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Abstract: Automated disassembly of End-of-Life (EoL) products can be difficult to implement due to 

uncertainties in their conditions. An automatic re-planning function is required to enable flexible 

adjustments of disassembly plans and thus increase disassembly efficiency. The re-planning function is 

able to detect subassemblies and separable components, and adjust disassembly sequences and directions 

when components interlock and are irremovable.  This paper presents a two-pointer detection strategy 

to find detachable subassemblies very quickly. A summation operator and a list with two pointers are 

used to check the interferences between components in a minimum number of steps. Then, a ternary bees 

algorithm is proposed to identify new disassembly sequences and directions.  The algorithm combines 

the merits of a greedy search and meta-heuristic techniques by using only three collaborative potential 

solutions and three concurrent operations. Experimental results show that the proposed approach is able 

to perform a rapid subassembly detection and sequence optimisation for a robotic disassembly task, thus 

allowing real-time re-planning.  

Key words: Robotic disassembly; Component and subassembly detection; Sequence planning; Bees 

algorithm 

1 Introduction 

Disassembly of End-of-Life (EoL) products to retrieve reusable parts and materials enables industry 

to make more efficient use of limited natural resources and reduce environmental pollution [1][2]. Unlike 

new product assembly, disassembly of EoL products is affected by significant uncertainties mainly 

caused by structure degrading [3]. Components can be worn-out, corroded, or even missing, and this 
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creates many unforeseen EoL conditions. These uncertainties can cause frequent changes of disassembly 

plans, and therefore, reduce efficiency. 

The focus of previous research has primarily been on three key areas, namely, disassembly 

scheduling, disassembly sequencing and disassembly line balancing, each aimed at improving the speed 

and efficiency of disassembly.  Disassembly scheduling is “the problem of determining the quantity 

and timing of the end-of-use/life products while satisfying the demand of their parts over a planning 

horizon” [4]. Disassembly sequencing involves searching for an optimum order to dismantle a product 

partially or completely [5]. Disassembly line balancing is to assign multiple disassembly tasks to a group 

of workstations on a disassembly line to minimise the number of workstations, ensure similar idle times 

at different workstations or remove hazardous parts/required components at the earliest moment possible 

[6].  

Manual disassembly is becoming economically unattractive. To reduce labour costs and improve 

disassembly efficiency, robotic disassembly [7] has been considered. A robot is able to accomplish many 

kinds of tasks but usually requires programming with the assumption of product invariance [8]. For a 

product with many unforeseen EoL conditions, implementing an automated disassembly system is very 

challenging. 

From the perspective of process automation, there is well-established research into automatically 

generating component relations (AND/OR graphs, interference matrices, and disassembly precedence 

graphs, etc.) of a product from its CAD model [9-11]. To support automatic disassembly planning, 

researchers have developed a number of optimisation algorithms for finding detachable components, 

searching for feasible disassembly sequences and generating optimal robotic motions [12-15]. Visual 

detection and intelligent reasoning have also been used to build a cognitive robotic system to achieve the 

full automation of a series of disassembly tasks [16]. 

However, previous research has assumed that the component relations of a product extracted from 

its original CAD model remain unchanged and the product condition is entirely predictable and impacts 

only on the processing time and the final profit [17][18]. The disassembly of an EoL product is done by 

a series of predetermined operations. Each operation either is executed without interruption or is able to 

recover from an interruption.  Usually, this is true because humans are able to check the product status 

to determine suitable actions.  However, current robotic systems cannot deal with variability. Using a 

predetermined order could cause incorrect and inefficient or even destructive actions.  



To overcome this drawback, existing research has suggested some real-time decision strategies, 

sensitive analysis, and reactive approaches based on a list of predefined rules or options [19-21]. When 

a failure happens and cannot be corrected, dynamic disassembly re-planning is essential but rarely 

considered especially in robotic disassembly. 

This paper proposes a detection strategy and a new intelligent optimisation algorithm to identify 

detachable elements in a partially disassembled product and reassign disassembly sequences and 

directions when irremovable components form component interlocks.  This detection of subassemblies 

and separable components is very fast and enables a robot to adjust disassembly plans in real time.  The 

proposed method involves first using an interference matrix [10] to record the component relations of a 

product and the ADD operator to find detachable components and extract further information. The 

“double-point” strategy is then applied to detect detachable subassemblies as interference loops.  A 

“ternary” bees algorithm based on greedy search and meta-heuristic techniques has been developed to 

generate feasible disassembly re-planning solutions when the planned operation fails. The paper gives 

three case studies to demonstrate the efficiency of the proposed approach compared with existing 

heuristics and meta-heuristics. 

 The paper is structured as follows. Section 2 summarises the state-of-the-art in disassembly 

sequence planning and re-planning research. Section 3 gives a formulation of the disassembly re-

planning problem and assumptions.  In Section 4, the details of the double-point strategy and the 

complete detection process are elaborated with examples. In Section 5, we describe a local search 

operator and illustrate the procedure of the ternary bees algorithm with the help of the disassembly re-

planning problem. We then present experimental results and an analysis of the above approach based on 

typical products.  Concluding remarks are provided in Section 6. 

 

2 Literature review 

 Focusing on the disassembly process of one specific product, a robotic disassembly plan includes 

sequence planning and trajectory planning [22]. Normally, the trajectory for a robot can be generated 

according to the disassembly sequence.  Hence, the disassembly re-planning task considered in this 

paper mainly consists of reforming the sequence to complete the disassembly efficiently. This section 

briefly reviews the existing literature on the representation of EoL products, methods of automatic 

disassembly sequence planning, and studies on robotic disassembly re-planning. 



 

2.1 Representation of EoL products 

 Product representation expresses the prerequisites of disassembly sequencing, such as the inference 

relations among product components, their precedence conditions, and some other restrictions. It is 

usually extracted from a CAD model.  

