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ABSTRACT

Industry 4.0 aims at integrating machines and operators through network connections and information man-agement. It proposes the use of a set of technologies
in industry, such as data analysis, Internet of Things, cloud computing, cooperative robots, and immersive technologies. This paper presents a training system for
industrial operators in assembly tasks, which takes advantage of tools such as virtual reality and process mining. First, expert workers use an immersive
interface to perform assemblies according to their experience. Then, process mining algorithms are applied to obtain assembly models from event logs. Finally,
trainee workers use an im-proved immersive interface with hints to learn the assemblies that the expert workers introduced in the system. A toy example has been
developed with building blocks and tests have been performed with a set of volunteers. The results show that the proposed training system, based on process
mining and virtual reality, is competitive against conventional alternatives. Furthermore, user evaluations are better in terms of mental demand, per-ception,

learning, results, and performance.
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1. Introduction

Industry 4.0 can be considered as a paradigm shift in the industry
that aims at combining all the production agents (machines, robots, and
operators) in the shape of Cyber Physical Systems by means of network
connections and information management [1]. Nine technologies are
considered in the core of Industry 4.0 [2]: the analysis of large amounts
of data, application of autonomous and cooperative robots, extensive
simulation of processes, horizontal and vertical integration of systems,
industrial Internet of Things, cloud storage and computing, additive
manufacturing, virtual and augmented reality, and cybersecurity.

One of the active challenges of the industry is the management of
knowledge [3]. Expert operators acquire valuable knowledge about the
manufacturing processes over the years. For instance, this knowledge
can be related to the efficient management of processes or the dis
assembly, inspection, maintenance and assembly of machines. The
transference of this knowledge to new operators is a key issue. How
ever, this transference is sometimes not efficient or even does not take
place, endangering the future of organizations [4].

This work aims at developing a system to facilitate this knowledge
transference in the context of complex assembly tasks. For this purpose,
it considers two of the main Industry 4.0 technologies: data analysis and
virtual reality. In the first case, process mining techniques are applied
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to model the procedures followed by experts, store this knowledge and
allow the apprentices to learn them. In the second case, virtual reality is
used to provide experts and apprentices with an immersive environ
ment to respectively convey their knowledge and learn the tasks.

The main developments of the work are listed below:

e Expert mode: It allows expert operators to perform assemblies in an
immersive environment with natural interactions, capturing their
sequences of actions in event logs.

e Data processing: Process mining algorithms are used to discover the
assembly models from the data collected by event logs.

e Training mode: It provides new operators with an immersive en
vironment with intuitive hints to learn the procedures that must be
followed in the assemblies.

A set of experiments were performed to validate the proposed
system. In these experiments, a series of volunteers had to study four
assemblies: two of them using the immersive system and the other two
by means of a physical instruction set. Then, they had to perform the
assemblies as fast as possible and without mistakes. The results show
that operators have at least the same performance using the proposed
system than the conventional one and, moreover, they evaluate the
experience more positively.



As far as we know, this is the first proposal of a training system for
industrial operators that uses process mining and virtual reality. Process
mining allows to collect and manage the knowledge of assembly pro
cesses, whereas virtual reality provides expert and trainee operators
with immersive and intuitive interfaces. The idea of the work is to
develop an integral and automated solution for knowledge transfer in
industry, taking advantage of both technologies to overcome the cur
rent challenges of the industry. This system reduces the costs of working
in the real environment, which can lead to temporally stop the pro
duction or damage the equipment.

The remainder of the paper is organized as follows: Section 2 col
lects the main state of the art related to the use of virtual reality and
process mining for training systems. Section 3 describes the developed
system with its three modules: expert mode, data processing, and
training mode. Section 4 reports the experiments performed to validate
the system using simple assemblies. Section 5 discusses the results of
these experiments and their implications. Finally, Section 6 summarizes
the main conclusions of this study and its potential future works.

2. State of the art

Industry 4.0 provides new possibilities for assembly systems [5],
such as aided assembly, intelligent storage management, self config
ured workstation layout, product and process traceability, late custo
mization and assembly control systems. Aided assembly is the closest
among these concepts to this work, involving the assistance to workers
during assemblies. For this purpose, technologies related to the Internet
of Things are applied, such as placing sensors in every workstation, tool
and product, and providing communications among all of them. Some
examples of this operator support are the use of lights to show which
object to pick or where to place it, and the application of virtual and
augmented reality.

As mentioned above, two resources related to Industry 4.0 are used
in this work: virtual reality to recreate the scenario and allow the work
of operators (see Section 2.1), and process mining to discover the
models behind their actions (see Section 2.2).

