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Real-Time Motion Control of Robotic Manipulators
for Safe Human-Robot Coexistence

Kelly Merckaert1,2, Bryan Convens1,3, Chi-ju Wu4,
Alessandro Roncone4, Marco M. Nicotra5, and Bram Vanderborght1,3

Abstract—This paper introduces a computationally efficient
control scheme for safe human-robot interaction. The method
relies on the Explicit Reference Governor (ERG) formalism to
enforce input and state constraints in real-time, thus ensuring
that the robot can safely operate in close proximity to humans.
The resulting constrained control method can steer the robot arm
to the desired end-effector pose (or a steady-state admissible
approximation thereof) in the presence of actuator saturation,
limited joint ranges, speed limits, static obstacles, and humans.
The effectiveness of the proposed solution is supported by
theoretical results and numerous experimental validations on
the Franka Emika Panda robotic manipulator, a commercially
available collaborative 7-DOF robot arm.

Index Terms—Human-robot Collaboration, Collision Avoid-
ance, Constrained Control, Robot Arm

I. INTRODUCTION

IN recent years, the paradigm of manufacturing is shifting
from mass production to mass customization with high-mix

low-volume production. To this end, an increased flexibility in
the production environment is required, which can be obtained
by combining the complementary qualities of humans and
robots. On the one hand, robots excel at simple, repetitive
tasks; on the other hand, humans have unique cognitive skills
for understanding and adapting to any changes in the task [1],
[2]. While traditional industrial robots are typically segregated
within safety cages, collaborative robots, or cobots, are able
to work directly in the proximity of human operators, sharing
the same workspace and performing combined operations. By
doing so, they can increase flexibility and productivity while
also improving the ergonomics of the workplace [3].

Although Human-Robot Collaboration (HRC) can bring the
production line to a new level of flexibility and efficiency,
the safety issue of robots working in close proximity and
without barriers with human operators becomes dominant [4].
The publication of the ISO/TS 15066 directives on this matter
defined the safety functions and performance of collaborative
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Fig. 1: Experimental Validation of the Trajectory-Based ERG.
a) the robot’s end-effector pose reference is defined using a
wooden plate with reflective markers, b) the arm of the human
operator gets in between the robot and its reference, c) the
robot safely moves away from the human, d) the robot goes
back to its reference once it is safe to do so.
See https://youtu.be/UzbhMzcKSbE for the full video.

robots, within four types of collaborative robot operation:
Safety Monitored Stop (SMS), Hand Guiding (HG), Speed and
Separation Monitoring (SSM), and Power and Force Limiting
(PFL). SMS pauses a robot’s motion while an operator is
in the collaborative workspace, HG allows a collaborative
robot to move through direct input from an operator, in
SSM the collaborative robot is able to move concurrently
with the operator as long as they maintain a pre-determined
distance apart, and PFL requires a special robot that has
power or force feedback built in which lets the collaborative
robot detect contact with a person [5]. Although a robot
in the SSM operation mode, is not necessarily brought to
standstill, the robot moves very slowly in proximity to the
human operator. This dramatically reduces the performance
of the robot in terms of productivity, ultimately jeopardizing
the economic attractiveness of a collaborative workstation.

https://youtu.be/UzbhMzcKSbE
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This is especially true since a significant part of the tasks
in today’s industry consists of handling and moving objects,
operations that do not really add value to a product and should
therefore be performed as quickly and seamlessly as possible.
The execution time is therefore critical and even relatively
small savings on the robot motions may influence the overall
cycle time of a system, and can be the difference between
whether a given setup is economically feasible or not [6]. To
boost their return on investment, control approaches have to
be revised and low-level motion control of the cobots needs
to be modulated online and in real-time to improve safety and
performance while keeping the productivity high.

In this work, we aim to reduce the current drawbacks related
to the SSM operating mode. We focus on highly dynamic
environments with a robot that operates in close proximity with
a human operator and needs to avoid the unpredictable human
motions. We develop a provably safe real-time constrained
control methodology that can be implemented on a generic
serial chain robotic manipulator to guarantee efficient task
realization and safety towards the human and the environment.
The algorithm is validated on the Franka Emika Panda (here-
after denoted as the Panda robot), and videoframes from the
extensive experimental validation are shown in Fig. 1.

II. RELATED WORK

To achieve safe Human-Robot Collaboration (HRC), most
industrial robot manipulators are re-engineered with either
passively compliant actuators, [7], actively compliant actuators
[8], [9], or collision sensors [10].