Dini et al. [23] defined a product to be assembled by three matrices, i.e., interference matrix, contact 

matrix, and connection matrix. These matrices are then combined and widely used in disassembly in the 

early time. Examples are the study of Ong et al. [24] on subassembly detection, the improved description 

of disassembly precedence proposed by González et al. [25], and the disassembly matrix proposed by 

Huang et al. [26]. In addition, researchers also defined different sorts of relation matrices to adapt their 

disassembly models. Tao et al. [12] denoted four matrices for fasteners and components respectively to 

describe their feasible directions and constraints. Afsharzadeh et al. [27] introduced an adjacent matrix 

to guide the greedy search of disassembly sequence. Tian et al. [28] constructed a relation matrix to 

embody the constraint type and quantity between adjacent components. Behdad et al. [29] further 

included the disassembly tools and the operational directions in an expanded matrix.  

Another typical expression for disassembly is AND/OR graph [30]. It is established by a group of 

nodes and hyper-arcs, which represent the components/subassemblies and the disassembly operations, 

respectively. It is more intuitive for disassembly planner to find a feasible solution [31][32]. Based on 

the original definition, Koc et al. [33] designed a transformed AND/OR graph (TAOG) to extensively 

integrate all possible disassembly path/sequence in a graph. Han et al. [34] then applied a weighted 

AND/OR graph to illustrate profit or environmental issues extensively. Due to that the tool-dependent 

operations are covered, it is non-trivial to obtain an AND/OR graph from a CAD model directly.  

Currently, the interference matrix is the most commonly used representation for disassembly 

sequencing [35][36], while the AND/OR graph are more applied in disassembly line balancing [37][38]. 

Additional tree/graph representations for disassembly sequencing include the disassembly constraint 

graph proposed by Li et al. [39], the cooperative disassembly hierarchical tree for cooperative 

disassembly designed by Zhang et al. [40], the disassembly geometry contacting graph with different 

disassembly level presented by Mitrouchev et al. [41], and so on. 

 

2.2 Methods of automatic disassembly sequencing 



 Disassembly sequence planning consists of three categories, which are, complete disassembly, 

partial disassembly and selective disassembly, according to the disassembly requirement. The methods 

for disassembly sequencing are very similar with which for assembly sequencing [5]. Ghandi et al. [42] 

summarised these methods and classified them as 8 kinds, graph-based method, grid-based method, 

sampling-based method, space decomposition method, interactive method, mathematical programming, 

metaheuristic, and intelligent computation method.  

Recent research is more likely to design hybrid approaches based on the above techniques to deal 

with a different complex situation. Hui et al. [43] designed an iterative scheme to generate disassembly 

feasibility information graph together with a genetic algorithm (GA) for complete disassembly 

sequencing. Adenso-Díaz et al. [44] separated the problem into two stages and employed the greedy 

randomised adaptive search procedure (GRASP) and path-relinking-based heuristic to implement 

exploration and exploitation. Lambert et al. [45] brought the iterative nature of metaheuristic to binary 

integer linear programming combined with a heuristic to find a good solution. Alshibli et al. [46] 

introduced the tabu search mechanism to GA for disassembly sequencing. Kim et al. [47] also adopted 

the branch and bound algorithm with the incorporation of a shortest path heuristic to solve selective 

disassembly sequencing in a parallel disassembly environment.  

 Except that, metaheuristic is the most commonly used kind due to its high extensibility on different 

kinds of product models. Typical examples in recent five years are the multi-objective GA used by Rickli 

et al. [48] for partial disassembly sequencing, the modified teaching-learning-based optimisation 

algorithms designed by Xia et al. [49][50] for complete disassembly sequencing in different 

circumstances, the ant colony algorithm applied by Ghandi et al. [51] for general disassembly sequencing 

and the bees algorithm proposed by Liu et al. [35] especially for robotic disassembly sequencing. 

 In short, existing methods are able to provide optimal or good sub-optimal solutions for disassembly 

sequencing with various objectives and constraints. Nevertheless, the frequently-used graph-based 

methods, mathematical programming, metaheuristics, and the hybrid methods require a long time to 

search the solution space step by step, making them hard to adapt for re-planning in robotic disassembly. 

 

2.3 Studies on robotic disassembly re-planning 

 Given a sequence plan, the disassembly process is carried out with various uncertainties as 

mentioned above. These uncertainties can render the original plan wholly or partly infeasible. Gungor et 



al. [30] have demonstrated the possible failures and indicated the importance of robotic disassembly re-

planning in their early research. Zussman et al. [20] proposed to use a pre-sorted list of transitions based 

on a Petri-net to adjust the disassembly when a failure happened.  However, the sorted value for online 

decision may be inaccessible. Without the update of the sorted value and the component relations, the 

next transition may fail as well. Lately, ElSayed et al. [19] suggested an online decision process to 

generate disassembly plan for an automated robot. They introduced an optical module to the robot and 

detected detachable components in each iteration with a GA to determine the disassembly order of these 

components.  However, when an operation has truly failed, there is no re-planning strategy that can be 

used quickly to adjust the existing operations of the robot. 

 

3 Problem formulation 

 Disassembly re-planning refers to the generation of feasible sequences dynamically when one 

disassembly operation of the preliminary plan has failed.  To avoid delays, the re-planning should be as 

simple and speedy as possible. According to the disassembly target, we can distinguish between re-

planning algorithms for complete disassembly, partial disassembly, and selective disassembly.  This 

paper focuses on complete disassembly in which we need only to check if the disassembly operation can 

continue.  

 

3.1 Assumptions  

To limit the scope of the work, we have assumed the following: 

1. During each operation, only one component or subassembly is removed. 

2. Each operation only involves linear movements along principal directions. 

3. Tool changing is performed by humans. 

4. The disassembly involves only non-destructive operations. 

5. The preliminary disassembly sequence consists of both the order of component removals and their 

directions. 

6. Each robotic operation is executed at a standard speed without extra processing. 

7. When a disassembly operation fails, the corresponding component is no longer detachable. This 

means the system will not try and remove the specific component again.  

8. There are no toxic or hazardous components.  



Assumptions 1-6 apply to the case when a robotic manipulator is assigned to disassemble an EoL 

product with pre-determined linear movements and the manipulator requires human assistance to change 

tools for different disassembly tasks.  Assumption 7 is made to avoid having to devise an error recovery 

strategy for every potential failure.  Finally, as toxicity or hazardous features do not influence the 

efficiency of a robotic disassembly procedure, they not considered in this paper (assumption 8). 