2.1. Virtual reality

Nowadays, three main immersive technologies can be distinguished:
virtual reality (VR), augmented reality (AR) and mixed reality (MR) [6].
VR generates virtual scenarios where the users can interact with virtual
elements. AR works in real scenarios, augmenting certain information
by means of virtual elements and allowing the interaction with these
elements. MR is a mixture of VR and AR that combines virtual and real
worlds and allows virtual and real interactions.

A previous paper demonstrates that adequate immersion can im
prove the perception and knowledge of operators [7]. In that paper, a
VR interface is compared against a conventional one in the context of
multi robot missions. The results show that the VR interface sig
nificantly improves the situational awareness of operators without in
creasing their workload. Additionally, the research supports the po
tential of VR systems in the collaborative design and presentation of
objects [8], the virtual manufacturing and testing of products [9], and
the development and validation of complex products [10].

The literature contains several references about training systems
based on virtual reality. One of the first studies [11] compares VR
against conventional systems in the context of laparoscopic surgery.
The results show that the students trained with VR are faster and made
fewer mistakes than the ones trained with conventional procedures.
More recent medical research works confirm these results in the fields
of surgery [12] and imagery [13]. Additionally, some works propose
VR based tools to analyze human factors in the context of manu
facturing, such as ergonomic issues [14] and performance character
istics [15].

A survey of stress assessment in military missions by using VR

environments can be found in [16]. Other work proposes a virtual
shooting training system for soldiers and reports that students have
more motivation and better scores using it [17]. However, the level of
immersion of this system is limited because the authors use a projector
instead of a head mounted display, which reduces the field of view. A
system to train visual scanning tasks is developed in [18], where sol

diers have to find people around them and distinguish between civilian
and enemies. The results show the importance of a realistic recreation
to reduce the gap between simulation and reality and get better results.
Finally, a social system to train veterans with post traumatic stress to
face job interviews is proposed in [19]. This system is evaluated posi

tively by the users, who report a significant rise in self confidence
during the process.

In the context of industry, VR and AR technologies are compared for
training industrial operators in maintenance and assembly tasks [20].
Four systems are analyzed: VR, VR with an explanatory video, AR and
AR with a similar video. The results are favorable to AR against VR, but
it must be remarked that the VR system uses a screen instead of a more
immersive device. Other works use virtual reality to train operators to
follow safety procedures in the mining industry [21], pointing out the
importance of a wider field of view for a better performance [22].
Augmented reality is used to inspect the planned trajectories for ma
nipulator robots, checking if they are safe and efficient before their
execution [23]. However, virtual reality is also used to support the
operators and control the robots in the assembly and manipulation of
micro devices [24]. Additionally, the study reported by [25] directly
compares a screen with a head mounted device, concluding that the
second device is more immersive, intuitive, easy to use, interactive and
easy to learn. Finally, [26] proposes a VR environment to train opera
tors for welding processes, whereas [27] uses a similar environment in
the context of a mechanized industry. In both cases, VR environments
are recreated using screens instead of more immersive devices, but the
experiments show the usefulness of these environments and the re
levance of providing operators with adequate feedback of their actions.

2.2. Process mining

Process mining is a branch of data analysis that encompasses the
modeling, evaluation and enhancement of processes from the events
generated by them and collected in logs [28].

Therefore, there are three main concepts in process mining: pro
cesses, event logs, and models. Processes are the object of study and
generate huge amounts of data. Event logs collect the activities per
formed by resources. Models represent processes and can be generated
through events. Similarly, there are three types of techniques of process
mining: discovery of models from event logs, conformance checking
and model enhancement, and reproduction of models to generate event
logs.

Process mining works with multiple types of models, such as tran
sition systems [29], Petri nets [30], Business Process Modeling Notation
[31] and causal nets [32].

Some use cases of process mining can be found in the following
references: health care processes [33], public services [34], manu
facturing processes [35] and robot missions [36]. The authors of these
publications apply process mining techniques to analyze and optimize
diverse processes. The knowledge is collected by event logs, which
register every activity performed by every resource during the pro
cesses. Then, they apply discovery algorithms to automatically model
processes from the event logs. These models are used to analyze the
resource allocation and time performance for the different processes. In
this way, bottlenecks can be solved and processes can be optimized.

However, as far as we know, process mining has not been used to
collect the knowledge of expert operators and transfer it to new workers
in the context of industry. As the cited works, this one starts from a
process (the assemblies performed by experts operators) and has to
generate a model (the guide that trainee operators must follow). The
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Fig. 1. System diagram: expert mode allows the expert operators to introduce their knowledge in the system, process mining automatically generates the assembly
models from the operation logs, and training mode allows the new operators to learn the assembly.

main difference is that knowledge is not a means to optimize the pro
cess, but an objective to be transmitted between operators.

