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Abstract

Surface metrology systems are increasingly used for inspecting dimensional quality in manufacturing. The gauge of these measure-
ment systems is often mounted as an end-effector on robotic systems to exploit the robots’ high degrees of freedom to reposition the
gauge to different viewpoints. With this repositioning flexibility, a planning methodology becomes necessary in order to carefully
plan the viewpoints, as well as the optimal sequence and quickest path to move the gauge to each viewpoint. This paper inves-
tigates coverage path planning for robotic single-sided dimensional inspection of free-form surfaces. Reviewing existing feasible
state-of-the-art methodologies to solve this problem led to identifying an unexplored opportunity to improve the coverage path
planning, specifically by replacing random viewpoint sampling strategy. This study reveals that a non-random targeted viewpoint
sampling strategy significantly contributes to solution quality of the resulting planned coverage path. By deploying optimisation
during the viewpoint sampling, an optimal set of admissible viewpoints can be obtained, which consequently significantly shortens
the cycle-time for the inspection task. Results that evaluate the proposed viewpoint sampling strategy for two industrial sheet metal
parts, as well as a comparison with the state-of-the-art are presented. The results show up to 23.8% reduction in cycle-time for the

inspection task when using targeted viewpoints sampling.

Keywords: 3D surface inspection, robot motion planning, free-form surface, dimensional metrology

1. Introduction

Industrial surface metrology technologies, deployed in man-
ufacturing systems for dimensional quality inspection of free-
form surfaces, often use robotic solutions for positioning the
measurement gauge to different viewpoints in order to cover the
surfaces that are to be inspected. These then provide the abil-
ity of having an automated inspection station that can be placed
either near-line in proximity to the production system or in-line
within the production line [1, 2]. Automated inspection of free-
form surfaces near- or in-line helps to significantly reduce the
mean-time-to-detection of defects.

The coverage path planning problem is the associated robot
path planning problem to determine the viewpoints from where
to measure the part’s surfaces, the sequence to visit the view-
points, as well as the collision-free paths to travel to each view-
point. Several criteria need to be considered when planning
the coverage path, including full coverage of the targeted sur-
faces but also the resulting cycle-time for the inspection task.
It should be noted that similar path planning problems need to
be considered for other applications in manufacturing such as
non-destructive testing [3], surface quality inspection [4], and
on-machine inspection [5].

The cycle-time for near- or in-line dimensional quality in-
spection is typically of high importance. A short cycle-time en-
ables to more frequently inspect more dimensional quality fea-
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tures on the parts with a single robotic metrology gauge, thus
improving the resource utilisation. The cycle-time is the combi-
nation of the travel time for the robot to move the gauge to each
viewpoint and the inspection time for the measurement by the
gauge at each viewpoint. It is important to minimise both in or-
der to effectively reduce the inspection task cycle-time. The rel-
ative importance of minimising the number of viewpoints and
minimising the robot travel time depends on the characteristics
of the metrology technology and robot system.

The objectives of the work presented in this paper is to un-
derstand the capabilities and limitations of existing coverage
path planning techniques for dimensional quality inspection, as
well as exploring opportunities for improvements. The specific
focus is on single-sided dimensional quality inspection for free-
form surfaces such as sheet metal parts. It can typically be as-
sumed that the thickness of sheet metal parts is constant across
the geometry. Therefore, when covering the single-side surface
of the sheet metal part, all dimensions are known. Sheet metal
parts are often produced in high-volumes at fast production
rate, which makes having a short cycle-time for the dimensional
quality inspection important to support effective quality control.
Near- or in-line metrology systems typically have a lower accu-
racy compared to contact point-based coordinate measurement
machines, however dimensional deviation for sheet metal parts
resulting from shrinkage, wrinkling and spring-back are usually
of a higher degree than the accuracy of these systems and are
thereby suitable for dimensional inspection [6].

The main contribution of this paper is the identification and
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evaluation of the proposed targeted viewpoint sampling strategy
within the investigation of coverage path planning for robotic
dimensional quality inspection of sheet metal parts. It is pro-
posed to deploy an optimisation technique to iteratively find
viewpoints with maximum coverage of the remaining uncov-
ered area of the to-inspect surfaces and minimum travel time,
and repeat this in order to obtain a redundant set of admissi-
ble viewpoints. A subset of these are then used for the result-
ing coverage path. This is evaluated for the two real-world in-
dustrial sheet metal parts. This paper demonstrates that using
a targeted strategy for viewpoint sampling instead of random
sampling gives significant cycle-time reductions.

The remainder of this paper is organised as follows; the cov-
erage path planning problem for dimensional quality inspec-
tion of sheet metal parts is discussed in Section 2. Section 3
presents the identified state-of-the-art coverage path planning
methodologies during the performed literature study. The moti-
vation and presentation of the proposed targeted viewpoint sam-
pling strategy can be found in Section 4. The two considered
case studies are presented in Section 5, followed by the fea-
sibility analysis of the state-of-the-art coverage path planning
methodologies in Section 6. Finally, an in-depth evaluation of
the proposed targeted viewpoint sampling strategy is presented
together with the comparison of its performance against the fea-
sible state-of-the-art methodologies in Section 7.

2. Coverage path planning

Coverage path planning problem, within the scope of this
work, is concerned with planning the viewpoints for surface
metrology gauge to measure the to-inspect surfaces and the
collision-free path connecting those viewpoints in the optimal
sequence. This work focusses on discrete coverage path plan-
ning problems and it is assumed that reference geometries of
the to-inspect surfaces, workspace and obstacles are available
as well as that the workpiece and robot placement are prede-
fined. According to Almadhoun et al. [7], discrete coverage
path planning problems are typically decomposed into two sub-
problems:

1. Coverage sampling: to find the smallest set of viewpoints
that provides full coverage,

2. Multi-goal path planning: to find the optimal sequence and
collision-free robot paths that connect all viewpoints.

The solution to the first sub-problem determines the number
of measurements by the gauge in order to fully cover the to-
inspect surfaces, and thereby the required measurement time.
The solution to the second sub-problem determines the length
of the robot path to reposition the gauge to each viewpoint, and
thereby the required robot motion time. The time for complet-
ing the inspection task, i.e. the cycle-time, is then the combi-
nation of the measurement time and the robot motion time. In
this work, the objective for coverage path planning problem is
to minimise the total time to complete the inspection task.

2.1. Coverage sampling

The coverage sampling problem is concerned with generat-
ing a set of viewpoints that provide full coverage of the to-
inspect surfaces [8]. The coverage sampling problem can be
formulated using a set system (S, Q) where S is the finite set
of geometric primitives s;, which are relatively small-sized ge-
ometric elements (e.g. nodes, triangles, rectangles, etc.), that
comprise the surfaces that need to be inspected, and Q is the
robot configuration space. A viewpoint is defined by feasible
configuration ¢; € Q and has a corresponding set of observed
primitives, i.e. a specific subset of S. Solving the coverage sam-
pling problem is done by finding the minimum number of view-
points, with feasible configuration g;, so that each primitive s;
is included in at least one subset of observed primitives associ-
ated with the viewpoints. When the geometry of the surfaces is
known as well as the properties of the metrology system (e.g.
field-of-view, image overlapping, shadow effects), as assumed
in this work, a model-based methodology can be used [7].