 

3.2 Product representation 

 Interference matrices, AND/OR graphs and precedence graphs are three commonly used ways to 

represent products in both assembly and disassembly planning.  However, AND/OR graphs and 

precedence graphs do not contain information on how a component blocks another.  This information 

is significant in robotic disassembly for deciding the following operation trajectory. Hence, in this paper, 

the interference matrix is adopted to represent the relationships between components.  

Existing research has developed different kinds of interference matrices according to the 

disassembly requirement and prerequisites. Huang et al. [26] proposed to integrate multi-directional 

information into one single matrix and demonstrated the checking of detachable components using the 

matrix. Due to its simplicity, we use the inference matrix designed in [26] to guide the disassembly re-

planning in this paper. 

Specifically, an interference matrix I can be written as follows. 
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I 0 I
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I I 0

                              (1) 

where each element 1 2[ ,  ,  ,  ]ij ij ij ijDI I II  is a multi-dimensional vector to represent the impact of 

component j on component i along D directions. n represents the total number of components in an EoL 

product. The directions can be either (X-, X+, Y-, Y+) in a 2-dimensional platform, or (X-, X+, Y-, Y+, 

Z-, Z+) for 3-dimensional operations. The value of , [1, ]ijdI d D  can be 0 or 1. If the component j 

interferes with the movement of component i in direction d, then 1ijdI  . Otherwise, the sub-element 

ijdI   is 0. As one component will not interfere itself, the diagonal vectors of I are all set as 

[0,  0,  ,  0]ii  I 0  . The interference relation between two components covers both contact and 

indirect geometrical obstruction. Based on the interference matrix, a preliminary plan is a sequence of 



components or subassemblies with their disassembly directions.  

 

4 Dynamic disassembly re-planning 

If a component cannot be disassembled, it and the components it strictly obstructs will form a 

subassembly.  Such subassemblies can be found from the interference matrix. Whether a subassembly 

can be disassembled as a whole very much depends on the current situation of the product. To make an 

appropriate new plan, we need two steps.  

 Checking whether the product can be disassembled continuously. If so, the detachable 

components and subassemblies are accordingly listed as a segmented rough sequence.  

 Providing a plan to finish the disassembly work with the minimum disassembly time.  

We will illustrate the detection strategy for detachable components or subassemblies and the 

dynamic re-planning algorithm in the following sections. 

  

4.1 Detection of detachable components or subassemblies 

Huang et al. [26] and Liu et al. [35] have both suggested using the Boolean OR operator to check 

for each component [1, ]i n  if there exists one direction in which no other component obstructs its 

removal, i.e., [1, ],  0ijdj n I    . However, this operator is deficient in the situation where only 

subassemblies are detachable and their components are interlocked. Take the product shown in Figure 1 

as an example.  Its original interference matrix with four directions, i.e., (X-, X+, Y-, Y+), is shown on 

the right side of the product model. The product consists of five parts (named C1 to C5), three bolts 

(labelled as F1, F2, and F3), and one nut (i.e., F4). All of the parts and fasteners are regarded as 

components here. 

By using the OR operator, one can find that F1, F2, and F4 can be disassembled along Y-, X+, and 

Y-, respectively. If F1 and F2 have been removed and F4 fails to be disassembled due to some unknown 

reason, the robot will stop because none of the remaining components has mobility in any direction as 

indicated by the elements in the right-hand-most column being all 1.  



C4

F1

F2

F4

F3C3

C1

C2

x

y

C1 C2 C3 C4 F1 F2 F3 F4

C1

C2

C3

C4

F1

F2

F3

F4

0000 0110 0110 0110 1111 1111 1111 0010 1111

1001 0000 1001 1101 1111 1111 1001 0010 1111

1001 0110 0000 0010 0000 0000 1111 0010 1111

1001 1110 0001 0000 1000 0000 0001 1111 1111

1101 1101 0000 0100 0000 0000 0001 0100 1101

1011 1011 0000 0000 0000 0000 0000 0000 1011

1011 0110 1011 0010 0010 0000 0000 0010 1111

0001 0001 0001 1101 1000 0000 0001 0000 1101
 

Figure 1. Example of a product to be disassembled 

 However, the product can be separated as two subassemblies by removing F1 and F2, no matter 

whether F4 is removable or not. A robotic manipulator can remove one of the subassemblies and continue 

to disassemble components from it separately. This “interlock” situation accompanying detachable 

subassemblies is more likely to take place when a failure happens in disassembly. 

 To solve the above problem, we replace the OR operator with the ADD operator to count the 

obstacles to a component in each direction and establish a double-point strategy to detect detachable 

subassemblies for disassembly re-planning. The pseudocode of the proposed strategy is given in 

Algorithm 1. 

Algorithm 1. Double-point strategy for subassembly detection 

Input: The interference matrix I, the components which fail to be disassembled 

Output: Detachable subassemblies 

1  For each component [1, ]i n  

2    For each direction [1, ]d D  

3      
( )

1

nadd

id ijdj
I I


  

4    End For 

5    
( ) ( )

1minadd D add

i d idI I  and i S  

6    For each direction [1, ]d D  

7      If 
( ) ( )add add

id iI I  

8        i i d S S  

9      End If 

10   End For 

11 End For 



12 ( ) ( )

min 1arg minadd n add

i iI I  

13 For each component [1, ]i n  

14   If 
( ) ( )

min

add add

iI I  and i is not the component that failed to be disassembled 

15     i V V  

16   End If 

17 End For 

18 While V  

19   arg min | |i iv 
V

S , / vV V  

20   While | | 0i S  

21     Pop out an element d randomly from iS  and let /i i dS S  

22     Given an incremental list P , v P P  

23     Set the current point 1k   and the reverse point q n  

24     While | |k  P  

25       For [1, ]j n  

26         If 1
kp jdI   and jP  

27           j P P  

28         Else If 1
kp jdI  , jP , and the position index of j in P is smaller than both k and q 

29           Set q as the position of j in P 

30         End If 

31       End For 

32       If k reaches the last item of P, or | | nP  

33         Break 

34       End If 

35       1k k   

36     End While 

37     If | | nP , kp  is not the failed component and d is not the failed direction 



38       Label the items [ , , ]q kp p  as a subassembly, / ( [ , , ])q kp p V V V  

39       Break 

40     End If 

41   End While 

42 End While 

  

In the above pseudocode, ( )add

idI  represents the result of the ADD operator for component i in direction 

d (Steps 2 to 4), while iS   is the direction list of component i which records the least obstructed 

directions (Steps 5 to 10). ( )

min

addI  denotes the minimal sum result for all components (Step 12). Further, 

a candidate list V is introduced to embody the components whose number of obstacles is equal to ( )

min

addI  

(Steps 13 to 17).  

