

University of Birmingham

Robotic disassembly re-planning using a two-
pointer detection strategy and a super-fast bees
algorithm
Laili, Yuanjun; Tao, Fei; Pham, Duc; Wang, Yongjing; Zhang, Lin

DOI:
10.1016/j.rcim.2019.04.003

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Laili, Y, Tao, F, Pham, D, Wang, Y & Zhang, L 2019, 'Robotic disassembly re-planning using a two-pointer
detection strategy and a super-fast bees algorithm', Robotics and Computer-Integrated Manufacturing, vol. 59,
pp. 130-142. https://doi.org/10.1016/j.rcim.2019.04.003

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 27. Apr. 2024

https://doi.org/10.1016/j.rcim.2019.04.003
https://doi.org/10.1016/j.rcim.2019.04.003
https://birmingham.elsevierpure.com/en/publications/81a85789-0af1-476e-80fd-fd04b0148cb1

Robotic disassembly re-planning using a two-pointer detection

strategy and a super-fast bees algorithm

Yuanjun Laili1, Fei Tao1*, Duc Truong Pham2, Yongjing Wang2, Lin Zhang1

1School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China

2School of Engineering, University of Birmingham, Birmingham, B15 2TT, UK

*(Corresponding author: Fei Tao, Email: ftao@buaa.edu.cn)

Abstract: Automated disassembly of End-of-Life (EoL) products can be difficult to implement due to

uncertainties in their conditions. An automatic re-planning function is required to enable flexible

adjustments of disassembly plans and thus increase disassembly efficiency. The re-planning function is

able to detect subassemblies and separable components, and adjust disassembly sequences and directions

when components interlock and are irremovable. This paper presents a two-pointer detection strategy

to find detachable subassemblies very quickly. A summation operator and a list with two pointers are

used to check the interferences between components in a minimum number of steps. Then, a ternary bees

algorithm is proposed to identify new disassembly sequences and directions. The algorithm combines

the merits of a greedy search and meta-heuristic techniques by using only three collaborative potential

solutions and three concurrent operations. Experimental results show that the proposed approach is able

to perform a rapid subassembly detection and sequence optimisation for a robotic disassembly task, thus

allowing real-time re-planning.

Key words: Robotic disassembly; Component and subassembly detection; Sequence planning; Bees

algorithm

1 Introduction

Disassembly of End-of-Life (EoL) products to retrieve reusable parts and materials enables industry

to make more efficient use of limited natural resources and reduce environmental pollution [1][2]. Unlike

new product assembly, disassembly of EoL products is affected by significant uncertainties mainly

caused by structure degrading [3]. Components can be worn-out, corroded, or even missing, and this

mailto:ftao@buaa.edu.cn

creates many unforeseen EoL conditions. These uncertainties can cause frequent changes of disassembly

plans, and therefore, reduce efficiency.

The focus of previous research has primarily been on three key areas, namely, disassembly

scheduling, disassembly sequencing and disassembly line balancing, each aimed at improving the speed

and efficiency of disassembly. Disassembly scheduling is “the problem of determining the quantity

and timing of the end-of-use/life products while satisfying the demand of their parts over a planning

horizon” [4]. Disassembly sequencing involves searching for an optimum order to dismantle a product

partially or completely [5]. Disassembly line balancing is to assign multiple disassembly tasks to a group

of workstations on a disassembly line to minimise the number of workstations, ensure similar idle times

at different workstations or remove hazardous parts/required components at the earliest moment possible

[6].

Manual disassembly is becoming economically unattractive. To reduce labour costs and improve

disassembly efficiency, robotic disassembly [7] has been considered. A robot is able to accomplish many

kinds of tasks but usually requires programming with the assumption of product invariance [8]. For a

product with many unforeseen EoL conditions, implementing an automated disassembly system is very

challenging.

From the perspective of process automation, there is well-established research into automatically

generating component relations (AND/OR graphs, interference matrices, and disassembly precedence

graphs, etc.) of a product from its CAD model [9-11]. To support automatic disassembly planning,

researchers have developed a number of optimisation algorithms for finding detachable components,

searching for feasible disassembly sequences and generating optimal robotic motions [12-15]. Visual

detection and intelligent reasoning have also been used to build a cognitive robotic system to achieve the

full automation of a series of disassembly tasks [16].

However, previous research has assumed that the component relations of a product extracted from

its original CAD model remain unchanged and the product condition is entirely predictable and impacts

only on the processing time and the final profit [17][18]. The disassembly of an EoL product is done by

a series of predetermined operations. Each operation either is executed without interruption or is able to

recover from an interruption. Usually, this is true because humans are able to check the product status

to determine suitable actions. However, current robotic systems cannot deal with variability. Using a

predetermined order could cause incorrect and inefficient or even destructive actions.

To overcome this drawback, existing research has suggested some real-time decision strategies,

sensitive analysis, and reactive approaches based on a list of predefined rules or options [19-21]. When

a failure happens and cannot be corrected, dynamic disassembly re-planning is essential but rarely

considered especially in robotic disassembly.

This paper proposes a detection strategy and a new intelligent optimisation algorithm to identify

detachable elements in a partially disassembled product and reassign disassembly sequences and

directions when irremovable components form component interlocks. This detection of subassemblies

and separable components is very fast and enables a robot to adjust disassembly plans in real time. The

proposed method involves first using an interference matrix [10] to record the component relations of a

product and the ADD operator to find detachable components and extract further information. The

“double-point” strategy is then applied to detect detachable subassemblies as interference loops. A

“ternary” bees algorithm based on greedy search and meta-heuristic techniques has been developed to

generate feasible disassembly re-planning solutions when the planned operation fails. The paper gives

three case studies to demonstrate the efficiency of the proposed approach compared with existing

heuristics and meta-heuristics.

 The paper is structured as follows. Section 2 summarises the state-of-the-art in disassembly

sequence planning and re-planning research. Section 3 gives a formulation of the disassembly re-

planning problem and assumptions. In Section 4, the details of the double-point strategy and the

complete detection process are elaborated with examples. In Section 5, we describe a local search

operator and illustrate the procedure of the ternary bees algorithm with the help of the disassembly re-

planning problem. We then present experimental results and an analysis of the above approach based on

typical products. Concluding remarks are provided in Section 6.

2 Literature review

 Focusing on the disassembly process of one specific product, a robotic disassembly plan includes

sequence planning and trajectory planning [22]. Normally, the trajectory for a robot can be generated

according to the disassembly sequence. Hence, the disassembly re-planning task considered in this

paper mainly consists of reforming the sequence to complete the disassembly efficiently. This section

briefly reviews the existing literature on the representation of EoL products, methods of automatic

disassembly sequence planning, and studies on robotic disassembly re-planning.

2.1 Representation of EoL products

 Product representation expresses the prerequisites of disassembly sequencing, such as the inference

relations among product components, their precedence conditions, and some other restrictions. It is

usually extracted from a CAD model.

Dini et al. [23] defined a product to be assembled by three matrices, i.e., interference matrix, contact

matrix, and connection matrix. These matrices are then combined and widely used in disassembly in the

early time. Examples are the study of Ong et al. [24] on subassembly detection, the improved description

of disassembly precedence proposed by González et al. [25], and the disassembly matrix proposed by

Huang et al. [26]. In addition, researchers also defined different sorts of relation matrices to adapt their

disassembly models. Tao et al. [12] denoted four matrices for fasteners and components respectively to

describe their feasible directions and constraints. Afsharzadeh et al. [27] introduced an adjacent matrix

to guide the greedy search of disassembly sequence. Tian et al. [28] constructed a relation matrix to

embody the constraint type and quantity between adjacent components. Behdad et al. [29] further

included the disassembly tools and the operational directions in an expanded matrix.

