
A Constraint-Based Programming Approach for Robotic Assembly Skills Implementation

Matteo Parigi Polverinia,b,∗, Andrea Maria Zanchettina, Paolo Roccoa

aPolitecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, 20133, Milano, Italy
bAdvanced Robotics Department (ADVR), Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy

Abstract

The features of modern collaborative robots, mainly their kinematic redundancy combined with the light-weight structure, can be
fully exploited in parts assembly. Traditional robot-level paradigm to robot programming, that requires to explicitly specify the
motion of the robot and allows to use contact forces for motion supervision only, cannot be easily applied to complex interaction
tasks, such as robotic assembly. Instead, by shifting paradigm to skill-based programming, it is possible to specify force control
actions at task level and inherently provide compliant capabilities, without the need to specify the motions of the robot. To this end,
this paper presents a constraint-based programming framework for the implementation of assembly skills for light-weight redundant
robots, enabling a reactive generation of motion trajectories based on force control requirements. The effectiveness of the proposed
approach is experimentally validated on a bimanual assembly use case performed with the ABB YuMi dual-arm robot, requiring
a peg-in-hole insertion and a cap-rotation task. Estimation of the interaction force/torque additionally enables the execution of the
assembly operation without the need for exteroceptive sensors.

Keywords: Robotic assembly, Collaborative robots, Task-level programming, Constraint-based programming

1. Introduction

Kinematic redundancy, dexterity and inherent compliance
are some of the features of the new generation robotic arms,
commonly referred to as collaborative robots or cobots, e.g.
KUKA LBR iiwa, Universal Robot platforms, Franka Emika
Panda, that make this type of platforms particularly suitable for
assembly applications [1, 2]. Furthermore, when employing a
dual-arm cobot, e.g. Willow Garage PR2, Rethink Robotics
Baxter, Kawada Nextage, ABB YuMi, the design of task spe-
cific fixtures is no longer required, enabling a variety of au-
tonomous operations, including: insertion [3, 4], folding [5, 6],
screwing [7], taping [8], up to manipulation of highly de-
formable objects [9].

With the aim to intuitively program a complex assembly op-
eration using a cobot, this paper roots in the task-level [10] or
skill-based programming technique in order to allow the non-
robotics expert to specify easy and quick task-related actions,
rather than the motions of the robot as expected by the tradi-
tional explicit or robot-level paradigm. Tasks are assembled
by concatenating these actions, generally referred to as skills
of the robot [11, 12]. In this respect, the scope of this work
is to propose a constraint-based formalism for the task-level
specification of robotic skills that require force control policies,
consequently endowing cobots with assembly skills that can be
easily adopted for industrial applications.

The main contribution of this work are:

∗Corresponding author.
Email addresses: matteo.parigi@iit.it (Matteo Parigi Polverini),

andreamaria.zanchettin@polimi.it (Andrea Maria Zanchettin),
paolo.rocco@polimi.it (Paolo Rocco)

(i) A constraint-based programming framework that allows
the skill developer to integrate force control requirements
within the specification of an assembly skill, indepen-
dently of the specific robotic platform and assembly ap-
plication.

(ii) The real-time generation of reactive force controlled mo-
tions based on force-related objectives and constraints.

(iii) The possibility for a factory worker to intuitively program
a complex assembly process by simple concatenation of
basic assembly skills.

(iv) Demonstrations of a complete assembly process per-
formed with the ABB YuMi dual-arm robot in a sensorless
configuration, i.e. without the use of force/torque sensors.

The basic ideas behind the present paper can be preliminarily
found in the authors’ works [13, 14], although dealing with
the control problems inherent in two different dual-arm robotic
assembly tasks. This paper contributes with a comprehensive
and general formulation of the constraint-based programming
framework, which is independent of the specific robotic
platform and of the specific assembly application. Therefore,
from the perspective of the present work, [13, 14] represent
two possible assembly scenarios enhancing the generality
of the proposed method. An extensive discussion of the
system capabilities further complements the description of the
approach.

The paper is organized as follows. We present related works
in Section 2 and provide details on the constraint-based pro-
gramming framework by Zanchettin et al. [15] in Section 3.

Preprint submitted to Robotics and Computer-Integrated Manufacturing January 24, 2019

The architecture of the proposed programming approach to as-
sembly skills implementation, which is built upon [15], is intro-
duced in Section 4. The dual-arm robot used for the experimen-
tal validation and its control interface are presented in Section
5, together with the employed model-based observer of inter-
action forces [16, 17] and the assembly use case. Experimental
validation on a peg-in-hole insertion task and on the subsequent
cap-rotation task, required by the assembly process, are shown
in Section 6 and Section 7, respectively. The experimental exe-
cution of the complete assembly process is shown in Section 8.
Concluding remarks can be found in Section 9. Guidelines to
select admittance parameters are additionally provided in Ap-
pendix A.

2. Related Works

From a control perspective, the lower inertia combined with
the compliant structure of collaborative robots provides an in-
trinsic degree of safety towards manipulated objects, which is
beneficial in assembly operations. On the other hand, the con-
sequent lower position accuracy makes the application of force
control algorithms [18] even more crucial for a successful task
execution compared to traditional industrial robots. The adop-
tion of force control policies when using collaborative robots
can be found e.g. in [19, 20, 21]. In addition, the kinematic
redundancy allows for a more dexterous manipulation but de-
mands for redundancy resolution in order to plan a robot trajec-
tory [22].

From a programming perspective, the traditional explicit or
robot-level paradigm requires a robot programmer to entirely
specify the robot motion through a scripting language, e.g.
ABB’s RAPID, KUKA KRL or COMAU PDL2. With respect
to an assembly process, robot-level programming languages re-
quire the robot programmer to be expert not only in computer
programming but also in the design of sensor-based motion
strategies. According to this paradigm in fact, the data from a
force sensor can be used exclusively for motion supervision, see
e.g. [23], instead of for control purposes. This eventually re-
sults in rather intricate flowcharts of the assembly process, that
are based on what-if handling strategies to define each possible
non-nominal behaviour. Furthermore, the resulting robot mo-
tion, which is inherently stiff with respect to the environment,
could end up in parts’ breakage during the assembly task due to
low position accuracy.

In contrast to robot-level programming, task-level or skill-
based programming aims at providing easy and quick instruc-
tions without need for programming expertise. It refers to a
higher abstraction layer than traditional robot-level program-
ming by specifying task-related actions (robot skills), rather
than the motions of the robot. So called device primitives, i.e.
functions provided by a single device as a force/torque sensor,
are used by the skill developer to design skills guaranteeing
functionality on a higher level. This way the shop floor factory
workers can program tasks quickly and efficiently by simply se-
quencing a number of skills. A major advantage of task-level
programming over robot-level programming when it comes to

an assembly process consists in the possibility for the skill de-
veloper to program assembly skills that enable force controlled
compliant motions. As a result, a non-expert user can intu-
itively program a complex assembly task by simple concatena-
tion of assembly skills.

As an alternative programming approach, Programming by
Demonstration (PbD) [24] and statistical learning techniques,
allow the automatic generation of robot trajectories from a
database of related, but different, situations. According to PbD
the robot trajectories are generally encoded into a form that al-
lows for on-line modification, e.g. by using dynamic move-
ment primitives (DMP) [25] or stochastic models as Gaussian
Mixture Models (GMMs [26]). Recent work on learning by
demonstration [27] through kinesthetic guiding of robotic arms
[28, 29], has turned out to be particularly suitable for industrial
applications. Nevertheless, although much research in this area
has focused on pick-and-place tasks, only few works deal with
robotic assembly, see [30, 31].