 As demonstrated by Ong et al. [24], a subassembly can be detected by checking for interference 

loops among the components. Steps 18 to 42 are designed to check the maximum loop between two 

points iteratively. To minimise the checking steps, we pick the element v which holds the shortest 

direction list in V as the initial element for subassembly detection (Step 19). With a randomly selected 

direction (Step 21), an incremental list P is defined to find the maximum interference loop (Steps 22 and 

23). 

 In the beginning, P contains only one element , 1kp v k   . It is incremented gradually by 

including the obstacles to pk one by one (Steps 26 and 27). If an obstacle has been included in P and its 

position in P is smaller than the current point k, this indicates that a loop exists between the current point 

k and the position of the obstacle. Then, the specific position is denoted as a reverse point q (Steps 29 

and 30). To find the maximum loop, we need to introduce all possible obstacles to the current point k and 

check all of them (Steps 32 to 34). The term ‘k reaches the last item of P’ in Step 32 means that all of the 

further obstacles to the current point k are included in the loop between q and k. The other condition 

‘ | | nP ’ indicates that all components are interlocked in this direction. If any of these conditions are 

satisfied, the detection stops. The maximum loop for the checked components is thus found. 

Finally, if the last item of P is not the failed component and the selected d is not the failed direction, 

a subassembly is found. In other words, if the failed component has originally no obstacle in the dth 

direction, k will step forward and point to the failed component. The failed component will be mistakenly 



included in a subassembly without forming a loop with any previous items. To avoid this mistake, the 

conditions in Step 37 are adopted to label the components with qualified loops between points q and k as 

a subassembly and delete them from the candidate list V (Step 37 to 39). 

 To demonstrate the above process in detail, we take the product shown in Figure 1 as an instance. 

We assume that F1 and F2 have been removed and F4 is undetectable. The interference matrix with the 

output of the ADD operator (Steps 1 to 17) is shown in Eq. (2).  

The minimal sum result is ( )

min 1addI   , while the candidate list is { 1, 2, 3}C C FV  . F3 with the 

shortest direction list 3 {2}F S  is pushed in P and we have 2d  . The following iteration is shown 

in Eq. (3). As the sum of the 2nd direction for the failed component is not 0, the 2nd component to the 4th 

component of P, i.e., { 2, 4, 4}C C F , form a subassembly. 

1 0000  0110  0110  0110  1111  0010

2 1001  0000  1001  1101  1001  0010

3 1001  0110  0000  0010  1111  0010
 

4 1001  1110  0001  0000  0001  1111

3 1011  0110  1011  0010  0000  0010

4 0001  0001  0001 

C

C

C

C

F

F

1451

4114

2242

3224

2152

 1101  0001  0000 1105

ADD

 
 
 
 

 
 
 
 
  

                   (2) 

1,  3,  { 3} { 3, 2},  

2,  2, { 3, 2} { 3, 2, 4},  

3,  4, { 3, 2, 4} { 3, 2, 4, 4},  2

4,  4, { 3, 2, 4, 4} { 3, 2, 4, 4},  2

k

k

k

k

k p F F F C q n

k p C F C F C C q n

k p C F C C F C C F q

k p F F C C F F C C F q

     

     

     

     

P P

P P

P P

P P

        (3) 

 After that, C1 is pushed in a new P from V. Its direction list is 1 {1,4}C S . We randomly choose 

1d   . The next iteration is shown in Eq. (4). The 1st component to the 3rd component of P, i.e., 

{ 1, 3, 3}C F C , form another subassembly. The same deduction can be obtained if we choose 4d  . 

1,  1,  { 1} { 1, 3},  

2,  1, { 1, 3} { 1, 3, 3},  1

3,  3, { 1, 3, 3} { 1, 3, 3},  1

k

k

k

k p C C C F q n

k p C C F C F C q

k p C C F C C F C q

     

     

     

P P

P P

P P

              (4) 

If all of the components are covered in the above subassemblies, the detection stops. The above 

steps are illustrated in Figure 2. 

F3 C2 C4 F4
The 2nd 

direction
C1 F3 C3

The 1nd 

direction

Subassembly Subassembly  

Figure 2. The process of detecting detachable subassemblies for the instance shown in Figure 1 



 It should be noted that the double-point strategy does not ensure finding all subassemblies at once 

as the EoL state of a product changes dynamically. The strategy is able to detect if a product can be 

further disassembled whether or not failure has occurred.  If one or more subassemblies are detected, 

the interlock among the components is resolved. Then, further disassembly is possible. The complete 

procedure to detect detachable components and subassemblies can be summarised in Figure 3. 

As P can hold at most n components, the time complexity of the checking process (steps 24 to 36) 

in the proposed strategy is ( )O n . Assume all of the components are pushed into the candidate list and 

all of their direction lists hold D elements (i.e., all directions are considered). The time complexity of the 

double-point strategy is 2( )O Dn . In practice, D is no more than 6 in a 3D disassembly platform. Therefore, 

the time complexity of the proposed strategy is reduced to 2( )O n . Besides, the storage space used by P, 

V and , [1, ]i i nS  is ( 2)D n  in total. So the storage space complexity of the double-point strategy is 

( )O n . 

After the detection, the product instance shown in Figure 1 can be separated into two subassemblies. 

The interference matrix is then changed to Eq. (5). F3 is released as a detachable component, so are C1 

and C3 in the next step. C2, C4 and F4 are still interlocked and cannot be further disassembled. 

1 0000  0110  0110  0110  1111  0010

2 1001  0000  1001  1101  1001  0010

3 1001  0110  0000  0010  1111  0010
 

4 1001  1110  0001  0000  0001  1111

3 1011  0110  1011  0010  0000  0010

4 0001  0001  0001 

C

C

C

C

F

F

1221

1112

2112

2221

2022

 1101  0001  0000 1182

ADD

 
 
 
 

 
 
 
 
  

                  (5) 

A possible disassembly sequence after the failed operation on F4 is represented as shown in Eq. (6). 