Another typical expression for disassembly is AND/OR graph [30]. It is established by a group of

nodes and hyper-arcs, which represent the components/subassemblies and the disassembly operations,

respectively. It is more intuitive for disassembly planner to find a feasible solution [31][32]. Based on

the original definition, Koc et al. [33] designed a transformed AND/OR graph (TAOG) to extensively

integrate all possible disassembly path/sequence in a graph. Han et al. [34] then applied a weighted

AND/OR graph to illustrate profit or environmental issues extensively. Due to that the tool-dependent

operations are covered, it is non-trivial to obtain an AND/OR graph from a CAD model directly.

Currently, the interference matrix is the most commonly used representation for disassembly

sequencing [35][36], while the AND/OR graph are more applied in disassembly line balancing [37][38].

Additional tree/graph representations for disassembly sequencing include the disassembly constraint

graph proposed by Li et al. [39], the cooperative disassembly hierarchical tree for cooperative

disassembly designed by Zhang et al. [40], the disassembly geometry contacting graph with different

disassembly level presented by Mitrouchev et al. [41], and so on.

2.2 Methods of automatic disassembly sequencing

 Disassembly sequence planning consists of three categories, which are, complete disassembly,

partial disassembly and selective disassembly, according to the disassembly requirement. The methods

for disassembly sequencing are very similar with which for assembly sequencing [5]. Ghandi et al. [42]

summarised these methods and classified them as 8 kinds, graph-based method, grid-based method,

sampling-based method, space decomposition method, interactive method, mathematical programming,

metaheuristic, and intelligent computation method.

Recent research is more likely to design hybrid approaches based on the above techniques to deal

with a different complex situation. Hui et al. [43] designed an iterative scheme to generate disassembly

feasibility information graph together with a genetic algorithm (GA) for complete disassembly

sequencing. Adenso-Díaz et al. [44] separated the problem into two stages and employed the greedy

randomised adaptive search procedure (GRASP) and path-relinking-based heuristic to implement

exploration and exploitation. Lambert et al. [45] brought the iterative nature of metaheuristic to binary

integer linear programming combined with a heuristic to find a good solution. Alshibli et al. [46]

introduced the tabu search mechanism to GA for disassembly sequencing. Kim et al. [47] also adopted

the branch and bound algorithm with the incorporation of a shortest path heuristic to solve selective

disassembly sequencing in a parallel disassembly environment.

 Except that, metaheuristic is the most commonly used kind due to its high extensibility on different

kinds of product models. Typical examples in recent five years are the multi-objective GA used by Rickli

et al. [48] for partial disassembly sequencing, the modified teaching-learning-based optimisation

algorithms designed by Xia et al. [49][50] for complete disassembly sequencing in different

circumstances, the ant colony algorithm applied by Ghandi et al. [51] for general disassembly sequencing

and the bees algorithm proposed by Liu et al. [35] especially for robotic disassembly sequencing.

 In short, existing methods are able to provide optimal or good sub-optimal solutions for disassembly

sequencing with various objectives and constraints. Nevertheless, the frequently-used graph-based

methods, mathematical programming, metaheuristics, and the hybrid methods require a long time to

search the solution space step by step, making them hard to adapt for re-planning in robotic disassembly.

2.3 Studies on robotic disassembly re-planning

 Given a sequence plan, the disassembly process is carried out with various uncertainties as

mentioned above. These uncertainties can render the original plan wholly or partly infeasible. Gungor et

al. [30] have demonstrated the possible failures and indicated the importance of robotic disassembly re-

planning in their early research. Zussman et al. [20] proposed to use a pre-sorted list of transitions based

on a Petri-net to adjust the disassembly when a failure happened. However, the sorted value for online

decision may be inaccessible. Without the update of the sorted value and the component relations, the

next transition may fail as well. Lately, ElSayed et al. [19] suggested an online decision process to

generate disassembly plan for an automated robot. They introduced an optical module to the robot and

detected detachable components in each iteration with a GA to determine the disassembly order of these

components. However, when an operation has truly failed, there is no re-planning strategy that can be

used quickly to adjust the existing operations of the robot.

3 Problem formulation

 Disassembly re-planning refers to the generation of feasible sequences dynamically when one

disassembly operation of the preliminary plan has failed. To avoid delays, the re-planning should be as

simple and speedy as possible. According to the disassembly target, we can distinguish between re-

planning algorithms for complete disassembly, partial disassembly, and selective disassembly. This

paper focuses on complete disassembly in which we need only to check if the disassembly operation can

continue.

3.1 Assumptions

To limit the scope of the work, we have assumed the following:

1. During each operation, only one component or subassembly is removed.

2. Each operation only involves linear movements along principal directions.

3. Tool changing is performed by humans.

4. The disassembly involves only non-destructive operations.

5. The preliminary disassembly sequence consists of both the order of component removals and their

directions.

6. Each robotic operation is executed at a standard speed without extra processing.

7. When a disassembly operation fails, the corresponding component is no longer detachable. This

means the system will not try and remove the specific component again.

8. There are no toxic or hazardous components.

Assumptions 1-6 apply to the case when a robotic manipulator is assigned to disassemble an EoL

product with pre-determined linear movements and the manipulator requires human assistance to change

tools for different disassembly tasks. Assumption 7 is made to avoid having to devise an error recovery

strategy for every potential failure. Finally, as toxicity or hazardous features do not influence the

efficiency of a robotic disassembly procedure, they not considered in this paper (assumption 8).

3.2 Product representation

 Interference matrices, AND/OR graphs and precedence graphs are three commonly used ways to

represent products in both assembly and disassembly planning. However, AND/OR graphs and

precedence graphs do not contain information on how a component blocks another. This information

is significant in robotic disassembly for deciding the following operation trajectory. Hence, in this paper,

the interference matrix is adopted to represent the relationships between components.

Existing research has developed different kinds of interference matrices according to the

disassembly requirement and prerequisites. Huang et al. [26] proposed to integrate multi-directional

information into one single matrix and demonstrated the checking of detachable components using the

matrix. Due to its simplicity, we use the inference matrix designed in [26] to guide the disassembly re-

planning in this paper.

Specifically, an interference matrix I can be written as follows.

12 1

21 2

1 2

n

n

n n

 
 
 
 
 
 

0 I I

I 0 I
I

I I 0

 (1)

where each element 1 2[, , ,]ij ij ij ijDI I II is a multi-dimensional vector to represent the impact of

component j on component i along D directions. n represents the total number of components in an EoL

product. The directions can be either (X-, X+, Y-, Y+) in a 2-dimensional platform, or (X-, X+, Y-, Y+,

Z-, Z+) for 3-dimensional operations. The value of , [1,]ijdI d D can be 0 or 1. If the component j

interferes with the movement of component i in direction d, then 1ijdI  . Otherwise, the sub-element

ijdI is 0. As one component will not interfere itself, the diagonal vectors of I are all set as

[0, 0, , 0]ii  I 0 . The interference relation between two components covers both contact and

indirect geometrical obstruction. Based on the interference matrix, a preliminary plan is a sequence of

components or subassemblies with their disassembly directions.