In general terms, the coverage sampling typically starts with
generating a discrete representation of the to-inspect surfaces
as a set of geometric primitives (e.g. mesh of triangular faces).
Note that this discretisation will affect the accuracy of the in-
spection. The next step is the viewpoint sampling, which em-
ploys a specific sampling strategy in order to generate the set
of admissible viewpoints. The purpose is to obtain a set of ad-
missible viewpoints, in a systematic way, that guarantees full
coverage but might include unnecessary redundant viewpoints.
The final step is to find the selected viewpoints that constitute
the smallest subset in the admissible set that provides full cov-
erage.

2.2. Multi-goal path planning

The multi-goal path planning problem, the second sub-
problem for the coverage path planning problem, is concerned
with finding the sequence and path connecting the selected
viewpoints in order to minimise the travel cost (i.e. the robot
motion time to position the gauge at each viewpoint). The
multi-goal refers to that there are multiple goals, i.e. view-
points, that need to be reached along the path. In other words,
the objective is to find the shortest kinematic feasible path for
the robot to position the gauge at each viewpoint exactly ones,
without colliding with any obstacle in the workspace. Finding a
feasible collision-free path between the viewpoints can require
one or more intermediate via-locations for the path so that the
robot moves around the obstacles in the workspace. Hence,
the multi-goal path planning methodology requires an obstacle
avoidance technique to plan such intermediate via-locations.

3. Existing methodologies

This section discusses the existing state-of-the-art coverage
path planning methodologies that have been considered in this
work.



3.1. Coverage sampling

The viewpoint sampling strategy to obtain the viewpoints for
the admissible set, together with the method to solve the uni-
cost set-covering problem to select the optimal subset, are the
two components that influence the solution of the resulting set
of viewpoints for the coverage path. Several sampling strategies
for the admissible viewpoints have been proposed.

Gonzalez-Banos [9] proposed a randomised art-gallery algo-
rithm for coverage sampling whereby the admissible viewpoint
set is generated by random sampling the workspace around the
to-inspect surfaces. However, this sampling strategy does not
guarantee full coverage of the to-inspect surface. The prob-
ability to achieve full coverage increases with the number of
randomly sampled admissible viewpoints. A similar viewpoint
sampling strategy is adopted in the methodology by Bircher et
al. [10] and is proposed to be integrated within the proposed
rapidly exploring “random tree of trees” path planning algo-
rithm.

Raffaeli et al. [6] proposed a strategy that first clusters the
primitives based on distance and surface normal direction in
order to group primitives that can be covered from the same
viewpoint. For each group, a viewpoint is sampled randomly
that covers all primitives in the group and included in the cov-
erage path. This significantly reduces the number of viewpoints
however it struggles to guarantee full coverage.

Dornhege et al. [11] proposed a viewpoint sampling strategy
that includes two different steps. The first step incorporates pre-
liminary random viewpoint sampling, with relaxed constraints
for evaluating the primitives’ observability, in order to iden-
tify the most promising areas in the workspace for high-quality
viewpoints. The second step again includes random sampling
restricted to one of the identified most promising areas and us-
ing complete visibility constraints, to obtain admissible view-
points. The number of admissible viewpoints is then equal to
the number of identified promising areas, or thus to the thresh-
old for an area to be considered promising.

Bircher et al. [12] proposed a strategy based around itera-
tively randomly resampling to find viewpoints that are closer
to each other in order to reduce the robot motion time. It is as-
sumed that a separate viewpoint is necessary for each geometric
primitive of the discrete representation of the to-inspect surface.
Consequently, the sole objective for the resampling strategy is
to reduce the travel-cost between the viewpoints.

Vasquez-Gomez et al. [13] proposed a viewpoint sampling
strategy where admissible viewpoints are obtained from an
equidistant grid placed on the surface of a sphere around the
to-inspect surfaces. For each node of the grid a viewpoint is
generated and included in the admissible set.

Danner and Kavraki [14] proposed dual sampling strategy.
For each primitive, m candidate admissible viewpoints that are
able to observe that specific primitive are sampled. Next, the
best viewpoint of these m candidates is selected for admissible
set. The selection criteria is based on the number of primitives
that can be observed from the viewpoints. In this way, there is
at least one viewpoint in the admissible set for each primitive
and full coverage is guaranteed.

In the work by Englot and Hover [15], an alternative strat-
egy is proposed that also randomly samples m viewpoints for
each primitive. It is proposed to include all m viewpoints in the
admissible set since the solution quality improves by having a
higher level of redundancy within the admissible viewpoint set.

Finding the smallest subset that provides full coverage within
the admissible viewpoint set can typically be done by formulat-
ing this problem as a uni-cost set-covering problem, which is
an integer-linear programming optimisation problem [16]. De-
pending on the number of primitives and the number of ad-
missible viewpoints generated for each viewpoint, solving the
set-covering problem can become challenging. When this is
the case, heuristic optimisation methods (i.e. Greedy cover-
ing [16]) can be used instead to find an approximate solution.

Vasquez-Gomez et al. [13] proposed a greedy approxima-
tion method to find the viewpoints for the selected viewpoint
set within the admissible set, as well as the sequence for the
selected viewpoints. The greedy selection criteria include the
number of observable primitives, travel cost from previous
viewpoint, etc. The best n viewpoints according to these cri-
teria (combined using linear scalarisation) are included in the
set of selected viewpoints, until the (n + 1)" viewpoint does not
observe any unobserved primitives.

Jing [17] combines the set-cover problem to select the set of
viewpoints from the sampling admissible viewpoints with the
multi-goal path planning problem by formulating the two to-
gether as a special type of sequencing optimisation problem.
This is to avoid the decoupling of the set-cover problem to se-
lect the optimal subset of admissible viewpoints and the multi-
goal path planning problem.

3.2. Multi-goal path planning

The multi-goal path planning problem is concerned with
finding the optimal sequence and collision-free paths to visit
all selected viewpoints. This problem can be formulated as a
travelling salesman problem, an extensively studied problem in
combinatorial optimisation [16, 18]. Solving a travelling sales-
man problem is known to be particularly challenging with an
increasing number of selected viewpoints to visit. Smaller in-
stances of the travelling salesman problem can be formulated
and solved as an integer linear programming problem. When
the number of viewpoints to visit increases, this approaches
becomes impractical. More powerful alternatives for solving
these harder instances of the travelling salesman problem have
been developed and implemented. Among the state-of-the-art
are the Lin-Kernighan-Helsgaun heuristic proposed by Hels-
gaun [19] and the TSP-Concorde library [20].

It should be noted that in order to solve the travelling sales-
man problem, it is required to know the path and correspond-
ing travel cost between all pairs of selected viewpoints. Global
path planner such as sampling-based path planning methods
to generate collision-free paths connecting the viewpoints are
preferred for coverage path planning [14]. However for cer-
tain specific scenarios alternative methods can be more efficient
and provide more elegant solutions [21]. Among the sampling-
based path planning methods, the Rapidly-exploring Random
Tree (RRT) method proposed by LaValle and Kuffner [22]



and its variants are popular methods for coverage path plan-
ning [8, 17, 10] due to their performance for a variety of path
planning problems.

Hence, when the number of admissible viewpoints increases,
the number of viewpoint-pairs rapidly increases and calculat-
ing all corresponding travel cost can become impractical. In
the work by Englot and Hover [8], calculating the travel cost
for all viewpoint-pairs for the travelling salesman problem is
circumvented. This is done by iteratively solving the travelling
salesman problem initially for an optimistic lazy approximation
of the travel cost between the viewpoint-pairs that is very easy
to calculate. In each iteration, the approximated travel cost for
all viewpoint-pairs included the planned multi-goal path is up-
dated with the travel cost for the exact planned path.