{ 1, 3, 3} [X | Y ],{ 2, 4, 4} [X | Y ], 3 [X ], 1 [X | Y ], 3 [X | ]

SwappableSwappable

C C F C C F F C C Y            (6) 

where the terms in square brackets represent possible disassembly directions for the corresponding 

component or subassembly. ‘Swappable’ means the order of the detachable objects can be modified to 

form a new sequence. 
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Figure 3. Procedure for detecting detachable components and subassemblies 

  

4.2 Ternary bees algorithm for disassembly re-planning 

 Disassembly re-planning means re-assigning a new sequence to disassemble the remaining 

components and subassemblies of an EoL product. The decision variables are the same as with static 

disassembly sequence planning, that is, the order and direction to disassemble each component or 

subassembly detected from the former task, as shown in Eq. (7). 

( ) (o) (o) ( ) ( ) ( )

1 2 1 2{ , , , , , , , }o d d d

m mx x x x x xX                       (7) 

where m represents the number of elements (i.e., components or subassemblies), 
( ) , [1, ]o

ix i m  refers to 

the ith element to be disassembled. It will be removed from direction
( )d

ix . 

We take the total disassembly time as the main objective of disassembly re-planning. It includes not 

only the disassembly time for each detachable components and subassemblies, but also the time spent 

for moving the robotic manipulator from one position to another. The displacement time between two 

detachable components or subassemblies is determined by their disassembly directions and the product 

structure. Let the number of elements (i.e., components or subassemblies) to be disassembled as m, the 

basic disassembly time for each element [1, ]i m  as ( )o
ix

t , the moving time between the gripping points 

of two elements , [1, ]i j m   as ( ) ( )

( )

,
o o

i j

f

x x
t  , and the direction change time between two directions 



, [1, ]i j D  as ( ) ( )

( )

,
d d

i j

d

x x
t , the total disassembly time is expressed in Eq. (8). 

( ) ( ) ( ) ( ) ( )
1 1

1 1
( ) ( )

, ,
0 0

o o o d d
i i ii i

m m
f d

x x x x x
i i

T t t t
 

 

 

                             (8) 

 The sequence of disassembly re-planning is not likely to be a fully swappable sequence or a static 

sequence as demonstrated in [52]. It is divided into several segments according to the precedence 

constraints extracted from the interference matrix, as illustrated in Eq. (6). The element (which can be 

either a component or a subassembly) is swappable only in a specific segment.  

On the one hand, existing metaheuristics for sequence planning can be too time-consuming or costly 

for the online re-planning as most of them integrate internal local search, external evolutionary operation, 

feasibility check, and solution encoding/decoding procedure step by step to update a group of individuals. 

On the other hand, most of the ad-hoc greedy heuristics introduce a sorting procedure to maintain a 

priority list and hence ignore many better solutions. Consequently, their performances are much worse 

than the metaheuristics, even though they can be faster. In addition, almost none of the above methods 

takes both the subassemblies and the disassembly directions into consideration. 

Therefore, we present a ternary bees algorithm to combine the virtues of both metaheuristics and 

greedy heuristics to enable efficient re-planning with high solution quality.  The algorithm is outlined 

in Figure 4. The algorithm involves a population of three individuals (i.e. potential solutions) with three 

operators, namely, a local search operator, an evolutionary operator and a global search operator. Each 

individual corresponds to one operator in an iteration.  

As with the original bees algorithm [56], the population is sorted according to the fitness values of 

the individuals.  Because there are only three individuals, the sorting is reduced to two comparisons in 

total to find the best, the worst and the “in-between” individual. Afterwards, the best individual is 

assigned to the local search operator, while the in-between individual and the worst individual are 

assigned to the evolutionary operator and global search operator, respectively. To make the process faster, 

each operator has been simplified to ( )O n time complexity as explained below. 
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Figure 4. The mainframe of the ternary bees algorithm 

(1) Local search operator 

As analysed above, existing local search operators for disassembly sequence planning usually 

perform swap, insert, flip or inversion several times [52] with some problem-specific information. The 

number of iterations on local search depends on the state of the individual and its updated fitness value. 

To ensure only one-time search with an even use of problem-specific information, we choose a swappable 

position as a center from the rough sequence obtained by the component and subassembly detection 

procedure. Then, the nearest left or right neighbour is picked to swap with the centre by the most suitable 

direction change. The local search operator used in this work is expressed as Algorithm 2. 

Algorithm 2. A local search operator for updating a sequence 

Input: An individual ( ) (o) (o) ( ) ( ) ( )

1 2 1 2{ , , , , , , , }o d d d

m mx x x x x xX  , a list 0 1 2{ , , , , }Bb b b bb   that stores 

the segment points to make sure feasible swap in a sequence. 

Output: The individual X updated by this proces 

1  Choose a segment 1( , ],  0k kb b k B    which satisfies 1 1k kb b    

2  Select a center 1k kb c b    and generate a random number 0 1r   

3  If 0.5r   and 1kc b   

4    For each position i in 1( , ]k kb b   

5      If i c  

6        Find the disassembly direction (o)
,minix

d  of 
(o)

ix  from its direction list Si that minimises the  



direction change time to (o)

cx , i.e., (o) ( )

(o)

( )

,,min
arg min d

ci
xi

d

d xx d
d t




S
 

7        Calculate the estimated moving time from (o)

ix to (o)

cx , i.e., (o) ( ) ( )(o) ( )
(o)

,min

( ) ( )

,,
ˆ

o do
cc ci i

xi

f d

d xx x x x
t t t   

8      End if 

9    End For 

10   (o) (o)

1
,[ , ),

ˆarg min
cik k

l x xi b b i c
p t

 
  

11   ( ) ( )

1l

d d

p cx x  , (o)

( )

1 ,mini

d

c x
x d   

12   Swap ( )

l

o

px  with ( )

1

o

cx   

13  Else 

14   For each position i in 1( , ]k kb b   

15     If i c  

16       Find the disassembly direction (o)
,minix

d  of 
(o)

ix  from its direction list Si that minimises the  

direction change time from 
(o)

cx , i.e., (o) ( )