The feeling of safety and comfort of the human operator can
be improved in HRC tasks by making it easier for the human
to interpret the robot’s intents, which can be achieved by
making the robot motions more human-like [11]. However, it is
important to remark that this strategy cannot guarantee safety
without accounting for state and actuator input constraints
[12]. A combination of both requirements is achieved in [13],
which proposes a motion planner that generates consistent
trajectories for similar tasks, making it easier for the human
to predict the robot’s actions, while it guarantees safety by
enforcing constraints.

Sampling-based motion planning algorithms, as Rapidly-
exploring Random Trees (RRT), are used for planning safe
motions of robotic manipulators with kinematic constraints,
e.g. [6], [14], [15]. Although all variants have their own advan-
tages, none of them take into account the robot dynamics. Path
planning approaches that consider both kinematic and dynamic
constraints are computationally demanding and therefore hard
to implement in real-time, e.g. [18], where solution trajectories
for cluttered environments are found after more than 3 min.

A motion planning scheme based on quadratic programming
for redundant robot manipulators that allows to track complex
end-effector paths with low joint-angle drift under convex
constraints is proposed in [16] and extended to nonconvex
constraints in [17]. The control scheme considers joint angle
and joint velocity limits, but does not account for higher-order
manipulator dynamics and torque input constraints, neither
does it provide real-time collision avoidance capabilities.

In contrast to the latter motion planning algorithms, po-
tential field methods are reactive and computationally effi-
cient, making them particularly well-suited for real-time colli-
sion avoidance, see e.g. [19]–[24]. Another computationally
efficient method is the danger field, which indicates how
dangerous are the current posture and velocity of the robot
with respect to the objects in the environment [25]. The two
approaches can be combined using the kinetostatic safety field
[26]. However, all these approaches do not take into account
actuator input constraints (i.e. the joint torques), also called
input saturation constraints.

The Saturation in the Null Space algorithm generates ve-
locity commands that allows real-time control of robots for
a large number of hard limits [27]. Although this iterative
algorithm guarantees an optimal solution, it also does not take
into account actuator input constraints.

A general control solution able to handle both state and
input constraints in real-time is Model Predictive Control
(MPC), which is based on the idea of solving a constrained
finite time optimization problem at each sampling time [28],
[29]. Although recent advancements in computational perfor-
mances have made it possible to implement MPC on robots,
see e.g. [30], [31], the application possibilities are limited due
to the typically non-negligible computational cost.

For robot control in dynamic environments where the human
operator can be the dynamic obstacle, strategies based on the
SSM and the PFL criterion change the velocity of the robot
based on the distance between the human operator and the
robot [32]–[35]. Similarly, in [36] gesture recognition of the
operator commands is used to change the workmode and so
the velocity of the robot. However, these velocity modulations
strategies have usually no rigorous proof of convergence in
finite time and often slow down the robot excessively.

Methodologies that guarantee obstacle avoidance under cer-
tain assumptions in HRC environments are pseudo-distance
algorithms, that are based on distance calculations of the
dynamic environment. Despite the fact that the experiments
in [37] indicate that the proposed method can perform safe
and timely dynamic avoidance for redundant manipulators, the
case that obstacles are continuously moving is not considered
with their discrete detection algorithm. In [38] a safe set
of states including dynamic constraints is determined, which
is then rendered controlled positively invariant, thus keeping
the system in a safe configuration. Instead of generating
invariant sets, another way to tackle the HRC safety problem
is to generate reachable occupancies which account for all
human movement, as in [39] where reachable occupancy and
a kinematic model of a human is used to ensure that the robot
avoids the human before coming to a stop. Although safe,
these methods result in a more conservative robot behavior.

To the best of our knowledge, the literature does not provide
any control techniques with high provable safety that achieve
real-time control of a robotic manipulator without dramatically
reducing the performance of the robot in the presence of
actuator saturation, joint range limitations, speed constraints,
obstacles, and moving objects.
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Contributions

This work is based on the Explicit Reference Governor
(ERG), which is a closed-form feedback control scheme that
can enforce both state and input constraints of nonlinear pre-
stabilized systems without having to solve an online opti-
mization problem [40], [41]. The idea of the trajectory-based
ERG for a generic robotic manipulator with actuator con-
straints, joint angle limitations, and static spherical obstacles
was explored in [42]. However, the method was validated
only numerically for a 2-DOF robotic manipulator. The core
contributions of this article are listed below.