4. Random versus targeted viewpoint sampling

One of the observation made during the literature study was
that all existing coverage path planning methodologies rely on
some form of random sampling in order to obtain the (admis-
sible) viewpoints. The random sampling is done either within
the entire robot workspace or within a smaller subspace of the
workspace around one or more primitives. The quality of the
planned coverage path is strongly affected by the sampled (ad-
missible) viewpoints. In order to have a reliable viewpoint
sampling methodology, a vast number of randomly sampled
viewpoints are necessary. However, having many admissible
viewpoints quickly becomes problematic for solving the set-
covering problem that selects the optimal subset of viewpoint
for the coverage path, even for approximate solutions.

Based on this, it is proposed to replace the random viewpoint
sampling strategy with a targeted viewpoint sampling strategy.
The motivation for the proposed targeted viewpoint sampling
strategy is to generate a relatively small set of admissible view-
points, according to a heuristic procedure, that still reliably
yields a high quality coverage path. Such a targeted view-
point sampling strategy is based around a search problem that
is solved by optimisation. The search problem is formulated
in order to find the “best” viewpoint based on the previously
sampling viewpoints, and is then reformulated and solved itera-
tively in order to obtain a set of viewpoints. In other words, the
work presented in this paper aims at developing a novel view-
point sampling strategy that allows integrating objectives and
constraints for sampling the admissible viewpoints so that these
aid achieving the objective of the coverage path planning prob-
lem, e.g. minimising the cycle-time. In the remainder of this
section, the search problem to find the optimal next viewpoint
based on the previously sampled viewpoints is first presented
and thereafter the proposed targeted viewpoint sampling strat-

egy.

4.1. Targeted viewpoint sampling problem formulation

This section formulates the targeted viewpoint sampling
problem, including the objectives in order to define the adopted
meaning of an optimal viewpoint. Furthermore, the different
constraints to consider in order to obtain feasible viewpoints are

also presented. For the formulation of the viewpoint sampling
problem, let Q; = {q},q[z, . qu } be a robot pose specifying
the position for each of the J robot joints for viewpoint 7, and
s; € S be the subset of primitives that can be observed from
viewpoint i. The set of primitives that represents the to-inspect
surfaces will be written as S .

Objectives

There are two criteria that play a role to plan the quickest cov-
erage path. Consequently, these two criteria translate into two
objectives. The first criterion looks at having viewpoints that
are able to observe many primitives at once since this will con-
tribute to minimising the number of viewpoints to fully cover
the surfaces. It is also important that each viewpoint covers a
different subset of primitives than the other viewpoints. It is
therefore proposed to only consider the primitives that have not
been covered by the previously sampled viewpoints. The first
objective maximises the number of not yet covered primitives
that the gauge can observe from the viewpoint and is formulated
as follows

IS\{s15esizi }l

Jobrs(Qi, S\ {s1...5:.1}) = Pr(Q;, sx)

(H
1 if primitive sy is covered from Q;
0 else

k=1

with Pri(Q;, pr) = {

with f,5:(Q;, S \ {s1...s;-1}) being the function that evaluates
the coverage of the given viewpoint Q; by determining the num-
ber of primitives that can be observed by the gauge at that view-
point, {s;...s;—;} are the subsets of covered primitives by the
previously sampled viewpoints 1...i— 1, s; is the k”* primitive
in the considered set of primitives S \ {s; ... si—1}, Pri(Q;, si) 18
the function that evaluates if primitive sy is covered from view-
point Q;. This function utilises a model representation of the
characteristics (e.g. field-of-view, depth-of-view, sensitivity to
reflectivity) of the used metrology gauge and also requires ge-
ometric information of the primitives beyond the location, such
as the surface normals.

The second criterion for the coverage path planning is con-
cerned with having viewpoints that are located close to each
other. The logic being that reducing the distance between the
admissible viewpoints will aid to reduce the travel cost for the
gauge to visit selected viewpoints. The second objective is thus
the duration of the motions to move from the viewpoint Q; to
all previously sampled viewpoints. It is proposed to consider
the motion duration for moving to all other viewpoints because
the viewpoint sequence is not known at this stage. The second
objective function is formulated as follows

i-1
Fra Qi Q1i-1) = ) faur(Qis Q) @
j=1

where fi,4,(Q;, O1..;-1) being the function that evaluates the
travel cost indicator for the given viewpoint Q;, fu.r-(Q;, Q;) is
the function that calculates the duration of the motion to travel



from viewpoint Q; to viewpoint Q;. The travel cost is equal to
the sum of the duration of the motion to travel from the view-
point Q; under evaluation to each previously sampled admissi-
ble viewpoint. It should thus be noted that this does not take
into account any sequence for visiting the sampled viewpoints,
but is used as an approximate indicator for the travel costs. This
function utilises algorithms to generate the motion for the point-
to-point motions between viewpoints as well as for determining
the timing of the trajectory. For this, a certain simplification can
be made since the indicator is only used to compare different
candidate viewpoints with each other.

Since there are two conflicting objectives, the viewpoint sam-
pling optimisation problem is a multi-objective optimisation
problem and it becomes necessary to determine how to handle
the multiple objectives. On the one hand, to have a viewpoint
that observes many not yet covered primitives, it needs to be
significantly different from the previously sampled admissible
viewpoints. On the other hand, to have a significantly different
viewpoint, it needs to be located far away from the previously
sampled admissible viewpoints, which results in a high travel-
cost. In order to handle the multiple objectives, it is necessary
to specify the desired trade-off between them. It is proposed to
use the linear-scalarisation technique, also called the weighted
sum method in order to combine the two objective functions
in a scaled and balanced way. The combined multi-objective
function can be written as follows

Jobj(O1..i>8) = c1+ fops(Qi S \ {s1... 5121}
+c2* fira(Qi»> Q1...i1)

with ¢; and ¢, being weighing factors to scale the values ob-
tained by the two objective functions f,s and fi,4, as well as to
balance the trade-off as desired for the specific problem at hand.
Please note that, in the case of minimisation optimisation, the
first of the two weighing factors needs to be negative (¢; < 0) as
the first objective function needs to be maximised and the other
needs to be minimised.

(€)

Constraints

During the viewpoint sampling, several constraints need to
be taken into account in order to guarantee that the sampled
viewpoints are feasible considering the used robotic surface
metrology technology for the dimensional inspection. A first
constraint is concerned with the kinematics of the robotic sys-
tem. When optimising the search problem to find the next op-
timal viewpoint during the sampling, it is necessary to evaluate
that the viewpoint’s pose Q; is feasible in terms of the robot’s
kinematics. This constraint is formulated as follows

8kin(Qi) 2 1 “

with g;,(Q;) the function to verify the robot kinematics and
which returns the number of feasible robot poses for viewpoint
Q;. It involves solving the inverse kinematics for the gauge
position and orientation in order to determine the feasible robot
joint configurations to position the gauge accordingly.

The second constraint is concerned with the collisions be-
tween robotic metrology system and the obstacles in the

workspace as well as with the to-inspect object. This constraint
is formulated as follows

gcul(Qi) >1 (5)

with g.,/(Q;) being the function to verify that the robot poses for
viewpoint Q; are collision-free and which returns the number
of collision-free robot-poses found. This involves performing
a collision detection simulation based on the geometric models
for the robot links, end-effector, part(s), fixture, obstacles, floor
etc. and using interference calculation algorithms.