(o)

( )

,,min
arg min d

ci
xi

d

x dx d
d t




S
 

17       Calculate the estimated moving time from 
(o)

cx  to 
(o)

ix , i.e., (o) ( ) ( )(o) ( )
(o)

,min

( ) ( )

,,
ˆ

o do
cc ci i

xi

f d

x dx x x x
t t t   

18     End if 

19   End For 

20   (o)(o)

1
,[ , ),

ˆarg min
c ik k

r x xi b b i c
p t

 
  

21   ( ) ( )

1l

d d

p cx x  , (o)

( )

1 ,mini

d

c x
x d   

22   Swap ( )

l

o

px  with 
( )

1

o

cx   

23 End If 

 In the above pseudocode, the segment point list b is obtained from the component and subassembly 

detection process shown in Algorithm 2, which stores the end position of each segment in a sequence. 

Take the sequence shown in Eq. (6) as an instance, there are three segments in total. The segment point 

list should be {0,2,3,5}b . The first segment is from 1 to 2, the second is 3, and the third is from 4 to 5. 

In addition, we use (o)
,minix

d  to represent the nearest direction between 
(o)

ix  and the center element 
(o)

cx  



and define 
,î jt  as the shortest moving time between two elements i and j. 

 To be specific, the local search operator means to apply the greedy search on a randomly selected 

center position of an individual. The position must be swappable in a segment whose size is larger than 

1. The greedy search includes two sides, i.e., the left side search (Steps 3 to 12) and the right side search 

(Steps 13 to 23). Each time we find a detachable element in the specific segment that has the minimal 

disassembly cost with the centre element. If a better neighbour is found, we will swap the current 

neighbour with the better one and change their directions accordingly. 

(2) Evolutionary operator and global search operator 

As the rough sequence generated by the double-point detection strategy is segmented, traditional 

partially matched crossover (PMX) [53], global swap, insert, flip and inversion are no longer applicable. 

They will break the precedence constraints among the components and subassemblies. Only the leftmost 

rule, which is widely applied in precedence preserve crossover (PPX) [54],Teaching–Learning-Based 

Optimisation (TLBO) [49], and simplified swarm optimisation (SSO) [55], is able to maintain the 

precedence relation among segments by randomly selecting the leftmost variable from one parent and 

deleting the same variable exists in the other parent iteratively to form a new solution. Nevertheless, it 

ignores the selective direction optimisation.  Hence, the mutation operator is introduced to perform the 

direction change as a complementary part of these precedence preserving operators in disassembly 

sequence planning. 

For simplicity, we introduce the classical PPX accompanied with the single point mutation on 

direction change to perform sequence update for the medium individual in our re-planning algorithm. 

One of the parent individuals for the PPX is the medium individual given by the waggle dance. The other 

parent individual is randomly selected from either the best or the worst individuals. Moreover, we apply 

a random generation scheme to renew the worst individual and explore the whole solution space. On one 

hand, the good information obtained by local search is extended to the evolutionary process with high 

probability. On the other hand, new information is also introduced from the global search to balance the 

exploration and exploitation. 

(3) Site abandonment 

 The site abandonment operator is a key strategy in the original bees algorithm which aims at 

eliminating a non-potential position in the solution space and jump out of local optimum. That is to say, 

if an individual is not improved for several iterations, it is no need to continue the search on that position 



but to start with a new position to find diverse information. Usually, it requires a group of counters to 

record the evolutionary state of each individual. We assume the counter for individual i as iu . If the 

individual is improved, i.e., the fitness value of the individual is reduced, 0iu  . Otherwise, we perform 

1i iu u  . If the counter for an individual is larger than a threshold maxu , it will be replace it by a newly 

generated sequence in accordance with the segmented precedence condition. 

 

5 Experiments and discussions 

 To verify the performance of the proposed double-point detection strategy and the ternary bees 

algorithm, three typical products are introduced in this paper. The first model (named as Product A) is 

already depicted in Figure 1. We consider four directions to disassemble it. The other two products are 

drawn in Figure 5(a) and Figure 5(b). The second product (named as Product B) is introduced from [36], 

while the third one (named as Product C) is an engine piston introduced from practice. Six directions, 

i.e., (X-, X+, Y-, Y+, Z-, Z+) are considered to disassemble the second and the third products. The 

interference relationships between different components can be obtained from the product structure. 

 

(a) Product B [36]                            (b) Product C 

Figure 5. Two typical products applied to validate the methods proposed in this paper 

 Firstly, we assume three kinds of failures in disassembling each kind of product. There are 9 cases 

in total. In each case, the detection result obtained by the double-point strategy and its execution time are 

both recorded. Secondly, the ternary bees algorithm is applied to provide the re-planning solutions of the 

above cases. It is abbreviated as TBA and compared with two kinds of GA and two greedy schemes in 



both search time and solution quality. Without loss of generality, one of the tested GAs (named as GA(1)) 

consists of a tournament selection, a PPX operator, and a mutation operator, while the other (named as 

GA(2)) uses a roulette wheel selection, a PPX operator, and a mutation operator as its evolutionary 

operators. The maximum number of iterations of the above algorithms are set as 1000 to lower the re-

planning time for automatic robotic disassembly. In the greedy strategy (named as GS), we start from the 

leftmost position and assign the detachable element one by one by calculating the shortest moving time 

between the current element and the previous one. If the greedy search performs only once, we call the 

process as GS(1). Similarly, we call the greedy search as GS(n) if it is carried out iteratively to generate 

multiple solutions and provided the best. The number of iterations of GS(n) in this paper is set as 1000 as 

well. 

 All of the experiments are programmed by C++ on Xcode v6.1.1 platform and carried out on a PC 

with 2.3GHz Intel Core I7 CPU, 8GB 1600MHz DDR3 memory. As the re-planning algorithms to be 

tested are non-deterministic, each algorithm is run 20 times. 

 

5.1 Performance analysis of the double-point strategy 

 To simplify the solution representation, we encode the components and directions for each product 

as shown in Table 1.  