4 Dynamic disassembly re-planning

If a component cannot be disassembled, it and the components it strictly obstructs will form a

subassembly. Such subassemblies can be found from the interference matrix. Whether a subassembly

can be disassembled as a whole very much depends on the current situation of the product. To make an

appropriate new plan, we need two steps.

 Checking whether the product can be disassembled continuously. If so, the detachable

components and subassemblies are accordingly listed as a segmented rough sequence.

 Providing a plan to finish the disassembly work with the minimum disassembly time.

We will illustrate the detection strategy for detachable components or subassemblies and the

dynamic re-planning algorithm in the following sections.

4.1 Detection of detachable components or subassemblies

Huang et al. [26] and Liu et al. [35] have both suggested using the Boolean OR operator to check

for each component [1,]i n if there exists one direction in which no other component obstructs its

removal, i.e., [1,], 0ijdj n I   . However, this operator is deficient in the situation where only

subassemblies are detachable and their components are interlocked. Take the product shown in Figure 1

as an example. Its original interference matrix with four directions, i.e., (X-, X+, Y-, Y+), is shown on

the right side of the product model. The product consists of five parts (named C1 to C5), three bolts

(labelled as F1, F2, and F3), and one nut (i.e., F4). All of the parts and fasteners are regarded as

components here.

By using the OR operator, one can find that F1, F2, and F4 can be disassembled along Y-, X+, and

Y-, respectively. If F1 and F2 have been removed and F4 fails to be disassembled due to some unknown

reason, the robot will stop because none of the remaining components has mobility in any direction as

indicated by the elements in the right-hand-most column being all 1.

C4

F1

F2

F4

F3C3

C1

C2

x

y

C1 C2 C3 C4 F1 F2 F3 F4

C1

C2

C3

C4

F1

F2

F3

F4

0000 0110 0110 0110 1111 1111 1111 0010 1111

1001 0000 1001 1101 1111 1111 1001 0010 1111

1001 0110 0000 0010 0000 0000 1111 0010 1111

1001 1110 0001 0000 1000 0000 0001 1111 1111

1101 1101 0000 0100 0000 0000 0001 0100 1101

1011 1011 0000 0000 0000 0000 0000 0000 1011

1011 0110 1011 0010 0010 0000 0000 0010 1111

0001 0001 0001 1101 1000 0000 0001 0000 1101

Figure 1. Example of a product to be disassembled

 However, the product can be separated as two subassemblies by removing F1 and F2, no matter

whether F4 is removable or not. A robotic manipulator can remove one of the subassemblies and continue

to disassemble components from it separately. This “interlock” situation accompanying detachable

subassemblies is more likely to take place when a failure happens in disassembly.

 To solve the above problem, we replace the OR operator with the ADD operator to count the

obstacles to a component in each direction and establish a double-point strategy to detect detachable

subassemblies for disassembly re-planning. The pseudocode of the proposed strategy is given in

Algorithm 1.

Algorithm 1. Double-point strategy for subassembly detection

Input: The interference matrix I, the components which fail to be disassembled

Output: Detachable subassemblies

1 For each component [1,]i n

2 For each direction [1,]d D

3
()

1

nadd

id ijdj
I I




4 End For

5
() ()

1minadd D add

i d idI I and i S

6 For each direction [1,]d D

7 If
() ()add add

id iI I

8 i i d S S

9 End If

10 End For

11 End For

12 () ()

min 1arg minadd n add

i iI I

13 For each component [1,]i n

14 If
() ()

min

add add

iI I and i is not the component that failed to be disassembled

15 i V V

16 End If

17 End For

18 While V

19 arg min | |i iv 
V

S , / vV V

20 While | | 0i S

21 Pop out an element d randomly from iS and let /i i dS S

22 Given an incremental list P , v P P

23 Set the current point 1k  and the reverse point q n

24 While | |k  P

25 For [1,]j n

26 If 1
kp jdI  and jP

27 j P P

28 Else If 1
kp jdI  , jP , and the position index of j in P is smaller than both k and q

29 Set q as the position of j in P

30 End If

31 End For

32 If k reaches the last item of P, or | | nP

33 Break

34 End If

35 1k k 

36 End While

37 If | | nP , kp is not the failed component and d is not the failed direction

38 Label the items [, ,]q kp p as a subassembly, / ([, ,])q kp p V V V

39 Break

40 End If

41 End While

42 End While

In the above pseudocode, ()add

idI represents the result of the ADD operator for component i in direction

d (Steps 2 to 4), while iS is the direction list of component i which records the least obstructed

directions (Steps 5 to 10). ()

min

addI denotes the minimal sum result for all components (Step 12). Further,

a candidate list V is introduced to embody the components whose number of obstacles is equal to ()

min

addI

(Steps 13 to 17).

 As demonstrated by Ong et al. [24], a subassembly can be detected by checking for interference

loops among the components. Steps 18 to 42 are designed to check the maximum loop between two

points iteratively. To minimise the checking steps, we pick the element v which holds the shortest

direction list in V as the initial element for subassembly detection (Step 19). With a randomly selected

direction (Step 21), an incremental list P is defined to find the maximum interference loop (Steps 22 and

23).

 In the beginning, P contains only one element , 1kp v k  . It is incremented gradually by

including the obstacles to pk one by one (Steps 26 and 27). If an obstacle has been included in P and its

position in P is smaller than the current point k, this indicates that a loop exists between the current point

k and the position of the obstacle. Then, the specific position is denoted as a reverse point q (Steps 29

and 30). To find the maximum loop, we need to introduce all possible obstacles to the current point k and

check all of them (Steps 32 to 34). The term ‘k reaches the last item of P’ in Step 32 means that all of the

further obstacles to the current point k are included in the loop between q and k. The other condition

‘ | | nP ’ indicates that all components are interlocked in this direction. If any of these conditions are

satisfied, the detection stops. The maximum loop for the checked components is thus found.

Finally, if the last item of P is not the failed component and the selected d is not the failed direction,

a subassembly is found. In other words, if the failed component has originally no obstacle in the dth

direction, k will step forward and point to the failed component. The failed component will be mistakenly

included in a subassembly without forming a loop with any previous items. To avoid this mistake, the

conditions in Step 37 are adopted to label the components with qualified loops between points q and k as

a subassembly and delete them from the candidate list V (Step 37 to 39).

 To demonstrate the above process in detail, we take the product shown in Figure 1 as an instance.

We assume that F1 and F2 have been removed and F4 is undetectable. The interference matrix with the

output of the ADD operator (Steps 1 to 17) is shown in Eq. (2).

The minimal sum result is ()

min 1addI  , while the candidate list is { 1, 2, 3}C C FV . F3 with the

shortest direction list 3 {2}F S is pushed in P and we have 2d  . The following iteration is shown

in Eq. (3). As the sum of the 2nd direction for the failed component is not 0, the 2nd component to the 4th

component of P, i.e., { 2, 4, 4}C C F , form a subassembly.

1 0000 0110 0110 0110 1111 0010

2 1001 0000 1001 1101 1001 0010

3 1001 0110 0000 0010 1111 0010

4 1001 1110 0001 0000 0001 1111

3 1011 0110 1011 0010 0000 0010

4 0001 0001 0001

C

C

C

C

F

F

1451

4114

2242

3224

2152

 1101 0001 0000 1105

ADD

 
 
 
 

 
 
 
 
  

 (2)

1, 3, { 3} { 3, 2},

2, 2, { 3, 2} { 3, 2, 4},

3, 4, { 3, 2, 4} { 3, 2, 4, 4}, 2

4, 4, { 3, 2, 4, 4} { 3, 2, 4, 4}, 2

k

k

k

k

k p F F F C q n

k p C F C F C C q n

k p C F C C F C C F q

k p F F C C F F C C F q

     

     

     

     

P P

P P

P P

P P

 (3)

 After that, C1 is pushed in a new P from V. Its direction list is 1 {1,4}C S . We randomly choose

1d  . The next iteration is shown in Eq. (4). The 1st component to the 3rd component of P, i.e.,

{ 1, 3, 3}C F C , form another subassembly. The same deduction can be obtained if we choose 4d  .

