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Abstract 

When a vision sensor is used in conjunction with a robot, hand-eye calibration is 

necessary to determine the accurate position of the sensor relative to the robot. This is 

necessary to allow data from the vision sensor to be defined in the robot’s global 

coordinate system. For 2D laser line sensors hand-eye calibration is a challenging process 

because they only collect data in two dimensions. This leads to the use of complex 

calibration artefacts and requires multiple measurements be collected, using a range of 

robot positions. This paper presents a simple and robust hand-eye calibration strategy that 

requires minimal user interaction and makes use of a single planar calibration artefact. A 

significant benefit of the strategy is that it uses a low-cost, simple and easily 

manufactured artefact; however, the lower complexity can lead to lower variation in 

calibration data. In order to achieve a robust hand-eye calibration using this artefact the 

impact of robot positioning strategies is considered to maintain variation. A theoretical 

basis for the necessary sources of input variation is defined by a mathematical analysis of 

the system of equations for the calibration process. From this a novel strategy is specified 

to maximize data variation by using a circular array of target scan lines to define a full set 

of required robot positions. A simulation approach is used to further investigate and 

optimise the impact of robot position on the calibration process, and the resulting optimal 

robot positions are then experimentally validated for a real robot mounted laser line 

sensor. Using the proposed optimum method, a semi-automatic calibration process, which 

requires only four manually scanned lines, is defined and experimentally demonstrated.  

Keywords 

Hand-eye calibration, Laser line sensor, Robotic metrology. 

1. Introduction 

In-line metrology is a requirement of many high value manufacturing processes. It 

allows measurement data to be collected while a process is underway, or soon after it is 

completed. If measurements are made while the workpiece is in-situ, then corrective 

actions can be taken without needing to remove and re-fixture the workpiece. Robot 

deployed sensors offer a good way to make measurements in-situ. Systems such as robot-

mounted 2D laser scanning systems offer a relatively low cost, highly flexible and robust 

way to measure a range of features. Robotic 2D laser scanning systems can be used in 



 

 

 

many industrial applications, such as: surface inspection [1,2], belt grinding of aero-

engines blades [3,4] or drilling operations [5].  

The combination of a 2D laser sensor and a robot provides a highly versatile 

measurement system. The robot can be used to position the 2D laser sensor with high 

levels of control. This allows larger complex free-form surfaces and components to be 

easily inspected at a range of locations. It also makes 3D surface reconstruction possible 

by combining multiple measurements taken while moving the 2D laser sensor over the 

surface of the target object. However, to reconstruct data points in 3D, the 3D 

homogeneous transformation between the sensor’s coordinate system and the coordinate 

system of the robot tool flange is required. If this transform is not known, then data 

collected by the sensor at multiple positions cannot be transformed into one global 

coordinate system. When a vision system is mounted on a robot arm, the process of 

determining the homogeneous transformation between the robot tool-flange and the 

vision system’s coordinate system is known as hand-eye calibration.  

Hand-eye calibration methods are generally based on homogenous transformation 

equations of type AX=XB [6–9]. For camera-based vision systems the hand-eye 

calibration problem is considered to be solved, with typical hand-eye calibration methods 

making use of checker board artefacts. Calibration algorithms make use of three-

dimensional data (x and y pixel position, plus pixel intensity) that can be gathered from a 

camera image. In the case of 2D laser sensors, there is currently no widely adopted 

standard calibration strategy. The main issue lies in the fact that 2D laser sensors only 

provide two-dimensional data. Extracting enough data for calculating the six degree of 

freedom pose of the laser sensor therefore requires either the use of multiple 

measurements, the use of a 3D structured artefact or a combination of both.  

For laser sensors the hand-eye calibration to determine the full homogenous transform 

including translation and rotation can be found in either a one-step or two-step process. In 

the two-step process rotation and translation are determined separately [10–13]. One 

drawback of the two-step calibration strategies is that calibration errors of the first step 

are propagated into the second step [14]. The two-step process is also inherently more 

complex; hence the trend is towards a simple one-step process. This is important as in 

many applications simplicity of the calibration process is a key benefit. Simplicity in this 

context can be considered in terms of the simplicity of the calibration object, and the 

simplicity of the required manual user interactions. These are important as they relate to 

the time and cost of the calibration procedure.  For 2D laser sensors, existing calibration 

approaches tend to address one area of simplicity only. For example, the method 

proposed in [15] is based on visually positioning a laser profile sensor at a fixed X-

shaped marker in different robot poses. This requires skilled manual interactions from the 

user, although the calibration object is still relatively simple. On the other hand, there are 

many examples of more complicated artefacts being used, such as a ball shaped object 

[10–13,16–18], disk shaped object [19] or pin shaped object [20]. The advantage of the 

more complex artefacts is that mostly the calibration is performed automatically, meaning 

the user interaction requirements are greatly simplified; however, the increased 

complexity of the artefact means it is harder to manufacture and more expensive. The 

calibration approach taken in this paper has been designed to provide simplicity of both 

the calibration object and the required user interactions; to satisfy this requirement it uses 

the most basic possible form of calibration object, which is a simple planar surface.  



 

 

 

In previous work by Wei and Hirzinger [19] planar surfaces were used for finding the 

3D positional and directional vectors of a laser diode range finder; using a single plane 

that was positioned in 13 unknown positions and orientations, with a manually controlled 

specific angle between the laser direction and normal vectors of each plane position. 

More recently, a robust hand-eye calibration strategy using random scan lines acquired 

from three close to orthogonal planes was suggested for robot mounted laser sensors [22]. 

The three-plane approach is attractive as there are no exact positioning constraints, 

allowing laser line scans to be collected from random positions on each or the three 

orthogonal planes. The use of random line scans makes this approach simple to setup, and 

the use of three orthogonal planes ensures enough data variation to allow the calibration 

problem to be solved using a linear Least Squares approach. 

 

 

Figure 1. Illustration of a robot-mounted laser sensor system; three-plane setup versus a single-plane setup 

for hand-eye calibration.  