Table 1. The encoding list of the components and directions for the three products 

Product A 

Component C1 C2 C3 C4 F1 F2 F3 F4 

Code 1 2 3 4 5 6 7 7 

Direction -X +X -Y +Y 

Code 1 2 3 4 

Product B 

Component No. i 

Code i 

Direction -X +X -Y +Y -Z +Z 

Code 1 2 3 4 5 6 

Product C 

Component A1 A2 B C1 C2 D E1 E2 F G H1 H2 H3 H4 H5 

Code 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Direction -X +X -Y +Y -Z +Z 



Code 1 2 3 4 5 6 

The detection results by using the process in Figure 3 for nine failure cases on different products 

are illustrated in Table 2. <*> defines a segmented set which contains one or more detachable elements 

with their possible disassembly directions. [ ]x y  represents an detachable element, in which x can be 

a component or a subassembly and y refers to the possible directions to disassemble it. A subassembly is 

then embodied by a brace {*} and a direction set is further represented by a square brackets [*]. Take the 

first failure case of Product A as an instance, the detection result 

5 [3],8 [3] , {2,6,1,3,4,7} [1,2,3,4]  means that components 5 and 8 are disassembled in direction 

3 at the first round and components 2, 6, 1, 3, 4, and 7 are left as a subassembly which can be removed 

only as a whole in all of the four directions. 

Table 2. Detection results of the double-point strategy for the 9 cases on three kinds of EoL products 

Product No. 

Non-

detachable 

components 

The detection result 

Time 

(ms) 

A 1 6 5 [3],8 [3] , {2,6,1,3,4,7} [1,2,3,4]  0.076 

 2 8 5 [3],6 [2] , {1,7,3} [1,4],{2,4,8} [2,3] , 7 [2] , 1 [1,4],3 [2,3]  0.088 

 3 7,8 5 [3],6 [2] , {1,7,3} [1,4],{2,4,8} [2,3]  0.080 

B 4 15 

11 [5],12 [5],18 [0],19 [5],20 [5],21 [5],22 [5] , 7 [5],8 [5],17 [1] ,

4 [5] , {2,9,1,5,3,10,6} [3,4,5],{16,15,13,14} [3,4,6] , 9 [6],10 [6] ,

2 [5],3 [5],5 [6],6 [6] , 1 [1,2,3,4,5,6]

 0.314 

 5 4 

11 [5],12 [5],18 [0],19 [5],20 [5],21 [5],22 [5] , 7 [5],8 [5],17 [1] ,

15 [2] , 16 [2,3,4,5,6] , 14 [2,3,4,5,6] , 13 [3,4,6] , 9 [6],10 [6] ,

5 [6],6 [6] , 1 [6] , 2 [6],3 [6]

 0.257 

 6 12,18 

11 [5],19 [5],20 [5],21 [5],22 [5] , 7 [5] ,

{9,2,1,4,5,3,6,8,10,12} [3,4,5],{16,15,13,14,17,18} [3,4] ,

9 [6],10 [6] , 5 [6],6 [6] , 1 [6] , 2 [6]

 0.448 

C 7 1 
2 [5],7 [4],8 [3],11 [6] , 9 [3,4],12 [6] , 13 [6] , 14 [6] , 15 [6] ,

10 [6] , {4,3,1,6,5} [1,2,3,4,5,6]
 0.169 

 8 13 

1 [5],2 [5],7 [4],8 [3],11 [6] , 9 [3,4],12 [6] ,

{5,6,10,13,14,15} [1,2,3,4,6],{3,4} [1,2,3,4,5] 4 [6],5 [5] ,

3 [1,2,3,4,5,6],6 [5]

 0.18 



 9 4,9 
1 [5],2 [5],7 [4],8 [3],11 [6] , 12 [6] , 13 [6] , 14 [6] , 15 [6]

{10,9,6,5} [1,2,3,4,6],{4,3} [1,2,3,4,5] 5 [5]
 0.184 

No matter given one or more components that fail to be disassembled, the proposed detection 

process is able to provide an accurate rough scheme to disassemble a product as complete as possible. If 

the non-detachable components are predictable in advance, the double-point strategy is also applicable 

to generate rough scheme for the static disassembly sequence planning. Similarly, if one or more failures 

are found in real time, the strategy will ignore the removed components and provide the segmented sets 

of detachable components and subassemblies for the remaining part of a product.  

Normally, an EoL product contains 10 to 30 components. The execution time of the double-point 

strategy in the 9 cases is no more than 1ms. It depends not only on the number of components to be 

detected, but also on the size of subassemblies and the number of segments required to disassemble the 

product. As shown in Table 1, the double-point strategy takes at most 0.448ms in the 6th case, in which 

there are two subassemblies which contain10 components and 6 components, respectively. 

 

5.2 Performance analysis of the ternary bees algorithm 

 Because the three cases on Product A are straightforward, the best re-planning solution can be 

directly calculated by traversing all of the 2 to 16 solutions quickly. We apply cases 4 to 9 to test the 

proposed re-planning algorithm compared with the other 4 typical methods. We assume all the 

disassembly-related time matrices are available in advance based on the segmented component and 

subassembly sets obtained by the double-point detection process. For simplicity, the basic disassembly 

time for each element is randomly generated in the range of [10s, 30s]. The moving time between the 

gripping points of two elements is set in the range of [5s, 15s] as well. The direction time between two 

directions is also randomly produced in the range of [2s, 10s].  

 To accelerate the re-planning process as much as possible, the minimal population size required for 

the TBA should be defined.  The TBA was tested with two, three, five and ten individuals and the 

corresponding algorithms are labeled as TBA-2, TBA-3, TBA-5 and TBA-10 in this section. For the 

TBA-2 that holds only 2 individuals, the better solution in each iteration is still updated by the local 

search operator (Algorithm 2), while the other solution is modified by selecting one of the other two 

operators, i.e., the global search operator and the evolutionary operator, randomly. For simplicity, the 

population sizes of GS(n), GA(1) and GA(2) are uniformly set as 10. The results of the four TBAs, the 

GA(1), the GA(2), the GS(1) and the GS(n) are summarised in the boxplots of Figure 6. 



