtain equivalent performance values to the baseline
and the last 1000 and 2000 sliding window policies. With a lower labeling budget, the problem-specific and HICL
methods obtain very similar performance on average. These results demonstrate how detection models benefit from the
use of incremental clustering to label samples and reduce the size of the training data. As a potential drawback, note
that this process can lead to labelling errors. In this regard, our experiments showed that only 0.05% of the samples are
mislabeled by the method, demonstrating to be insufficient to negatively impact the detection ability of ML algorithms.

For the interested reader, we also include the analysis of the combination of change detection and different sample
selection methods, as well as the results obtained with different parameter configurations of the proposed methods in
Appendix B.

8. Conclusions
In this paper, we have shown that retraining is an effective mechanism for dealing with concept drift in batch

Android malware detectors, it being straightforward to incorporate into existing detectors without modifying their
design. Specifically, our experiments show that this update mechanism helps maintain high detection rates, with an
average performance improvement of 20% compared to the original versions of the detectors. Regarding the two
retraining alternatives tested, there are no significant performance differences between periodic retraining and the
PH-based change detection approach. However, using a supervision mechanism based on the PH test showed to decrease
the number of retraining rounds by 75% on average, dramatically reducing the computational effort required to keep
model performance over time.

Additionally, we have demonstrated that the sample selection strategy used for retraining also influences the success
of detectors. On one hand, employing a sample selection policy instead of using all available data for retraining reduces
the cost of model generation since the complexity of machine learning algorithms is highly dependent on the size
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(a) Drebin (b) DroidDet

(c) MaMaDroid

Figure 6: Evolution of the performance of malware detectors with periodic retraining for the period 2013-2019. Red lines
represent the performance when using all the data available, i.e., the baseline. Green, blue and orange lines represent
respectively the performance of models when retrained with the 1000 most recent samples, using the problem-specific
strategy and with the HICL selection methods with labeling budgets of 70%.

of the training data Hastie et al. [2009]. Sliding window policies, such as selecting the last 1000 and 2000 samples,
helped reduce retraining complexity while maintaining similar labeling effort and performance values compared to the
baseline. The benefits of using active learning techniques, such as uncertainty sampling, HICL, or the problem-specific
sample selection method, are undeniable. These techniques result in better detection performance for models and require
reduced labeling effort for retraining. Among the active learning methods, the proposed problem-specific strategy
exhibited minimal performance degradation under widened labeling constraints compared to other alternatives.

In general, the choice of a specific sample selection strategy and retraining policy will depend on the requirements
of the target scenario for the detector. Change detection is a suitable method in most scenarios, especially in cases
where the cost of generating models is high. One advantage over periodic retraining is that it requires fewer retraining
operations to keep models up-to-date, consequently reducing the need for labeling new samples. Labeling new samples
is often costly, and in many cases, it is performed manually by human experts. In this context, the application of a
sample selection mechanism is also desirable. Larger sliding window sizes need labeling all incoming data, which may
not be feasible, especially in online scenarios. Shorter windows, on the other hand, lead to rapid forgetting and may
lead to model overfitting. Active learning approaches such as contrastive learning OOD methods (CADE and HICL),
problem-specific sample selection, or uncertainty sampling are particularly useful because they reduce the number
of samples that need to be labeled without compromising detection performance. Additionally, they do not include
a forgetting mechanism, which helps mitigate the impact of reappearing application behaviors. However, it is worth
noting that CADE and HICL involve higher costs since they require generating a new CL model at each retraining step
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for sample selection, whereas the cost of the problem-specific sample selection method can be considered negligible
because clusters are updated incrementally, involving a one-pass process over the data.