The three-plane approach has two important drawbacks. First, careful interaction and control from the robot 

operator is needed to position the laser sensor relative to the three planes. Second, the need for three 

orthogonal planes introduces additional complexity to the process; for example, a single plane must be 

repositioned manually (by an operator) during the calibration procedure, or a more expensive and intrusive 

artefact with three orthogonal planes must be used. To address these issues, in this work an inherently 

simple hand-eye calibration strategy is proposed. This new method requires only a single flat surface for 

calibration. To illustrate the difference between the two approaches, a robotic laser sensor system located 



 

 

 

with the two sets of calibration artefact is shown in Figure 

1  

Figure 1. In addition, in order to simplify the physical implementation, the proposed 

calibration method can be used as part of a semi-automatic calibration process that 

requires manual collection of only four initial scan lines.  

In this work, the practicalities of using the single-plane strategy are considered in detail, 

and the calibration method is optimised for a robot mounted laser sensor system. A key 

contribution of the work is a methodology to define a suitable set of calibration data, that 

avoids non-convergent solutions, or solutions that converge to an erroneous result. The 

proposed methodology makes use of a circular pattern of target scan lines which are then 

used to define an associated set of robot poses to be used during the calibration. The most 

suitable robot poses are fully explored by simulating a robot mounted laser sensor to 

generate a large simulated data set, allowing a data driven optimisation approach. The 

paper is structured as follows. First, the theoretical basis for the single plane hand-eye 

calibration method is defined in Section 2. The simulation methodology and the process 

of using simulation data to determine suitable robot poses for a robust calibration are then 

described in Section 3. The potential performance of the single-plane calibration 

methodology is then assessed using simulation studies which are presented in Section 4. 

This is followed in section 5 by the results of physical experiments, which also 

demonstrate how the proposed calibration methodology can be executed as part of a 

semi-automatic calibration process. Finally, a discussion of the benefits of the method 

and the main conclusions drawn from this work are presented in sections 6 and 7 

respectively. 

2. The theoretical basis for the single-plane calibration approach 

The Robot mounted laser sensor system shown in Figure 1 can be defined in terms of 

three coordinate systems: the robot base coordinated system, the end-effector coordinate 

system and the laser sensor coordinate system, as indicated on the figure. These three 

coordinate systems, along with parameters that define the orientation of the laser sensor 

relative to a target surface are illustrated in Figure 2, which defines the three main 

coordinate systems: the robot base frame coordinate system ( , , )RB RB RBX Y Z , the end-



 

 

 

effector coordinate system ( , , )EF EF EFX Y Z  and the laser sensor coordinate system 

( , , )S S SX Y Z . The objective of hand-eye calibration is to define the homogeneous 

transformation S

EFT  that describes the position of the sensor coordinate system relative to 

the end-effector coordinated system. The calibration process requires input data in the 

form of 2D profiles acquired by the laser sensor. Each of the 2D profiles vary based on 

the distance of the sensor to the central incident point d , and the orientation of the sensor 

with respect to the target line, shown in Error! Reference source not found. as the 

projection and tilt angles, and  respectively. 

The core equation of the plane-based hand-eye calibration approach is the 

transformation that relates any observed point in a 2D profile, 
i i i

T

S S Sx , y ,z   iSp to its 

corresponding point on the calibration plane 
iRB

p ; note the subscript  denotes the index 

of the pose. This is performed using Error! Reference source not found. that requires 

the homogeneous 3D transformation from the robot to the end-effector, iEF

RBT , and the 

unknown hand-eye transformation S

EFT . Note in all mathematical descriptions used, bold 

type-face is used to define all vectors, and bold-face upper-case letter denote homogenous 

coordinate forms. 

 

  i

i i

EF S

RB RB EF SP T T P  

Equation 1 

To determine S

EFT , Error! Reference source not found. can be solved using a Least 

Squares frame work; however, to achieve a robust solution, enough variation in the 

calibration data must be provided to form a well-posed Least Squares problem, with a 

full-rank coefficient matrix. In the case of the three-plane strategy [22], this is achieved 

based on three sources of variations;  these are the surface normal of three planes (e.g. 

vector n in Figure 2), the position of the end-effector in the robot base coordinated 

system iEF

RBT and the variation in the 2D data acquired by the laser sensor. The unknown 

hand-eye transformation S

EFT can then be found based on a two-step iterative framework. 

Starting with an initial guess for the hand-eye transformation S

EFT , which can be found by 

physical measurement, the following steps are repeated until convergence.  

2.1 Step a 

The measured points from the acquired 2D profiles are transformed from the 2D sensor 

coordinate system into the 3D robot frame, using Error! Reference source not found.. 

For the first iteration, this is done using the initial guess for the unknown hand-eye 

transformation. The transformed points of each plane are then used to compute an 

estimation of the normal unit vector of the respective plane, jn , 1,2,3j  (each plane is 

defined by the subscript j). This is performed using Principal Component Analysis (PCA) 

[23].  



 

 

 

The obtained normal vector has unit length. To maintain the requirements for the plane 

equation used in the next step (see Equation 2), the normal vector length is changed. This 

is performed by computing the distance l of the orthogonal line from the origin to the 

plane, which is in the same direction as jn ; Considering j
μ , 1,2,3j  as the centre of each 

planes’ mass 
iRB

p , the distance l can be calculated as the length of the projection of the 

vector j
μ , onto the plane normal jn ,  T T

l  
j j j j j

n n μ n μ  and encoded into the normal 

vector by letting ljn . Then, the normal vectors for the set of three planes is defined 

as:  T

j j j jn n n μ , 1,2,3j  .  

2.2 Step b 

Knowing the estimate of the surface normal from the first step, it is possible to estimate 

a new hand-eye calibration transformation. This is done by fitting the transformed points 

in Equation 1 into a 3D plane equation. The equation of a 3D plane can be formed using 

the surface normal, one point in the plane and the distance l (see Equation 2); l can be 

obtained by dot product of the known point vector (
iRB

p in this case) and the unit length 

normal vector, and it is encoded as the length of the normal vector jn as explained in step 

a, such that ljn .  

 

, 1,2,3
iRBl p j   

i

T

j RB j jn p n n    

                Equation 2 

 

Since the sensor acquires a 2D profile, then, , 0ii y  and without loss of generality, the 

points 
iS

p  can be assumed to lie on the plane 0Sy  . As a result, the second column in 

S

EFT cannot be solved directly. However, using the orthogonality constraints for the 

rotation matrix, S

EFR , the second column in S

EFR can be computed by a cross product of 

the first and last columns. Let T denote the remainder of S

EFT after removing the second 

column and the last row. Then, Error! Reference source not found. and Error! 

