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ARTICLE INFO ABSTRACT

Several approaches with interesting results have been proposed over the years for robot grasp planning.
However, the industry suffers from the lack of an intuitive and reliable system able to automatically estimate
grasp poses while also allowing the integration of grasp information from the accumulated knowledge of the end
user. In the presented paper it is proposed a non-object-agnostic grasping pipeline motivated by picking use cases
from the aerospace industry. The planning system extends the functionality of the simulated annealing opti-
mization algorithm for allowing its application within an industrial use case. Therefore, this paper addresses the
first step of the design of a reconfigurable and modular grasping pipeline. The key idea is the creation of an
intuitive and functional grasping framework for being used by factory floor operators according to the task
demands. This software pipeline is capable of generating grasp solutions in an offline phase, and later on, in the
robot operation phase, can choose the best grasp pose by taking into consideration a set of heuristics that try to
achieve a successful grasp while also requiring the least effort for the robotic arm. The results are presented in a
simulated and a real factory environment, relying on a mobile platform developed for intralogistic tasks. With
this architecture, new state-of-art methodologies can be integrated in the future for growing the grasping pi-
peline and make it more robust and applicable to a wider range of use cases.
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1. Introduction of several analytical [1-6] and data-driven [7] approaches aiming for

the improvement of production lines, logistics processes, assembling

Planning and performing a grasp movement is done effortlessly by
humans, but for robots, this is a significant challenge. The current es-
tablished industrial solutions are only capable of dealing with this
problem in well-structured and controlled environments. Typically,
these solutions resort to techniques that depend on the operators’ ex-
pertise, which manually programs the robotic system, or are based on
inflexible, application oriented, software tools (e.g., drive through, lead
through and offline programming), which do not convey with modern
industry paradigms that ultimately seek for new autonomous and effi-
cient techniques to enhance the flexibility of industrial robotic systems.

For decades the study of grasp techniques in complex scenarios has
been explored by the scientific community, which led to the appearance

operations, and bin-picking tasks. Despite these significant contribu-
tions, the complexity associated with designing a task-oriented analy-
tical method or build a large dataset, required for the training of Ma-
chine Learning (ML) systems, limits the effective adoption of these
technologies as an efficient, user-friendly, and applicable industrial
solution.

In this context, this paper introduces a reconfigurable robot
grasping software pipeline. It is based on a sequential architecture to
autonomously compute the grasp solution for a robotic arm in an in-
dustrial application. This pipeline is built on top of Robot Operating
System (ROS) and “Grasplt!” simulator [8], extending the applicability
of Simulated Annealing (SA) [9] with a feasible application time.
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Fig. 1. Omnidirectional mobile manipulator (left) and bins with objects (right).

With this work the authors goal is to deploy to both the industrial
and scientific community a software tool capable of automatically
generating robot grasp poses over a set of objects. Namely, this paper
presents the backbone of the proposed modular and configurable pi-
peline, where methodologies and tools already consolidated in the
scientific community will be further integrated. Furthermore, this tool
will serve as the basis for future developments on the robot grasping
topic.

Practical results are presented considering a real aerospace factory
use case, targeting the execution of intralogistic operations by an om-
nidirectional robot equipped with a robotic arm, i.e., a mobile manip-
ulator (Fig. 1).

Bearing these ideas in mind, this paper is structured as follows:
Section 2 discusses the related work. Section 3 presents relevant
background on robot based grasp topic. Section 4, presents the pro-
posed grasp planning software backbone. Finally, in Section 5 the ex-
perimental results are presented and discussed, followed by the Con-
clusions and Future Work (Section 6).

2. Related Work

The robotic grasp was firstly investigated by works such as [1-6].
Typically, they explore the stability of multi-fingered grasps con-
sidering closure conditions in wrench space analyses. These approaches
demonstrated that the computation of valid grasping poses can be
complex according to the task demands and mathematical modeling
practical assumptions, e.g., the number of fingers, friction or frictionless
contacts, object-agnostic or not. Their formulation, however, allowed
the research community to derive some definitions used even in ML
methodologies. For example, the criteria formulation to define the
grasping quality by Ferrari and Canny in [6] and the force and form-
closure conditions of Nguyen [1,2].