Following the task-level paradigm, constraint-based pro-
gramming represents a viable solution for skills implementa-
tion [15], as it allows the real-time generation of robot motions
as an output of a constrained optimization problem based on
task-related objectives and constraints. The constraint-based
approach, originally introduced in [32] based on the task func-
tion formalism [33], has been extensively adopted within the
iTask (instantaneous Task Specification using Constraints) [34],
the Stack of Tasks approach [35], and in several formulations
using Quadratic programming (QP), see e.g. [36, 37]. The
iTaSC in particular has been applied to assembly production
scenarios, e.g. in [38, 39, 40] for the assembly of an emer-
gency stop button. Although effective, these works tackle the
assembly problem from a control perspective, rather than from
a programming point of view and the integration within a skill-
based programming framework remains an open problem only
recently started to be addressed, e.g. in [41, 42].

Of particular interest for this work is the constraint-based
programming approach by Zanchettin et al. [15], which will
be revised in the following Section, that has been conceived as
a skill-based architecture for the implementation of robust and
ready-to-use robotic skills for industrial robotic applications.

3. Preliminaries

In the following we provide background knowledge on the
combined trajectory generation and constraint-based program-
ming approach proposed in [15].

3.1. Framework

The architecture shown in Fig. 1, is based on a real-time
trajectory generation algorithm [43], referred to as trajectory
generation module, combined with a constraint-based reactive
controller, feeding the inner industrial joint position/velocity
controller. Subscript k refers to the value of the related vector
at discrete time instant tk. The reactive controller, responsible
for kinematic inversion in presence of redundancy and state
constraints, generates the joint position and velocity reference

2

Figure 1: Block diagram of the constraint-based programming framework in [15] for a position controlled robot.

to the robot position/velocity controller
(
qk+1, q̇k+1 ∈ Rn)

based on: the state of motion in task coordinates provided
by the trajectory generation module

(
xgen

k+1, ẋgen
k+1 ∈ R

m)
, the

current state of motion in task coordinates
(
xk, ẋk ∈ Rm)

and
work-space sensing data. If this involves a deviation from
the planned trajectory, a new trajectory from the current state
of motion to the target state of motion

(
xtrg, ẋtrg ∈ Rm)

is
reactively generated by the trajectory generation algorithm.

The following assumption has been made:

Assumption. The reference joint acceleration vector rep-
resents the control input u ∈ Rn

q̈k = uk (1)

Consequently, the joint space process model reduces to a
discrete-time double integratorqk+1 = qk + Ts q̇k + 0.5 T 2

s uk

q̇k+1 = q̇k + Tsuk
(2)

Ts being the controller sampling time. By further considering
the well-known forward kinematic relation between joint coor-
dinates q ∈ Rn and task variables x ∈ Rm

x = f (q) ẋ = J (q) q̇ ẍ = J̇ (q) q̇ + J (q) q̈ (3)

where J (q) ∈ Rn×m is the Jacobian matrix, the task space pro-
cess model is given byxk+1 = xk + Ts Jk q̇k + 0.5 T 2

s

(
J̇k q̇k + Jkuk

)
ẋk+1 = Jk q̇k + Ts

(
J̇k q̇k + Jkuk

) (4)

being Jk = J
(
qk

)
and J̇k = J̇

(
qk

)
.

3.2. Constraint Specification
A generic constraint, considered within the reactive con-

troller, has the following linear formulation

Ekuk ≤ f k (5)

where Ek and f k can be constant or time-varying vectors/matri-
ces. Possible constraints can account for typical motion plan-
ning limitations (i.e. joint limits, bounds on the maximum ve-
locities and accelerations in joint and task space) but also for
sensor-related events occurring at time instant k, see [44, 15].

Taking into account the existing dynamics between the state
variable subject to constraints and the control variable, i.e.
when the relative degree is greater than 0, set invariance the-
ory [45] comes into play to prevent constraint violations. The
so-called invariance control by [46, 47] has been employed for
this purpose, where a set invariance control law is designed off-
line to render a subset of the constraint admissible state-space
positively invariant. Note that a set is said to be positively in-
variant with respect to a dynamical system if a trajectory, with
initial condition in the set, remains therein for all future times
[45]. Constraints’ satisfaction is ensured if a suitable set invari-
ance condition holds for all active constraints. This in turn can
be expressed consistently with (5) by exploiting Input-Output
(I-O) Linearization, leading to

AIuk � bI (6)

where I is the set of active constraints at time instant k,
AI = [ai] and bI = [γi − bi] with i ∈ I and γi < 0. The oper-
ator � denotes the inequality ≤ for all elements of the vectors.
Finally, ai(x) and bi compose the I-O Linearization equation for
the i-th constrained state variable xi, i.e.

x(ri)
i,k = ai(x) uk + bi (7)

ri being the relative degree.

3.3. Reactive Controller Module

The reactive controller implementation is described in Al-
gorithm 1. The cost function (9a) weighs the difference be-
tween the next state of motion (xk+1, ẋk+1) and its reference val-
ues

(
xgen

k+1, ẋ
gen
k+1

)
, the latter provided by the trajectory generation

algorithm. The following Quadratic Programming (QP) cost
function can be used

L (e, ė) = 0.5eT Qpe + 0.5ėT Qvė + eT Qp,vė+

+ gT
p e + gT

v ė
(8)

where Qp,Qv,Qp,v are positive definite matrices, while gp and
gv are vectors of suitable dimension. Constraints (9b) and (9c)
map joint space velocities and accelerations into task coordi-
nates, while (9d) represents the set of all considered constraints
accounting for motion planning limitations and sensor-related
events. The output of the QP problem consists in the refer-
ence joint acceleration q̈k, i.e. the control input uk, from which

3

Algorithm 1 Reactive Controller
Input: qk, q̇k, x

gen
k+1, ẋ

gen
k+1,AI, bI

Output: qk+1, q̇k+1
1: solve the following QP problem

min
uk
L

(
ẋk+1 − ẋgen

k+1, xk+1 − xgen
k+1

)
(9a)

subject to

xk+1 = xk + Ts Jk q̇k + 0.5T 2
s

(
J̇k q̇k + Jkuk

)
(9b)

ẋk+1 = Jk q̇k + Ts

(
J̇k q̇k + Jkuk

)
(9c)

AIuk � bI (9d)

2: update the state of motion as in (2)qk+1 = qk + Ts q̇k + 0.5T 2
s uk

q̇k+1 = q̇k + Tsuk
(10)

the corresponding reference position qk+1 and velocity q̇k+1 can
be computed through (2) and fed to the inner position/velocity
controller.

In presence of redundant degrees of freedom or in case of
task redundancy, a secondary task can be performed having
lower priority with respect to the primary task. To this end, be-
ing u0

k any of the (infinite) optimal solutions to the QP problem
in (33), the following equality constraint needs to be addition-
ally considered

Jk

(
uk − u0

k

)
= 0 (11)

ensuring that the alternative solution uk differs from u0
k in the

null space of the task Jacobian [48, 49]. Within an optimiza-
tion based framework this can be implemented by introducing
a second optimization stage, which inherits all the constraints
in (33) together with the equality constraint in (11)

minuk

1
2

uT
k Quuk + gT

u uk

subject to
Jkuk = Jku0

k
AIuk � bI

(12)

where Qu is a positive definite matrix and gu is a vector of suit-
able dimension.

Note that the constraint-based programming framework in
[15] is mainly devoted to the implementation of motion skills
that do not require interaction with the environment and has
been evaluated in an image-guided grasping task. Building
upon this framework, the current paper aims at extending its
capabilities by focusing on the design and implementation of
force controlled assembly skills.