Reference source not found. can be combined to yield Error! Reference source not 

found., where   9 1vec  w T consists of the stacked columns of T and iA  

1 9

i iS Sx z   
i i iEF EF EFT T T

i RB i RB i RBn R n R n R and iq  iEFT

i RBn p . 

 

i iq q    i i i iA w n A w n  

Equation 3 



 

 

 

Using the set of points from all three planes, a Least Squares solution can be used to 

find the first nine sets of parameters ( *
w ), as defined by Error! Reference source not 

found., where 
T

   P

T T

1 NA A ,..., A , 1,...,
T

q q   
 P P1 N NY n n . The computed 

*
w only contains the first and last column of S

EFR  and the second column can be found 

based on their cross product, where  2 3 1R R R so that  , ,S

EF 1 2 3R R R R . 

 

2
arg min  * T -1 T

ww Aw Y (A A) A Y  

Equation 4 

 

Singular Value Decomposition (SVD) is then applied on the resulting rotation 

matrix S

EFR , which gives the closest valid rotation matrix [24] belonging to (3)SO . 

Finally, since the procedure of orthogonalizing R will change the corresponding entries 

in *
w , the resulting coefficients will no longer be valid for Error! Reference source not 

found.. Therefore, the translational part of w is re-estimated by a second optimization. 

For this aim, w is decomposed,
 

  
 

*
R

w
Tr

, 6 1*
R , 3 1Tr . The rotation part of the 

target vector Y is ignored so that,   *

1:6Y Y A R  (
1 2:k kA  denotes the columns 1k to 2k  of 

the matrix). Finally, the optimal translational vector is recomputed using Error! 

Reference source not found..   

 

 
1

7:9 7:9 7:9argmin


  * * T T

t 7:9Tr A Tr Y A A A Y  

Equation 5 

 

Using the new estimated homogeneous transformation S

EFT , the two steps, a and b, are 

repeated until the changes in the estimated transformation matrix is negligible.  

In order to find the nine unknown parameters in Error! Reference source not found., a 

system of nine independent equations (coefficient matrix of rank nine) is required; 

however, the use of data from three orthogonal planes does not fulfil the rank condition. 

Therefore, more than nine equations are formed using data from several lines captured 

from each of the three planes. This increases the independency between the nine 

variable’s coefficient vectors and achieves a full rank input matrix A to find a unique 

solution [23], and it allows a linear Least Squares method to be used to find the unknown 

parameters as described in [22].  

In transition from three orthogonal planes to a single-plane approach, significant care 

must be taken to ensure the calibration data includes the necessary variation required for 

the algorithm. Especially because the surface normal, which is one of the three original 

sources of variation in the linear set of equations (Error! Reference source not found.), 

is not a variable in the single-plane strategy; in the single-plane approach only two 

sources of variations, ,0,
i i

T

S Sx z   iSp and iEF

RBT  remain. In order to have clear insight 



 

 

 

about the role of these variation sources, the plane equation (Equation 3) is shown based 

on these parameters in Error! Reference source not found. and Error! Reference 

source not found.. The surface normal is defined based on the plane orientation, i.e. the 

position that it is assigned during calibration. iEF

RBT varies as a function of the robot’s pose, 

and the 2D profile data measured by the laser sensor is affected by the scan parameters 

( d , and  ) as shown in Error! Reference source not found.. In Equation 6, the 

second element of the 2D profile 
iS

P is line crossed since the laser sensor only acquires 

data in the x and z directions. Therefore, the second column elements in S

EFT cannot be 

calculated so they are line crossed, but they can be found in a later stage by taking the 

cross product of the first and last columns.  
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Equation 7 

 

 
 

Figure 2. A laser sensor located at distance d from the incident point. , ,n   are the surface normal, 

projection angle and tilt angles respectively. 



 

 

 

 

By increasing the variations of the two remaining sources, the laser sensor 2D profile 

iS
p and the end-effector transformation iEF

RBT , it is possible to compensate for the lack of 

surface normal variation and form a full rank input matrix needed for a Least Squares 

solution. Regarding the variation in iEF

RBT , from Error! Reference source not found., it 

can be seen that the terms iEFT

RBn R and iEFT

RBn Tr  can be varied by changing the robot pose 

when scanning successive lines. This maintains the variations between the equations of 

different lines (between-line variation). Regarding the variation of
iS

p , given a fixed set 

of sensor parameters  , ,d   , the same 2D profile  i i ix y z
iSp , 0iy  , will be 

acquired for any robot  pose. However, within a single 2D profile, there is slight variation 

in the equations of different points belonging to the same profile. The small variations are 

in their ix and
iz values (within-line variation). These two sources of variations, the laser 

sensor 2D profile and the end-effector transformation, should be improved in terms of 

variation (maximised in the ideal case) to achieve a full rank input matrix A . However, 

there are some limitations in this case; while an equation can be formed for every 

observed point in a line, a high level of dependency exists between the equations of two 

close points in a line. Furthermore, depending on the directionality of the scanned lines, 

correlations might exist between their direction in the robot’s coordinate system, resulting 

in low variations in robot arm movements and the resulting iEF

RBT ; this also causes 

correlations in their 2D profiles
is

p . To overcome this problem the number of scans must 

be increased, using various sensor parameters  , ,d   . This results in additional 

variations from both the acquired 2D profiles
iS

p and the end-effector transformation iEF

RBT . 

A natural result of increasing the orientation of the lines, scanned on the single plane 

calibration artefact, is that this will also tend to increase the variations in the movement 

of the robot arm.  

In addition to considering how the sensor is positioned during calibration, it is also 

necessary to consider where the calibration plane is positioned relative to the robot. This 

is because an important potential limiting factor happens when there are zero elements in 

the surface normal n of the plane. This happens when the plane orientation is parallel to 

one of the XY,XZ orYZ planes. In this condition, two of the three elements of the normal 

vector n are zero; tending to nullify the effect of their multiplied rows in iEF

RBR in Error! 