Nowadays, and driven by the appearance of new processing tech-
nologies and computer techniques, a new category of robotic grasping
systems has emerged: the experience-based. In this field, several au-
thors investigate the integration of optimization techniques into ana-
lytical analyses [9,10] and ML methods to reach grasping results that
can be summarized in supervised learning (structured labeled datasets
[11-23] or Learning by Demonstration (LbD) [24-27]) and Reinforce-
ment Learning (RL) [28,29].

Focused in object-agnostic grasp, Saxena et al. in [11] used visual
object features in the learning task. Geometric properties of super-
quadrics shape objects and geometric properties associated with gripper
structure were adopted by the authors of [13] and [12], respectively.
These works demonstrate how complex is the feature extraction pro-
cedure during a ML algorithm supervised training, for logistic
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regression [11], Support Vector Machine (SVM) [13] or Neural Net-
work (NN) [12].

In LbD [25-27] approaches, the feature modeling is not necessary.
However, these techniques could limit the robot grasp efficiency since it
is based on the teacher agent performance. Another problem is the high
practical effort to build a learning dataset, as required in the RL
methodologies [28,29].

The Deep Supervised Learning has gain attention from the re-
searching community that, motivated by the impressive Convolutional
Neural Network (CNN) results in object classification, investigate this
approach into grasp policies. Works like [14-16], consider the ap-
proximation of the grasping detection as an object classification pro-
blem, achieving interesting grasp detection results. Yet, just a few of
them evaluate the suggested approach in a real grasp problem, and in
the instances where the authors do, a decrease in the approach per-
formance is verified. Grasping, picking and handling objects by robots
could be more complex considering cluttered environments [30], ob-
jects with curved [31] or flat [32] surfaces, flexible [33], and composite
[34] materials. Mahler et al. [20-23] propose a Grasp Quality CNN
(GQ-CNNs) to solve objects-agnostic grasping problem using suction
and two-finger gripper. The author also study ambidextrous, and bin-
picking polices. The algorithm was trained with a large dataset, called
DexNet that include analytical modeling assumptions. Nevertheless, the
authors encounter challenges in grasp flexible, porous objects, and with
loose packing.

As shown in this section, the complexity of experience-based algo-
rithms derives from: (i) the creation of the database, (ii) the modeling,
and the interpretation of the graspable object. The database needs to be
relevant to the task at hand, and the object representation must be
defined as a 3D model or only with direct sensing data. Besides that, the
gripper technology also needs to be evaluated. As related by Birglen
et al. in [35], nowadays, several grippers structures are developed by
companies led by the challenges of Industry 4.0. The possibilities for
algorithms are vast, and their development must comply with the re-
quirements of the application, the capability of generalization, fast
decision, and present some tolerance to the inherent sensing errors.

All the related issues, from analytical to ML methods discussed in
the previous section, difficult industries to have a suitable tool to
generate grasp solutions according to application demands. Even
though a completely generic solution is not achieved, the design of a
reconfigurable and modular grasp pipeline, using already state-of-art
methodologies could increase productivity in factory environments.

3. Background and Notation

Before presenting the proposed grasp planning pipeline, described
in Section 4, this section will discuss some background and notation
associated with the challenge at hand.

In this first version of the pipeline the authors assume that the ob-
ject’s shape is known from the beginning, and that only multi-fingered
grippers are used. In this context, the following sections, 3.1 and 3.2,
summarize the multi-fingered analytical formulation and the SA based
grasp algorithm [9], respectively.

3.1. Multi-Fingered Grasp

A multi-fingered grasp is realized over a set of contacts between the
active pairs (the workpiece and the gripper). Therefore, the determi-
nation of a suitable configuration of independent grasp points is the
primary step of the fingered grasp planning.

The wrench vectors describe the forces and moments that influence
a rigid body’s dynamic. These vectors can be used to formulate grasp
locations, and a wrench vector is presented below:
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Fig. 2. Friction contact model and the geometric representation of Coulomb’s
law (figure based on [36]).
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where F and 7 are the vector representations of the forces and the
moments. The wrench vectors have 3 and 6 Degree of Freedoms (DOFs)
in the case of IR? and IR®, respectively.

The contact models can be categorized as frictionless contact, fric-
tion contact (also named hard finger contact), and soft contact [36].
The focus of this paper will be the friction contact, since this model is
sufficient for the picking application addressed in this paper.