1, 1, { 1} { 1, 3},

2, 1, { 1, 3} { 1, 3, 3}, 1

3, 3, { 1, 3, 3} { 1, 3, 3}, 1

k

k

k

k p C C C F q n

k p C C F C F C q

k p C C F C C F C q

     

     

     

P P

P P

P P

 (4)

If all of the components are covered in the above subassemblies, the detection stops. The above

steps are illustrated in Figure 2.

F3 C2 C4 F4
The 2nd

direction
C1 F3 C3

The 1nd

direction

Subassembly Subassembly

Figure 2. The process of detecting detachable subassemblies for the instance shown in Figure 1

 It should be noted that the double-point strategy does not ensure finding all subassemblies at once

as the EoL state of a product changes dynamically. The strategy is able to detect if a product can be

further disassembled whether or not failure has occurred. If one or more subassemblies are detected,

the interlock among the components is resolved. Then, further disassembly is possible. The complete

procedure to detect detachable components and subassemblies can be summarised in Figure 3.

As P can hold at most n components, the time complexity of the checking process (steps 24 to 36)

in the proposed strategy is ()O n . Assume all of the components are pushed into the candidate list and

all of their direction lists hold D elements (i.e., all directions are considered). The time complexity of the

double-point strategy is 2()O Dn . In practice, D is no more than 6 in a 3D disassembly platform. Therefore,

the time complexity of the proposed strategy is reduced to 2()O n . Besides, the storage space used by P,

V and , [1,]i i nS is (2)D n in total. So the storage space complexity of the double-point strategy is

()O n .

After the detection, the product instance shown in Figure 1 can be separated into two subassemblies.

The interference matrix is then changed to Eq. (5). F3 is released as a detachable component, so are C1

and C3 in the next step. C2, C4 and F4 are still interlocked and cannot be further disassembled.

1 0000 0110 0110 0110 1111 0010

2 1001 0000 1001 1101 1001 0010

3 1001 0110 0000 0010 1111 0010

4 1001 1110 0001 0000 0001 1111

3 1011 0110 1011 0010 0000 0010

4 0001 0001 0001

C

C

C

C

F

F

1221

1112

2112

2221

2022

 1101 0001 0000 1182

ADD

 
 
 
 

 
 
 
 
  

 (5)

A possible disassembly sequence after the failed operation on F4 is represented as shown in Eq. (6).

{ 1, 3, 3} [X | Y],{ 2, 4, 4} [X | Y], 3 [X], 1 [X | Y], 3 [X |]

SwappableSwappable

C C F C C F F C C Y         (6)

where the terms in square brackets represent possible disassembly directions for the corresponding

component or subassembly. ‘Swappable’ means the order of the detachable objects can be modified to

form a new sequence.

Perform ADD operator on the

interference matrix

Start

If the minimal sum is 0

Find detachable

components

Find detachable

subassemblies

Remove the detachable elements and

update the interference matrix

If detachable elements are found

End

NoYes

Yes

No

Figure 3. Procedure for detecting detachable components and subassemblies

4.2 Ternary bees algorithm for disassembly re-planning

 Disassembly re-planning means re-assigning a new sequence to disassemble the remaining

components and subassemblies of an EoL product. The decision variables are the same as with static

disassembly sequence planning, that is, the order and direction to disassemble each component or

subassembly detected from the former task, as shown in Eq. (7).

() (o) (o) () () ()

1 2 1 2{ , , , , , , , }o d d d

m mx x x x x xX (7)

where m represents the number of elements (i.e., components or subassemblies),
() , [1,]o

ix i m refers to

the ith element to be disassembled. It will be removed from direction
()d

ix .

We take the total disassembly time as the main objective of disassembly re-planning. It includes not

only the disassembly time for each detachable components and subassemblies, but also the time spent

for moving the robotic manipulator from one position to another. The displacement time between two

detachable components or subassemblies is determined by their disassembly directions and the product

structure. Let the number of elements (i.e., components or subassemblies) to be disassembled as m, the

basic disassembly time for each element [1,]i m as ()o
ix

t , the moving time between the gripping points

of two elements , [1,]i j m as () ()

()

,
o o

i j

f

x x
t , and the direction change time between two directions

, [1,]i j D as () ()

()

,
d d

i j

d

x x
t , the total disassembly time is expressed in Eq. (8).

() () () () ()
1 1

1 1
() ()

, ,
0 0

o o o d d
i i ii i

m m
f d

x x x x x
i i

T t t t
 

 

 

    (8)

 The sequence of disassembly re-planning is not likely to be a fully swappable sequence or a static

sequence as demonstrated in [52]. It is divided into several segments according to the precedence

constraints extracted from the interference matrix, as illustrated in Eq. (6). The element (which can be

either a component or a subassembly) is swappable only in a specific segment.

On the one hand, existing metaheuristics for sequence planning can be too time-consuming or costly

for the online re-planning as most of them integrate internal local search, external evolutionary operation,

feasibility check, and solution encoding/decoding procedure step by step to update a group of individuals.

On the other hand, most of the ad-hoc greedy heuristics introduce a sorting procedure to maintain a

priority list and hence ignore many better solutions. Consequently, their performances are much worse

than the metaheuristics, even though they can be faster. In addition, almost none of the above methods

takes both the subassemblies and the disassembly directions into consideration.

Therefore, we present a ternary bees algorithm to combine the virtues of both metaheuristics and

greedy heuristics to enable efficient re-planning with high solution quality. The algorithm is outlined

in Figure 4. The algorithm involves a population of three individuals (i.e. potential solutions) with three

operators, namely, a local search operator, an evolutionary operator and a global search operator. Each

individual corresponds to one operator in an iteration.

As with the original bees algorithm [56], the population is sorted according to the fitness values of

the individuals. Because there are only three individuals, the sorting is reduced to two comparisons in

total to find the best, the worst and the “in-between” individual. Afterwards, the best individual is

assigned to the local search operator, while the in-between individual and the worst individual are

assigned to the evolutionary operator and global search operator, respectively. To make the process faster,

each operator has been simplified to ()O n time complexity as explained below.

Waggle dance

Start

Local

search

Global

search

Site abandonment

Result

Random Initialization

PPX

1

Mutate

2 3

Figure 4. The mainframe of the ternary bees algorithm

(1) Local search operator

As analysed above, existing local search operators for disassembly sequence planning usually

perform swap, insert, flip or inversion several times [52] with some problem-specific information. The

number of iterations on local search depends on the state of the individual and its updated fitness value.

To ensure only one-time search with an even use of problem-specific information, we choose a swappable

position as a center from the rough sequence obtained by the component and subassembly detection

procedure. Then, the nearest left or right neighbour is picked to swap with the centre by the most suitable

direction change. The local search operator used in this work is expressed as Algorithm 2.

Algorithm 2. A local search operator for updating a sequence

Input: An individual () (o) (o) () () ()

1 2 1 2{ , , , , , , , }o d d d

m mx x x x x xX , a list 0 1 2{ , , , , }Bb b b bb that stores

the segment points to make sure feasible swap in a sequence.