Reference source not found., and the only remaining row in iEF

RBR is similar for all the 

data lines in that plane, regardless of their position and orientation. This is due to the fact 

that there is no variation along the non-zero axis.  For example, for a plane with the 

rotation orientation defined by 0, 0, 0,x y z
     then the normal vector 

is  0 0 1
T

n . Using the same scanning parameters  , ,d   , the equations of any line 

acquired from any position in the plane is similar; that is, both the remaining row 

31 32 33i i i
r r r 
  and the 2D profile

iS
p are the same for all of the acquired profiles (see 

Error! Reference source not found.). In other words, if the sensor position parameters 

are fixed there is no benefit in scanning additional lines from the surface in this condition.   
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Equation 8 

 

 

The only remaining source of variation in this condition are the sensor parameters 

influencing the 2D profile
iS

p . Due to the correlations of the lines in 2D profile and the 

resulting dependencies in the equations, it is difficult to maintain a full rank input and 

find a unique solution for the hand-eye calibration problem. Therefore, such a condition 

should be avoided, and this will be further investigated by an optimisation study 

presented in Section 4. 

3. Measurement system simulation for calibration process evaluation 

To investigate the impact of various strategies for collecting calibration data, a general 

simulation of a robot mounted laser sensor was created. The simulation model considers 

four key aspects: the position of the plane relative to the robot, the position of the sensor 

relative to the robot’s end-effector, the pattern of scan lines acquired from the target plane 

and the reach of the robot. Within the simulation, the nominal hand-eye calibration 

transformation, a set of reach constraints for the robot, and the position of the single plane 

calibration artefact in the robot’s coordinate frame are specified. The position of the 

artefact is defined in terms of the angular rotations the lateral translations of the artefact 

with respect to the origin of the robot’s base frame. Furthermore, a set of target lines that 

will be acquired by the laser sensor, are defined on the surface of the artefact. Two 

strategies are considered to define the target lines, they can be either randomly 

distributed, or they can be defined based on a predetermined pattern. Within the 

simulation provision was made to accommodate both strategies; allowing data 

representative of a set of random lines, as well as a predefined circular pattern, to be 

generated. The random pattern is defined using a computer random number generator, 

while the circular pattern consists of nine lines, each with one end located at a coincident 

point at the centre of a circle, and the other end of each line spaced equally on the 

circumference of the circle, such that there is a 40 degrees angle from one line to the next. 

The circular pattern is designed to maximise the rotational variation from a single 2D 

plane between the target lines. It also provides a simple starting point from which to 

generate a full set of calibration data, which is useful for automation of the process. 

Figure 3 shows examples of the two strategies. 

 



 

 

 

 

Figure 3.  Illustration of the two strategies for defining the target lines; (a) random distribution (b) circular 

pattern. 

To ensure sufficient variation is included in the simulated data set, for each target line a 

set of 3D sensors poses are also considered. The set of sensor poses represent different 

positions of the sensor relative to the calibration plane such that it can measure a set of 

points from the same target line. The pose of the sensor relative to the target line is 

represented by the three scan parameters, d, θ and β as shown in Error! Reference 

source not found.. For each combination of these parameters a sensor pose in the robot 

coordinate system is defined, and from this the corresponding 2D laser profile and the 

position of the robot tool flange iEF

RBT is simulated. To ensure that each sensor pose is 

feasible the pose is checked to ensure it lies within estimates of reachability for the robot 

arm.  

 

4. Performance assessment of the single-plane hand-eye calibration process 

A major advantage of the simulation approach is that it allows many different 

calibration configurations to be easily compared. Also, as the hand-eye calibration is 

known in the simulation, it provides a useful means to evaluate the effect of data 

variability and quality on the accuracy of the calibration process. 

4.1 Hand-eye calibration for multiple robot systems 

 

In order to evaluate the single-plane hand-eye calibration strategy on different 

configurations of laser sensor systems, 200 sensor systems with different hand-eye 

calibration matrices were simulated. The translational parameters of hand-eye 

calibrations matrices for each system were chosen from a uniform distribution 

 100 ,  200U mm mm  and similarly, the angular parameters were distributed 

uniformly )180 , 1 0(  8o oU   . For each simulated system, a single plane, oriented 

randomly in front of the robotic system, was considered. The rotation angles of the planes 

around x, y, and z directions within the robot coordinate system were constrained to be 

not close to zero with all rotations greater that one degree. This was done to avoid the 

problems related to small angles explained in Section 2.  

A circular pattern of nine lines was simulated on each of the planes. Based on these 

lines a wide range of 2D scan profiles in the laser sensors coordinate system was 



 

 

 

calculated. The 2D Scan profiles were based on sensor position parameters that define the 

pose of the sensor relative to the target lines, i.e. projection angle and tilt angle as shown 

in Error! Reference source not found.. The projection angle   was varied in the 

range 0 40   , with a step size of five degrees. The tilt angle   was varied in the 

range 60 120   , with a step size of ten degrees and the height parameter d was 

varied within the range of 60 120mm d mm  , with a ten mm step size. 2D profiles were 

simulated for all of the nine lines based on all possible combinations of the scan 

parameters, under the condition that the robot reachability constraints were fulfilled. The 

corresponding iEF

RBT  transformations were also computed in each case. 

Using the simulated data for each system, hand-eye calibration was performed. The 

initial guess for the hand-eye calibration algorithm was generated in each case by adding 

a uniformly distributed offset, ranging plus and minus ten percent of nominal, to each of 

the values in the true hand-eye calibration. Figure 4 shows box plots that illustrate the 

distribution of errors in the achieved hand-eye calibrations for all these experiments. As 

can be seen the errors are very low, showing that even with a single plane, as long as 

good variation in the calibration data is maintained, it is possible to achieve good 

calibration results.  

 

 

 

 

Figure 4. The average error results of single-plane hand-eye calibrations, using 200 different simulated 

systems (a) translational elements (b) rotational elements. For ease of visualisation, five outliers all with 

translational errors smaller than 0.03 mm and angular errors smaller than 0.5 x 10 -4 degrees are not 

included.  