The friction contact model considers the mechanical interaction
between the active pairs. Therefore, the wrench convex depends on the
friction contact forces, described by Coulomb model of friction:
Considering the normal force f,, and the tangential force f;, static fric-
tion occurs when there is no slipping between the two surfaces of
contact, that is when |f,| < yf, where u is a positive value representing
the static tangential coefficient of friction. Fig. 2 shows an example of
hard finger contact, the geometric representation of the Coulomb’s law
and the friction cone convex also defined as FC,.

A wrench representation, w.r.t the i-th contact point (c;), is defined
as follows:

100
010
_|oo1
i = 1000
000
000 )

where FC, =feR% |f? +f; < uf,f, >0, and y, is the transversal
friction coefficient in c;.

Therefore, it is possible to define the matrix that compose the
wrench vector:

f,, f,€FC;

W, = Bcifci,

i

f, € FC, 3

where B,, is the wrench basis matrix with dimension p x n where p is
the DOFs and n the number of independent forces and moments that
constitutes f,. The contact model discussed here has as reference frame
the one with the origin coincident with the contact point itself. It is
more convenient to refer all contacts in a grasp model to a common
frame, generally the center of mass of the work piece. Therefore the
wrench transformation matrix is defined as follows:

R, O

A eR
t;’Ry °Rg

Tw,; =
(4)

where °R,; and °t,; are the rotation and translation matrix of the i-th
contact point (¢;) w.r.t. object frame (0). The t is the linear operator
representing the cross product °t,; X °R.,. Hence, the contact map G; is
defined as follows:

G; =° Tw,B, %)
Note that it describes the direction of each component of the i-th

applied wrench and defines the constraints of the contact. The grasp
map is the matrix with all contact maps that characterize the contact
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model (it is also named constraint matrix):

G = [Tw, B, - °Tw, B/] (6)

Then, including the magnitude of the forces, a workpiece wrench
can be written:

W = [Gy,.... Gy [fep o foy] = GF @

where: F € FC and FC = FC,, X ..XFC¢y

The °W also defines the GWS (grasp wrench space) of the grasp. It is
obtained by means of the L., or L; norm. The L., defines the GWS (W)
considering the limitation of the maximum allowable normal contact
force, while L, defines the GWS (W) by the sum magnitude of the
normal contact forces. The norms operation yields to:

‘A’L1

ConvexHull prlc" <y WpD,,
1
i

Wi ConvexHull | @ {me’ ...,wpDCi}
ci

(®

where w,q, € W and (P is the Minkowski sum. More detail about the
norm operation can be verified in [6].

The concept of grasp closure evaluates the restraining of an object.
A common assumption is the force-closure implies an equilibrium, but
the inverse does not apply. A grasp has its convex hull defined by the
wrenches that constitute the grasp configuration, i.e., the matrix °W. In
a force-closure grasp, the convex hull includes the wrench space origin
{0}, see Fig. 3. According to the definition presented in [37], if all
wrenches in °W positively span the entire wrench space, the grasp will
be force-closure. Fig. 3 shows a grasp wrench space (GWS) and a
convex hull of grasp configuration for force and non-force-closure, for a
planar case with a fixed value for the moment (z) in the z-axis.
Therefore, it is considered f, € R*: fo = (. fy), and the resistance to
perturbation in both force axes is evaluated.

Since several configurations can reach a force-closure grasp, quality
metrics like e-metric evaluate which one is best. The € is a normalized
value that represents the wrench vector’s distance to the origin ({0}),
which is the shortest, i.e., the worst wrench vector to support an ex-
ternal perturbation. An efficient grasp, ideally, has ¢ = 1. The left GWS
of Fig. 3 elucidates this metric and, the readers are encouraged to a
more detailed review of this grasp definition in [6].

3.2. Simulated Annealing Grasp

The SA algorithm [9] integrated in the “GrasplIt!” simulator [8] is
one of the tools that the grasping pipeline relies on. Since it was used
from the perspective of an end user, a brief explanation will be done
here, and any further information can be retrieved on the referenced
papers.

The SA is a heuristic optimization algorithm based on the cooling of
a set of atoms to a minimum state of energy, and it was first introduced

fy fy

W5

wy ws Wi
EKWZ © [\ f,
wl )/t

Fig. 3. Wrench convex-hull configuration. Force-closure and the e-value (left).
Non-force-closure (right).
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by [38] in a Statistical Mechanics optimization algorithm application.
The “Very Fast Simulated Re-Annealing” was an improvement made by
Ingber at [39] and used here. Since it is based on temperature, Ingber
proposed that its cooling process decrease as described by Eq. 9

T = Ty-exp(—k'/P) 9)

where D is the dimensional search space, k a SA parameter step, and T,
is the SA the initial temperature.