4.2. Targeted viewpoint sampling

This section presents the proposed targeted viewpoint sam-
pling strategy. This strategy iteratively solves the formulated
viewpoint sampling problem in order to obtain a set of high
quality viewpoints for the admissible set. The required input
includes: set of geometrical primitives that represents the to-
inspect surfaces, kinematic model of the robotic system, geo-
metrical models of obstacles in the workspace, as well as the
characteristics of the used surface metrology system. The strat-
egy iteratively reformulates and solves the search problem to
find the optimal next viewpoint. It is necessary to reformulate
the search problem each time a new viewpoint is obtained, i.e.
after each iteration, since the formulation depends on the pre-
viously sampled viewpoints. This is repeated until the required
full coverage of the to-inspect surfaces is reached with the sam-
pled viewpoints. Englot and Hover [15] show that sampling
more admissible viewpoints on top of a set that guarantees full
coverage gives higher quality coverage paths. Based on this,
the termination criterion for the viewpoint sampling becomes
that each primitive is covered at least k times (i.e. k € N*). The
number k will be referred to as ‘coverage-redundancy’ in this
paper. The output is the smallest subset within the set of admis-
sible viewpoints that provides full coverage of the to-inspect
object with the desired coverage-redundancy k.

Workflow

This section presents the workflow for the proposed targeted
viewpoint sampling strategy, which is schematically illustrated
in Figure 1. Throughout the iterative sampling, the role of the
set S, is to continuously keep track of the primitives that need
to be targeted by the next viewpoint. The set S, is continuously
updated to be the subset of primitives that have been covered the
least number of times. Initially, the set S, includes all primitives
inS§.

The first step (i.e. Step 1 in Figure 1) is to derive the search-
space W), to find the new viewpoint Q; with i being the iteration-
number. The search space W, C R® is the six-dimensional
space specifying all positions (i.e. x,y, z-coordinates) and ori-
entations (i.e. «, 3, y-angles) for the metrology gauge mounted
as end-effector on the robot to cover the primitives in S,. The
search space is hereby adaptively reduced for the primitives in
S, which significantly helps to solve the search problem for
finding the next optimal viewpoint.

Next (i.e. Step 2 in Figure 1) is to deploy the optimisation
algorithm to find the optimal new viewpoint Q; that maximises
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Figure 1: Flowchart of the proposed viewpoint sampling strategy, combined by
set-covering and multi-goal path planning (in grey) into coverage path planning
methodology

the number of covered primitives in S,, as formulated in (1),
while minimising the travel cost to the pose of the previously
sampled viewpoints {Q; ... 0,1}, as formulated in (2). The
robot kinematics constraint from (4) and the collision avoidance
constraint from (5) are also considered during the optimisation.

In the last step (i.e. Step 3 in Figure 1), the set S, is updated
for covered primitives by the new admissible viewpoint in order
to include the subset of primitives that have been covered the
least number of times by previously sampled admissible view-
points {Q ... Q;}. Only including the least-covered viewpoints
in S,, instead of all viewpoints that have not been covered k
times, is crucial in order to avoid sampling k times the same
viewpoint.

As long as all primitives in S have not been covered the re-
quired k times, these three different steps are repeated itera-
tively in order to find admissible viewpoints to cover the prim-
itives in S,. Finally, when this termination criterion has been
reached, the generated set of admissible viewpoints is provided
to formulate the set-covering problem in order to select the
smallest subset within the admissible set that provides full cov-
erage. This subset with selected viewpoints are then used for
the coverage path.

As shown in Figure 1, the next step is to formulate the set-
covering problem in order to find the smallest subset within the
set of admissible viewpoints in order to achieve full coverage
of the to-inspect surfaces. Two alternatives have been identified
for this work. The first technique formulates the set-covering
problem as an integer programming problem [23]. However,
this becomes impractical when the number of admissible view-
points increases (> 1000). In order to handle the case with a

Figure 2: Robotic inspection station used in the considered case studies

higher number of viewpoints, a greedy method is used to pro-
vide an approximate solution for set-covering problem.

Finally, the multi-goal path planning problem needs to be
solved in order to obtain a feasible path that visits all the se-
lected viewpoints {Q ... Q;}, as shown in Figure 1. It is pro-
posed to use the iterative solution for the travelling salesman
problem [15].

5. Case studies

This section describes the case studies concerning dimen-
sional inspection of sheet metal parts that were considered dur-
ing the work for this paper. The used surface metrology tech-
nology is the CogniTens WLS400a white-light stereo-vision
system from Hexagon Manufacturing Metrology mounted on
a 6-DoF industrial manipulator arm robot of the type ABB
IRB6620-150. The robot inspection cell is shown in Figure 2.
The duration for taking a single observation at a viewpoint is
around 4 seconds.

In order to evaluate the proposed strategy and compare
against the state-of-the-art, tests have been performed for two
different case studies considering different to-inspect surfaces.
The surfaces are sheet metal parts that are real-world industrial
components for the sub-assembly of an automotive door. In the
first case study, the to-inspect sheet metal part is an inner door
panel. Figure 3 shows the considered inner door panel as well
as the geometric primitives (i.e. points) that provide the dis-
crete representation of the part as black markers. In the second
case study, the to-inspect sheet metal part is a window rein-
forcement frame for the inner door panel made. The window
reinforcement frame panel is displayed in Figure 4 as well as
the geometric primitives (i.e. points) that provide the discrete
representation of the part are shown as black markers. For both
case studies, the goal is to obtain viewpoints (and a path con-
necting them) that provide full coverage of the to-inspect sheet
metal parts, i.e. covers all primitives representing the surface,
displayed in Figures 3 and 4.

6. Feasibility analysis

The existing methodologies that were identified during the
literature study, which was presented in Section 3, were anal-
ysed to investigate their feasibility for dimensional inspection



Figure 3: The inner door panel considered as to-inspect object in the first case
study, the black markers show the 2283 geometric primitives that provide the
discrete representation

Figure 4: The window reinforcement panel considered as to-inspect object in
the second case study, the black markers show the 3287 geometric primitives
that provide the discrete representation

of sheet metal parts. For a coverage path planning methodology
to be considered as feasible, it needs to be able to address the
objectives and constraints presented in Section 2, which means
that the number of viewpoints and the travel cost for the planned
coverage path are minimised, the planned robot paths are kine-
matically feasible and collision-free, as well as full coverage
of the to-inspect surfaces is guaranteed. This section presents
the investigation and discusses the results summarised in Ta-
ble 1, which columns refer to these four different criteria that
have been used to evaluate the feasibility of the coverage path
planning methodologies.

Several of the existing methodologies [9, 13, 11, 10] failed
to achieve full coverage of the to-inspect surfaces of the sheet
metal parts in the considered case studies. Many of these rely on
randomly sampling the robot workspace around the to-inspect
surfaces to generate admissible viewpoints. For the sheet metal
parts, such as the ones considered in the case study, it was found
that even when an impractically large number (>500,000) of ad-
missible viewpoints are generated by random sampling, these
still do not provide full coverage. Each time, the same subset of
primitives remained uncovered. It turned out that these primi-
tives can only be covered from a few specific viewpoints in the
workspace. The probability that these specific viewpoints are
found by random sampling is unreasonably low.