Output: The individual X updated by this proces

1 Choose a segment 1(,], 0k kb b k B   which satisfies 1 1k kb b  

2 Select a center 1k kb c b   and generate a random number 0 1r 

3 If 0.5r  and 1kc b 

4 For each position i in 1(,]k kb b 

5 If i c

6 Find the disassembly direction (o)
,minix

d of
(o)

ix from its direction list Si that minimises the

direction change time to (o)

cx , i.e., (o) ()

(o)

()

,,min
arg min d

ci
xi

d

d xx d
d t




S

7 Calculate the estimated moving time from (o)

ix to (o)

cx , i.e., (o) () ()(o) ()
(o)

,min

() ()

,,
ˆ

o do
cc ci i

xi

f d

d xx x x x
t t t 

8 End if

9 End For

10 (o) (o)

1
,[,),

ˆarg min
cik k

l x xi b b i c
p t

 


11 () ()

1l

d d

p cx x  , (o)

()

1 ,mini

d

c x
x d 

12 Swap ()

l

o

px with ()

1

o

cx 

13 Else

14 For each position i in 1(,]k kb b 

15 If i c

16 Find the disassembly direction (o)
,minix

d of
(o)

ix from its direction list Si that minimises the

direction change time from
(o)

cx , i.e., (o) ()

(o)

()

,,min
arg min d

ci
xi

d

x dx d
d t




S

17 Calculate the estimated moving time from
(o)

cx to
(o)

ix , i.e., (o) () ()(o) ()
(o)

,min

() ()

,,
ˆ

o do
cc ci i

xi

f d

x dx x x x
t t t 

18 End if

19 End For

20 (o)(o)

1
,[,),

ˆarg min
c ik k

r x xi b b i c
p t

 


21 () ()

1l

d d

p cx x  , (o)

()

1 ,mini

d

c x
x d 

22 Swap ()

l

o

px with
()

1

o

cx 

23 End If

 In the above pseudocode, the segment point list b is obtained from the component and subassembly

detection process shown in Algorithm 2, which stores the end position of each segment in a sequence.

Take the sequence shown in Eq. (6) as an instance, there are three segments in total. The segment point

list should be {0,2,3,5}b . The first segment is from 1 to 2, the second is 3, and the third is from 4 to 5.

In addition, we use (o)
,minix

d to represent the nearest direction between
(o)

ix and the center element
(o)

cx

and define
,î jt as the shortest moving time between two elements i and j.

 To be specific, the local search operator means to apply the greedy search on a randomly selected

center position of an individual. The position must be swappable in a segment whose size is larger than

1. The greedy search includes two sides, i.e., the left side search (Steps 3 to 12) and the right side search

(Steps 13 to 23). Each time we find a detachable element in the specific segment that has the minimal

disassembly cost with the centre element. If a better neighbour is found, we will swap the current

neighbour with the better one and change their directions accordingly.

(2) Evolutionary operator and global search operator

As the rough sequence generated by the double-point detection strategy is segmented, traditional

partially matched crossover (PMX) [53], global swap, insert, flip and inversion are no longer applicable.

They will break the precedence constraints among the components and subassemblies. Only the leftmost

rule, which is widely applied in precedence preserve crossover (PPX) [54],Teaching–Learning-Based

Optimisation (TLBO) [49], and simplified swarm optimisation (SSO) [55], is able to maintain the

precedence relation among segments by randomly selecting the leftmost variable from one parent and

deleting the same variable exists in the other parent iteratively to form a new solution. Nevertheless, it

ignores the selective direction optimisation. Hence, the mutation operator is introduced to perform the

direction change as a complementary part of these precedence preserving operators in disassembly

sequence planning.

For simplicity, we introduce the classical PPX accompanied with the single point mutation on

direction change to perform sequence update for the medium individual in our re-planning algorithm.

One of the parent individuals for the PPX is the medium individual given by the waggle dance. The other

parent individual is randomly selected from either the best or the worst individuals. Moreover, we apply

a random generation scheme to renew the worst individual and explore the whole solution space. On one

hand, the good information obtained by local search is extended to the evolutionary process with high

probability. On the other hand, new information is also introduced from the global search to balance the

exploration and exploitation.

(3) Site abandonment

 The site abandonment operator is a key strategy in the original bees algorithm which aims at

eliminating a non-potential position in the solution space and jump out of local optimum. That is to say,

if an individual is not improved for several iterations, it is no need to continue the search on that position

but to start with a new position to find diverse information. Usually, it requires a group of counters to

record the evolutionary state of each individual. We assume the counter for individual i as iu . If the

individual is improved, i.e., the fitness value of the individual is reduced, 0iu  . Otherwise, we perform

1i iu u  . If the counter for an individual is larger than a threshold maxu , it will be replace it by a newly

generated sequence in accordance with the segmented precedence condition.

5 Experiments and discussions

 To verify the performance of the proposed double-point detection strategy and the ternary bees

algorithm, three typical products are introduced in this paper. The first model (named as Product A) is

already depicted in Figure 1. We consider four directions to disassemble it. The other two products are

drawn in Figure 5(a) and Figure 5(b). The second product (named as Product B) is introduced from [36],

while the third one (named as Product C) is an engine piston introduced from practice. Six directions,

i.e., (X-, X+, Y-, Y+, Z-, Z+) are considered to disassemble the second and the third products. The

interference relationships between different components can be obtained from the product structure.

(a) Product B [36] (b) Product C

Figure 5. Two typical products applied to validate the methods proposed in this paper

 Firstly, we assume three kinds of failures in disassembling each kind of product. There are 9 cases

in total. In each case, the detection result obtained by the double-point strategy and its execution time are

both recorded. Secondly, the ternary bees algorithm is applied to provide the re-planning solutions of the

above cases. It is abbreviated as TBA and compared with two kinds of GA and two greedy schemes in

both search time and solution quality. Without loss of generality, one of the tested GAs (named as GA(1))

consists of a tournament selection, a PPX operator, and a mutation operator, while the other (named as

GA(2)) uses a roulette wheel selection, a PPX operator, and a mutation operator as its evolutionary

operators. The maximum number of iterations of the above algorithms are set as 1000 to lower the re-

planning time for automatic robotic disassembly. In the greedy strategy (named as GS), we start from the

leftmost position and assign the detachable element one by one by calculating the shortest moving time

between the current element and the previous one. If the greedy search performs only once, we call the

process as GS(1). Similarly, we call the greedy search as GS(n) if it is carried out iteratively to generate

multiple solutions and provided the best. The number of iterations of GS(n) in this paper is set as 1000 as

well.

 All of the experiments are programmed by C++ on Xcode v6.1.1 platform and carried out on a PC

with 2.3GHz Intel Core I7 CPU, 8GB 1600MHz DDR3 memory. As the re-planning algorithms to be

tested are non-deterministic, each algorithm is run 20 times.

5.1 Performance analysis of the double-point strategy

 To simplify the solution representation, we encode the components and directions for each product

as shown in Table 1.