1) The paper considers a broader range of constraints. No-
tably, we include auxiliary speed limits, i.e. the robot joint
velocities and the Cartesian end-effector velocity, as well
as wall and cylindrical obstacles.

2) The paper discusses stability and constraint reinforcement
in presence of dynamic constraints.

3) The control law is validated experimentally on a com-
mercially available 7-DOF robot, i.e. the Panda robot.
The experimental validation includes case studies in
static environments, where it is possible to guarantee the
absence of collisions.

4) The experimental validations also include dynamic ob-
stacles with a human in a HRC experiment, where it
is not possible to guarantee the absence of collisions.
Although the robot will always try to avoid collisions with
obstacles, collisions with dynamic obstacles can happen
as a result of the environment (e.g. human) hitting the
robot, as opposed to the other way around.

This paper is organized as follows. The problem is for-
mulated in Section III. The proposed control framework is
explained in Section IV. The results are presented in Section
V and discussed in Section VI. Conclusions and future per-
spectives are given in Section VII.

III. PROBLEM FORMULATION

We present the dynamic model of a robotic manipulator, the
constraints to which it is subject, and the control objectives.

A. Dynamic Model

Consider the joint space dynamic model of a robotic ma-
nipulator with n joints,

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ , (1)

where q ∈ Rn is the vector of joint variables, M(q) > 0
is the mass matrix, C(q, q̇)q̇ accounts for the Coriolis and
centrifugal forces, g(q) is the influence of the gravity on the
manipulator, and τ ∈ Rn is the torque control input vector.

We will denote xi = [pi,Θi]
T as the Cartesian pose of the

i-th joint ∀i = {1, . . . , n}, with pi = [xi, yi, zi]
T ∈ R3 the

position of joint i and Θi ∈ H representing the orientation
of joint i in quaternion space. Although the pose of the end-
effector can be denoted as xn+1, in this work we use the
notation xe. Similarly, the end-effector’s twist will be denoted
as ẋe ∈ R6, with ṗe = [ẋe, ẏe, że] ∈ R3 the linear velocity
and ωe = [ωe,x, ωe,y, ωe,z] ∈ R3 the angular velocity.

We will furthermore define as ki(·) : Rn 7→ R3 the direct
kinematics to obtain the position of joint i, i.e. pi = ki(q), i =
{1, . . . , n + 1}. We omit the orientation part since the direct
kinematics will only be computed to obtain the positions of
the joints. We define the Jacobian of the robotic manipulator
Ji(·) : Ri 7→ R3 so that ṗi = Ji(q1:i)q̇1:i, where we only
take into account the translation part of the Jacobian. This
is not a limitation, since we only use the direct kinematics
and the Jacobian to compute the distance between an obstacle
and the robot arm, for which the joint positions are enough
to obtain all necessary information of the robot link position
and orientation. However, for the inverse kinematics, both
the position and orientation of the end-effector are taken into
account.

B. State and Input Constraints

The system is subject to a variety of input and state
constraints. Specifically, we consider the following classes of
constraints:

1) Actuator Saturation: Whenever one of the joint motors
is subject to saturation, the control law is unable to generate an
arbitrary torque vector, which can lead to oscillatory or even
unstable robotic manipulator motions. To prevent this scenario,
each motor torque is required to stay within its lower and upper
saturation limits,

τmin,i ≤ τi ≤ τmax,i, ∀i = {1, . . . , n} . (2)

2) Operating Region: The robot arm has a limited operat-
ing range,

qmin,i ≤ qi ≤ qmax,i, ∀i = {1, . . . , n} , (3)

which represents the range constraints of the n actuators.
3) Speed Limitation: To allow human-robot collaboration,

we have to take into account the cobot’s inherent joint velocity
limits,

q̇min,i ≤ q̇i ≤ q̇max,i, ∀i = {1, . . . , n} , (4)

and its Cartesian end-effector velocity limits,

ẋmin,e ≤ ẋe ≤ ẋmax,e . (5)

For the purposes of constrained control algorithms, these
limits are not strictly necessary to ensure provably safe robot
motions. However, many industrial robots include fail-safe
mechanisms that activate when the joint velocities or end-
effector velocities are too fast. Omitting these constraints can
therefore cause the robot to stop unexpectedly.