4.2 Hand-eye calibration process optimisation 

To maintain good variation in the calibration data large quantities of calibration data can 

be used, however for practical reasons, reducing the number of scans required for 

calibration is an obvious benefit.  Given a real robot-mounted laser sensor, the hand-eye 

calibration should be optimised to minimize the required number of scans for successful 

calibration. The simulation was therefore used to investigate how the calibration data set 

can be reduced while still maintaining robust calibration results. The three main factors 

affecting data variation are the plane orientation, number of lines scanned and the sensor 



 

 

 

position parameters (d, θ, β, see Error! Reference source not found.). Each of these 

factors is considered in the following three sub-sections.  

Over the simulations, the plane orientation angles (αx, αy, αz) are varied in the range of  

(-5o ≤ α ≤ 5o) with a step size of 1o. The reason for the choice of this range is the 

closeness to 0o
which is easier and simpler to maintain in practice. All the 

311  possible 

combinations of the three angles are considered. For each plane orientation a circular 

pattern of nine lines is simulated on the plane. Then, based on the sensor position 

parameters (d, θ, β), the 2D profiles 
iS

p as well as iEF

RBT transformations for each line are 

simulated. The distance is varied in range  60 90 120d mm mm mm which was 

selected based on the physical focal range of the selected laser sensor. The projection 

angle is chosen to provide one extreme and one middle value such that 0 30      . 

The tilt angle is varied in three values 60 90 120       . It must be noted that the 

number of generated 2D profiles for each line is less than the full set of possible 

combinations of d, θ and β. This is due to the fact that some of the found sensor poses are 

estimated to be outside the reachable boundaries of the robot arm. Hence, these 

nonconforming cases are ignored.  

4.2.1 Orientation of the plane   

The plane orientation influences the surface normal, n, which appears in the hand-eye 

calibration equation (see equation 6). Hand-eye calibration was performed for all of the 
311 simulated planes explained in section 4.2. Only in 15 out of the total of 311 cases, the 

calibration was unsuccessful. A calibration is considered unsuccessful, when after many 

iterations (above than an upper threshold of 2000), the algorithm did not converge or it 

converged before the upper threshold but, the deviation from the true hand-eye 

calibration is more than 0.01 mm in at least one of the elements. Table 1 shows the 

number of successful and unsuccessful cases based on the number of plane orientation 

angles, (αx, αy, αz) that are close to zero  1 1i
    . The occurrences vary from zero 

(cases without any close-to-zero angles) to three (when all of the plane orientation angles 

are close to zero). As can be seen, in unsuccessful cases at least one of the three angles 

was close to zero. On the other hand, there were no unsuccessful cases when all of the 

three angles were outside the range 1 1i
    . This result supports the mathematical 

reasons explained for these problematic angles in Section 2. Hence, the use of non-zero 

angles is considered as a criterion for orientation of the single plane for robust calibration.  

 

Table 1. Number of successful and unsuccessful calibration cases based on the number of plane orientation 

angles (αx, αy, αz) that is close to zero ( 1 1i
    ). 

1 1 , , ,i i x y z      Number of Succ. calib. Number of Unsucc. calib. 

0 512 0 

1 573 3 

2 208 8 

3 23 4 



 

 

 

4.2.2 Laser sensor positional parameters  

In order to minimise the number of values for scan parameters, a top down strategy is 

considered. Therefore, the success of hand-eye calibration for reduced cases of the 

candidate values for each scan parameter is investigated for all appropriate plane 

orientations. This process continues for a lower number of values until a failed calibration 

case occurs. The search stops when a failed calibration is found since it contradicts the 

initial aim for finding a generalised solution that works for any appropriate plane 

orientation.  

Starting with the laser height (d), one of the three candidate height values is ignored 

each time. In each of the three resulting cases, all possible combinations of the eight 

appropriate values for (αx, αy, αz) is considered and all the candidate values of the two 

other parameter’s (θ, β) are used. This results in 1536 data sets, however the hand-eye 

calibration failed in 26 cases out of the 1536 total tests. 

Table 2 shows the number of successful and unsuccessful cases based on the ignored 

heights. As can be seen, in most unsuccessful cases, the failure happened due to ignoring 

the 2D profiles with the laser sensor at the closest distance to the scanned lines, while 

ignoring the furthest distance of 120 mm resulted in only two failed calibrations. 

Although there is a low risk of failure when ignoring 120 mm, keeping all of the three 

heights is necessary to avoid the risk of failed calibration.  

 

Table 2. The number of successful and unsuccessful calibration cases based on the ignored heights of the 

sensor ( )d . 

Ignored Height Number of Succ. calib. Number of Unsucc. calib. 

60mm   494 18 

90mm  506 6 

120mm  510 2 

 

Similarly, in the case of projection angle θ, the ranges of variation are considered and 

based on the top-down strategy, the effect of elimination of one of the two initial 

candidate values from the set is evaluated. This is performed for the appropriate plane 

orientations and the three height variables and all the candidate β values were used, 

resulting in 38 2 1024  data sets for calibration. Half of the calibrations failed, and the 

other half were successful; in summary, ignoring the 30projection angle caused failure 

while ignoring the 0 resulted in successful calibrations. The reason for this can be 

explained by considering the illustration in Error! Reference source not found., at an 

orthogonal projection angle (θ = 0o), the tilt angle becomes orthogonal (β = 90o); in this 

case the variations between different acquired 2D profiles are reduced significantly. 

Based on these results, the use of one projection angle, θ = 30o is deemed enough for 

hand-eye calibration. 

The same top-down strategy is also used for the tilt angle β. All combinations of the two 

out of the three candidate tilt angles β are considered together with all heights and only 

one projection angle, 30 , resulting in a total of 1536 datasets. There were 98 failed 

calibrations and 1438 successful cases. Table 3 shows the number of successful and 

unsuccessful calibration cases based on ignored angles. As can be seen, ignoring any of 



 

 

 

the three angles resulted in failed cases, so all the three tilt angles are recommended 

calibration. 

Table 3. Number of successful and unsuccessful calibration cases based on ignored tilt angles (β).          

Ignored Angle Number of Succ. calib. Number of Unsucc. calib. 

60   466    46 

90  469   43 

120  503 9 

 

4.2.3 Number of lines  
 

Hand-eye calibration using the sensor position parameters for the nine lines of the 

circular pattern and the appropriate plane orientations ( , , 1x y z   and , , 1x y z  ), 

achieved successful results. To minimize the number of required lines, the top-down 

strategy was used again, and the number of target lines was reduced from nine to eight. 