4. Proposed Constraint-Based Programming Framework
for Assembly Skills Implementation

Parts assembly involves a variety of autonomous operations
(e.g. insertion, alignment, screwing) where the capabilities
of a collaborative robot can be naturally exploited. Note that
robotic assembly generally requires the adoption of force con-
trol policies for a correct task execution. Indirect force con-
trol approaches [18], e.g. impedance control [50], are partic-
ularly suitable for this purpose compared to direct force con-
trol methods, typically applied in robotic polishing, debarring
and machining. Note also that, the lower inertia combined with
the compliant structure of light-weight cobots cause in fact the
deterioration of the controller performance when employing a
direct force control approach. Nevertheless, bounding the in-
teraction force, arising from the contact between manipulated
parts in assembly operations, is a relevant control feature that
becomes crucial for the successful execution of those assem-
bly tasks where contact loss needs to be prevented, e.g. the
cap rotation task depicted in Fig. 2. In this respect, as previ-
ously addressed in Section 2, a paradigm shift from traditional
robot-level programming to task-level or skill-based program-
ming can be beneficial to endow a collaborative robot with the
aforementioned force control capabilities.

According to the skill-based paradigm and building upon the
approach in [15], this Section presents the mathematical for-
mulation of the proposed constraint-based programming frame-
work for the implementation of assembly skills. Two main
force control requirements will be considered in the following:
a compliant robot motion, see Section 4.1, and a robust con-
straint on the interaction force, see Section 4.2.

4.1. Compliant Robot Motion
In a variety of assembly processes the motion of the robot

should be made compliant to interaction forces in order to com-
pensate for the low position accuracy and prevent parts’ break-
age. The trajectory followed by the robot is therefore modified
by external forces/moments resulting in a compliant motion.
Taking into account that in usual industrial scenarios robots are
typically equipped with position/velocity controllers, this com-
pliant behavior can be generally achieved through admittance
control [18]. Assume that the interaction force/torque µ ∈ Rm

is applied to the robot TCP (Tool Centre Point), the following
equation establishes a mass-damper relation between the inter-
action force/torque acting on the system and the TCP displace-
ment vector ∆x ∈ Rm

µk = M∆ẍk + D∆ẋk (13)

where M ∈ Rm×m and D ∈ Rm×m are positive definite design
matrices composing the mass-damper system. By retrieving
∆ẍk from (13) and accounting for the task space process model
in (4), i.e. ∆ẋk+1 = ∆ẋk + Ts∆ẍk

∆xk+1 = Ts∆ẋk + 0.5T 2
s∆ẍk

(14)

the impedance relation (13) can be adopted to compute the TCP
position and velocity displacements ∆x and ∆ẋ, respectively,

4

yielding ∆ẋk+1 = ∆ẋk + Ts M−1 (
µk − D∆ẋk

)
∆xk+1 = Ts∆ẋk + 0.5T 2

s M−1 (
µk − D∆ẋk

) (15)

4.2. Robust Constraint on the Interaction Force

Figure 2: Example of a cap rotation task.

Considering a compliant contact situation (a very common
situation, due to the most likely low stiffness of the assembled
parts combined with the light-weight robot structure), the re-
lation between the robot end effector position xc ∈ R and the
contact force Fc ∈ R, along one of the directions constrained
by the environment, can be modeled as an equivalent spring at
the end effector

Fc = −K(xc − x0) (16)

where x0 ∈ R is the nominal undeformed pose of the environ-
ment surface in the constrained direction, while K ∈ R is the
environment stiffness depending on the object material.

Remark 1. Possible uncertainties considered in the remain-
der of this paper are:

(i) a rough knowledge of the interaction model, represented
by a bounded uncertainty in the environment stiffness

K ∈ K := [Kmin,Kmax]; (17)

(ii) force measurement (or estimation) noise, i.e. a measure-
ment uncertainty on the state vector

∆F ∈ DF :=
{
∆F : ∆F

min ≤ ∆
F ≤ ∆F

max

}
; (18)

(iii) uncertainty in the environment surface pose x0, repre-
sented as generic, non structured, modelling error

vF ∈ VF :=
{
vF : vF

min ≤ vF ≤ vF
max

}
; (19)

In this respect and based on the authors work in [14], the invari-
ance control approach will be employed to robustly ensure the
satisfaction of a lower and an upper bound on the interaction
force, despite the considered uncertainties. Assuming that (16)

has relative degree 2, the related state vector πF ∈ R2 is given
by

πF =
[
Fc Ḟc

]T
. (20)

Following from (16)

πF =
[
Fc −K ẋc

]T
=

[
1 0
0 −K

] [
Fc ẋc

]T
(21)

where ẋc = Jc (q) q̇ and Jc (q) is the row vector of the Jacobian
matrix related to the constrained direction. By introducing the
new state vector π̂F ∈ R2

π̂F =
[
Fc ẋc

]T
(22)

equation (21) can be written as

πF =

[
1 0
0 −K

]
π̂F (23)

The corresponding discrete-time state vector πF
k+1 is obtained

through the double-integrator relation

πF
k+1 = AF π̂k + BF ẍc,k (24)

where the state matrices AF and BF depend on the environment
stiffness K

AF =

[
1 K Ts

0 −K

]
BF =

[
0.5 K T 2

s
−K Ts

]
(25)

while the Cartesian acceleration along the constrained direction
ẍc is given by

ẍc = J̇c (q) q̇ + Jc (q) u (26)

Based on Remark 1, the corresponding uncertain system is

πF
k+1 = AF(π̂k + ∆F) + BF ẍc,k + vF (27)

while the related reachable set, depicted in Fig. 3, representing
the set of all possible values for the state vector πF

k+1 due to the
considered uncertainties, can be computed as

πF
k+1 ∈ A

F π̂F
k ⊕ B

FẌc ⊕ AFDF ⊕ VF (28)

being Ẍc = {ẍc : |ẍc| ≤ γx, γx > 0}.
As shown in Fig. 3, the reachable set in (28) results in a butter-
fly shaped non-convex reachable set. This is specifically due to
the impact of the considered environment stiffness uncertainty,
see (17), in the state matrix AF .

Let’s now assume that the controller must ensure a lower and
upper bound on the interaction force

Fmin ≤ Fc,k ≤ Fmax, ∀k. (29)

According to the invariance control approach, a so-called
invariance function Φ needs to be computed to ensure con-
straint satisfaction, which represents a worst case estimation
for the future output trajectory of state variable subject to con-
straint. Since (16) has relative degree 2, the invariance functions
Φ(πF , Fmax) and Φ(πF , Fmin) related to each force constraints,
i.e. Fc,k ≤ Fmax and Fc,k ≥ Fmin, can be analytically computed

5

Figure 3: Geometric interpretation of condition (28).

Φ(πF , Fmax) =

Fc − Fmax Ḟc ≤ 0

Fc +
Ḟ2

c

2F̈max
c
− Fmax Ḟc > 0

(30)

and

Φ(πF , Fmin) =

Fmin − Fc Ḟc ≥ 0

−Fc +
Ḟ2

c

2F̈max
c

+ Fmin Ḟc < 0
(31)

The sub-domain IF of the space πF bounded by
Φ(πF , Fmax) = 0 and Φ(πF , Fmin) = 0 is shown in Fig. 3. By
monitoring the value of the two invariance functions with re-
spect to the future force state vector πF

k+1 in (28), the set IF can
be made robustly positive invariant. This can be achieved if
the controller selects a value of ẍc,k satisfying the following set
invariance conditionsẍc,k ≤ −γx, if Φ(πF

k+1, Fmax) = 0
ẍc,k ≥ γx, if Φ(πF

k+1, Fmin) = 0
(32)

where γx > 0 is a controller design parameter, representing
the minimum value of the Cartesian acceleration to avoid con-
straint violation. Despite the non-convexity of the reachable
set in (28), by considering the convex hull of the reachable set
[51], it is sufficient to evaluate the invariance functions on the
vertices of the convex hull.