Table 1. The encoding list of the components and directions for the three products

Product A

Component C1 C2 C3 C4 F1 F2 F3 F4

Code 1 2 3 4 5 6 7 7

Direction -X +X -Y +Y

Code 1 2 3 4

Product B

Component No. i

Code i

Direction -X +X -Y +Y -Z +Z

Code 1 2 3 4 5 6

Product C

Component A1 A2 B C1 C2 D E1 E2 F G H1 H2 H3 H4 H5

Code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Direction -X +X -Y +Y -Z +Z

Code 1 2 3 4 5 6

The detection results by using the process in Figure 3 for nine failure cases on different products

are illustrated in Table 2. <*> defines a segmented set which contains one or more detachable elements

with their possible disassembly directions. []x y represents an detachable element, in which x can be

a component or a subassembly and y refers to the possible directions to disassemble it. A subassembly is

then embodied by a brace {*} and a direction set is further represented by a square brackets [*]. Take the

first failure case of Product A as an instance, the detection result

5 [3],8 [3] , {2,6,1,3,4,7} [1,2,3,4] means that components 5 and 8 are disassembled in direction

3 at the first round and components 2, 6, 1, 3, 4, and 7 are left as a subassembly which can be removed

only as a whole in all of the four directions.

Table 2. Detection results of the double-point strategy for the 9 cases on three kinds of EoL products

Product No.

Non-

detachable

components

The detection result

Time

(ms)

A 1 6 5 [3],8 [3] , {2,6,1,3,4,7} [1,2,3,4] 0.076

 2 8 5 [3],6 [2] , {1,7,3} [1,4],{2,4,8} [2,3] , 7 [2] , 1 [1,4],3 [2,3] 0.088

 3 7,8 5 [3],6 [2] , {1,7,3} [1,4],{2,4,8} [2,3] 0.080

B 4 15

11 [5],12 [5],18 [0],19 [5],20 [5],21 [5],22 [5] , 7 [5],8 [5],17 [1] ,

4 [5] , {2,9,1,5,3,10,6} [3,4,5],{16,15,13,14} [3,4,6] , 9 [6],10 [6] ,

2 [5],3 [5],5 [6],6 [6] , 1 [1,2,3,4,5,6]

 0.314

 5 4

11 [5],12 [5],18 [0],19 [5],20 [5],21 [5],22 [5] , 7 [5],8 [5],17 [1] ,

15 [2] , 16 [2,3,4,5,6] , 14 [2,3,4,5,6] , 13 [3,4,6] , 9 [6],10 [6] ,

5 [6],6 [6] , 1 [6] , 2 [6],3 [6]

 0.257

 6 12,18

11 [5],19 [5],20 [5],21 [5],22 [5] , 7 [5] ,

{9,2,1,4,5,3,6,8,10,12} [3,4,5],{16,15,13,14,17,18} [3,4] ,

9 [6],10 [6] , 5 [6],6 [6] , 1 [6] , 2 [6]

 0.448

C 7 1
2 [5],7 [4],8 [3],11 [6] , 9 [3,4],12 [6] , 13 [6] , 14 [6] , 15 [6] ,

10 [6] , {4,3,1,6,5} [1,2,3,4,5,6]
 0.169

 8 13

1 [5],2 [5],7 [4],8 [3],11 [6] , 9 [3,4],12 [6] ,

{5,6,10,13,14,15} [1,2,3,4,6],{3,4} [1,2,3,4,5] 4 [6],5 [5] ,

3 [1,2,3,4,5,6],6 [5]

 0.18

 9 4,9
1 [5],2 [5],7 [4],8 [3],11 [6] , 12 [6] , 13 [6] , 14 [6] , 15 [6]

{10,9,6,5} [1,2,3,4,6],{4,3} [1,2,3,4,5] 5 [5]
 0.184

No matter given one or more components that fail to be disassembled, the proposed detection

process is able to provide an accurate rough scheme to disassemble a product as complete as possible. If

the non-detachable components are predictable in advance, the double-point strategy is also applicable

to generate rough scheme for the static disassembly sequence planning. Similarly, if one or more failures

are found in real time, the strategy will ignore the removed components and provide the segmented sets

of detachable components and subassemblies for the remaining part of a product.

Normally, an EoL product contains 10 to 30 components. The execution time of the double-point

strategy in the 9 cases is no more than 1ms. It depends not only on the number of components to be

detected, but also on the size of subassemblies and the number of segments required to disassemble the

product. As shown in Table 1, the double-point strategy takes at most 0.448ms in the 6th case, in which

there are two subassemblies which contain10 components and 6 components, respectively.

5.2 Performance analysis of the ternary bees algorithm

 Because the three cases on Product A are straightforward, the best re-planning solution can be

directly calculated by traversing all of the 2 to 16 solutions quickly. We apply cases 4 to 9 to test the

proposed re-planning algorithm compared with the other 4 typical methods. We assume all the

disassembly-related time matrices are available in advance based on the segmented component and

subassembly sets obtained by the double-point detection process. For simplicity, the basic disassembly

time for each element is randomly generated in the range of [10s, 30s]. The moving time between the

gripping points of two elements is set in the range of [5s, 15s] as well. The direction time between two

directions is also randomly produced in the range of [2s, 10s].

 To accelerate the re-planning process as much as possible, the minimal population size required for

the TBA should be defined. The TBA was tested with two, three, five and ten individuals and the

corresponding algorithms are labeled as TBA-2, TBA-3, TBA-5 and TBA-10 in this section. For the

TBA-2 that holds only 2 individuals, the better solution in each iteration is still updated by the local

search operator (Algorithm 2), while the other solution is modified by selecting one of the other two

operators, i.e., the global search operator and the evolutionary operator, randomly. For simplicity, the

population sizes of GS(n), GA(1) and GA(2) are uniformly set as 10. The results of the four TBAs, the

GA(1), the GA(2), the GS(1) and the GS(n) are summarised in the boxplots of Figure 6.

(a) case 4 (b) case 5 (c) case 6

(d) case 7 (e) case 8 (f) case 9

Figure 6. The fitness value of the best solution found by the 5 algorithms on six cases with respect to

Product B and Product C

(a) case 4 (b) case 5

(c) case 6 (d) case 7

(e) case 8 (f) case 9

Figure 7. The average evolutionary trend of the 4 algorithms on the 6 disassembly cases with respect to

Product B and Product C

By randomly selecting the start element, the GS(1) provided various kinds of solutions. When the

number of iterations increases, the GS(n) quickly converged to a specific local optimum without diversity.

The GAs seems to be more capable of exploration and finding some better solutions than the GSs.

TBA2 performs slightly unstably with a larger solution range and more outlying points than the other

three TBAs in the six cases. The performance of TBA2 is similar to that of the GAs in cases 6-9. When

the population size is set as 3, the performance of the TBA is enhanced significantly. As the population

size continues to increase, there is not much change in performance.

To be more specific, the average evolutionary trend of the TBAs compared with the GS(n) and the

two GAs are demonstrated in Figure 7. Because the GS(1) is performed only once, there is no evolutionary

trend for it. The GS(n) converged fast within 50 iterations and the quality of its solution fluctuates highly

in different cases. The TBA-3, TBA-5 and TBA-10 have similar evolutionary trend and performs better

than the GS(n) and the two GAs in all of the six cases. They are capable of finding better solutions in the

very beginning and improving the solutions efficiently when the GAs and the TBA-2 converged gradually.

Table 3 gives the results of the pair-wise Wilcoxon test at a significant level of 0.05  . On the

one hand, it is clear that the TBA-3 performs significantly better than the GSs and the GAs. Because both

GS(n) and GA(2) can find the optimal solution quickly for case 7, GA(1) can find the solutions as good as

TBA for case 9, the p-value between the TBA and them in these 2 cases becomes larger. Except that, the

performance of the TBA is considerably better than the others, especially in the cases with more

detachable elements and swappable segments, such as cases 4, 6 and 8. On the other hand, it can be seen

that increasing the population size above 3 does not bring much improvement to the TBA. The results

for TBA-5 and TBA-10 in all cases are similar with those for TBA-3. Hence, it is more efficient to set

the population size of the TBA as 3 to evenly perform local search, learning-based evolution and global

search.