This resulted in six cases of failed calibration. Therefore, it is recommended that all nine 

lines in the circular pattern should be used for a successful calibration.  

Furthermore, to investigate the possibility of using lines randomly, and compare this to 

the circular pattern approach, many calibration tests were performed over sets of 

simulated data. 500 sets of random lines were simulated on a plane oriented each time 

randomly using the range of appropriate rotations (αx, αy, αz). Totally 81 random lines are 

simulated on each plane. 81 lines was chosen to mirror the 9 lines in circular pattern 

experiments, where for each line there are 9 possible combinations of the optimal 

parameters (one , three heights and three β values). Hand-eye calibration was performed 

successfully on all of the 500 simulated sets. The averages and standard deviations of the 

translational and angular errors were 3(0.0435   0.269) 10 mm   and 

  30.060 0.237 10   respectively.    

4.3 Simulating the effect of imperfect data  

To investigate the impact of imperfect data on the single-plane calibration process, data 

points within each simulated 2D profile are modified by the addition of a noise term. The 

noise is modelled using a Gaussian function with zero mean. The standard deviation of 

the Gaussian is then varied to simulate a range of noise levels. The range of values 

chosen was based on noise characterisation experiments of the real set-up, that were 

performed previously [25, 26], and the level of noise that was considered previously for 

evaluation of the three-plane hand-eye calibration algorithm [22].  

As the single-plane hand-eye calibration algorithm is based on minimization of a Least 

Squares equation as shown in Equation (4), increasing the number of scanned lines will 

provide more data for fitting and help to cancel out the effect of noise. To determine the 

potential benefits of increasing the number of scanned lines, for each level of noise 

considered, the number of simulated scanned lines is also varied. Eight sets of simulated 

lines are considered, with the quantity of lines in each set nominally set to 81, 180, 270, 



 

 

 

360, 450, 540, 900 and 4500. These nominal quantities are based on random sets of target 

lines, that must be scanned on the calibration surface  (lines set sizes: 9, 20, 30, 40, 50, 

60, 100 and 150), with each target line scanned nine times based on all nine optimal scan 

parameters, as defined above. Due to the random distributions of target scan lines, as 

described previously, based on the robot arm reachability limits some lines were 

discounted so the actually number of scans can sometimes be slightly less than nine per 

target line.  

For each nominal quantity of lines, the simulations were repeated 100 times, and each 

time the lines were located on a single plane that was oriented randomly, but was in an 

appropriate orientation as defined above. Gaussian noise in different standard deviation 

levels ranging in 0 0.5noise  mm with the step size of 0.05 mm was added to the 

simulated points in each scanned line. The first case, with zero standard deviation is a 

clean signal condition.  

Furthermore, in order to compare the single-plane hand-eye calibration strategy with the 

three-plane strategy [22], simulations of data from three planes was also performed. One 

hundred sets of data were created in which a plane was simulated randomly, and two 

other orthogonal planes were then also simulated in positions relative to the first plane. 

For these experiments 35 random lines were simulated on each plane and the associated 

sensor poses, 2D profiles
iS

p as well as the transformation iEF

RBT data were simulated. The 

same set of Gaussian noise levels were added to these data sets giving totally 1100 sets of 

data each consisting of 3 35 105  scan lines.  

Hand-eye calibration was performed for all the simulated data sets. In all cases, the 

initial guess for hand-eye calibration was formed by adding a large level of uniformly 

distributed noise to the true hand-eye elements; this is defined as ( 30 , 30 )U    for the 

angular elements and ( 200 , 200 )U mm mm  for the translational elements. The results of 

the calibrations cab be seen in Figure 5, which shows the averages of translational and 

rotational errors over the 100 simulations for all single-plane as well as three-plane data 

sets. The X axes show the average number of used lines and theY axes shows the noise 

level. As can be seen both errors reduce when the number of lines increases, and they are 

also smaller in cleaner signal conditions. A linear curve fitting strategy is used to 

compute the intermediate points (between the measured points) in the plot. The three-

plane calibration results, consisting of 105 lines, are also included as a line of dots on the 

surface plot shown in Figure 5. As the dots are coincident with surface plot, it is clear that 

calibration results for three-plane calibration are consistent with the errors expected for a 

similar quantity of lines acquired from a single plane.  In general it can also be seen that 

in noisier conditions, the use of more lines can reduce the calibration errors. 

 

 



 

 

 

 

Figure 5. The average hand-eye calibration errors, for different quantities of scanned lines and Gaussian 

noise levels, over 100 simulations per line number and noise level, (a) translation error (b) angular error. 

The results of the three-plane strategy using 105 lines are over plotted in dots. 

5. Physical validation of the single-plane hand-eye calibration process 

 To validate the proposed single-plane calibration strategy, four sets of data were 

collected [27]; one based on the previous three-plane method [22], one based a  

systematically generated data from the circular pattern of nine lines, that resulted from 

the simulation studies defined in section 4, one based on a computer randomized pattern 

and one based on a random selection of manually defined robot poses as defined by the 

robot operator. The robot mounted laser sensor system used to collect this data is shown 

in Figure 1. The robot is a Fanuc LR Mate 200 iC industrial robot arm, driven by a R-

30/iA Mate controller. The sensor is a Micro Epsilon 3D profile sensor (sensor model: 

Epsilon scan control 2900-50); it is a commercial laser sensor, consisting of a laser light 

source, a sensor matrix and a receiver. All data was collected from a flat rectangular 

surface artefact of 400 mm x 500 mm x 25 mm. The flatness of the target surface on the 



 

 

 

artefact was measured using a Nikon Ultra CMM, probing an evenly distributed array of 

357 points over the surface. In this way the surface artefact was found to have a total 

flatness variation of +/- 21 µm. 

For the first set of data that replicates the three-plane method [22], the artefact was 

positioned in three almost orthogonal planes and 35 random lines were collected from 

each of the three plane positions. The scans were repeated 5 times per plane, with the 

robot visiting the same poses each time. Using this data set, hand-eye calibration was 

performed using 125 different combinations of the acquired data, resulting in 125 

calibration matrices.  