4.3. Reactive Force Controller Module
From a task-level programming perspective, the force con-

trol features presented in Section 4.1 and Section 4.2 represent
task-related actions that a skill developer can employ for the
specification of an assembly skill. In order to allow this by
following a constraint-based programming approach, we pro-
pose to improve the framework in [15], previously described
in Section 3, by conveniently modifying the reactive controller
module, hereafter referred to as reactive force controller. The
trajectory generation block, shown in Fig. 1, is kept unaltered
and completely ignores joint level constraints and work-space
sensing data. Instead, the reactive force controller tries to
minimize the tracking error w.r.t. the trajectory generation
output, i.e.

(
xgen

k+1, ẋgen
k+1 ∈ R

m)
, while accommodating for the

considered force control requirements based on sensor data, in

addition to joint level constraints. The implementation of the
reactive force controller is shown in Algorithm 2 and described
in details the following remarks.

Algorithm 2 Reactive Force Controller
Input: qk, q̇k, x

gen
k+1, ẋ

gen
k+1,AI, bI,µk

Output: qk+1, q̇k+1
1: compute ∆xk+1 and ∆ẋk+1 as in (15)
2: compute Φ(πF

k+1, Fmax) and Φ(πF
k+1, Fmin)

3: solve the following QP problem

min
uk
L

(
ẋk+1 − ˙̃xgen

k+1, xk+1 − x̃gen
k+1

)
(33a)

subject to

xk+1 = xk + Ts Jk q̇k + 0.5T 2
s

(
J̇k q̇k + Jkuk

)
(33b)

ẋk+1 = Jk q̇k + Ts

(
J̇k q̇k + Jkuk

)
(33c)

x̃gen
k+1 = xgen

k+1 + Ts∆ẋk + 0.5T 2
s M−1 (

µk − D∆ẋk
)

(33d)

˙̃xgen
k+1 = ẋgen

k+1 + ∆ẋk + Ts M−1 (
µk − D∆ẋk

)
(33e)

AIuk � bI (33f)

aFmax uk ≤ bFmax if Φ(πF
k+1, Fmax) = 0 (33g)

aFmin uk ≤ bFmin if Φ(πF
k+1, Fmin) = 0 (33h)

4: update the state of motion as in (2)qk+1 = qk + Ts q̇k + 0.5T 2
s uk

q̇k+1 = q̇k + Tsuk
(34)

5: update the state of the admittance filter∆xk+1 = x̃gen
k+1 − xk+1

∆ẋk+1 = ˙̃xgen
k+1 − ẋk+1

(35)

Remark 2. In order to enable a robot compliant motion, the
reference state of motion in task coordinates provided by the
trajectory generation module

(
xgen

k+1, ẋgen
k+1 ∈ R

m)
is added to

the admittance-based TCP position and velocity displacements(
∆xk+1, ∆ẋk+1 ∈ Rm)

computed through (15).

The resulting new reference state of motion
(
x̃gen

k+1,
˙̃xgen

k+1 ∈ Rm)
is given byx̃gen

k+1 = xgen
k+1 + ∆xk+1 = xgen

k+1 + Ts∆ẋk + 0.5T 2
s M−1 (

µk − D∆ẋk
)

˙̃xgen
k+1 = ẋgen

k+1 + ∆ẋk+1 = ẋgen
k+1 + ∆ẋk + Ts M−1 (

µk − D∆ẋk
)

(36)
Consequently, the cost function (33a) in Algorithm 2 weighs
the difference between the next state of motion (xk+1, ẋk+1) and
the new reference values

(
x̃gen

k+1,
˙̃xgen

k+1 ∈ Rm)
. The state of the

admittance filter is then updated as in (35). Useful guidelines
to select admittance parameters are provided in Appendix A.

6

Remark 3. A robust bounding of the interaction force can
be achieved through the additional hard constraints (33g) and
(33h).

These constraints, linear in the optimization variable (uk = q̈k),
are obtained from the set invariance conditions in (32) by
exploiting the forward kinematics relation in (26), yielding

aFmax = Jc
(
qk

)
, bFmax = −γx − J̇c

(
qk

)
q̇k

aFmin = −Jc
(
qk

)
, bFmin = −γx + J̇c

(
qk

)
q̇k

(37)

If required by the assembly operation, a straightforward way for
softening the force constraints (33g) and (33h) is to introduce
the slack variables ε1, ε2 ∈ R

aFmax uk ≤ bFmax + ε1

aFmin uk ≤ bFmin + ε2
(38)

The cost function in Algorithm 2 is in turn modified as follows

min
uk ,ε1,ε2

L
(
ẋk+1 − ˙̃xgen

k+1, xk+1 − x̃gen
k+1

)
+

2∑
i=1

ρi‖εi‖
2
2 (39)

where ρ1, ρ2 ∈ R are the related weights.

Remark 4. In order to exploit redundancy to perform a
lower-priority task, several formulations of the cost function in
(12) can be considered.

By setting

Qu = 2T 2
s In

gu = 2Ts q̇k
(40)

joint space velocities q̇k+1 can be minimized. Alternatively,
kinematic redundancy can be exploited for collision-avoidance
purposes, including self-collision avoidance. Defining as q̇0

k the
vector of evasive joint displacements, defined as in [52], the
candidate cost function in (12) is given by

Qu = 2T 2
s In

gu = 2Ts
(
q̇k − q̇0

k
) (41)

As another option, the robot reflected mass could be mini-
mized, according to [53], in order to decrease the dissipated
energy in potential inelastic impacts.

Remark 5. By proper selection of tasks and constraints
within the reactive force controller module different assembly
skills can be implemented:

- Compliant motion skill: cost function (33a) plus admit-
tance equality constraints (33d)-(33e);

- Force bounding skill: cost function (9a) plus (hard/soft)
force constraints (33g)-(33h);

- Force-constrained compliant motion: cost function (33a),
admittance equality constraints (33d)-(33e), (hard/soft)
force constraints (33g)-(33h).

Note that these assembly skills can be used in conjunction with
the motion skills in [15] described in Algorithm 1. As a matter
of fact, different skills, corresponding to different control modes
(position/velocity control, admittance control, force bounding)
can be specified for each task variable within the reactive force
controller module, e.g. a compliant motion along the z Carte-
sian directions and a position-controlled motion along the x− y
directions, thus allowing for hybrid force/position control.

4.4. Discussion
The proposed constraint-based programming method to

robotic assembly has the following advantages over traditional
robot-level programming:

- the possibility for the skill developer to embed force con-
trol requirements within the specification of an assembly
skill, independently of the specific robotic platform and
assembly process;

- the real-time generation of reactive force controlled robot
motions;

- the intuitiveness for the non-expert user to program a com-
plex assembly task by simple concatenation of assembly
skills.

Using today’s motion specification paradigm, reactive and
adaptive behaviours are only obtained with complicated what-
if logics to be specified at programming time, thus limiting a
flexible adoption of robotic manipulators in industrial settings.
Moreover, according to the robot-level paradigm, the data from
a force sensor can be used only to supervise the robot motion.
This eventually results in a rather complex sequence of what-if
handling logics, see e.g. the following pseudo-code for a peg-
in-hole task:

1 MoveTo a p p r I n s P o s ;
2 i f (Fz<=10N)
3 MoveAlongZ [+10mm/ s] ;
4 MoveAlongX [−1mm/ s] w i th Fx>=+2.0 u n t i l Fx<=+0.5
5 MoveAlongX [+1mm/ s] w i th Fx<=−2.0 u n t i l Fx>=−0.5
6 MoveAlongY [−1mm/ s] w i th Fy>=+2.0 u n t i l Fy<=+0.5
7 MoveAlongY [+1mm/ s] w i th Fy<=−2.0 u n t i l Fy>=−0.5
8 e l s e
9 StopMove ;

Furthermore, the motion of the robot, set by the low-level joint
position control, remains stiff with respect to the manipulated
object, thus increasing the risk of parts’ breakage due to low
position accuracy. Instead, the proposed approach, that builds
upon the skill-based programming paradigm, gives the skill de-
veloper the possibility to program assembly skills that inher-
ently enable force controlled motions. This is done by proper
specification of force-related actions at task level, rather than
the motions of the robot at joint level. As a major advantage,
a non-expert shop floor factory worker can intuitively program
a complex assembly task by simple concatenation of assembly
skills with a reduced number of handling strategies. With ref-
erence to a possible novel programming language, an assembly
process could be simply specified by means of a single instruc-
tion without the need to further define handling strategies, e.g.
see the following pseudo-code for a peg-in-hole task:

7

1 MoveTo a p p r I n s P o s ;
2 MoveAlongZ [+10mm/ s]−Admi t t ance [XY] u n t i l Fz>=10N;
3 StopMove ;

The resulting real-time generation of reactive robot motions
based on force control requirements endows the robot controller
with improved adaptation and robustness capabilities.