4) Obstacles: It is assumed that the robot should avoid a
collection of possibly moving obstacles. We will consider Nw
walls, Ns spherical obstacles, and Nc cylindrical obstacles.

Wall Constraints: Planar walls can be avoided by enforcing

cw
j · pi ≤ dw

j , ∀i ∈ {1, ..., n+ 1}, ∀j ∈ {1, ..., Nw} , (6)

where cw
j ∈ R3 is the unit vector normal to the j-th wall

(pointing in the inadmissible direction) and dw
j ∈ R describing

the distance between the plane and the robot base.
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Spherical Obstacles: Collision with spherical obstacles can
be avoided by enforcing

‖ps
ij − cs

j‖ ≥ rs
j , ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., Ns}, (7)

where cs
j and rs

j are the center and the radius of sphere j,
respectively, and ps

ij is the point on the robot link i that is
closest to sphere j. See Appendix A for details on how to
compute ps

ij .
Cylindrical Obstacles: Collision with cylindrical obstacles

can be avoided by enforcing

‖pc
ij − tc

ij‖ ≥ rc
j , ∀i ∈ {1, ..., n}, ∀j ∈ {1, ..., Nc}, (8)

where rc
j is the radius of cylinder j, pc

ij is the point on link
i that is closest to cylinder j and tc

ij is the point on cylinder
j that is closest to link i. See Appendix B for details on how
to compute pc

ij and tc
ij .

In the context of HRI, it is worth noting that a robot
workspace can be limited by using virtual walls and that
typical workspace objects or the human body (e.g. head,
limbs) can be approximated using spherical and cylindrical
geometries.

C. Control Objectives

The main objective of this paper is to design a compu-
tationally efficient control scheme for a robotic manipulator
with the joint space dynamic model in (1) that has to reach an
end-effector pose reference xe,r, or a steady-state admissible
approximation, while also satisfying the listed constraints. The
following objectives need to be achieved:

1) Safety: For any piece-wise continuous reference qr(t),
the control law guarantees constraint satisfaction of the state
and input constraints (2)–(5). Moreover, the satisfaction of the
collision constraints (6)–(8) is guaranteed in the case of static
obstacles. For the case of dynamic obstacles, the control law
avoids collision if possible and halts the robot otherwise.

2) Asymptotic Stability: If the reference qr is constant
and steady-state admissible, the closed-loop system satisfies
limt→∞ q(t) = qr ;

3) Reactiveness: The control law must run in real-time
without relying on offline pre-generated trajectories.

It is worth noting that the Safety objective is consistent with
the ISO/TS 15066 directives, even though it does not prevent
collision in every scenario. Specifically, it is acceptable for a
motionless robot to be hit by a human operator due to the
relatively low energy exchange of such collisions.

IV. PROPOSED CONTROL FRAMEWORK

The main control challenge is to ensure that the nonlinear
dynamics of the robotic manipulator satisfy the numerous
input and state constraints. Based on this problem statement,
we propose a multi-layer control architecture to decouple
the control problem into more manageable sub-tasks. The
proposed control framework is illustrated in Fig. 2.

The first task, which is handled by the Control Layer,
consists in pre-stabilizing the dynamics of the robotic ma-
nipulator to the applied reference qv . As employed in most

commercially available manipulators, this will be done by a
classic PD control law with gravity compensation that does not
account for any system constraints. The second task, which is
handled by the trajectory-based Explicit Reference Governor
(ERG), consists in dynamically filtering the reference qr
so that all the constraints are satisfied. This layer is also
responsible for reaching the target configuration qr. In case
a Cartesian end-effector pose reference xe,r is given to the
robotic manipulator, it needs to be transformed by means of
a kinematic inversion into a joint reference qr. To do so, we
will use an inverse kinematics algorithm based on Newton-
Raphson iterations.

The detailed design of the control layer and trajectory-
based ERG will be addressed in Sections IV-A and IV-B,
respectively.

A. Pre-Stabilizing Control Layer

The goal of the control layer is to pre-stabilize the robotic
manipulator without accounting for system constraints. This
is achieved by the classic PD with gravity compensation
approach

τ = KP (qv − q)−KDq̇ + g(q) . (9)

Combined with (1) this leads to the following closed-loop
system dynamics

M(q)q̈ +C(q, q̇)q̇ = KP (qv − q)−KDq̇ . (10)

In absence of constraints it is possible to prove with the
Lyapunov function,

V (q, q̇, qv) =
1

2
q̇TM(q)q̇+

1

2
(qv−q)TKP (qv−q) , (11)

that the equilibrium configuration q = qv , q̇ = 0 of (10) is
Globally Asymptotically Stable (GAS) whenever KP and
KD are positive definite diagonal matrices [43].