For the second set of data, the plane artefact was located approximately 410 mm in front 

of the robot and 150 mm to the robots right hand side, and it was tilted at an angle of 

approximately five degrees to the x, y, and z axis of the robots coordinated system; for 

this aim, four holders were designed and 3D-printed as was shown in Figure 1. Based on 

the ideal set of circular lines and associated sensor poses, that was determined by the 

simulation work, a reduced set of 48 sensor poses was selected for testing. Using the set 

of 48 sensor poses, the robot was cycled through the poses five times allowing the 

collection of five data sets and consequently five calibration matrices.  

For the third set, again the plane was located approximately 410 mm in front of the 

robot and 150 mm to the robots right hand side, and it was tilted at an angle of 

approximately five degrees to the x, y, and z axis. Data was collected from a set of 105 

randomly generated sensor poses that were defined by computer, and the sequence of 

scans was repeated five times. In Figure 6, the simulated data as well as the data collected 

by the sensor are visualised on the same plot. This represents the second and third data 

sets, and as can be seen, the simulated and real data are well aligned to each other.  

 

Figure 6. Visualisation of the simulated data and the reconstruction of the real collected data on the same 

plot (a) circular pattern data (b) random lines on a single plane. 

Lastly, the fourth data set was collected from the plan as positioned for the second and 

third data sets, and based on the judgement of the robot operator 100 random sensor 

poses were used. In the absence of pre-generated poses by simulations and inspired by the 

optimisation results, the height, projection and tilt angles were varied for scanning each 

line by the operator. Similar to the other experiments, the scans were repeated five times 

and five calibration matrices were computed. At each repetition of the experiment, the 

same line poses were visited by the sensor. 

The four sets of experimental data were then analysed to evaluate the repeatability of 

each calibration approach and the different collection strategies, as explained in the 

following three sub-sections. 



 

 

 

5.1 Accuracy  

To compare the accuracy of the different calibration and data collection strategies, a set 

of test points were reconstructed in the robot base frame using the calibration matrices 

found for each of the four calibration strategies. A plane was fitted to the reconstructed 

test points and the spatial deviations from the fitted plane were computed. In order to 

have a fair accuracy comparison between these strategies, a common set of 48 test points 

is used; in this case these points were taken from the first set of calibration data collected 

using the circular pattern. To reconstruct these points into a common 3D coordinated 

system the hand-eye calibrations resulting from each of the four strategies were used. A 

plane was then fitted to the 3D reconstructed points in each case and the Euclidean 

distances of the reconstructed points from their orthogonal projections on the fitted plane 

were computed, the results are presented in Table 4; as can be seen, apart from the three-

plane experiment, all other standard deviations of distances are less than 0.01 mm. The 

circular pattern obtained the minimum deviations of less than 0.004 mm.  

When considering the significantly larger error resulting from the three-plane strategy, it 

is important to note that this error is most likely not a function of the hand-eye calibration 

algorithm, but rather that it is due to positional errors of the robotic system. The three-

plane strategy is most likely to be affected by robot positioning errors as a larger range of 

joint motions are needed to reach the three orthogonal planes. While the analysis and 

characterisation of the sources of errors in the robotic system used for this work is out of 

the scope of this paper, results obtained by the simulation studies of the three-plane 

calibration approach showed comparable results to the single-plane strategy (see Figure 

5). This supports the conclusion that these larger errors are due to the robot positional 

data rather than the calibration method. 

 

Table 4. The standard deviation in mm of Euclidean distances of 48 reconstructed points from their 

corresponding orthogonal projections on a fitted plane, using different strategies hand-eye calibrations.  

3-plane 

(user acquisition) 

 

1-plane (computer 

generated random 

lines) 

1-plane 

(circular 

pattern) 

1-plane (user 

defined random 

lines) 

0.356 0.040 0.033 0.049 

5.2 Repeatability 

 

To quantify and compare the repeatability of each calibration approach, calibration data 

collected for each method was captured multiple times as described above. Multiple 

hand-eye calibration matrices were then computed using data from each acquisition 

method. The impact of variation in the calibration matrix was then assessed by projecting 

a point within the coordinate system of the laser sensor into the coordinate system of the 

robot end-effector (these coordinate systems are illustrated in Error! Reference source 

not found.), and then calculating the standard deviation in the resulting position when 

each calibration matrix is considered. The point chosen is within the nominal working 

range of the laser sensor and off-set from the central axis of sensor such that it is 120 mm 

along the z axis of the sensor and 24 mm along the x axis of the sensor (the axis 

directions are illustrated in Error! Reference source not found.). For the data collection 



 

 

 

strategies based on a single plane, data was repeatedly collected five times. In the case of 

the three-plane experiments, by combining the data from each of the three planes, over 

five repeated experiments, a total of 125 calibration matrices were obtained. Due to the 

variation in sample size Bessel’s correction was applied to the estimation of standard 

deviation for each method. The results can be seen in Table 5, quantified by x, y and z 

components as well as the scalar magnitude. As can be seen in most cases the 

repeatability is less than 0.1 mm, and the circular pattern strategy has clearly the most 

repeatable performance with values that are less than 0.01 mm.  

 

Table 5. The standard deviation of 3D coordinates of a transformed point from the sensor coordinate system 

into the end-effector coordinate system. Hand-eye calibrations computed from four different calibration 

strategies were used. 

Calibration strategy x  

(mm) 

y  

(mm) 

z 

 (mm) 

Magnitude 

(mm) 

3-plane (user acquisition) 0.020 0.015 0.096 0.099 

1-plane (computer generated 

random lines) 0.037 0.042 0.004 0.056 

1-plane (circular pattern) 0.002 0.008 0.000 0.008 

1-plane (user defined random lines) 0.003 0.012 0.031 0.033 

5.3 Automatic calibration strategy for reduced user manual settings 

In the physical calibration experiments that were performed in previous two sections, in 

two cases, data was acquired automatically. This was done by using the robot tool poses 
iEF

RBT  generated by the simulation program. The poses were defined in the robot 

coordinate system for scanning the lines based on the associated sensor position 

parameters  , ,d   . In addition to the scan parameters, the simulation program requires 

the orientation of the planar surface artefact to be defined with reasonable certainty. This 

was achieved using a mounting jig to ensure accurate location of the planar artefact 

relative to the robot in a known orientation. In practical use, it may well be possible to 

set-up a similar scenario, so that repeat calibrations can be performed automatically. 