 

(a) case 4                    (b) case 5                    (c) case 6 

 

(d) case 7                    (e) case 8                    (f) case 9 

Figure 6. The fitness value of the best solution found by the 5 algorithms on six cases with respect to 

Product B and Product C 

 

(a) case 4                                  (b) case 5 

 

(c) case 6                                  (d) case 7 



 

(e) case 8                                  (f) case 9 

Figure 7. The average evolutionary trend of the 4 algorithms on the 6 disassembly cases with respect to 

Product B and Product C 

By randomly selecting the start element, the GS(1) provided various kinds of solutions. When the 

number of iterations increases, the GS(n) quickly converged to a specific local optimum without diversity. 

The GAs seems to be more capable of exploration and finding some better solutions than the GSs.  

TBA2 performs slightly unstably with a larger solution range and more outlying points than the other 

three TBAs in the six cases. The performance of TBA2 is similar to that of the GAs in cases 6-9. When 

the population size is set as 3, the performance of the TBA is enhanced significantly. As the population 

size continues to increase, there is not much change in performance.  

To be more specific, the average evolutionary trend of the TBAs compared with the GS(n) and the 

two GAs are demonstrated in Figure 7. Because the GS(1) is performed only once, there is no evolutionary 

trend for it. The GS(n) converged fast within 50 iterations and the quality of its solution fluctuates highly 

in different cases. The TBA-3, TBA-5 and TBA-10 have similar evolutionary trend and performs better 

than the GS(n) and the two GAs in all of the six cases. They are capable of finding better solutions in the 

very beginning and improving the solutions efficiently when the GAs and the TBA-2 converged gradually.  

Table 3 gives the results of the pair-wise Wilcoxon test at a significant level of 0.05  . On the 

one hand, it is clear that the TBA-3 performs significantly better than the GSs and the GAs. Because both 

GS(n) and GA(2) can find the optimal solution quickly for case 7, GA(1) can find the solutions as good as 

TBA for case 9, the p-value between the TBA and them in these 2 cases becomes larger. Except that, the 

performance of the TBA is considerably better than the others, especially in the cases with more 

detachable elements and swappable segments, such as cases 4, 6 and 8. On the other hand, it can be seen 

that increasing the population size above 3 does not bring much improvement to the TBA. The results 

for TBA-5 and TBA-10 in all cases are similar with those for TBA-3. Hence, it is more efficient to set 



the population size of the TBA as 3 to evenly perform local search, learning-based evolution and global 

search. 

Table 3. Pair-wise Wilcoxon test between TBA and the other algorithms for 6 disassembly cases 

No. of case TBA-3 vs GS(1) GS(n) GA(1) GA(2) TBA-2 TBA-5 TBA-10 

4 p 0.000 0.000 0.000 0.000 0.001 0.970 0.809 

5 p 0.000 0.000 0.001 0.001 0.000 0.530 0.059 

6 p 0.000 0.000 0.017 0.034 0.023 1.000 1.000 

7 p 0.000 1.000 0.038 0.083 1.000 1.000 1.000 

8 p 0.000 0.000 0.000 0.000 0.000 0.782 0.291 

9 p 0.000 0.000 0.005 0.008 0.000 0.083 0.083 

  

The average search times of the 4 TBAs and the other 4 algorithms on 6 disassembly cases are shown in 

Table 4. Obviously, the greedy search requires the minimal number of time since it operates a single 

individual in each iteration. The GAs perform the worst as they need three steps of operations to select, 

crossover and mutate scattered individuals. These individuals may search the same solution space 

repeatedly.  However, when a local optimum is reached, the simple random inheritance and exploration 

have a small chance of finding a better valley or peak position without prior knowledge. In contrast, the 

TBA is more efficient than the GAs in terms of both solution quality and search time even if they hold 

the same population size. The TBA with three individuals takes between approximately 84ms and 96ms 

to provide a re-planning solution for an EoL product with 15 to 22 components. When the population 

size increases, the search time grows linearly without much performance improvement. Therefore, 

maintaining three individuals and three concurrent operators is the best scheme for the TBA in solving 

the disassembly re-planning problem. 

Table 4. Search time for the 5 algorithms on the 6 disassembly cases. (The unit of time is millisecond, 

i.e., ms) 

No. of case GS(1) GS(n) GA(1) GA(2) TBA-2 TBA-3 TBA-5 TBA-10 

4 0.0646 23.5407 384.289 384.874 58.4483 93.7243 164.5457 334.5622 

5 0.0667 23.1653 389.707 391.253 62.0667 96.2008 166.8177 338.8832 

6 0.0593 22.1663 350.982 351.476 56.6708 86.2885 149.6311 302.7046 

7 0.0505 22.7109 342.453 340.457 64.6471 89.1825 152.9254 298.8815 

8 0.0557 22.6971 343.220 344.488 59.8267 84.4184 151.3572 300.4302 

9 0.0533 21.1650 336.666 339.062 59.0556 86.3465 146.5742 297.2297 

 In summary, the ternary bees algorithm has the advantages of both the greedy search and the meta-



heuristic techniques. It maintains only three individuals to do exploitation by a local search strategy, 

learning by a semi-random inheritance, and exploration by a pure random routine collaboratively. 

Concurrent operations reduce the time-complexity of the algorithm significantly compared with other 

ad-hoc meta-heuristics. The time consumption of the ternary bees algorithm is acceptable for the real-

time re-planning in a robotic disassembly environment. As the detection process consumes no more than 

1ms, the total re-planning time for an EoL product will be less than 100ms in total. 

 

6 Conclusion 

 This paper proposed a double-point detection strategy to find detachable components and 

subassemblies when a failure happens during robotic disassembly. First, we applied the ADD operator 

instead of the Boolean OR operator to calculate the number of obstacles using an interference matrix. 

Then, a list with pairs of points was established to detect subassemblies with the minimum detection 

times.  Based on the detection, we presented a ternary bees algorithm to provide a re-planning solution 

combining the disassembly order and direction of not only the detachable components but also the 

removable subassemblies in a segmented sequence.  The algorithm possesses the merits of both greedy 

search and meta-heuristics. 

 As the experimental analysis was carried out on three simple EoL products, future work will focus 

on more complex products to test the practical performance of the proposed approach. Moreover, the 

practical factors that influence disassembly cost and time from one component or subassembly to another 

are also a critical issue to be considered to enable a flexible re-planning process. 
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