The methodologies proposed by Bircher et al. [12] man-
ages to provide full coverage however the number of selected
viewpoints was 300 times larger compared to other successful
methodologies [14, 15]. The resulting total time for the inspec-

Table 1: Summary feasibility analysis of existing coverage path planning
methodologies in terms of minimising the number of viewpoints (i.e. fyps in
(1)), minimising the travel cost (i.e. fiq in (2)), guaranteeing kinematic fea-
sible collision-free paths (i.e. gk, in (4) and g,y in (1)), and guaranteeing full
coverage (FC) of the to-inspect surfaces

Method ‘ ﬁibs ‘ ﬁrav ‘ 8kin»> 8col FC
Vasquez-Gomez et al. [13] X

Bircher et al. [10] X X
Gonzalez-Bonas et al. [9] X X
Raffaeli et al. [6] X X
Dornhege et al. [11] X X X

Bircher et al. [12] X X X
Danner and Kavraki [14] X X X X
Englot and Hover [8] X X X X
Jing et al. [17] X X X X
This paper X X X X

tion task will always be much longer, even when optimising the
path using the proposed iterative resampling. The assumption
that there is no need to minimise the number of viewpoints is
thus unrealistic for dimensional inspection of sheet metal parts.

The viewpoint sampling strategy proposed by Raffaeli et
al. [6] that is based around clustering the geometric primitives
in groups based on distance and surface normal was also tested
in this work. The results showed that it fails to provide full
coverage of the to-inspect surfaces. This appears to be due to
that there is no guarantee that all primitives in a group can be
observed from a single viewpoint since the clustering criteria to
group the primitives ignores the ray-tracing as well as the robot
kinematics and collision-avoidance.

The methodologies proposed by Danner and Kavraki [14]
and Englot and Hover [15], where an admissible viewpoint is
sampled (randomly) for each primitive, manage to provide full
coverage. It can thus be concluded that this viewpoint sam-
pling strategy is the most suitable for coverage path planning
for the dimensional inspection of sheet metal parts. Based on
the performed analysis, it has been found that the iterative ap-
proach for solving the multi-goal path planning problem by En-
glot and Hover [8] the most suitable methodology for coverage
path planning in the context of dimensional inspection of sheet
metal parts. The main benefit of this methodology is that avoids
having to generate collision-free paths to connect all possible
viewpoint pairs.

The analysis of the methodology proposed by Jing [17]
showed to be inefficient for the coverage path planning problem
in the considered case studies. It took one hour of computations
to obtain a solution of similar quality compared to five seconds
of computations with a methodology by Englot and Hover [15]
that uses the decoupled approach. This methodology is thus
feasible for coverage path planning for the dimensional inspec-
tion of sheet metal parts. It was however not be further consid-
ered in this work due to its computational inefficiency.

Based this feasibility analysis, it was concluded that a
methodology that decomposes the coverage path planning prob-
lem into three individual subproblems, i.e. (1) admissible view-



point sampling, (2) set-covering for selected viewpoint subset,
(3) multi-goal path planning, turns out to be most suitable for
dimensional quality inspection of sheet metal parts. These three
subproblems are considered individually in the feasible state-
of-the-art methodologies proposed by Danner and Kavraki [14]
and Englot and Hover [8].

7. Evaluation and Comparison

This section presents the evaluation of the proposed view-
point sampling strategy for the two case studies and the compar-
ison with existing state-of-the-art feasible coverage path plan-
ning methodologies. First, the implementation of the proposed
targeted viewpoint sampling strategy is presented and the per-
formed tests for the evaluation are described. Thereafter, the
results of the comparison are presented and discussed.

7.1. Implementation

The proposed targeted viewpoint sampling strategy requires
the characteristics of the surface metrology technology as input
in order to determine the primitives that can be observed from
a viewpoint, as formulated in (1). These include the field-of-
view, ray-tracing, and light scatter. Firstly, the primitives that
are within the truncated pyramid corresponding to field-of-view
of the gauge when it is at the viewpoint are determined. This
evaluation will be represented by the function fy,,. Secondly,
for each of primitive in the field-of-view, ray-tracing is used to
evaluate whether the line of view between the gauge and the
primitive is no obstructed by other primitives. This evaluation
will be represented by the function f,,,. Thirdly, the angle be-
tween the line of view and the surface-normal of the primitive is
calculated in order to check that this is within the limitations of
the gauge. This evaluation will be represented by the function
fscar- This objective can thus be formulated using the following
function:

fObs(Qi» {Ql...i—l }s S) = fscat(ﬁ’ay(ffov(Qi’ {Ql...i—l }a S))) (6)

with Q; being the viewpoint that is currently being evaluated,
{Q1..i-1} is the set of previously sampled viewpoints.

In order to implement the linear scalarisation objective func-
tion from (3), the weighing factors ¢; and c¢; to scale and bal-
ance the two objectives need to be specified. In this work, the
trade-off is balanced so that it always prioritise the gains in
number of observed primitives (i.e. f,5,) over travel cost (i.e.
ftrav)-

The Self-Adaptive Differential Evolution (SADE) algo-
rithm [24] was used for the optimisation to find the best next
viewpoint in Step 2 (see Figure 1) in the proposed viewpoint
sampling strategy. The SADE algorithm was tuned until it man-
ages to consistently find a good enough solution (i.e. 90%),
which corresponds to 1000 viewpoint evaluations.

During the viewpoint sampling, the travel cost from the eval-
uated viewpoint to all previously sampled viewpoints is ap-
proximated since performing collision-free path planning for
all these viewpoint-pairs becomes computationally expensive.
This is approximated by considering the travel cost to move

to the average robot-pose, i.e. difference between viewpoint-
pose joint angle with the average joint-angles of all previously
sampled viewpoints, is used instead. In this way, only a single
travel-cost needs to be calculated when evaluating a viewpoint
and the lazy travel-cost approximation is easy to compute.

The used multi-goal path planning method was adopted
from [8]. It starts with calculating the lazy travel cost approxi-
mation for each viewpoint-pair. The travelling salesman prob-
lem (TSP) for finding the optimal sequence of viewpoints to
minimise the travel cost is then solved. The TSP is solved as
an integer programming problem [23], initially without sub-
tour elimination constraints in order to reduce the size of the
problem when the number of viewpoints increases. When the
obtained optimal path solution includes subtours, specific con-
straints to eliminate those subtours are added to the formulation
of the integer programming problem. The problem with its new
formulation is solved again to obtain update the solution ex-
cluding those subtours. This is repeated until the solution is
free of subtours. When a subtour-free path is found, the next
step is to verify the travel-cost by path planning with collision-
avoidance. This verified collision-free path planning is per-
formed using the Rapidly-exploring Random Trees (RRT) [22]
and post smoothing of the obtained collision-free path. In the
next iteration, the TSP solved with these updated verified travel
costs. The method iteratively continues to until the planned
multi-goal path returns a path for which all included viewpoint-
pairs already have exactly calculated travel-costs, thereby con-
firming that the solution is the optimal solution.

An alternative termination criterion was used, i.e. a max-
imum number of viewpoint evaluations, then k is unspecified
and the method continues to find new admissible viewpoints to
observe the least covered primitives until this maximum num-
ber of viewpoint evaluations is reached. The motivation for this
is to control the number of viewpoint evaluation in order to have
a fair comparison with the existing state-of-the-art feasible cov-
erage path planning methodologies.

7.2. Tests

Several tests have been conducted to evaluate the perfor-
mance of the proposed viewpoint sampling strategy, which will
be referred to as targeted viewpoint sampling (TarSamp). Its
performance is compared with existing state-of-the-art method-
ologies that were found to be feasible within the context of di-
mensional inspection of sheet metal parts, as discussed on Sec-
tion 6. This includes the methodology proposed by Englot and
Hover [8], which will be referred to as the redundant viewpoint
sampling (RedunSamp), as well as the methodology proposed
by Danner and Kavraki [14], which will be referred to as the
dual viewpoint sampling (DualSamp).