However, for the case of the initial set-up, in which neither the hand-eye calibration is 

performed, nor the location of the planar artefact is known, this would not be possible. 

This would result in the need for full user guidance using the random line method which 

might require the user to set approximately 100 scans which is significant undertaking in 

terms of the required user guidance. Therefore, to address this issue the feasibility of 

conducting a hand-eye calibration, for the purposes of initial setup, with minimal user 

guidance was investigated.  

In order to simplify the acquisition process and minimise the manual setting, a 

simplified acquisition strategy is proposed. This starts by positioning the calibration 

target plane within the robot workspace ensuring that the tilt of the plane is such that it is 

rotationally off-set from the robots global coordinate system by at least one degree about 

each axis. Then, only four lines must be collected from the tilted plane. The lines should 

be collected from the middle part of the plane so that, they can be considered on the 

edges of the area that scans should be performed. As shown in Figure 8, the initial four 



 

 

 

corner lines are collected by the user. Using a manually estimated hand-eye 

transformation (that could be based on a crude measurement), the scanned lines are 3D 

reconstructed. Then a plane is fitted to the reconstructed lines allowing simulation of the 

circular pattern of lines and the corresponding robot poses iEF

RBT . The generated robot 

poses are then used to scan the pattern automatically. Due to the use of the crudely 

estimated hand-eye calibration, the scanned parameters and line poses do not exactly 

follow the simulations; however, as shown above, the calibration algorithm tolerates 

deviations from the target line scan pattern, and optimal sensor position parameters. In 

this case, while the optimal parameters are not exactly followed, their partial variations 

are still valid and will preserve the full rank input variation criteria. For example, a 

simulated tilt angle of 120might be117 in practice, however this shift will also affect the 

other tilt angles so that their variation with respect to each other is preserved.   

Using the proposed method with the four manually scanned lines, hand-eye calibration 

was performed. The calibration matrix was used to reconstruct the same circular data set 

that was used for accuracy tests in the previous experiments. The mean and standard 

deviation of the Euclidean distances of the 3D reconstructed points to the corresponding 

fitted plane was 0.085mm and 0.066 mm respectively. 

 

 

 

 

Figure 8. Illustration of the user acquired four lines and the fitted plane. The plane is used to simulate the 

scan poses for calibration data acquisition automatically. The simulated and reconstructed lines are also 

shown.  

6. Discussion 

The calibration results of the simulated and real data sets demonstrate the possibility of 

hand-eye calibration using the single-plane strategy for any laser sensor system. The 

optimised sensor position parameters for the real sensor system showed promising results 

in both clean and noisy conditions while using simulated and real data, even while using 

initial guesses that deviated largely from the true values. As seen in Section 4.1, with the 

initial guesses defined by adding a uniformly distributed noise that varied by up to ten 

percent of the true translational and rotational elements, the hand-eye calibration was 

generally successful for all the 200 different simulated sensor systems.  

Through application of the simulation a more optimal set of parameters to define the 

data collection strategy used in the calibration procedure was defined. While the 

parameters represent more optimal solutions for the laser sensor and robot used in this 



 

 

 

work, these were not validated as generally optimal for all robot mounted laser sensors. 

This is because the optimisation was performed for the known system and its related 

training simulations. Therefore, a general optimum solution in this case must be 

investigated in future studies. 

For the systems simulated in this work, selected ranges of noise included in the 

simulation experiments also include the same noise level that was used in [22], which 

was 0.5 mm. While direct comparison with [22] is not possible due to unknown 

information regarding the exact configuration of the simulation used, the errors using the 

simulated three-plane data in the current study are in a similar range compared to those in 

[22] where for a similar noise level of 0.5 an average translation error of 

around 300 400m m  and average angular error of approximately 0.1 0.2  was 

shown.  

When considering the relative accuracy of the four data collection strategies, the 

experimental test results clearly show the single-plane methods result in lower residual 

errors when collected points are compared to a best-fit plane. In the case of the three-

plane real experiments, the calibration accuracy seemed to be influenced by the errors in 

robot positional accuracy, which is thought to be worse as a function of the increased 

range of robot movements required to perform this calibration. In contrast, as seen in 

section 5.1, the circular strategy, with the minimum required level of robot movements 

resulted in lowest reconstruction error. This would suggest there may be an advantage to 

be gained when doing a hand-eye calibration using a single plane close to the location of 

subsequent scanning, however this must be investigated more thoroughly in future work.  

7. Conclusion 

In this paper a new strategy for hand-eye calibration of robot mounted laser sensors was 

proposed. A significant advantage of the new method is that it requires only a single 

planar artefact, and the user is only required to direct the robot to collect the first four 

scan lines, with the potential for all subsequent scans to be collected automatically 

following a fully defined set of test parameters, that can be used to guide the robot 

automatically. The strategy is based on a previously developed algorithm for hand-eye 

calibration that requires the use of three planes, however, through the rigorous definition 

of the calibration data collected, the conditions needed for a robust Least Squares solution 

using only a single plane have been fully defined in this work. 

To aid the collection of good quality calibration data, a new design for the location of 

target lines that follow a circular pattern was proposed. In addition, a simulation approach 

was used to select optimal parameters to define the poses of the laser sensor relative to 

the target plane, resulting in a defined set of 48 sensor poses from which the circular 

pattern of lines should be scanned. This approach was shown to efficiently allow 

maximum variation of the calibration data collected from a 2D plane, and thus it 

improves the performance of the calibration in terms of both accuracy and repeatability.  

The work also concluded that the position of the plane in the global coordinate system 

of the robot must be carefully considered, and small plane rotation angles of less than one 

degree about each axis of the global coordinate system should be avoided. These small 

angles lead to non-convergence of the calibration algorithm, or a converged but erroneous 



 

 

 

solution; by following the guidelines proposed in the paper these troubling situations can 

be easily avoided. 

The resulting calibration strategy is simple from the perspective of user interaction, 

robust, accurate, and requires only a simple single plane artefact; making the approach 

low cost and easy to implement for many industrial applications of robot deployed laser 

scanning.  
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