B. Trajectory-Based Explicit Reference Governor

Consider the pre-stabilized system (10) such that, if the
applied reference qv remains constant, the closed-loop equi-
librium configuration q̄v is asymptotically stable. Given a
continuous steady-state admissible path Φ : [0, 1] 7→ R7

between an initial reference Φ(0) = qv(0) and a target
reference Φ(1) = qr, the principle behind the ERG is to
generate a reference qv(t) ∈ {Φ(s) | s ∈ [0, 1]} such that the
transient dynamics of the closed-loop system cannot cause a
constraint violation and limt→∞ qv(t) = Φ(1).

Rather than pre-computing a suitable trajectory qv(t), the
ERG achieves these objectives by continuously manipulating
the derivative of the applied reference as the product of
ρ(qv, qr) and ∆(q, q̇, qv),

q̇v = ρ(qv, qr) ∆(q, q̇, qv) , (12)

where ρ(qv, qr) is the Navigation Field (NF), i.e. a vector
field that generates the desired steady-state admissible path
Φ(s), and ∆(q, q̇, qv) is the Dynamic Safety Margin (DSM),
i.e. a scalar that quantifies the distance between the predicted
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Pre-Stabilized System

Trajectory-Based
Explicit Reference Governor

Navigation
FieldInverse

Kinematics

Dynamic
Safety Margin

×
∫

PD + g
Control

q̇v qv

ρ

∆

xe,r qr
τ q, q̇

Fig. 2: Proposed Constrained Control Architecture − The desired end-effector pose xe,r is transformed by means of inverse
kinematics into a desired joint reference qr. This desired joint reference qr is dynamically filtered by the trajectory-based ERG
to the auxiliary joint reference qv such that the target configuration will be reached while satisfying the system constraints.
The trajectory-based ERG is the product of a Navigation Field, which determines the direction of q̇v , and a Dynamic Safety
Margin, which regulates the modulus of q̇v . The PD+g control unit pre-stabilizes the robot dynamics to the applied reference
qv and sends the computed torques τ to the robot.

transient dynamics of the pre-stabilized system and the con-
straint boundaries if the current qv(t) were to remain constant.

For more details on the theoretical properties of the ERG
framework, the reader is referred to [41]. The following
sections detail the NF and the DSM used in this work.

1) Navigation Field: The Navigation Field can be designed
using a traditional attraction and repulsion field,

ρ(qv, qr) = ρatt + ρrep , (13)

where the attraction field is

ρatt (qr, qv) =
qr − qv

max (‖qr − qv‖ , η)
, (14)

with η > 0 a smoothing parameter ensuring ρatt is a class C1

function.

The repulsion field is the sum of linear repulsion fields
pushing the robot arm away from steady-state inadmissible
regions because of joint angles constraints (q), wall constraints
(w), spherical obstacles (s), and cylindrical obstacles (c), i.e.

ρrep = ρq + ρw + ρs + ρc . (15)

For the repulsion field due to the joint angle constraints
qmin ≤ q ≤ qmax it is enough to add for each actuator i ∈
{1, . . . , n} a repulsion term

ρq
i = max

(
ζq − |qv,i − qmin,i|

ζq − δq , 0

)
−max

(
ζq − |qv,i − qmax,i|

ζq − δq , 0

)
,

(16)
where δq > 0 is the static safety margin of all the joint
angles and ζq > δq is the influence margin. Assuming that
the influence regions of the upper and lower joint angle limits
do not overlap, at least one term in (16) will always be zero
for each actuator i. We will denote the joint repulsion field as

ρq = [ρq
1, . . . , ρ

q
n]T . (17)

For the repulsion field due to the obstacle constraints, we
first need to compute the Cartesian position of each joint
angle i, with i = {1, · · · , n + 1}, for the applied reference
configuration qv ,

pv,i = ki(qv) . (18)

To avoid collisions with the wall constraints j = {1, . . . , Nw},
we first denote the direction of the repulsion field for wall j
in Cartesian space by

vw
ij = −cw

j , (19)

which points in the admissible direction. Note that the direc-
tion of the repulsion field due to wall j is the same for all robot
links i, ∀i ∈ {1, ..., n}. By using the pseudoinverse Jacobian,
we can transform this repulsion field to joint space,