Each algorithm iteration generates new state variables following a
rule of neighboring. Considering current and a new variable state as
Scurrent and Sy, this rule yields Eq. 10.

" JO.D) 1 Rand(-1,1)
S =S. + T-(—1)roun Rand (0,1 _(1 + 7)
new current ( ) T (1 0)
and the probability to change the state between the current and the new
one is defined by Eq. 11 where Q(*) represents the objective function of
the optimization problem.

Q(Scun'em) - Q(Snew)
T) > Rand (0, 1) an

Regarding the multi-fingered grasp procedure, the objective func-
tion to be optimized by SA need to be related to the hand posture p and,
the position and orientation of the wrist w as follows:

Fp = f(p, w),

where d is the number of intrinsic DOFs of the hand.

As discussed by [9], the hand posture is defined by eigengrasps, a
subspace of movement based on how human generate hand postures.
The eigengrasps reduces the DOFs of the hand based on how humans
select appropriate grasps and hand postures. Studies show that humans
simplify, unconsciously, the problem with a pattern in the movement.
More information can be verified in [9,40]. The eigengrasp (e;) is de-
fined by hand, and it is a d-dimensional direction vector that represents
the motion of a group joint space that constitute it. Therefore, a posture
can be defined by Eq. 13.

exp(

pe Ry we R a2

b
=p, + ), ae;

P b Zl - (13)
with posture origin defined by p,, and b the total number of eigengrasps.
Since it is a linear combination, the parameter array a = [ay, ai, ...,a]
will be the optimization variable in Eq. 12 together with the w.
Therefore, the dimensional search space D has a reduced length, i.e.
D = sizeof (a) + sizeof (w).

The optimization algorithm tries to minimize the linear and angular
distance of the Interest Contact Point (ICP) that constitute the Interest
Contact Region (ICR) (Fig. 4) adjusting the discussed optimization
variables a and w. The ICR is a contact region model (a predefined
group of distributed ICPs) used to calculate the interaction of the al-
gorithm, thus it is possible to create a feasible procedure. Therefore, the
objective function to be minimized is describe by Eq. 14, where N is the
number of total contacts in ICR, f; is the surface normal, o; the distance
between the ICP and the object (i € N). The scalar a is a range ad-
justment factor between the distance and the normalized dot product of
the second sum part. It is important to note that the mapping between
F,, and Q is realized by simulated interaction in the “GrasplIt!” [8]. A

Fig. 4. Grasp optimization process elucidation.
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Fig. 5. Grasp planning overview.
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detailed description of the algorithm procedure is presented in [9].
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4. Proposed Grasp Planning Pipeline

The developed grasp planning pipeline is divided into two steps:
grasp synthesis and grasp selection (Fig. 5). The grasp synthesis is a
tool responsible for generating all the grasp poses, and it is based on the
“Grasplt!” simulator. More specifically, it creates a set of hypothetical
grasp candidates based on the object’s shape. It is an offline step, i.e., it
runs outside the robot system in a setup phase. The generated data is
then uploaded to the robot system to be used during the grasp selection
step. This step is responsible for choosing the best grasp candidate
following a set of heuristics and priorities. It is a task-oriented proce-
dure that analyses the environment and the run-time constraints of the
task. The following sections provide a detailed description of the pro-
cedure.

4.1. Grasp Synthesis

A summary of the grasp synthesis is presented in Fig. 6. The
methodology used in this step resorts to an optimization algorithm
called Very Fast Simulated Re-Annealing [41] (see Section 3.2), that
was applied to the multi-fingered grasp problem (Section 3.1) proposed
by the authors of [9], and currently embedded in the “Grasplt!” simu-
lator. Its controlled stochastic structure reduces the incidence of the
local minima problem, as described by [39].