The comparison evaluates the number of viewpoints as well
as the travel cost for the path connecting all viewpoints since
both need to be minimised in order to reduce the cycle-time
of the inspection task, as discussed Section 2. The travel cost
for the coverage paths is presented as a time-duration that is
estimated based on the travel distance for each robot joint to
follow the sub-tour path and the maximum robot joints’ veloc-
ities, while neglecting the robot dynamics by assuming instan-



taneous accelerations. This simplification does not affect the
test results for the purpose comparing the different viewpoint
sampling strategies. Two different travel cost duration indica-
tors are presented. The first one, i.e. the approximated travel
cost, is solely based on the estimated duration for the subtour-
free coverage path, while neglecting collision avoidance. This
is included because it is a more direct indication of viewpoint
sampling performance, since only the approximated travel cost
is considered during viewpoint sampling. The second travel
cost indicator is the verified travel cost that is based on the esti-
mated duration of the planned subtour-free collision-free path,
i.e. via-location have been included where necessary to avoid
collisions between the robot, end-effector, floor, part, fixture,
obstacles, etc.

As discussed in Section 4.2, two different techniques to solve
the set-covering problem are considered in order to select the
smallest subset in the admissible set that provides full cover-
age. The first is by solving the set-covering problem as an uni-
cost integer linear programming (ILP) problem, however it was
found this became prohibitively expensive when the number of
admissible viewpoints exceeds 1000. In those cases, the greedy
approximation method to solve the set-covering problem was
used. Solving the set-covering problem as an ILP problem gives
better solutions than the greedy approximation. The number of
admissible viewpoints is influenced by the used viewpoint sam-
pling strategy but is in the first place dependent on the to-inspect
surfaces. In order to perform an even-handed comparison, two
sets of results are presented for the cases where there were less
than 1000 viewpoints in the admissible set, i.e. one using ILP
and another using the greedy approximation.

The presented results are averages of multiple repetitions (i.e.
30 for case study 1 and 50 for case study 2), and an ANOVA
study was performed to evaluate whether there are significant
difference between the average results for the different methods
and test configurations. This is necessary due to the stochas-
tic character of the viewpoint sampling methodologies. Mul-
tiple test configurations for the viewpoint sampling are con-
sidered which differ in maximum number of viewpoint eval-
uations during sampling in order to investigate how the num-
ber of viewpoint evaluations, and consequently the number of
sampled viewpoints affect the results. Changing the maximum
number of viewpoint evaluations corresponds to changing the
admissible viewpoint sampling redundancy. For RedunSamp,
this corresponds to changing the number of admissible view-
points sampled for each primitive. For DualSamp, this corre-
sponds to change the number of viewpoints samples generated
for each primitive and from which the best one is then selected
for the admissible set.

7.3. Results

This section presents the results of testing the proposed tar-
geted viewpoint sampling strategy TarSamp for the two case
studies and the comparison with the feasible state-of-the-art
methodologies, RedunSamp and DualSamp.
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Case study 1

The results for the coverage path to inspect the inner door
panel (see Figure 3) are shown in Table 2. The second and
third column in Table 3 shows the used set-covering method,
i.e. greedy approximation (i.e. greedy approx.) or integer lin-
ear programming (i.e. ILP), and the configuration for the test.
Three different test configurations are considered, with a max-
imum number of viewpoint evaluations of 250,000; 125,000;
60,250, corresponding to sampling 10, 5, 3 feasible viewpoints
for each primitive with RedunSamp and DualSamp. The fourth
column in Table 2 shows the number of viewpoints included
in the coverage path. The fifth and sixth column show the ap-
proximated travel cost (i.e. ATC) and verified travel cost (i.e.
VTC).

Starting the evaluation of TarSamp with greedy approxima-
tion set-covering by investigating its performance for minimis-
ing the number of viewpoints. It can be seen in Table 2 that
it outperforms RedunSamp and DualSamp. Across the three
test configuration, TarSamp gives on average around 8.1 % and
17.2 % fewer viewpoints respectively compared to RedunSamp
and DualSamp. Based on these results, it can be said that
TarSamp provides admissible viewpoints with a better cover-
age of the to-inspect surfaces and thereby allows to reduce the
number of viewpoints in the coverage paths.

When looking at the travel cost results, it can be seen in Ta-
ble 2 that TarSamp gives significantly better results compared
to RedunSamp and DualSamp. Across the three test configu-
rations, the approximated travel cost with TarSamp is 19.9 %
(3.0 s) and 22.1 % (3.5 s) shorter respectively compared to Re-
dunSamp and DualSamp. Similarly, the results in Table 2 show
that the verified travel cost with TarSamp is 20.1 % (3.3 s) and
22.7 % (3.7 s) shorter respectively compared to RedunSamp
and DualSamp. It can thus be said that TarSamp contributes
significantly to reducing the travel cost of the resulting cover-
age paths.

For this case study, the to-inspect surfaces were represented
by 2283 geometric primitives. This meant that with Redun-
Samp and DualSamp, there were always (at least) 2283 admis-
sible viewpoints. It was therefore not feasible to use ILP for
the set-covering, and only the greedy approximation could be
used. TarSamp generated 60 up to 250 admissible viewpoints
depending on the specific test configuration, which does allow
using ILP for the set-covering.

The results presented in Table 2 also allow to compare the
performance of the greedy approximation (greedy approx.) for
the set-covering using ILP for TarSamp. The results show that
using ILP gives on average 5.5 % fewer viewpoints than the
greedy approximation, across the three test configurations. The
analysis showed that there is however no significant difference
for the travel cost results. It should be noted that, on the one
hand, for the test configuration with the highest viewpoint sam-
pling redundancy, ILP performs around 11.6 % better than the
greedy approximation. On the other hand, there is no significant
difference between ILP and the greedy approximation for the
results with the lowest viewpoint sampling redundancy config-
uration. This is further investigated for case study 2. It should



Table 2: Results for case study 1: number of viewpoints (# VPs), approximated travel cost (ATC), and verified travel cost (VTC) of the coverage paths

Viewpoint sampling | Set-covering | # VP-evals # VPs ATC [s] VTC [s]
method method mean std mean std mean std
TarSamp greedy approx. 250,000 60.87 2446 | 11.95 0509 | 12.32 0.519
RedunSamp 10 greedy approx. 250,000 66.63 1732 | 15.26 1.681 | 15.86 1.796
DualSamp 10 greedy approx. 250,000 76.20 2809 | 1591 1855 | 16.41 1.941
TarSamp ILP 250,000 53.80 1400 | 11.18 0463 | 11.51 0.527
TarSamp greedy approx. 125,000 63.43 2609 | 12.35 0489 | 12.74 0.623
RedunSamp 5 greedy approx. 125,000 68.73 2258 | 15.33 1.131 | 16.00 1.269
DualSamp 5 greedy approx. 125,000 76.40 2908 | 15.77 1455 | 16.30 1.635
TarSamp ILP 125,000 60.10 2155 | 11.90 o504 | 12.24 0.637
TarSamp greedy approx. 60,250 64.57 1775 | 12.44 0452 | 12.75 0.504
RedunSamp 3 greedy approx. 60,250 70.13 1525 | 15.25 1.029 | 15.93 1.266
DualSamp 3 greedy approx. 60,250 75.63 2659 | 1549 1110 | 16.19 1.416
TarSamp ILP 60,250 64.77 1888 | 12.46 0444 | 12.75 0.476

Statistically significant different results compared to corresponding TarSamp with greedy approx. result are highlighted in bold.

also be noted that when looking at the results for the different
test configurations for each individual methodology, there is no
significant indication that the viewpoint sampling redundancy
has an effect on the minimisation of the travel cost.