As for future work, we propose exploring more complex sliding window mechanisms, such as adapting the size
of the sliding window as a function of the distribution dynamics. This mechanism could be useful for dealing with
applications that manifest themselves in different ways, e.g., periodically or recurrently. Similarly, more advanced
sample selection policies can be explored. These could include, for example, selective forgetting since, on current
configurations the set of samples continuously grows.
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A. Analysis of the effect of the parameters
A.1. Changing the � parameter of the PH method

This section describes the behavior of different parameter configurations for the PH test used for concept drift
detection. Specifically, we experiment with different � values of 0.02, 0.03, 0.04 and 0.05. Remember that this parameter
determines the maximum allowed decay of the performance of models to raise a retraining signal. For this experiment,
we retrain models with all the data available once the retraining signal is flagged. As we can see in Figure 7, there are
small differences among the configurations in terms of performance and number of updates. We observe that some
lines overlap because the retraining signal and thus, the model, match for different � values. In all cases, a lower � value
involves greater sensitivity to changes and thus, a slightly higher number of updates is required. A lower � value is also
related with a more stable performance pattern over time. Accordingly, model performance tends to be higher with
sensitive (lower) � values. The exception to this rule is MaMaDroid when using � = 0.05. In any case, the differences
are minimal and results seem robust and coherent for all � values.

A.2. Changing the � parameter of the problem-specific sample selection
This section describes the behavior of the models for different parameter configurations of the problem-specific

sample selection approach. Specifically, we experiment with different � radius values for cluster admission of 0, 0.01,
0.02, 0.03, 0.04 and 0.05. Models are retrained regularly, at fixed periods, with the data selected by the sample selection
method. As we can see in Figure 8, there are almost no differences among the configurations in terms of performance. If
we choose to create smaller clusters, they are conformed of very similar samples and thus, more samples are rejected by

(a) Drebin (b) DroidDet

(c) MaMaDroid

Figure 7: Evolution of the performance of detectors with change detection based on the PH test with different � threshold
values. Retraining is performed using all the available data. In parentheses, the number of updates required by the Change
Detection method.
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(a) Drebin (b) DroidDet

(c) MaMaDroid

Figure 8: Evolution of the performance of detectors with periodical retraining and different problem-specific sample selection
radius values (�).

the admission condition. This entails the creation of more clusters, involving a larger amount labeling effort but also a
reduction of the (automated) labeling errors. Overall, the best trade-off between performance and labeling requirements
is obtained with an � radius of 0.01.

B. Analysis of the Combined Effect of Change Detection and Sample Selection Methods
When change detection and sample selection policies are combined in retraining (see Table 3), a slight decrease in

performance is obtained with respect to retraining at fixed periods (see Table 2) for all sample management policies.
Again, as can be seen in the Figure 9, the best approach is the problem-specific method that uses a budget of samples to
label of 70%, but other active learning configurations are not far behind. The worst performing approach is the one
using the last 100 samples. In terms of the number of model updates, all configurations required a similar number of
retraining operations (between 4 and 10) which are far less than using periodic retraining (28). Bearing all this in mind,
the conclusion are in the line with those presented in Section 8.
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(a) Drebin (b) DroidDet

(c) MaMaDroid

Figure 9: Evolution of the performance of detectors with change detection for the period 2013-2019. Numbers between
parentheses depict how many retraining and model replacement rounds are triggered by the change detection method to
keep the effectiveness of detectors over time.

Drebin DroidDet MaMaDroid Avg. Perf Updates
All data 0.85 0.76 0.72 0.77 7, 8, 7
Last 100 0.74 0.68 0.52 0.64 5, 7, 1
Last 1000 0.85 0.80 0.69 0.78 5, 8, 4
Last 2000 0.86 0.75 0.66 0.75 8, 8, 4
Problem-Specific 0.86 0.78 0.79 0.81 8, 7, 7
CADE 0.79 0.74 0.72 0.75 7, 7, 7
HICL 0.86 0.77 0.73 0.78 8, 10, 8
Uncertainty 0.84 0.77 0.72 0.77 8, 9, 8

Table 3
Average Amean performance throughout the evaluation period for different sample selection policies and change detection.
Column “Updates” represents the number of changes detected by the PH test method for each of the evaluated detectors
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