This optimization algorithm is based on the feedback about the
physical interaction between the gripper and the object to be grasped,
i.e., in every interaction, a computer simulation is performed (see
Section 3.2). Thus, the 3D models of the active fingers are needed. For
the use case presented in our proposal, we relied on the RobotiQ 2F-85,
which is an adaptive two-finger gripper with a maximum opening of 85
millimetres. Experimental tests with this gripper show that it can grasp
the object models presented in the use case dataset. The 3D models of
the gripper (adapted from [42]) are presented in Fig. 7: the left one is
used to test and visualize the possible grasp solutions while the second
one is effectively used in the optimization step. Both models are mod-
eled with joints movement capabilities. However, only the second one
takes into consideration the contact model, i.e., the physical model
interaction associated with the visual model. Consequently, the model
used in the optimization is simplified, and it reduces the computational
complexity and possible collisions between the links of the gripper it-
self. An arbitrary number of contact points are selected for the contact
model, these points constitute the ICR, and they belong to the fingertips
(Fig. 8). The number of points that are considered in the ICR affects the
algorithm performance: a large set of points increases the reliability of
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Fig. 6. Grasp synthesis process flowchart.

Fig. 7. 3D gripper models used (adapted from [42]). Complete model (left) and
simplified model (right).

Fig. 8. Possible configuration of ICR. From left to right the number of contact
points increases. The model becomes more reliable but convergence of the al-
gorithm is more prone to issues.
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multi_side_brzg W/candidate_7

murtifsidefhrr.gntlcandidatmﬁ e

bredi »t/candidate_9

multi_side_bracyst/candidate” 1

multi_side_brackS/eandidate_3

Fig. 9. The grasp selection process. The object with the grasp candidates (top
left). The best candidate selected (top right). The picking movement (bottom).

Fig. 10. CAD parts model representation of the grasp test cases, namely,
bracket (top left), single-side bracket (top right), double-side bracket (middle
left), support bracket (middle right), multi-side bracket (bottom left) and re-
inforced bracket (bottom right).

Fig. 11. Examples of generated grasps for the bracket object.
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Fig. 12. Examples of generated grasps for the single-side bracket object.

Fig. 13. Examples of generated grasps for the double-side bracket object.

Fig. 14. Examples of generated grasps for the support bracket object.

Fig. 15. Examples of generated grasps for the multi-side bracket object.

the grasp procedure, but it could compromise the convergence of the
algorithm.

In the present use case, the gripper has only one eingengrasp
(Section 3.2), simplifying the converge of the SA algorithm. This ap-
proach is adequate to model all joints movement as only one group,

Fig. 16. Examples of generated grasps for the reinforced bracket object.

since the gripper does not have independent fingers and only performs
the opening-closing procedure.

To run the grasp synthesis and initialize the process of Fig. 6, a
launch file is configured with the object to be grasped, the gripper type,
the e-value (the quality metric used, discussed in Section 3.1) and the
maximum iterations thresholds. A fine-tuning of SA parameters is also
possible.

The Grasp Viewer interface (seen in Fig. 11) shows the progress of
grasp finding for each iteration. At the end of each SA, a set of good
grasps is stored and a new simulation is launched until the maximum
iterations are reached.

After the grasp synthesis process executed all iterations of the op-
timization algorithm, the relevance pipeline evaluates all grasp candi-
dates. Therefore, no redundant grasp poses are generated. This pipeline
merges grasps that are close to each other by angular and linear dis-
tance based on configurable thresholds, also defined in the launch file.
In the end, a configuration file (structured in a.YAML file) is exported
with all the grasp candidates that will be used by the grasp selection
procedure.

4.2. Grasp Selection

The grasp selection is a ROS package designed for choosing the best
grasp over a set of previously taught grasp poses of an object. This step
is an online procedure; i.e., it is a run-time process performed during
the robot task execution. Thus, this operation needs to be fast and re-
liable. The grasps candidates are specified in a YAML configuration file
and loaded in the ROS parameter server. These candidates are unique
for each object and are generated by the grasp synthesis step. Once the
candidates are created and loaded in the parameter server, the grasp
selection pipeline estimates the best grasp candidate for allowing the
robot to pick the object. The best grasp candidate is chosen according to
a cascade of heuristics defined by the user in a YAML file for each object
detected. Therefore, the object needs to be identified and localized
before the grasp selection process. The heuristics cascade gives a score
for each grasp candidate related to a reference frame (such as the
gripper). The one with the lower cost is the eligible candidate. It is
possible to define a weight for each heuristic in the pipeline based on
the importance level of each method in the application. An illustration
of the described procedure is presented in Fig. 9.