3. Description of system

As already pointed out, the proposed system allows the transference
of knowledge of assembly tasks from expert operators to new ones in
the context of industry.

Fig. 1 shows an overview of the proposed system, which works in
the following way. First, expert operators freely perform assemblies
within the virtual reality scenario. The movements, decisions, and ac
tivities of these operators are registered by the system and stored in
event logs. Then, process mining is used to automatically generate
transition systems from these event logs. The resulting models represent
the different assemblies as sequences of states and transitions. Next,
trainee operators are introduced in the virtual reality scenario to learn
the assemblies. Using assembly models, the interface provides them
with valid sequences of activities, showing which blocks to take and
where to place them.

In this section and the following ones, the assemblies are considered
to be performed by using the building blocks shown in Fig. 2. This
assumption simplifies the development, description, and validation of
the training system, but it does not limit the application of this system
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Fig. 2. One of the assemblies (a) and the blocks used to build it (b).

to more complex and realistic assemblies. In fact, the system can be
applied to assemblies that consist of blocks with different shapes, sizes
and number of joints. The scope of this work includes the development
of a prototype of the training system and its evaluation within a con
trolled environment. From this perspective, this toy example is enough
to reach preliminary conclusions. In future works, the system will be
improved with information obtained from the experiments and tested
with a real industrial case.

The remainder of this section is organized as follows: Section 3.1
describes the expert mode, Section 3.2 the application of process
mining to model the assemblies and Section 3.3 the training mode.

3.1. Expert mode

This mode is designed to collect the knowledge of expert workers. In
general, these expert workers are operators that have a certain ex
perience in the assembly processes. This experience can be measured by
the time spent working in a certain task and the number of assemblies
performed. The specific values will depend on variables related to the
assemblies, such as their complexity, length, and required precision. In
principle, in order to save the knowledge of the process, an operator
performing an assembly once is enough. However, the higher number
of expert operators taking part in this process, the more quality and
fewer deviations the stored information will present.

As already mentioned, this mode starts with some experts per
forming repeated times the same assembly according to their experi
ence. They do not have to build the assemblies always in the same way.
In fact, performing different activities to arrive at the same state leads
to a better fit of models (i.e., them representing reality more accu
rately). Additionally, it provides the apprentice workers with the pos
sibility to choose the best sequence of actions according to their pre
ferences.

A coding system is necessary to unambiguously represent every
possible activity and state of assemblies. Note that an activity means
taking a block or set of blocks and join it to another block or set of
blocks, whereas a state is the result of performing an activity. This
paper presents an original strategy for coding the assemblies whose
main rules are explained below:

e The blocks are identified by capital letters that depend on their



Fig. 3. Coding system for the faces of blocks.

types. For instance, we can assign names to the blocks of Fig. 2 (b) in

the following way: A to green, B to blue, C to purple, D to orange

and E to yellow ones. It is assumed that in an assembly like the one
shown in Fig. 2 (a), the blocks of the same type are interchangeable.

All the faces of the cube shaped blocks are considered as joints and

numbered, in order to adequately represent the joints between

them. Fig. 3 shows this notation applied to a cube that is similar to
the blocks considered in the work: right is 1, left is 2, up is 3, down is

4, front is 5 and back is 6. This notation is generalizable to any block

independently of its shape, size, and number of faces.

o The assembly that results through joining two blocks is named by
using the names of the blocks and their contact faces. For instance,
when A is assembled down B, the notation of assembly is A34B.

e The name of an assembly must not depend on the sequence of ac
tivities performed to build it. Following the previous example, when
B is assembled over A (instead of A down B), the notation of as
sembly must be again A34B. This can be addressed by using the
following criteria to order the states after the activities:

o The main chain of the code is the longest.

o If two chains have the same length, the one lower index faces is
chosen first. For example, a chain will be chosen as principal if it
has more connections of type 12 than 21. In the case of a tie,
higher index faces are evaluated: 34 vs 43 and 56 vs 65.

o The branches of the main chain are named by order of occurrence.

e The secondary branches are named with their correspondent
primary branch and before passing to the following primary
branch.

Fig. 4 shows some examples of application of the proposed rules.
The first one shows how to obtain the main chain and order the bran
ches. The second one is a special case where there are two equal blocks
in the main chain (two Bs) and the one that has the branch must be
specified ([2]B means the second B in the direction of the main chain).
The third one shows the priority of 12 connections over 21 ones and the
fourth the priority of 12 21 criterion over 56 65 one. The fifth one is a
complex case where there is a tie in 12 21 connections and the decision
is based on 56 65 criterion. Finally, the sixth example shows a case
with all the possible connections (12 21, 34 43 and 56 65) and the
correct name of the assembly.