When comparing the performance of TarSamp with ILP
against the other methods RedunSamp and DualSamp, it can be
seen in Table 2 that there is an even more significant improve-
ment compared to using the TarSamp with the greedy approxi-
mation for the minimisation of the number of viewpoints in the
coverage path. The average difference is 13.2 % compared to
RedunSamp and 21.7 % compared to DualSamp.

Case study 2

The results for the coverage path to inspect the window rein-
forcement frame panel (see Figure 4) are presented in Table 3.
The table is organised in the same way as Table 2. Six test con-
figurations are considered with maximum number of viewpoint
evaluations of 660, 000; 495, 000; 330, 000; 165, 000; 110, 000;
38,000, corresponding to sampling 20, 15, 10,5,3,1 feasible
viewpoints for each primitive with RedunSamp and DualSamp.
The test configuration (i.e. 38,000) without any viewpoint sam-
pling redundancy is included to provide results in order to sub-
stantiate the conclusions concerning the effects of viewpoint
sampling redundancy. For the same reason, two additional con-
figurations are included with a higher redundancy.

Starting the evaluation of TarSamp with the greedy approxi-
mation set-covering by analysing its performance for minimis-
ing the number of viewpoints. It can be seen in Table 4 that
TarSamp provides significantly better solutions. Across the six
test configurations, TarSamp performs 3.7 % better than Redun-
Samp and 6.9 % better than DualSamp. This further confirms
that TarSamp significantly outperforms RedunSamp and Dual-
Samp concerning the minimising the number of viewpoints in
the coverage path.

The results concerning reducing the travel cost also con-
firm that TarSamp performs significantly better than Redun-
Samp and DualSamp. Looking at the approximated travel cost,
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TarSamp gives 9.2 % (0.6 s) and 11.4 % (0.8 s) reduction on
average across the six test configurations, respectively com-
pared to RedunSamp and DualSamp. Similarly, TarSamp gives
a9.6 % (0.7 s) and 11.5 % (0.8 s) reduction in verified travel
cost on average across the six test configurations, respectively
compared to RedunSamp and DualSamp.

For this case study, the to-inspect surfaces were represented
by 3287 geometric primitives, which meant that there were (at
least) the same number of viewpoints in the admissible set gen-
erated by RedunSamp and DualSamp. It was therefore not pos-
sible to use ILP set-covering in combination with these two
methodologies, and instead only results with the greedy approx-
imation set-covering method are presented. For TarSamp, the
number of viewpoints in the admissible set was 660 at maxi-
mum and ILP set-covering could be used for all test configura-
tions. Results for TarSamp in combination with both greedy ap-
proximation as well as ILP set-covering methods are presented
in Table 3.

Comparing TarSamp with the greedy approximation set-
covering against ILP set-covering, a more pronounced differ-
ence was observed than in case study 1. For all test configu-
rations, there is a significant difference between the results ob-
tained with two different set-covering methods combined with
TarSamp. ILP set-covering gives 23.8 % (3.5) fewer viewpoints
compared to the greedy approximation, on average across the
six test configurations. In contrast to case study 1, there is a
significant difference between the travel cost results. On aver-
age across the six test configurations, ILP gives 3.3 % (0.2 s)
lower in both for the approximated and verified travel cost in
comparison with the greedy approximation set-covering.

As mentioned earlier, additional test configurations have
been included for this case study in order to investigate the ef-
fect of admissible viewpoint sampling redundancy. Across the
six test configurations, there is a significant trend indicating that
the number of viewpoints in the coverage decreases when the
admissible viewpoint sampling redundancy increases. It can
thus be concluded that admissible viewpoint sampling redun-



Table 3: Results for case study 2: number of viewpoints (# VPs), approximated travel cost (ATC), and verified travel cost (VTC) of the coverage paths

Viewpoint sampling | Set-covering # VP-evals # VPs ATC [s] VTC [s]
method method mean std mean std mean std
TarSamp greedy approx. 660,000 1832 0621 | 6.073 o0.141 | 6.073  0.140
RedunSamp 20 greedy approx. 660,000 18.56 0861 | 6.694 0472 | 6.767 0479
DualSampl 20 greedy approx. 660,000 19.52 1216 | 7.161 0345 | 7.180 0439
TarSamp ILP 660,000 14.00 0.000 | 5.864 0280 | 5.876 0273
TarSamp greedy approx. 495,000 18.12 0435 | 6.026 o0.128 | 6.026  0.128
RedunSamp 15 greedy approx. 495,000 18.60 0808 | 6.736 0492 | 6.816 0479
DualSampl 15 greedy approx. 495,000 19.72 1161 | 7.080 0456 | 7.131 0537
TarSamp ILP 495,000 14.00 o0.000 | 5.919 0314 | 5.926 0326
TarSamp greedy approx. 330,000 18.36 0851 | 6.189 0280 | 6.217 0342
RedunSamp 10 greedy approx. 330,000 18.92 0966 | 6.725 0389 | 6.818 0413
DualSampl 10 greedy approx. 330,000 1994 1.077 | 6.893 0439 | 6.897 0458
TarSamp ILP 330,000 14.18 0388 | 5.949 0249 | 5.949 0247
TarSamp greedy approx. 165,000 18.42 1012 | 6.217 0315 | 6.243 0360
RedunSamp 5 greedy approx. 165,000 19.36  1.139 | 6.785 0405 | 6.795 0419
DualSampl 5 greedy approx. 165,000 19.76 1254 | 6.862 0431 | 6.897 0473
TarSamp ILP 165,000 14.96 0450 | 5.987 0307 | 5.999 0305
TarSamp greedy approx. 110,000 18.70 0995 | 6.219 0325 | 6.235 0340
RedunSamp 3 greedy approx. 110,000 19.54 0973 | 6.871 0385 | 6.887 0407
DualSampl 3 greedy approx. 110,000 1998 1.078 | 6.875 0359 | 6.874 0.361
TarSamp ILP 110,000 1546 0676 | 6.024 0309 | 6.023 0308
TarSamp greedy approx. 38,000 1896 1.160 | 6.266 0425 | 6.272 0407
RedunSamp 1 greedy approx. 38,000 20.18 1.155 | 6.918 0380 | 6.933  0.408
DualSampl 1 greedy approx. 38,000 20.18 1.155 | 6.918 0380 | 6.933  0.408
TarSamp ILP 38,000 17.38 1276 | 6.068 0381 | 6.110 0426

Statistically significant different results compared to corresponding TarSamp with greedy approx. result are highlighted in bold.

dancy contributes to reducing the number of viewpoints in the
coverage path. However, for all three viewpoint sampling meth-
ods in the comparison, there is no significant trend for the first
three test configurations, i.e. 660,000; 495,000; 330,000. This
indicates that there is an upper limit for the admissible view-
point sampling redundancy above which there is no further im-
provement in terms of minimising the number of viewpoints.
Furthermore, the results also show that there is no significant
trend concerning the effect of the admissible viewpoint sam-
pling redundancy on the minimisation of the travel cost.