Below are the set of heuristics supported by the grasp selection pi-
peline:

e Joint space filter: This method is a filter that discards candidates
that exceed joint thresholds using the inverse kinematics of the ro-
botic arm. The inverse kinematics of each possible grasp is calcu-
lated using the trac ik library [43]. This avoids the robot to
choose a grasp candidate that requires an impossible, impracticable,
or dangerous movement for picking the object.

o Depth distance: The score is given according to the depth distance



J.P. Carvalho de Souza, et al.

Table 1
Grasp planning qualitative results.

Robotics and Computer Integrated Manufacturing 67 (2021) 102032

Parameters Bracket Single-side bracket Double-side bracket ~Support bracket Multi-side bracket Reinforced bracket
Iterations 30 30 30 30 80 30
Time of convergence (offline phase) 22min33s  42minl6s 48min04s 32min48s 158min54s 39min24s
Number of force-closure grasps generated (offline phase) 433 278 294 385 1239 272
Number of relevant grasps (offline phase) 48 83 42 44 150 37
Number of grasps after human supervision (offline 38 83 38 44 147 34
phase)
Mean decision time (online phase) 0.70s 1.77s 0.66s 0.74s 2.54s 0.57s

Fig. 17. Full picking process of the support bracket. Scanning position (top
left). Initial movement (middle left). Approach orientation (bottom left).
Approach movement (top right). Grasp action (middle right). Lifting movement
(bottom right).

between the reference (gripper) and object coordinate frames.

e Euclidean distance: the score is given according to the Euclidean
distance (3D distance) between the reference and object frames.

e Roll distance: The score is given according to the roll distance of
the object with relation to the reference frame (cumulative
Euclidean Z-Y-X order).

o Pitch distance: The score is given according to the pitch distance of
the object with relation to the reference frame (cumulative
Euclidean Z-Y-X order).

e Yaw distance: The score is given according to the yaw distance of
the object with relation to the reference frame (cumulative
Euclidean Z-Y-X order).

5. Results and Evaluation

The dataset used in the evaluation of the grasp planning pipeline is
constituted by a set of objects frequently stored in aerospace automated
warehouses and handled by operators. Fig. 10 presents the CAD re-
presentations of this test case which were used in the grasp synthesis
pipeline with the model of the RobotiQ 2F-85 gripper (Fig. 7).

The grasp synthesis pipeline automatically generated grasp candi-
dates for each object in an offline phase. Fig. 11 to Fig. 16 show some
examples of grasp candidates rendered by the grasp viewer package. It
is important to note that for all cases, 30 iterations were chosen to
generate the grasps. However, for the multi-side bracket, more

Fig. 18. Experimental sample of grasps over the objects database.

iterations were necessary (a total of 80, shown in Table 1). This situa-
tion happens because of the topology of the part: the multi-side bracket
possesses small (the seven lateral lumps) and large (the base) graspable
surfaces. The SA tends to converge to the largest region (see bottom left
and bottom right grasps hypothesis of Fig. 15), i.e., to the easiest
graspable part of the object shape. Therefore, a higher number of
iterations may improve the detection of small graspable regions (like
the top left and top right grasps hypothesis of Fig. 15) since the initial
gripper’s position can avoid the recurrence of the minima local pro-
blem.

It is also important to consider the ICR model presented in
Section 3.2. As already mentioned in Section 4.1, this affects the al-
gorithm’s performance. ICRs allocated in the inner part of the gripper
could lead the algorithm to not converge. In that case, the fingertip’s
edge can collide with the object before the ICR reaches the contact, i.e.,
the ICR does not touch the lumps’ surface in the case of the multi-side
bracket. If many contact points are selected, a contact region larger
than the actual grasp region could be originated, and this could lead to
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a situation where not every contact point belongs to the object. Small
ICR or ICR located very near the fingertip edge instead can generate
stable but unpractical grasps. This can be seen in the bracket (top right
grasp of Fig. 11) and support bracket (bottom right grasp of Fig. 14).
These cases are unpractical since any object sensing errors or bin dis-
turbance can invalidate the grasp selection.

Therefore, it is important that a human supervisor, with the de-
veloped Grasp Viewer package, analyses and selects the grasps hy-
pothesis to be applied in the real bin picking scenario.