Back to the explanation of expert mode, it provides the expert
workers with an immersive environment to build the assemblies. As
shown in Fig. 5, the scenario reproduces a room with a table, where the
blocks are initially placed, and a blackboard, which shows information
about the assembly code and time. However, if the system is applied to
real industrial cases, the environment can be adapted to faithfully re
present real facilities.

The environment has been designed with Unity game engine and
SteamVR plugin to be reproduced with an HTC Vive head mounted
display. The scenario has been modeled by using the Unity application
and some open source assets, whereas the blocks have been designed

using a computer aided design application and then imported to Unity.
The behavior of the different elements in the scenario is managed by
some scripts developed in C# using Unity and SteamVR libraries. The
HTC Vive headset includes a head mounted display, which allows the
user to get images and sounds of a virtual environment, two base sta
tions, which are used to get the position and orientation of the head
mounted display, and two hand controllers, which allow the users to
configure the virtual environment and interact with their objects. The
SteamVR plugin is necessary to allow the integration of the developed
code with the head mounted display and hand controllers. All the data
generated by the expert operators is stored locally in a set of spread
sheets.

As previously described, the operators can freely do the assemblies
in this mode and the system just registers their activities. When a
worker takes a block, moves it to another one and joins both blocks, the
system generates an event and stores it in an event log. As usual in
process mining, the events are described by the following fields:

e Case ID: It is a unique identifier for each case, which allows dis
tinguishing not only the different assemblies performed by the dif
ferent resources, but also the different executions of the same as
sembly performed by the same resource.

e Timestamp: It indicates the instant when the event is completed, for
instance, using the format hh:mm:ss.

® Activity: It represents the type of event that takes place in the as

sembly. A number is assigned to each event that appears starting

from 1 and increasing it. If the same activity is executed twice, it
only receives a number the first time.

State: Similarly, it is a number that represents the result of the

performed event. Again, if two different sequences of activities

generate the same state, this state receives its corresponding number
the first time.

An example of event log can be seen in Table 1. All the activities and
states are new in the first case, whereas some of them are repeated in
the second case. In this example, there are two ways to perform the
assembly represented by cases 1 and 2, which follow the sequences of
activities 1 234 5 and 1 2 3 6 7 and finish at the same state 5.

Although these event logs are valid to represent processes and
generate models, the training system needs to know which activities
and states correspond to each number. For this purpose, other two logs
are created: activity and state logs.

An example of activity log is shown in Table 2 and their fields are
explained below:

o Activity ID: It is the unique identifier of the activity, which corre
sponds to the one that appeared in the event log.

e Active assembly: It is the block or set of blocks that is taken by the
user to start the activity.

e Target assembly: It is the block or set of blocks where the user joins
the active assembly.

e Approach: It represents the type of joint between the two assemblies
by using their contact faces.

® Active block: When the assembly chosen by the user has two or more
blocks, it specifies the contact block in the active assembly.

e Target block: In the same case, it defines the contact block in the
target assembly.

In the same way, an example of state log is shown in Table 3 and
their fields are explained below:

e State ID: It is the unique identifier of the state, which corresponds to
the one appeared in the event log.

e State code: It represents all the assemblies with two or more blocks
that are on the table at the given moment separated by dashes.
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Fig. 4. Examples of assemblies and their names according to the coding system.

A video of the expert mode can be seen at this link .!

3.2. Data processing

Once the operations of expert workers have been collected in event
logs, it is necessary to obtain models from them. Although event logs
include the sequences of activities and states, they may present in
frequent behaviors that can be caused by errors or inefficiencies of
operators. Additionally, event logs only contain relationships of pre
cedence among the events, whereas the models are able to describe the
causal and parallel relationships among them. For instance, if an event
log represents 100 paths of 1 2 3 4 and 50 paths of 1 3 2 4, a model can
infer that 2 and 3 are parallel states, since they can be reached in a
different order. Nevertheless, if an event log represents 150 paths of 1
2 3 4and 1 pathof 1 3 2 4, amodel can discover that 2 is the cause of 3
and discard the anomalous path.