It is worth pointing out that the proposed framework repre-
sents a programming tool for the skill developer. Developing
the high-level programming language to be used by the factory
worker for the specification of assembly tasks (based on imple-
mented robot skills) remains a future research direction, which
is not addressed in the present paper.

5. Experimental Validation: Bimanual Robotic Assembly
of a Plastic Pipette

In this Section the effectiveness of the proposed program-
ming framework is experimentally validated on a complete as-
sembly process performed with a dual-arm collaborative robot.
These results, that preliminarily appeared in the authors’ works
[13, 14], are also illustrated in the attached supplementary
video. Details on the robotic platform are first provided, to-
gether with a description of the employed method for estima-
tion of the interaction force/torque. The assembly scenario is
finally presented.

5.1. Experimental Platform
The robot used in this paper for experimental validation is

the ABB YuMi, see Fig 4. a position controlled dual-arm cobot
with a light-weight skeleton, specifically designed for robotic
assembly and human-robot collaboration. Each of the two arms
is redundant with 7 degrees of freedom. Aiming at performing
assembly tasks, the YuMi used in the experiments has been cus-
tomized with Schunk pneumatically actuated grippers on both
end effectors and 3D printed tools designed for the specific as-
sembly operation. The robot is position controlled by the ABB
IRC5 control system. An external controller using a research
interface, running at 250 Hz, is executed on an external PC with
Linux and Xenomai for real-time performance. The external
PC communicates with the robot controller through LabComm
protocol.
The sequence of QP problems required by the reactive force
controller module has been solved with qpOASES [54]. Since
the control loop runs at 250 Hz, a worst-case computation time
of approximately 4 ms is required for real-time control. Re-
flexxes Motion Libraries [55] have been employed as real-time
trajectory generation algorithm within the trajectory generation
module.

5.2. Force Estimation
In its current setup the YuMi robot is not equipped with

any wrist mounted force/torque sensor or joint torque sensors,
therefore estimation of the interaction force/torque is required
in order to perform assembly tasks, see [40]. Force estima-
tion is hereafter performed based on the generalized momen-
tum method [16, 17]. The benefit of using this method is

Figure 4: The ABB YuMi robot used for experimental validation equipped with
Schunk pneumatically actuated grippers and 3D printed tools, designed for the
specific assembly process.

that (noisy) joint acceleration measurements are not needed, al-
though knowledge of the robot dynamical model is required.
Details on the YuMi dynamical model and on the identification
of friction coefficients can be found in [56, 13].

According to [16], estimation of the external torques
τext ∈ Rn can be performed by computing the residual vector
r ∈ Rn

r = KR

[
p−

∫ tk

0

(
τ + CT q̇act − γ + r

)
dt

]
(42)

where p ∈ Rn is the generalized momentum vector, τ ∈ Rn is
the commanded joint torque, KR ∈ Rn×n is a symmetric posi-
tive definite matrix. Coriolis/centrifugal forces and torques are
represented by CT q̇act ∈ Rn, while gravity and friction effects
are contained in γ ∈ Rn. From (42), one obtains a first order
stable linear relationship between the external torques τext and
the residual

ṙ = KR (τext − r) (43)

Accounting for robot redundancy and assuming the interaction
force/torque µ ∈ Rm (with m < n) to be applied to the Tool Cen-
ter Point (TCP), the following equation can be finally adopted
to estimate µ

µ =
(
J (q)T

)†
r (44)

where J(q) ∈ Rm×n represents the Jacobian of the TCP frame,
while † stands for the Moore-Penrose pseudo-inverse.

Finally note that, according to Remark 1 in Section 5.3, force
estimation noise can be taken into account within the robust
constraint on the interaction force as a measurement uncertainty
on the state vector in (22).

5.3. Assembly Use Case

The use case considered in this work consists in the bimanual
assembly of an Eppendorf combitip R© plastic pipette, generally
used in laboratory automation. An assembly graph for the as-
sembly task is displayed in Fig. 5.
The assembly operation can be divided in two phases:

8

Figure 5: Assembly graph of an Eppendorf combitip R© pipette.

(i) The plunger should be initially inserted into the body of
the pipette. This is a typical peg-in-hole insertion problem
that will be addressed in Section 6.

(ii) Once the plunger has been inserted, a cap rotation task,
treated in Section 7, should be performed in order to screw
the cap on top of the pipette body. A bayonet mount en-
sures the fastening between the cap and the body.

Note that, in order to execute these tasks, the traditional
robot-level programming paradigm would require a relevant
number of what-if handling logics, but also high accuracy of
both the robot positioning system and the force sensing sys-
tem. Due to the low position accuracy of a light-weight robot
as YuMi compared to traditional industrial robots, and since no
force sensor is available (but only an estimator), an experimen-
tal comparison of the proposed method with traditional robot-
level programming has not been performed in order to limit the
risk of parts’ breakage.

6. Phase 1: Plunger Insertion

Selection of task variables is first described in Section 6.1,
while the finite state machine model [57] governing the the task
execution and experimental results are consequently presented
in Section 6.2 and Section 6.3, respectively.

6.1. Task Specification and Required Assembly Skills
A leader-follower approach [58] has been employed so that

a relative motion command is generated for the follower robot
arm (the one holding the peg) based on the leader’s arm state of
motion (the one holding the hole). The following vector of task
variables x ∈ R5 has been chosen as state vector

x =
[
x y z φ θ

]T
(45)

representing the relative linear and angular displacements (XY
Euler angles) of the follower frame with respect to the leader
frame, see Fig. 6(a). Due to the cylindrical symmetry of the
two work-pieces, the Z Euler angle ψ does not represent a task
variable, thus resulting in a redundant degree of freedom. The
peg longitudinal axis is hereafter assumed to be aligned with
the follower z direction.

6.2. Assembly Sequence
The complete flowchart, shown in Fig. 6(a) together with the

control mode for each task variable, is described in the follow-
ing.