The convergence time of the grasp synthesis algorithm is presented
in Table 1, including the mean decision time. These performance values
were generated with a medium-end computer with 12GB of RAM and
1.80GHz CPU (i7-8550U). It is important to note that for each iteration
of the SA, 100000 poses were tested for the localization of contact point
between the active pairs / fingers. Many poses were not force-closure
candidates, i.e., there were no contacts to a minimum force-closure
grasp. The relevance pipeline reduced the number of grasps that were
almost the same, with a limit of 20 degrees in each angular axis and 1
centimeter of Euclidean distance between the grasp candidates. Ana-
lysing each object with the Grasp Viewer, four out of the six parts had
grasp candidates removed by a human supervisor. These grasps could
be unfeasible in the picking scenario use case, like the top right grasp of
Fig. 11 and the bottom right grasp of Fig. 14. An important point also
verified in Table 2 is the mean decision time. This parameter is the time
that the grasp selection algorithm takes to decide which pose candidate
will be chosen. This time needs to be small for a picking application.
Therefore, with the approach of uncoupling the grasp pipeline in offline
and online steps, the grasp selection becomes fast enough for a picking
task.

An experimental pick and place scenario (seen in Fig. 1) was set up
in the Industry and Innovation Laboratory of INESC TEC to evaluate the
grasp planning pipeline. The robot used was an omnidirectional mobile
manipulator equipped with the UR10 robotic arm, the RobotiQ 2F-85
gripper and the PhotoNeo PhoXi S sensor for 6 DoF object pose esti-
mation.

The files generated by the grasp synthesis were uploaded to the
robot to be used by the grasp selection pipeline in the picking task. The
grasp selection cascade of heuristics used relied on the following
heuristics: joint space filter, Euclidean distance, along with the roll,
pitch, and yaw distances. After the object recognition and pose esti-
mation, the grasp selection was able to choose a suitable candidate
given the pose of the robot concerning the bin, the joints constraints,
and the grasp list hypothesis already loaded in its memory. Fig. 17
shows a full picking procedure for the support bracket case. Fig. 18
shows different grasps for distinct parts of the data set.

6. Conclusion

This paper addressed the development of a grasp planning pipeline
that is able to automatically generate grasps over a set of recognized
objects and also select the best grasp with task-orientated capabilities
(i.e., considering the environment and run-time constraints of the task),
being endowed with methodologies and tools already consolidated in
the scientific community. Tests were performed and presented con-
sidering a real intralogistic use case scenario in the aerospace industry.

Currently, the proposed grasp synthesis pipeline is built on top of
the “Grasplt!” simulator and its SA optimization algorithm. Combined
with the grasp selection, the grasp synthesis composes the designed
grasp planning that extends the ‘Grasplt!” applicability. Therefore, the
proposed grasp planning transfers the simulated methodology to the
real environment with task-orientated capability. In summary, the
grasp synthesis generates and stores several solutions, interactively
changing the initial conditions of SA. After evaluating the stability
metric, unnecessary solutions are removed, and a feasible and not re-
dundant grasp database is created. The grasp synthesis is performed in
an offline phase for acelerating the run time phase by pre-generating
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the grasp candidates, that later on are analysed at run time for selecting
the most suitable given the task conditions and restrictions.

It should be highlighted that the proposed pipeline intends to be
flexible and user-friendly being that, at this moment, it allows the user
to choose the type of gripper and object to be grasped by just providing
their 3D models. Furthermore, it also allows setting each heuristic and
organize them in a cascade flow with different orders and importance
levels.

As future work, other methods will be implemented and embed into
the reconfigurable pipeline structure (e.g. centroid estimation of planar
surfaces for suction grasp; the CNN for agnostic-object grasping pro-
posed by [23]. Also, a user-friendly interface will be designed. There-
fore, the user will be able to choose between different methodologies
and select the best appropriate ones for its application.

Regarding the grasp selection package, new filters and heuristics
will be added, such as one to score the grasp result according to the
approaching and lifting vector (since some grasp points can generate
collision situations between the scenario and the object).

Although motivated by intralogistic use cases in aerospace factories,
the proposed reconfigurable and modular pipeline was designed to be
applicable in different scenarios. Our main objective is to integrate it
into our bin-picking solution that is still in development. As future
work, we also intend to assess the performance of the proposed pipeline
for automatic picking of product on conveyors-belts at fast consumer
goods factories and for the manipulation of tools in collaborative robot
applications.
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