The first step is filtering the log to remove infrequent behaviors,
which can be found in a frequency study like the shown in Fig. 6 (a).
Although these behaviors may represent correct operations in the as
semblies, they can also reveal operator inefficiencies and errors. Ad
ditionally, the logs can be studied from a time perspective, for instance,
finding the activities that spend more time, which can be seen in Fig. 6
(b). These activities sometimes reveal process bottlenecks that should
be adequately managed. In this work, we used Disco to apply these
filters to the data. This tool allows to define limits to the number of
states and transitions, as well as thresholds in frequency and time to
consider or discard events.

The second step is to generate models through the filtered event
logs. In order to do this, a discovery algorithm of process mining must
be used. In previous work, the Inductive Miner algorithm implemented
in ProM was found the best algorithm in the context of robot missions
[37]. This algorithm was able to generate models from all the con
sidered logs, reaching a remarkable fitness together with a good bal
ance between generalization and precision. For this reason, this algo
rithm has been used in the present work, obtaining good models for all
the cases. It must be remarked that the algorithm uses event logs to
generate transition systems, whereas the activity and state logs are used

L https://youtu.be/orSm1yCsvpw

in the following steps to interpret these models and give advice to op
erators.

An example of transition system obtained through one of the event
logs is shown in Fig. 7. As it can be seen, the transition system is similar
to the event log (compared with Fig. 6). This fact is due to the lack of
parallel activities, so all the precedence relationships in the event log
are represented by causal ones in the transition system. The transition
system is required by the training mode to properly guide trainee op
erators.

3.3. Training mode

This mode is developed to train new workers to build complex as
semblies. The interface is similar to the previously used in the expert
mode: it uses the same room, table, and blackboard. However, this
mode does not allow the operators to freely build the assemblies.
Conversely, untrained operators can only perform activities that are
coherent with the previously obtained models.

In order to do this, the transition systems are converted to task logs
and read by the interface. An example of task log is shown in Table 4
and their fields are explained below:

o Initial state: It indicates the state of the assembly before the action of
the operator.

® Activity: It represents the action of the operator.

e Final state: It indicates the state of the assembly that is reached after
the action of the operator.

Given a certain state of the assembly, the operator can continue
taking one or multiple blocks. These blocks are highlighted by the in
terface by remarking their outlines in white, as shown by Fig. 8 (a).
Once the operator takes one of them, there can be one or more possible
destinations. In this case, the interface remarks the contact faces of
active and target blocks with red arrows, as it can be seen in Fig. 8 (b).
Note that our toy example considers blocks with fixed orientations, and
this information was given to operators before the experiments.

A video of the training mode can be seen at this link .

2 https://youtu.be/8 4 35Pvbw0
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Fig. 5. Two views of scenario: (a) starting the assembly, (b) finishing it.

Table 1 Table 2

Event log of an assembly. Activity log of an assembly.
Case ID Timestamp Activity State D Act. assembly Tar. assembly Approach Ac. block Tar. block
1 0:00:10 1 1 1 D C 56 D C
1 0:00:15 2 2 2 E A 43 E A
1 0:00:21 3 3 3 C B 21 C B
1 0:00:31 4 4 4 D56C A34E 12 C E
1 0:00:36 5 5 5 B12C D56C12E43A 65 B A
2 0:00:11 1 1 6 B12C A34E 65 B A
2 0:00:16 2 2 7 E43A56B12C D56C 21 E C
2 0:00:22 3 3
2 0:00:31 6 6
2 0:00:47 7 5

4. Experiments

A set of experiments was performed to validate the training system
and compare its performance against a conventional method based on
abstract instructions. These experiments were aimed at answering the
following question: “Does the proposed training system provide better
performance results and operator evaluations than a conventional

one?”. For this purpose, we designed the four assemblies of Fig. 9,
taking into account the difficulty levels, number of blocks and assembly
paths collected in Table 5. We introduced these assemblies in the
system by using the expert mode and repeating each of them at least 10
times following different instructions.

Twenty volunteers took part in the experiments: thirteen men and
seven women with ages between 21 and 48. The volunteers were a
diverse set of members from our university: ten BSc students, five MSc
students, four PhD candidates and one professor. Taking into account



Table 3
State log of an assembly.
State ID State code
1 D56C
2 A34E-D56C
3 A34E-B12C-D56C
4 B12C-D56C12E43A
5 D56C12E43A56B12C
6 D56C-E43A56B12C

(a)

that equation, the penalties assigned to these errors were 20, 15, 5 and
10 seconds respectively.