1. Approach with alignment - the follower end effector
reaches the initial pose xtrg, corresponding to an approxi-
mate alignment between the peg and the hole;

2. Compliant insertion - the follower insertion motion along
the z direction is velocity-controlled, while a compliant
motion skill is set along (x, y, φ, θ);

3. Whenever the force in z direction exceeds a given bound
(F thr,up

z), meaning that the peg has been completely in-
serted, the robot enters a Stopping motion state and starts
decelerating towards zero target velocity in z direction;

4. In order to prevent false positives, the robot continues its
stopping motion unless the force in z direction drops under
a certain threshold (F thr,down

z);

5. The task terminates in Opening follower gripper state.

6.3. Experimental Results
Robustness to peg/hole misalignment has been evaluated by

adding a position offset (x direction) and an orientation off-
set (φ Euler angle) calculated with respect to the target end
effector pose xtrg in the Approach with alignment state. An
insertion velocity żtrg of 75 mm/s has been chosen in order
to achieve a considerable task execution speed. Selection of
the admittance parameters has been performed according to
(A.7), based on approximate knowledge of the environment
(i.e. plastic) stiffness and damping. The following values have
been used: M = 0.2 kg, Mrot = 0.1 kgm2/rad for the mass
and rotational inertia, respectively, D = 15 Ns/m, Drot = 15
Nms/rad for the linear and rotational damping, respectively.
Snapshots of a complete experiment and corresponding time
histories of the follower-side estimated interaction force and
end effector velocity are shown in Fig. 7 and Fig. 8, respec-
tively. As shown in Fig. 8, the robot successfully performs
the compliant peg-in-hole insertion in approximately 1.25 s
(red vertical line), achieving a considerable task completion
speed. At time instant t = 1.2 s the absolute value of the
force in the z direction exceeds the threshold F thr,up

z = 1 N
(red dashed horizontal line) and the task execution enters the
Stopping motion state, consistently with the state machine se-
quence in Fig. 6(a). Nevertheless, as soon as the force drops
below the threshold F thr,down

z = 0.5 N (blue dashed horizontal
line), the robot resumes the Compliant motion state, until at
time instant t = 1.25 s the peg-in-hole insertion terminates and
the robot starts the Stopping motion.

9

(a) Peg-in-hole insertion task (b) Cap rotation task

Figure 6: Task specification and assembly sequence for the peg-in-hole insertion and the cap rotation tasks. The considered frames are depicted in the upper left
side, while the state machine governing the task execution is on the right side. The task variables’ control mode during the task execution are reported on the table
located on the lower left side (P: position control, V: velocity control, A: admittance control, F: force constraint).

(a) Approach with alignment (b) Compliant motion skill (c) Stopping motion (d) Opening follower gripper

Figure 7: Snapshots from a peg-in-hole experiment.

Figure 8: Time histories of the follower estimated interaction force and corresponding end effector linear velocity during the Compliant motion and Stopping motion
phase (x: solid gray line, y: dotted black line, z: solid black line).

7. Phase 2: Cap Rotation

The kinematic description of the system state in terms of se-
lected task variables is first introduced in Section 7.1. The finite
state machine model governing the the task execution and ex-
perimental results are presented in Section 7.2 and Section 7.3,
respectively.

7.1. Task Specification
The following vector of task variables has been chosen

x =
[
x y z φ θ ψ

]T
(46)

representing the relative linear and angular displacements (in
terms of XYZ Euler angles) of the follower frame with respect

to the leader frame, see Fig. 6(b). The screwing axis is assumed
to be aligned with the follower z direction. Note that now the
Z Euler angle ψ, i.e. the screwing rotation, represents a task
variable considered within the state vector. A bayonet mount
ensures the fastening between the assembled parts.

7.2. Assembly Sequence

The complete task, shown in Fig. 6(b) together with the cor-
responding control mode for each task variable, is described in
the following.

1. Approach with alignment - The follower end effector
reaches the initial pose xtrg.

10

2. Compliant motion - the follower motion along the z direc-
tion is velocity-controlled, while a compliant motion skill
is set along (x, y, φ, θ, ψ);

3. Force constrained rotation - Loss of contact between the
cap and the pipette body is achieved by conveniently
bounding the interaction force arising from the contact
along the screwing rotation axis z within a lower and an
upper bound Fmin and Fmax. A velocity controlled rotation
is simultaneously performed along ψ, while a compliant
motion skill is set along (x, y, φ, θ).

4. When the norm of the screwing torque τz exceeds the
bound τthr

z required for the fastening of the bayonet mount,
the robot enters the Stopping motion state and starts decel-
erating towards zero angular velocity ψ̇;

5. The task terminates in Opening leader gripper state.

7.3. Experimental Results

During the Approach with alignment phase, an orientation
offset of 5 deg has been artificially introduced on the X and
Y Euler angles of the follower end effector pose xtrg, in or-
der to evaluate robustness to possible misalignment. An ap-
proaching velocity żtrg of 1 mm/s has been adopted to limit
the impact force when the contact is established. Selection
of the admittance parameters has been performed according to
(A.7). The following values have been used: M = 0.5 kg,
Mrot = 0.2 kgm2/rad for the mass and rotational inertia, re-
spectively, D = 40 Ns/m, Drot = 50 Nms/rad for the linear and
rotational damping, respectively. A threshold F thr,up

z = 0.5 N
has been used to switch to the subsequent Force constrained
rotation phase. The lower and upper bounds on the interac-
tion force are Fmin = 0.2 N and Fmax = 0.5 N, respectively,
while the considered uncertainty in the environment stiffness is:
Kmin = 1300 N/m and Kmax = 1600 N/m. An angular velocity
ψ̇trg = 0.1 rad/s is applied during the screwing phase. Finally,
a threshold value |τthr,up

z | = 0.05 Nm has been chosen to com-
plete the task execution by stopping the cap rotation and open-
ing the leader gripper. Snapshots of the complete experiment
are shown in Fig. 9, while the time history of the estimated con-
tact force/torque is shown in Fig. 10. After approx. t = 28 s the
interaction force exceeds the threshold F thr,up

z = 0.5 N and the
control execution enters the Force constrained rotation phase,
during which contact loss is effectively prevented.

8. Complete Assembly Execution

An additional experiment has been performed in order to exe-
cute the complete pipette assembly sequence, consisting of the
sequence of the plunger insertion phase and the cap rotation
phase. Snapshots of the experiment are shown in Fig. 11. These
results are also illustrated in the attached supplementary video.

The robot starts from an initial configuration, see Fig. 11(a),
and inserts the plunger into the pipette body as described in Sec-
tion 6.2, see Fig. 11(b) and Fig. 11(c). Afterwards, the right

arm end effector reaches a predefined grasping pose to pick the
cap, see Fig. 11(d) and Fig. 11(e). Due to the pipette bayonet
mount fastening system, a suitable initial alignment between
the cap and the pipette body, i.e. the initial pose Z Euler an-
gle ψtrg for the cap rotation phase (see Section 7.2), has been
achieved in a static “look and move” fashion [59] from RGB
camera data, see Fig. 11(f). Finally, the cap rotation phase com-
pletes the assembly execution, see Fig. 11(g) and Fig. 11(h).

9. Conclusion

The redundancy and inherent compliance of modern collab-
orative robots naturally motivate their employment in assembly
tasks. In this respect, a paradigm shift from traditional robot-
level programming to skill-based programming allows to spec-
ify force control actions at task level and inherently provide
compliant capabilities, without the need to specify the motions
of the robot. A constraint-based formalism enabling the task-
level specification of robotic skills that require force control
policies has been presented for this purpose.

Compared to traditional robot-level programming, the pro-
posed constraint-based programming method gives the skill
developer the possibility to embed force control requirements
within the specification of an assembly skill, and allows the
non-expert user to intuitively program a complex assembly
task by simple concatenation of assembly skills. Furthermore,
the real-time generation of reactive robot motions, based on
force control requirements, endows the robot controller with
improved adaptation and robustness capabilities.

The proposed approach has been experimentally validated
on the bimanual assembly of an Eppendorf combitip plastic
pipette, requiring a plunger insertion phase and a cap rotation
phase, using the ABB YuMi dual-arm robot. Estimation of the
contact force/torque further enables the execution of the assem-
bly operation without the use of extra force/torque sensors.

Finally, it is worth pointing out that the proposed framework
represents a programming tool for the skill developer. Imple-
menting the high-level software prototype which supports the
specification of assembly tasks by sequencing of robotic skills
represents a future research direction.

Acknowledgment

The authors would like to thank Sebastiano Castello,
Francesco Incocciati and Alessandro Abbondanza for the valu-
able work performed on the experimental platform.