7.4. Computation time

Upon request of the reviewers, this section presents a com-
parison of the computation time for the different coverage path
planning methodologies that are evaluated in this work. In or-
der to attribute any differences in computation time to particu-
lar step(s) in the methodologies, the different subproblems (i.e.
viewpoint sampling, set-covering, multi-goal path planning) are
considered individually in this comparison. Starting with the
viewpoint sampling, it is most important to note that the com-
putation time is determined by the viewpoint evaluation proce-
dure. For the implementation used in this work, the time for a
single viewpoint evaluations was always closely around 18 mil-
liseconds. The number of viewpoint evaluations is the same
for all methodologies within each test configuration, which was
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chosen to perform a fair comparison between the different view-
point sampling methodologies. This has as a consequence that
there is no significant difference between the computation time
for the viewpoint sampling of the different methodologies. The
computation time is around 11 minutes for the test configura-
tion with 38,000 viewpoint evaluations, and up to 3 hours and
20 minutes for the test configuration with 660,000 viewpoint
evaluations.

Two different methodologies have been used for solving the
set-covering to select the viewpoints for the coverage path, i.e.
integer linear programming (ILP) and using a greedy approxi-
mation methodology (i.e. greedy approx.), the former only with
TarSamp. The results for the comparison of the computation
time are shown in Table 4. On the one hand, it can be seen that
the computation time for the greedy approximation is always
very closely around 1 second, across all test configurations. It
can thus be said that the number of admissible viewpoints does
not influence the computation time of the greedy approxima-
tion for solving the set-covering. On the other hand, it can
be seen that the average computation time for solving the set-
covering by integer linear programming is significantly larger
and is influenced by the number of admissible viewpoints. It
starts from 15.6 seconds, i.e. for the test configuration with the
lowest number of admissible viewpoints, up to 1062 seconds
with the highest number of admissible viewpoints.



Table 4: Comparison of the computation time for solving the set-covering prob-
lem for case study 2 using a greedy approximation (greedy approx.) versus by
integer linear programming (ILP)

Computation time [s]

Configuration | greedy approx. ILP
mean std mean std
38,000 0.98 0.02 15.6 247
165,000 0.98 0.04 167 168
330,000 1.04 0.04 224 197
660,000 1.06 0.04 1062 1712

Finally, the same multi-goal path planning methodology was
used for all different coverage path planning methodologies in
the comparison in this work. Hence, no comparison of compu-
tation time has been performed for this. To give an indication
of the computation time, the multi-goal path planning for case
study 2 never took longer than 150 seconds.

7.5. Discussion

It can be seen that TarSamp performs significantly better than
the other methods in the comparison. It is important to note that
the advantage of TarSamp is two-fold. On the one hand, there
is the improvement in solution quality for the coverage path
when using TarSamp to generate the set of admissible view-
points. This refers to the significantly better coverage paths,
both in terms of minimising the number of viewpoints and the
travel cost, when using TarSamp (with greedy approximation
set-covering) compared to RedunSamp and DualSamp. These
results are obtained using the same coverage path planning
methodology, except the different viewpoint sampling differs.
Therefore, the improved solution quality of the final coverage
path can be attributed to proposed targeted viewpoint sampling
strategy integrated in TarSamp.

On the other hand, the proposed targeted viewpoint sampling
strategy integrated in TarSamp needs to be credited for gener-
ating significantly smaller number of viewpoints for the admis-
sible set. Across the different case studies and test configura-
tions, the number of viewpoints in the admissible set generated
by TarSamp is at least 98 % smaller compared to RedunSamp,
and 79.92 % up 98.84 % smaller compared to DualSamp. Hav-
ing fewer but better admissible viewpoints is beneficial since
set-covering problem can then be solved more effectively, and
thereby having a further reduction of the number of viewpoints
in the coverage path. This is a secondary advantage of the pro-
posed viewpoint sampling strategy.

It is however necessary to make a remark about the de-
pendency of the proposed viewpoint sampling methodology
TarSamp on the convergence of the optimisation algorithm de-
ployed during the viewpoint sampling and the ability to refor-
mulate the search space for each iteration. The advantage of
TarSamp over the other methods in the comparison goes hand in
hand with the number of viewpoint evaluations that are required
to find the viewpoint with maximised coverage of the least cov-
ered primitives. The ability to reformulate the objectives, con-
straints as well as the search space for finding the viewpoint at
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each iteration helps significantly to reduce the required number
of viewpoint evaluations.

Interestingly, it was found that for both case studies the view-
point sampling redundancy only contributes to minimising the
number of viewpoints, and not to minimise the travel cost. Even
for the cases where there was a significant reduction in the num-
ber of viewpoints, the travel cost remains similar with an in-
crease of the viewpoint sampling redundancy.

From the investigation of the computation time, it can be
concluded that the sampling of the admissible viewpoints is
the main contributor to the computation time of the coverage
path planning methodology. Whereas solving the set-covering
problem (particularly when using the greedy approximation
method) and the multi-goal path planning can be computed rel-
atively quickly compared to the iterative viewpoint sampling.
This reveals that improving the viewpoint sampling is critical
in order to minimise the computation time for the coverage path
planning, which adds to the relevance of the proposed targeted
viewpoint sampling strategy.

8. Conclusions

The goal of the presented work in this paper was to investi-
gate coverage path planning for dimensional quality inspection
of sheet metal parts. First, the details of the coverage path plan-
ning problem in the context for this specific application were
presented, including the objective for minimising the cycle-
time for the inspection task as well as the relevant constraints
for the robot kinematics, collision-avoidance and full coverage
of the to-inspect surfaces. A summary of the performed litera-
ture study to identify existing state-of-the-art methodologies is
given. Each of these are analysed to evaluate their feasibility
for solving the coverage path planning for dimensional quality
inspection of sheet metal parts considering the specific objec-
tives and constraints. This showed that the identified feasible
methodologies adopt an approach that includes decomposing
the coverage path planning problem into three individuals sub-
problems: (1) viewpoint sampling, (2) set-covering to select
viewpoint subset, (3) multi-goal path planning.

During the analysis of the existing coverage path planning
methodologies, it was also observed that all rely on some form
of random viewpoint sampling. Based on this, it was set out to
investigate whether a targeted viewpoint sampling strategy, in-
stead of random sampling, contributes to improving the cover-
age path solution quality. A targeted viewpoint sampling strat-
egy is proposed and evaluated by comparing its performance
against the identified feasible state-of-the-art methods. The
results showed that the proposed targeted viewpoint sampling
strategy generates significantly better quality solutions for the
coverage path, both in terms of minimisation of the number of
viewpoints as well as travel cost for the planned path to move to
each viewpoint in an optimal sequence. The proposed targeted
viewpoint sampling strategy performs 3.7 % up to 23.8 % better
in minimising the number of viewpoints and 9.6 % up to 22.7 %
better in minimising the travel cost, compared to state-of-the-art
methods.



On the one hand, the presented work identifies the most suit-
able coverage path planning methodology for dimensional in-
spection of sheet metal parts with guaranteed full coverage,
collision-free robot paths and minimised cycle-time. On the
other hand, it was shown that adopting a targeted viewpoint
sampling strategy gives significantly better coverage paths com-
pared to using random viewpoint sampling. Future work could
include extending the proposed targeted viewpoint sampling
strategy for adaptive autonomous positioning for robot vision
systems [25] as well as the multi-goal path planning for multi-
robot system (i.e. multiple inspection robots and/or robotic
material handling) and integrate trajectory optimisation to min-
imise energy consumption [26].
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