Score = T + S*EO + 10*EH + 15*EL + 20*Ep (l)

On the other hand, the subjective experience of every operator was
evaluated by means of a questionnaire. This questionnaire had the
following structure:

® Personal data: Name, age, gender, and studies.
® Previous experience: Questions about the experience of volunteers

@

105 secs 65 secs

119 secs

112 secs

(b)

Fig. 6. Flowcharts of event log: (a) frequency analysis, (b) time analysis.

similar experiments performed in previous works, such as [7], we
considered twenty operators are enough to perform a first analysis and
reach relevant conclusions. Each of these participants had to do the four
assemblies mentioned above, studying two of them by using the im
mersive training system and the other two with a conventional guide,
both of them shown in Fig. 10. We gave them 3 minutes to study the
assemblies 1 and 2, considered easier, and 6 minutes to learn the as
semblies 3 and 4, evaluated as harder. Both the assemblies and guides
were ordered in the tests seeking to eliminate the influence of learning
on results. After they learned an assembly by using the conventional or
immersive guide, they had to build it with 3D printed blocks, as shown
in Fig. 10 (c).

Two evaluations were performed in the experiments: one related to
operator performance and another that involved operator experience.

On the one hand, as shown in Eq. (1), the performance of each
operator was computed with the time spent to perform the assembly (T)
and the number of errors during it. Four types of errors were con
sidered: the operator takes a wrong block (Ep), the operator places a
block in a wrong location (E;), the operator changes the order of two
activities (Eo) and the operator demands a hint (Ej). As also shown in

with building blocks and virtual reality.

e Evaluation of systems: Selection of the best training system in terms
of mental demand, physical demand, temporal demand, effort,
performance, frustration, perception, learning, and result. The first
six variables are taken from NASA TLX workload questionnaire
[38], which is widely used in robot missions and other contexts. The
last three variables evaluate three important aspects that are not
considered by that questionnaire: the spatial perception of assem
blies, learning facility, and subjective evaluation of results. The
training systems are ranked instead of rated because it is better to
obtain significant results, according to the work in [39]. The vari
ables can take five values: 1 means “VR guide is much better”, 2 “VR
guide is a little better”, 3 “both guides are similar”, 4 “conventional
guide is a little better” and 5 “conventional guide is much better”.

e Experiments: A set of questions about the time given to study the
assemblies and the design of both training systems.

e Observations: A field to write free comments and suggestions.



Fig. 7. Transition system obtained from the previous event log.

Table 4

Task log of an assembly.
Initial state Activity Final state
0 1 1
1 8 7
1 2 2
7 3 10
7 9 8
2 3 3
10 12 11
8 10 9
3 4 4
3 6 6
11 13 5
9 11 5
4 5 5
6 7 5

discussion about the viability of the proposed training system in other
scenarios is performed in Section 5.3.

5.1. Performance analysis

The performance scores of the trials are collected in Table 6. As it
can be seen in the means and standard deviations of scores, the varia
bility caused by operators is high and this can endanger the significance
of results. In order to prevent this phenomenon, the results have been
normalized applying Eq. (2). Thus, each normalized score represents
the performance of an operator o in an assembly a divided by the sum of
his/her scores in all the assemblies i = {1, 2, 3, 4}. In this way, this
metric represents the real cost for operators of each combination of
assembly and guide related to all the performed assemblies. The nor
malized performance scores are also contained in Table 6.

Score, o

NormScore, s = —————
Zi=l Score, ; )

Given the guide and assembly have influence on the results, the
analysis must be performed taking into account both factors. As shown
in Table 6 and Fig. 11, the assemblies can be ordered according to the
obtained scores in the following way: 1, 3, 2 and 4. This is an un
expected result because the assemblies were designed considering an
increasing difficulty level: 1, 2, 3 and 4. Nevertheless, the operators
probably found more difficulties to memorize and build the second
assembly than the third one. A set of one way analyses of variance
(ANOVA) was performed in order to check the significance of these
results, revealing assembly 1 has less score than 2 (p = 0.0161) and 4
(p = 0.0000), assembly 2 has less score than 4 (p = 0.0005), and as
sembly 3 has less score than 4 (p = 0.0000). No significant differences
with a = 0.05 can be found between assemblies 1 and 3 (p = 0.0679),
as well as between assemblies 2 and 3 (p = 0.3157).

As also shown in Table 6 and Fig. 11, the immersive training system
exhibit better results than the conventional one in the easier assemblies
(1 and 2), but the opposite occurs in the harder ones (3 and 4). The one
way ANOVA reveals the difference is significant in assembly 1
(p = 0.0295), but not relevant in the rest of assemblies (p values of
0.1554, 0.5392 and 0.5770 for assemblies 2, 3 and 4 respectively).
Therefore, it can be asserted that the proposed immersive training
system is competitive against the conventional one.

These results do not match with our previous beliefs. VR systems are
usually considered to provide a better spatial perception in complex

(a)

Fig. 8. Hints in training mode: (a) which block to take and (b) where to place it.