Table 3. Pair-wise Wilcoxon test between TBA and the other algorithms for 6 disassembly cases

No. of case TBA-3 vs GS(1) GS(n) GA(1) GA(2) TBA-2 TBA-5 TBA-10

4 p 0.000 0.000 0.000 0.000 0.001 0.970 0.809

5 p 0.000 0.000 0.001 0.001 0.000 0.530 0.059

6 p 0.000 0.000 0.017 0.034 0.023 1.000 1.000

7 p 0.000 1.000 0.038 0.083 1.000 1.000 1.000

8 p 0.000 0.000 0.000 0.000 0.000 0.782 0.291

9 p 0.000 0.000 0.005 0.008 0.000 0.083 0.083

The average search times of the 4 TBAs and the other 4 algorithms on 6 disassembly cases are shown in

Table 4. Obviously, the greedy search requires the minimal number of time since it operates a single

individual in each iteration. The GAs perform the worst as they need three steps of operations to select,

crossover and mutate scattered individuals. These individuals may search the same solution space

repeatedly. However, when a local optimum is reached, the simple random inheritance and exploration

have a small chance of finding a better valley or peak position without prior knowledge. In contrast, the

TBA is more efficient than the GAs in terms of both solution quality and search time even if they hold

the same population size. The TBA with three individuals takes between approximately 84ms and 96ms

to provide a re-planning solution for an EoL product with 15 to 22 components. When the population

size increases, the search time grows linearly without much performance improvement. Therefore,

maintaining three individuals and three concurrent operators is the best scheme for the TBA in solving

the disassembly re-planning problem.

Table 4. Search time for the 5 algorithms on the 6 disassembly cases. (The unit of time is millisecond,

i.e., ms)

No. of case GS(1) GS(n) GA(1) GA(2) TBA-2 TBA-3 TBA-5 TBA-10

4 0.0646 23.5407 384.289 384.874 58.4483 93.7243 164.5457 334.5622

5 0.0667 23.1653 389.707 391.253 62.0667 96.2008 166.8177 338.8832

6 0.0593 22.1663 350.982 351.476 56.6708 86.2885 149.6311 302.7046

7 0.0505 22.7109 342.453 340.457 64.6471 89.1825 152.9254 298.8815

8 0.0557 22.6971 343.220 344.488 59.8267 84.4184 151.3572 300.4302

9 0.0533 21.1650 336.666 339.062 59.0556 86.3465 146.5742 297.2297

 In summary, the ternary bees algorithm has the advantages of both the greedy search and the meta-

heuristic techniques. It maintains only three individuals to do exploitation by a local search strategy,

learning by a semi-random inheritance, and exploration by a pure random routine collaboratively.

Concurrent operations reduce the time-complexity of the algorithm significantly compared with other

ad-hoc meta-heuristics. The time consumption of the ternary bees algorithm is acceptable for the real-

time re-planning in a robotic disassembly environment. As the detection process consumes no more than

1ms, the total re-planning time for an EoL product will be less than 100ms in total.

6 Conclusion

 This paper proposed a double-point detection strategy to find detachable components and

subassemblies when a failure happens during robotic disassembly. First, we applied the ADD operator

instead of the Boolean OR operator to calculate the number of obstacles using an interference matrix.

Then, a list with pairs of points was established to detect subassemblies with the minimum detection

times. Based on the detection, we presented a ternary bees algorithm to provide a re-planning solution

combining the disassembly order and direction of not only the detachable components but also the

removable subassemblies in a segmented sequence. The algorithm possesses the merits of both greedy

search and meta-heuristics.

 As the experimental analysis was carried out on three simple EoL products, future work will focus

on more complex products to test the practical performance of the proposed approach. Moreover, the

practical factors that influence disassembly cost and time from one component or subassembly to another

are also a critical issue to be considered to enable a flexible re-planning process.

Acknowledgement

This paper was supported in part by the Engineering and Physical Sciences Research Council

(EPSRC Grant No. EP/N018524/1).

References

[1] Ilgin M A, Gupta S M. Environmentally conscious manufacturing and product recovery (ECMPRO):

A review of the state of the art. Journal of environmental management, 2010, 91(3): 563-591.

[2] Lambert A J D. Disassembly sequencing: a survey. International Journal of Production Research,

2003, 41(16): 3721-3759.

[3] Riggs R J, Battaïa O, Hu S J. Disassembly line balancing under high variety of end of life states

using a joint precedence graph approach. Journal of Manufacturing Systems, 2015, 37: 638-648.

[4] Kim H J, Xirouchakis P. Capacitated disassembly scheduling with random demand. International

Journal of Production Research, 2010, 48(23): 7177-7194.

[5] Kang J G, Xirouchakis P. Disassembly sequencing for maintenance: a survey. Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, 220(10):

1697-1716.

[6] Özceylan E, Kalayci C B, Güngör A, Gupta, S M. Disassembly line balancing problem: a review of

the state of the art and future directions. International Journal of Production Research, 2018: 1-23.

[7] Vongbunyong S, Kara S, Pagnucco M. Application of cognitive robotics in disassembly of products.

CIRP Annals-Manufacturing Technology, 2013, 62(1): 31-34.

[8] Torres F, Puente S, Díaz C. Automatic cooperative disassembly robotic system: Task planner to

distribute tasks among robots. Control Engineering Practice, 2009, 17(1): 112-121.

[9] De Mello L S H, Sanderson A C. AND/OR graph representation of assembly plans. IEEE

Transactions on robotics and automation, 1990, 6(2): 188-199.

[10] Jin G Q, Li W D, Xia K. Disassembly matrix for liquid crystal displays televisions. Procedia CIRP,

2013, 11: 357-362.

[11] Gungor A, Gupta S M. Disassembly sequence plan generation using a branch-and-bound algorithm.

International Journal of Production Research, 2001, 39(3): 481-509.

[12] Tao F, Bi L, Zuo Y, Nee A Y C. Partial/parallel disassembly sequence planning for complex products.

Journal of Manufacturing Science and Engineering, 2018, 140(1): 011016.

[13] Smith S S, Chen W H. Rule-based recursive selective disassembly sequence planning for green

design. Advanced Engineering Informatics, 2011, 25(1): 77-87.

[14] Tseng H E, Chang C C, Lee S C, Huang Y M. A Block-based genetic algorithm for disassembly

sequence planning. Expert Systems with Applications, 2018, 96: 492-505.

[15] Friedrich C, Csiszar A, Lechler A, Verl A. Efficient Task and Path Planning for Maintenance

Automation Using a Robot System. IEEE Transactions on Automation Science and Engineering,

2017.

[16] Vongbunyong S, Kara S, Pagnucco M. Learning and revision in cognitive robotics disassembly

automation. Robotics and computer-integrated manufacturing, 2015, 34: 79-94.

[17] Rickli J L, Camelio J A. Partial disassembly sequencing considering acquired End-of-Life product

age distributions. International Journal of Production Research, 2014, 52(24): 7496-7512.

[18] Kim H W, Park C, Lee D H. Selective disassembly sequencing with random operation times in

parallel disassembly environment. International Journal of Production Research, 2018: 1-15.