Appendix A. Selection of Admittance Parameters

It is well-known that the selection of admittance parameters
poses a major problem of stability. In order to tackle this issue,
a simplified 1-DoF peg-in-hole task will be considered in the
following. As sketched in Figure A.12, let θ and θhole represent
the actual orientation of the peg and the actual orientation of the
hole, respectively, while θtrg represents an available estimate of

11

(a) Approach phase (b) Compliant motion skill (c) Force bounding skill (d) Opening leader gripper

Figure 9: Snapshots taken from an experiment of bimanual cap assembly.

Figure 10: Time history of the estimated interaction force along the screwing axis Fz and considered lower bound Fmin (solid red line) and upper bound Fmax (solid
green line). Additional time history window of Fx, Fy and τx, τy during the Compliant motion phase.

(a) Initial configuration (b) Plunger insertion phase (c) Plunger insertion phase (d) Cap grasping phase

(e) Cap grasping phase (f) Vision-based alignment (g) Cap rotation phase (h) Cap rotation phase

Figure 11: Snapshots taken from an experiment of a complete assembly sequence.

Figure A.12: 1-DOF representation of a peg-in-hole task. θ and θhole represent
the actual orientation of the peg and the hole, respectively, while θtrg represents
a inaccurate estimate of the hole orientation.

the hole orientation, in order to consider additional uncertainty
in the insertion problem. Due to the misalignment between the
peg and the hole, a torque µ arises, according to the Kelvin-
Voigt linear model

µ = −Kenv (θ − θhole) − Denvθ̇ (A.1)

where Kenv and Denv are the environment rotational stiffness
and damping, respectively. According to Section 4.1, the
impedance relation

µk = M∆θ̈k + D∆θ̇k (A.2)

12

M and D being the filter mass and damping coefficients, respec-
tively, can be adopted to compute the orientation and angular
velocity increments, ∆θk+1 and ∆θ̇k+1, respectively, responsible
for a compliant motion

∆θ̇k+1 = ∆θ̇k + TsM−1
(
µk − D∆θ̇k

)
∆θk+1 = ∆θk + Ts∆θ̇k +

T 2
s

2
M−1

(
µk − D∆θ̇k

) (A.3)

Finally, as described in Section 4.3, the peg orientation and an-
gular velocity references provided by the trajectory generation
module, θgen

k+1 and θ̇gen
k+1, respectively, are added to the orientation

and angular velocity increments ∆θk+1 and ∆θ̇k+1, respectively.θk+1 = θ
gen
k+1 + ∆θk+1

θ̇k+1 = θ̇
gen
k+1 + ∆θ̇k+1

(A.4)

Selection of the admittance parameters, M and D, ensuring
closed-loop stability can be performed by considering as state
vector

xk =
[
θk θ̇k ∆θk ∆θ̇k

]
(A.5)

According to [13], a simple velocity-based trajectory genera-
tion algorithm can be employed as a trajectory generation mod-
ule 

θ̈
gen
k+1 = T−1

s (θ̇trg − θ̇k) = −T−1
s θ̇k

θ̇
gen
k+1 = θ̇k + Tsθ̈

gen
k+1 = 0

θ
gen
k+1 = θk + Tsθ̇k + 0.5 T 2

s θ̈
gen
k+1 = θk

(A.6)

where saturation in the angular acceleration θ̈gen has been ne-
glected. A state-space representation of the closed-loop system
can be obtained through equations (A.1), (A.4), (A.3), (A.6).
Jury stability criterion can be subsequently applied in order to
obtain necessary and sufficient conditions for the stability of the
closed-loop system expressed with respect to the admittance pa-
rameters, yielding D > KenvTs − Denv

M > 3
8 Kenv T 2

s
(A.7)

References

[1] L. Roveda, N. Pedrocchi, M. Beschi, L. M. Tosatti, High-accuracy
robotized industrial assembly task control schema with force overshoots
avoidance, Control Engineering Practice 71 (2018) 142–153.

[2] M. W. Abdullah, H. Roth, M. Weyrich, J. Wahrburg, An approach for
peg-in-hole assembling using intuitive search algorithm based on hu-
man behavior and carried by sensors guided industrial robot, IFAC-
PapersOnLine 48 (3) (2015) 1476–1481.

[3] D. Surdilovic, Y. Yakut, T. M. Nguyen, X. B. Pham, A. Vick, R. Martin-
Martin, Compliance control with dual-arm humanoid robots: Design,
planning and programming, in: IEEE-RAS International Conference on
Humanoid Robots, 2010, pp. 275–281.

[4] J. Krüger, G. Schreck, D. Surdilovic, Dual arm robot for flexible and
cooperative assembly, CIRP Annals - Manufacturing Technology 60 (1)
(2011) 5 – 8.

[5] D. Almeida, F. E. Via, Y. Karayiannidis, Bimanual folding assembly:
Switched control and contact point estimation, in: IEEE-RAS Interna-
tional Conference on Humanoid Robots, 2016, pp. 210–216.

[6] A. Nakashima, Y. Iwanaga, Y. Hayakawa, A motion planning of dual arm-
hand manipulators for origami-folding based on a probabilistic model of
constraint transitions within human behavior, in: IEEE International Con-
ference on Robotics and Biomimetics (ROBIO), 2016, pp. 562–569.

[7] N. T. Dantam, H. B. Amor, H. I. Christensen, M. Stilman, Online multi-
camera registration for bimanual workspace trajectories, in: IEEE-RAS
International Conference on Humanoid Robots, 2014, pp. 588–593.

[8] P. K. Kim, J. H. Bae, H. Park, D. H. Lee, J. H. Park, M. H. Baeg,
J. Park, Dual-arm robot box taping with kinesthetic teaching, in: In-
ternational Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), 2016, pp. 555–557.

[9] C. Bersch, B. Pitzer, S. Kammel, Bimanual robotic cloth manipulation
for laundry folding, in: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2011, pp. 1413–1419.

[10] T. Lozano-Perez, Robot programming, Proceedings of the IEEE 71 (7)
(1983) 821–841.

[11] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bøgh,
V. Krüger, O. Madsen, Robot skills for manufacturing: From concept to
industrial deployment, Robotics and Computer-Integrated Manufacturing
37 (2016) 282–291.

[12] C. Schou, R. S. Andersen, D. Chrysostomou, S. Bøgh, O. Madsen, Skill-
based instruction of collaborative robots in industrial settings, Robotics
and Computer-Integrated Manufacturing 53 (2018) 72–80.

[13] M. Parigi Polverini, A. M. Zanchettin, S. Castello, P. Rocco, Sensorless
and constraint based peg-in-hole task execution with a dual-arm robot,
in: IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 415–420.

[14] M. Parigi Polverini, A. M. Zanchettin, F. Incocciati, P. Rocco, Robust
constraint-based robot control for bimanual cap rotation, in: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 4785–4790.

[15] A. M. Zanchettin, P. Rocco, Motion planning for robotic manipulators
using robust constrained control, Control Engineering Practice 59 (2017)
127–136.

[16] A. De Luca, R. Mattone, Sensorless robot collision detection and hybrid
force/motion control, in: IEEE International Conference on Robotics and
Automation (ICRA), 2005, pp. 999–1004.

[17] A. De Luca, A. Albu-Schaffer, S. Haddadin, G. Hirzinger, Collision de-
tection and safe reaction with the dlr-iii lightweight manipulator arm, in:
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2006, p. 16231630.

[18] L. Villani, J. De Schutter, Force control, in: B. Siciliano, O. Khatib (Eds.),
Springer Handbook of Robotics, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008, Ch. 7, pp. 161–185.

[19] D. Nicolis, A. M. Zanchettin, P. Rocco, Constraint-based and sensorless
force control with an application to a lightweight dual-arm robot, IEEE
Robotics and Automation Letters 1 (1) (2016) 340–347.

[20] Y. Li, G. Ganesh, N. Jarrassé, S. Haddadin, A. Albu-Schaeffer, E. Bur-
det, Force, Impedance, and Trajectory Learning for Contact Tooling and
Haptic Identification, IEEE Transactions on Robotics 34 (5) (2018) 1170–
1182.