5. Results

As previously pointed out, twenty volunteers were asked to learn
four assemblies, two with an immersive training system and other two
with a conventional instruction set, and then build them using the 3D
printed blocks, taking note of their times and errors. Then, the volun
teers were asked to evaluate the training systems by answering a
questionnaire. The performance analysis is addressed in Section 5.1,
whereas the operator evaluations are analyzed in Section 5.2. Finally, a

(b)

environments. However, the performance has been higher in the sim
pler assemblies. We think this fact can be due to the experiment design.
Although the assemblies were small, the volunteers found difficulties to
distinguish between the blocks, since they only differ in colors. This fact
caused the required times for training and building were short and the
potential of the VR system was not exploited.

Finally, if volunteers that have previous experience with virtual
reality (13) and those that are not familiar with this technology (7) are
separated, it is possible to find an interesting result: the first ones have
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Fig. 9. The four assemblies considered for the experiments ordered by their complexity (number of blocks).

Table 5
The four assemblies with their features.

Assembly Difficulty Blocks Expert paths Trainee paths
1 Low 6 4 4
2 Low-Medium 7 3 9
3 Medium-High 9 2 4
4 High 10 1 1

better performance with the VR guide (a mean of 0.2162 with a stan
dard deviation of 0.1471) than with the physical one (a mean of 0.2838
with a standard deviation of 0.1286), whereas the second ones reach
better results with the physical guide (mean 0.2238 and standard de
viation 0.1490) than with the VR guide (mean 0.2762 and standard
deviation 0.1446). The difference of the volunteers that have previous
experience with VR is significant with alpha = 0.10. This result supports
the proposed immersive training system, since it indicates that the
performance of operators using this system can be improved with
adequate training.

5.2. Operator evaluation

The evaluations of operators are collected in Table 7 and shown in
Fig. 12. As explained above, these evaluations are comparative: 1
means “VR guide is much better”, 2 “VR guide is a little better”, 3 “both
guides are similar”, 4 “conventional guide is a little better” and 5
“conventional guide is much better”. At first glance, the results reveal
that the VR guide is considered better than the conventional one in all
the variables except physical demand, which can be explained with
requiring standing and moving throughout the room.

The one way ANOVA of these results reveals the immersive training
system is significantly better than the conventional one in terms of
mental demand (p = 0.0036), performance (p = 0.0492), perception
(p = 0.0000), learning (p = 0.0005) and result (p = 0.0241). The rest

of results cannot be considered as relevant assuming o = 0.05.

As can be easily checked, the evaluations of operators are more
favorable to the immersive training system than their performance
scores. Every experiment has a subjective factor and, in this case, it has
influence on the results and can provide interesting conclusions. This
subjective evaluation of the training system, which does not depend on
the objective results, can ease its future application.

Finally, the suggestions and claims from the users were collected
during the experiments. Some of them suggested to include undo, redo
and restart options in both interfaces. As a result, we will add these
functionalities in the next version of the training system.

5.3. Discussion

There are two possible ways for transferring the knowledge in the
context of industry: one implies that expert operators directly teach
apprentice ones, and another requires the use of any kind of interface to
store the knowledge. The first approach has some drawbacks in a
competitive environment such as industry: e.g., the need to gather ex
pert and trainee operators in a place and time, and the potential use of
production resources. Therefore, this work has been focused on the
second approach, proposing a new immersive training system and
comparing it with the most common system in the industries.

There are some differences between the proposed system and the
conventional guides both in paper and digital formats. On the one hand,
the developed system is able to collect the real behaviors of multiple
operators, whereas the conventional ones usually consider the formal
procedures for the assemblies. On the other hand, immersive devices
enhance the perception of operators in comparison to books and
screens, which may impact on the learning capacity of operators, as
well as on their motivation in the training process.

Moreover, the experiments reported in previous sections shed some
light on the matter of immersive training systems in the industry. The
developed system provided the best results in terms of time and errors



Table 6

Performance scores according to guide and assembly.
Guide Assembly Mean score St. dev. Norm. score St. dev.
Conventional 1 57.8 39.7 0.1931 0.0693
Immersive 1 30.6 32.6 0.1162 0.0761
Conventional 2 65.8 40.5 0.2845 0.1601
Immersive 2 60.6 32.2 0.1995 0.0851
Conventional 3 58.9 44.1 0.1928 0.0757
Immersive 3 53.3 36.8 0.2185 0.1053
Conventional 4 96.7 67.0 0.3807 0.1366
Immersive 4 120.7 64.4 0.4145 0.1292

in the simpler assemblies, whereas no significant differences were
found in the more complex ones. The operators evaluated their ex
perience with the immersive system better than with the conventional
one, considering it significantly better in terms of mental demand (i.e.,
the mental and perceptual activity required to perform the task [40]),
performance (i.e., the subjective impression about the performance in
the task [40]), perception (i.e., the ability to perceive the different
blocks and their places), learning (i.e., the subjective evaluation of
learning during the process), and result (i.e., the subjective impression
about the results of the test). All these results invite us to think opti
mistically about the future of immersive training systems, although
more experiments with more relevant scenarios are necessary to de
termine their performance.