ρ̂w
ij =

J†i (qv,1:i)v
w
ij

max
(∥∥∥J†i (qv,1:i)v

w
ij

∥∥∥ , ηw
) , (20)

with the smoothing parameter ηw = 10−3. This is a unit
direction vector in joint space for the endpoint of link i and
wall j. The amplitude of this vector depends on the distance
between the endpoint of link i and wall j,

ρw
ij = max

(
ζw −

(
dw
j − cw

j · pv,i
)

ζw − δw , 0

)
ρ̂w
ij , (21)

with ζw the influence margin and δw the safety margin. The
repulsion field for the full robot arm and for Nw walls becomes

ρw =

Nw∑
j=1

n+1∑
i=2

ρw
ij , (22)

in which we only take into account the endpoint of all the
links, whereby the base joint, i.e. i = 1, is neglected.

To avoid collisions with the spherical obstacles j =
{1, · · · , Ns}, we compute ps

v,ij as detailed in Appendix A1.
The direction of the repulsion field for link i and spherical
obstacle j can then be computed in task space as

vs
ij = ps

v,ij − cs
j . (23)

1Appendix A, the subscript v is omitted for simplicity of notation. However,
when computing the NF, all the joint positions pi should be interpreted as
the joint positions of the applied reference configuration, i.e. pv,i.
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This repulsion field is transformed to joint space by using the
pseudoinverse Jacobian,2

ρ̂s
ij =

J†ps
v,ij

(qv)v
s
ij

max
(∥∥∥J†ps

v,ij
(qv)v

s
ij

∥∥∥ , ηs
) , (24)

with the smoothing parameter ηs = 10−3. This represents a
unit direction vector in joint space from sphere j to link i.
The amplitude of this vector depends on the shortest distance
between link i and sphere j,

ρs
ij = max

(
ζs −

(∥∥ps
v,ij − cs

j

∥∥− rs
j

)
ζs − δs , 0

)
ρ̂s
ij , (25)

with ζs the influence margin and δs the static safety margin.
The resulting repulsion field for the full robot arm and for Ns
spheres is

ρs =

Ns∑
j=1

n∑
i=1

ρs
ij . (26)

To avoid collisions with the cylindrical obstacles j =
{1, · · · , Nc}, we compute pc

v,ij and tc
v,ij as detailed in Ap-

pendix B. The direction of the repulsion field for link i and
cylindrical obstacle j can then be computed as

vc
ij = pc

v,ij − tc
v,ij . (27)

This repulsion field is transformed to joint space by using the
pseudoinverse Jacobian,3

ρ̂c
ij =

J†pc
v,ij

(qv)v
c
ij

max
(∥∥∥J†pc

v,ij
(qv)v

c
ij

∥∥∥ , ηc
) , (28)

with the smoothing parameter ηc = 10−3. This represents a
unit direction vector in joint space from cylinder j to link i.
The amplitude of this vector depends on the shortest distance
between link i and cylinder j,

ρc
ij = max

(
ζc −

(∥∥pc
v,ij − tc

v,ij

∥∥− rc
j

)
ζc − δc , 0

)
ρ̂c
ij , (29)

with ζc the influence margin and δc the static safety margin.
The resulting repulsion field for the full robot arm and for Nc
cylinders is

ρc =

Nc∑
j=1

n∑
i=1

ρc
ij . (30)

2The translational Jacobian for point ps
v,ij and the applied joint angle

configuration qv is denoted by J†
ps
v,ij

(qv). However, in practice we can
only obtain the numerical values of the Jacobian for the n joints and end-
effector. Therefore, (24) becomes in practice,

ρ̂s
ij =

((
1−λs

ij

)
J

†
i (qv,1:i)+λ

s
ijJ

†
i+1(qv,1:i+1)

)
vs
ij

max
(∥∥∥((1−λs

ij

)
J

†
i (qv,1:i)+λ

s
ijJ

†
i+1(qv,1:i+1)

)
vs
ij

∥∥∥,ηs
) .