[21] E. Lutscher, E. C. Dean-León, G. Cheng, Hierarchical Force and Posi-
tioning Task Specification for Indirect Force Controlled Robots, IEEE
Transactions on Robotics 34 (1) (2018) 280–286.

[22] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: modelling,
planning and control, Springer Science & Business Media, 2010.

[23] D.-H. Lee, M.-W. Na, J.-B. Song, C.-H. Park, D.-I. Park, Assembly
process monitoring algorithm using force data and deformation data,
Robotics and Computer-Integrated Manufacturing 56 (2019) 149–156.

[24] A. Billard, S. Calinon, R. Dillmann, S. Schaal, Robot programming by
demonstration, in: Springer handbook of robotics, Springer, 2008, pp.
1371–1394.

[25] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynami-
cal movement primitives: learning attractor models for motor behaviors,
Neural computation 25 (2) (2013) 328–373.

[26] S. Calinon, F. Guenter, A. Billard, On learning, representing, and gener-
alizing a task in a humanoid robot, IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 37 (2) (2007) 286–298.

[27] B. D. Argall, S. Chernova, M. Veloso, B. Browning, A survey of robot
learning from demonstration, Robotics and autonomous systems 57 (5)
(2009) 469–483.

[28] M. Hersch, F. Guenter, S. Calinon, A. Billard, Dynamical system modula-
tion for robot learning via kinesthetic demonstrations, IEEE Transactions
on Robotics 24 (6) (2008) 1463–1467.

[29] D. Lee, C. Ott, Incremental kinesthetic teaching of motion primitives us-

13

ing the motion refinement tube, Autonomous Robots 31 (2-3) (2011) 115–
131.

[30] A. Muxfeldt, J.-H. Kluth, D. Kubus, Kinesthetic teaching in assembly
operations–a user study, in: International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, Springer, 2014,
pp. 533–544.

[31] A. Kramberger, A. Gams, B. Nemec, D. Chrysostomou, O. Madsen,
A. Ude, Generalization of orientation trajectories and force-torque pro-
files for robotic assembly, Robotics and Autonomous Systems 98 (2017)
333–346.

[32] S. B. Slotine, A general framework for managing multiple tasks in highly
redundant robotic systems, in: proceeding of 5th International Conference
on Advanced Robotics, Vol. 2, 1991, pp. 1211–1216.

[33] C. Samson, B. Espiau, M. L. Borgne, Robot control: the task function
approach, Oxford University Press, 1991.

[34] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aert-
beliën, K. Claes, H. Bruyninckx, Constraint-based task specification and
estimation for sensor-based robot systems in the presence of geometric
uncertainty, The International Journal of Robotics Research 26 (5) (2007)
433–455.

[35] N. Mansard, O. Khatib, A. Kheddar, A unified approach to integrate uni-
lateral constraints in the stack of tasks, IEEE Transactions on Robotics
25 (3) (2009) 670–685.

[36] Y. Wang, F. Vina, Y. Karayiannidis, C. Smith, P. Ogren, Dual arm manip-
ulation using constraint based programming, IFAC Proceedings Volumes
47 (3) (2014) 311–319.

[37] Y. Wang, H. Liu, W. Ji, L. Wang, Realtime collaborating with an industrial
manipulator using a constraint-based programming approach, Procedia
CIRP 72 (1) (2018) 105–110.

[38] A. Stolt, M. Linderoth, A. Robertsson, R. Johansson, Force controlled
assembly of emergency stop button, in: IEEE International Conference
on Robotics and Automation (ICRA), 2011, pp. 3751–3756.

[39] A. Stolt, M. Linderoth, A. Robertsson, R. Johansson, Force controlled
robotic assembly without a force sensor, in: IEEE International Confer-
ence on Robotics and Automation (ICRA), 2012, pp. 1538–1543.

[40] A. Stolt, M. Linderoth, A. Robertsson, R. Johansson, Robotic assembly
of emergency stop buttons, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013, pp. 2081–2081.

[41] F. Dai, A. Wahrburg, B. Matthias, H. Ding, Robot assembly skills based
on compliant motion, in: ISR 2016: 47st International Symposium on
Robotics; Proceedings of, VDE, 2016, pp. 1–6.

[42] L. Halt, F. Nagele, P. Tenbrock, A. Pott, Intuitive constraint-based robot
programming for robotic assembly tasks, in: 2018 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 520–
526.

[43] L. Biagiotti, C. Melchiorri, Trajectory planning for automatic machines
and robots, Springer Science & Business Media, 2008.

[44] A. M. Zanchettin, P. Rocco, Reactive motion planning and control for
compliant and constraint-based task execution, in: IEEE Conference on
Robotics and Automation (ICRA), 2015, pp. 2748–2753.

[45] F. Blanchini, Set invariance in control, Automatica 35 (11) (1999) 1747–
1767.

[46] J. Wolff, M. Buss, Invariance control design for nonlinear control affine
systems under hard state constraints, IFAC Symposium on Nonlinear
Control Systems (NOLCOS) 37 (1) (2004) 555–560.

[47] J. Wolff, M. Buss, Invariance control design for constrained nonlinear
systems, IFAC Proceedings Volumes 38 (1) (2005) 37–42.

[48] O. Kanoun, F. Lamiraux, P. B. Wieber, Kinematic control of redun-
dant manipulators: Generalizing the task-priority framework to inequality
task, IEEE Transactions on Robotics 27 (4) (2011) 785–792.

[49] A. Escande, N. Mansard, P.-B. Wieber, Hierarchical quadratic program-
ming: Fast online humanoid-robot motion generation, International Jour-
nal of Robotics Research 3 (7) (2014) 1006 – 1028.

[50] N. Hogan, Impedance control: An approach to manipulation, part I - the-
ory, ASME Journal of Dynamic Systems, Measurement, and Control 107
(1985) 1–7.

[51] B. Barmish, J. Sankaran, The propagation of parametric uncertainty via
polytopes, IEEE Transactions on Automatic Control 24 (2) (1979) 346–
349.

[52] M. Parigi Polverini, A. M. Zanchettin, P. Rocco, A computationally effi-
cient safety assessment for collaborative robotics applications, Robotics

and Computer-Integrated Manufacturing 46 (2017) 25–37.
[53] R. Rossi, M. Parigi Polverini, A. M. Zanchettin, P. Rocco, A pre-collision

control strategy for human-robot interaction based on dissipated energy
in potential inelastic impacts, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2015, pp. 26–31.

[54] H. Ferreau, C. Kirches, A. Potschka, H. Bock, M. Diehl, qpOASES: A
parametric active-set algorithm for quadratic programming, Mathematical
Programming Computation 6 (4) (2014) 327–363.

[55] T. Kröger, F. M. Wahl, Online trajectory generation: Basic concepts
for instantaneous reactions to unforeseen events, IEEE Transactions on
Robotics 26 (1) (2010) 94–111.

[56] M. Ragaglia, A. M. Zanchettin, L. Bascetta, P. Rocco, Accurate sensor-
less lead-through programming for lightweight robots in structured envi-
ronments, Robotics and Computer-Integrated Manufacturing 39 (2016) 9
– 21.

[57] A. Gill, Introduction to the Theory of Finite-state Machines, McGraw-
Hill, New York, NY, USA, 1962.

[58] A. K. Das, R. Fierro, V. Kumar, J. P. Ostrowski, J. Spletzer, C. J. Tay-
lor, A vision-based formation control framework, IEEE Transactions on
Robotics and Automation 18 (5) (2002) 813–825.

[59] L. Weiss, A. Sanderson, C. Neuman, Dynamic sensor-based control of
robots with visual feedback, IEEE Journal on Robotics and Automation
3 (5) (1987) 404–417.

14