As previously mentioned, the proposed training system has been
validated using a toy example with building blocks. Despite this fact,
the training system has been developed taking into account future ap
plications in the context of Industry 4.0. Therefore, the coding system,

(c)

Fig. 10. Three pictures of the experiments: (a) immersive training system, (b) conventional guide and (c) final assembly.
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Fig. 11. Box and whisker plot for combinations of guide and assembly.

event, state, activity and task logs, transition systems, and expert and
training interfaces are prepared for this potential use.

The coding system can be applied to blocks of different shapes and
sizes without the need to make changes. However, if the blocks have
more than six joints in total or more than one on the same side, the
codes of joints must be changed, adding the required numbers and
following the rules to reorder the chains. In addition, the equivalence
between the joints and their numbers must be stored in the event logs to



Table 7
Operator evaluations (from 1 “VR guide is much better” to 5 “Conventional
guide is much better”.

Variable Mean evaluation Std. dev.
Mental demand 2.15 1.23
Physical demand 3.55 1.43
Temporal demand 2.85 1.31
Effort 2.65 1.27
Performance 2.50 1.10
Frustration 2.90 1.02
Perception 1.40 0.50
Learning 1.95 1.23
Result 2.40 1.14

be managed by the training interface.

Finally, if a tool is required to perform a step of the assembly, this
tool can be added to the activity log, together with the active and target
assemblies and the approach to join them. In this way, the operations
are completely defined in the event logs and models, so the trainee
operators have enough information to learn the assemblies.

A last interesting fact to consider is the cost to implement the pro
posed system in an industry. The 3D models of the assemblies and their
parts should be available, since they are needed for the design and
production of them. Therefore, the effort should be focused on in
troducing them in the immersive environment, as well as to adapt the
coding system and event logs. The cost of VR headsets is decreasing as
these devices are filling a gap in the entertainment industry and in
creasing their potential consumers. Moreover, the longer scale of the
industrial processes (taking into account the complexity of assembly
and operators involved in them), the higher expected profitability of the
proposed system. This is because the effort to implement the system
increases slightly with the scale of the process, whereas the saving re
lated to the participation of operators and the use of production re
sources is significant.

6. Conclusions

This paper proposes a complete system for transferring the knowl
edge from expert to apprentice operators in the context of Industry 4.0.
The system provides an immersive interface based on virtual reality to
both expert and apprentice operators. This interface faithfully re
presents the real environment, improving the involvement of operators
in the tasks and reducing the costs of working in a real environment
(e.g., using the production line to teach or learn may imply temporally
stop the production and put the equipment at risk). Additionally,
techniques of process mining are used to collect and filter the data from
experts, obtain models that represent the assemblies and teach new
operators.

The developed system has been tested through a set of experiments
in which twenty operators had to learn and build four assemblies. These
tests were designed not only to estimate the performance of the pro
posed system, but also to compare it to a conventional one. The results
show that the performance of operators with VR guide is significantly
better in one of the assemblies and cannot be considered better or worse
in the other three. The questionnaires show that the operator evalua
tions of VR guide are significantly better in terms of mental demand,
performance, perception, learning, and result. These results confirm
that the developed training system is competitive against the conven
tional one, and the operators are receptive to this type of immersive
system.

The future works will focus on applying the proposed system to
more realistic assemblies. For this purpose, we would like to consider
real cases, such as furniture, machines and robots. In this way, we will
test the coding system with blocks of different shapes and sizes,
checking if it works properly or changes are required. Additionally,
more complex assemblies can lead to more varied experiments with
more relevant results, since they require more time to be built, but, at
the same time, can be easier to memorize. In this context, we will
compare the performance of operators again using the proposed system
and a conventional guide. Finally, a comparison between virtual reality
and augmented reality in the context of industry should be interesting
to determine the future of immersive training systems.

Operator evaluations

Scorg s best

Both equal

—/R best

Mental demand

Learning

Perception

Physical demand

Temporal demand

Effort

Frustration

Performance

Fig. 12. Diagram with the evaluations of operators.
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