[19] ElSayed A, Kongar E, Gupta S M, Sobh T. A robotic-driven disassembly sequence generator for

End-of-Life electronic products. Journal of Intelligent & Robotic Systems, 2012, 68(1): 43-52.

[20] Zussman E, Zhou M C. A methodology for modeling and adaptive planning of disassembly

processes. IEEE Transactions on Robotics and Automation, 1999, 15(1): 190-194.

[21] Lambert A J D. Linear programming in disassembly/clustering sequence generation. Computers &

Industrial Engineering, 1999, 36(4): 723-738.

[22] Aguinaga I, Borro D, Matey L. Parallel RRT-based path planning for selective disassembly planning.

The International Journal of Advanced Manufacturing Technology, 2008, 36(11-12): 1221-1233.

[23] Dini G, Santochi M. Automated sequencing and subassembly detection in assembly planning. CIRP

annals, 1992, 41(1): 1-4.

[24] Ong N S, Wong Y C. Automatic subassembly detection from a product model for disassembly

sequence generation. The international journal of advanced manufacturing technology, 1999, 15(6):

425-431.

[25] González B, Adenso-Díaz B. A scatter search approach to the optimum disassembly sequence

problem. Computers & Operations Research, 2006, 33(6): 1776-1793.

[26] Huang Y M, Huang C T. Disassembly matrix for disassembly processes of products. International

Journal of Production Research, 2002, 40(2): 255-273.

[27] Afsharzadeh A. Automatic disassembly task sequence planning of aircrafts at their End-of-Life.

Ecole Polytechnique, Montreal, Canada, 2016.

[28] Tian G, Zhou M C, Chu J. A chance constrained programming approach to determine the optimal

disassembly sequence. IEEE Transactions on Automation Science and Engineering, 2013, 10(4):

1004-1013.

[29] Behdad S, Thurston D. Disassembly and reassembly sequence planning tradeoffs under uncertainty

for product maintenance. Journal of mechanical design, 2012, 134(4): 041011.

[30] Gungor A, Gupta S M. Disassembly sequence planning for products with defective parts in product

recovery. Computers & Industrial Engineering, 1998, 35(1-2): 161-164.

[31] Dong J, Gibson P, Arndt G. Disassembly sequence generation in recycling based on parts

accessibility and End-of-Life strategy. Proceedings of the Institution of Mechanical Engineers, Part

B: Journal of Engineering Manufacture, 2007, 221(6): 1079-1085.

[32] Yu B, Wu E, Chen C, Yang Y, Yao B Z, Lin Q. A general approach to optimize disassembly sequence

planning based on disassembly network: A case study from automotive industry. Advances in

Production Engineering & Management, 2017, 12(4): 305-320.

[33] Koc A, Sabuncuoglu I, Erel E. Two exact formulations for disassembly line balancing problems

with task precedence diagram construction using an AND/OR graph. IIE Transactions, 2009, 41(10):

866-881.

[34] Han H J, Yu J M, Lee D H. Mathematical model and solution algorithms for selective disassembly

sequencing with multiple target components and sequence-dependent setups. International Journal

of Production Research, 2013, 51(16): 4997-5010.

[35] Liu J, Zhou Z, Pham D T, Xu W, Ji C, Liu Q. Robotic disassembly sequence planning using

enhanced discrete bees algorithm in remanufacturing. International Journal of Production Research,

2017: 1-18.

[36] Kheder M, Trigui M, Aifaoui N. Optimization of disassembly sequence planning for preventive

maintenance. The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8):

1337-1349.

[37] Ren Y, Yu D, Zhang C, Tian G, Meng L, Zhou X. An improved gravitational search algorithm for

profit-oriented partial disassembly line balancing problem. International Journal of Production

Research, 2017: 1-15.

[38] Mete S, Çil Z A, Ağpak K, Özceylan E, Dolgui A. A solution approach based on beam search

algorithm for disassembly line balancing problem. Journal of Manufacturing Systems, 2016, 41:

188-200.

[39] Li J R, Khoo L P, Tor S B. An object-oriented intelligent disassembly sequence planner for

maintenance. Computers in Industry, 2005, 56(7): 699-718.

[40] Zhang X F, Zhang S Y. Product cooperative disassembly sequence planning based on branch-and-

bound algorithm. The International Journal of Advanced Manufacturing Technology, 2010, 51(9-

12): 1139-1147.

[41] Mitrouchev P, Wang C G, Lu L X, Li G Q. Selective disassembly sequence generation based on

lowest level disassembly graph method. The International Journal of Advanced Manufacturing

Technology, 2015, 80(1-4): 141-159.

[42] Ghandi S, Masehian E. Review and taxonomies of assembly and disassembly path planning

problems and approaches. Computer-Aided Design, 2015, 67: 58-86.

[43] Hui W, Dong X, Guanghong D. A genetic algorithm for product disassembly sequence planning.

Neurocomputing, 2008, 71(13-15): 2720-2726.

[44] Adenso-Díaz B, García-Carbajal S, Gupta S M. A path-relinking approach for a bi-criteria

disassembly sequencing problem. Computers & Operations Research, 2008, 35(12): 3989-3997.

[45] Lambert A J D, Gupta S M. Methods for optimum and near optimum disassembly sequencing.

International Journal of Production Research, 2008, 46(11): 2845-2865.

[46] Alshibli M, El Sayed A, Kongar E, Sobh T M, Gupta S M. Disassembly sequencing using tabu

search. Journal of Intelligent & Robotic Systems, 2016, 82(1): 69-79.

[47] Kim H W, Lee D H. An optimal algorithm for selective disassembly sequencing with sequence-

dependent set-ups in parallel disassembly environment. International Journal of Production

Research, 2017: 1-17.

[48] Rickli J L, Camelio J A. Multi-objective partial disassembly optimization based on sequence

feasibility. Journal of manufacturing systems, 2013, 32(1): 281-293.

[49] Xia K, Gao L, Li W, Chao K M. Disassembly sequence planning using a simplified teaching–

learning-based optimization algorithm. Advanced Engineering Informatics, 2014, 28(4): 518-527.

[50] Xia K, Gao L, Wang L, Li W, Li X, Ijomah W. Service-oriented disassembly sequence planning for

electrical and electronic equipment waste. Electronic Commerce Research and Applications, 2016,

20: 59-68.

[51] Kheder M, Trigui M, Aifaoui N. Optimization of disassembly sequence planning for preventive

maintenance. The International Journal of Advanced Manufacturing Technology, 2017, 90(5-8):

1337-1349.

[52] Ghandi S, Masehian E. A breakout local search (BLS) method for solving the assembly sequence

planning problem. Engineering Applications of Artificial Intelligence, 2015, 39: 245-266.

[53] Gao L, Qian W, Li X, et al. Application of memetic algorithm in assembly sequence planning. The

International Journal of Advanced Manufacturing Technology, 2010, 49(9-12): 1175-1184.

[54] Ren Y, Zhang C, Zhao F, Xiao H, Tian G. An asynchronous parallel disassembly planning based on

genetic algorithm. European Journal of Operational Research, 2018.

[55] Yeh W C. Simplified swarm optimization in disassembly sequencing problems with learning effects.

Computers & Operations Research, 2012, 39(9): 2168-2177.

[56] Pham D T, Ghanbarzadeh A, Koç E, Otri S, Rahim S, Zaidi M. The bees algorithm-a novel tool for

complex optimisation problems. Intelligent Production Machines and Systems. 2006: 454-459.