3The translational Jacobian for point pc
v,ij and the applied joint angle

configuration qv is denoted by J†
pc
v,ij

(qv). However, in practice we can
only obtain the numerical values of the Jacobian for the n joints and end-
effector. Therefore, (28) becomes in practice,

ρ̂c
ij =

((
1−λc

ij

)
J

†
i (qv,1:i)+λ

c
ijJ

†
i+1(qv,1:i+1)

)
vc
ij

max
(∥∥∥((1−λc

ij

)
J

†
i (qv,1:i)+λ

c
ijJ

†
i+1(qv,1:i+1)

)
vc
ij

∥∥∥,ηc
) .

constraint

Fig. 3: Trajectory-Based DSM Principle − An arbitrary refer-
ence qr is given to the trajectory-based ERG, which returns
the feasible reference qv that can be applied to the system
without causing any constraint violations, resulting in the real
robot motion q. Before time t, a step reference is reached by
the robot (i.e. qr = qv = q), whereafter another step reference
qr is given to the system. Starting from the current robot
states (q(t), q̇(t)) at time t, the trajectory-based DSM predicts
the robot dynamics q̂t′∈[t,t+T ] over a finite time horizon T
for a constant applied reference qv(t). The minimal distance
between the predicted states and the constraint is denoted by
∆q(t) and denotes the guaranteed safe rate of change of the
applied reference, i.e. q̇v . In a similar way constraints on other
variables can be accounted for.

2) Dynamic Safety Margin: The idea behind the trajectory-
based DSM is to compute the trajectories of the pre-stabilized
system q̂(t|q, q̇, qv) = q̂t′=t under the assumption that the
current applied reference qv(t) is kept constant. This is done
by simulating the forward dynamics with the Simplectic Euler.
We first initialize at the current time t the states that will be
predicted, q̂ and ̂̇q, {̂̇qt′=t = q̇(t) ,

q̂t′=t = q(t) ,
(31)

whereafter we simulate the system dynamics,
τ̂t′+dt = KP (qv − q̂t′)−KD

̂̇qt′ + g(q̂t′) ,̂̈qt′+dt = M †(q̂t′)
(
τ̂t′+dt −C(q̂t′ , ̂̇qt′)− g(q̂t′)

)
,̂̇qt′+dt = ̂̇qt′ + ̂̈qt′+dt dt ,

q̂t′+dt = q̂t′ + ̂̇qt′+dt dt ,
(32)

with dt the prediction sampling time. Given the trajectory
q̂(t′|q, q̇, qv) over a finite time window t′ ∈ [t, t + T ] with
T > 0, which is sufficiently large to capture the system
dynamics, it is possible to compute the distance between the
predicted inputs and states, and their constraints. When the
minimal distance of all those constraint boundaries is positive,
it is possible to change the currently applied reference qv
without running the risk of violating the constraints in the
future. The smaller this worst case distance becomes, the
slower the applied reference may change. When this predicted
distance is zero, the applied reference is not allowed to change,
since this could cause constraint violations in the future. The
principle behind the DSM is illustrated in Fig. 3.
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The overall trajectory-based DSM ∆T for all the constraints
listed in Section III-B, can be computed as.

∆T (q, q̇, qv) = min

{
κτ∆τ , κq∆q, κq̇∆q̇, κẋe∆ẋe ,

κw∆w, κs∆s, κc∆c

}
(33)

with κτ , κq , κq̇ , κẋe , κw, κs, and κc all arbitrary positive
scaling factors.

For the DSM due to the actuator saturation constraints, we
have to compute

∆τ = min
t′∈[t,t+T ]

{
min
i∈[1,n]

{τ̂t′,i − τmin,i, τmax,i − τ̂t′,i}
}
. (34)

The DSM due to joint angle constraints becomes

∆q = min
t′∈[t,t+T ]

{
min
i∈[1,n]

{q̂t′,i − qmin,i, qmax,i − q̂t′,i}
}
. (35)

The DSM due to the speed limits is

∆q̇ = min
t′∈[t,t+T ]

{
min
i∈[1,n]

{̂̇qt′,i − q̇min,i, q̇max,i − ̂̇qt′,i}} ,

(36)

∆ẋe = min
t′∈[t,t+T ]

{̂̇xt′,e − ẋmin,e, ẋmax,e − ̂̇xt′,e} . (37)

The DSM due to the obstacle constraints can be computed as,

∆w = min
j∈[1,Nw]

{
min
i∈[1,n]

{
min

t′∈[t,t+T ]

{
‖dw
j − cw

j · p̂t′,i‖
}}}

,

(38)

∆s = min
j∈[1,Ns]

{
min
i∈[1,n]

{
min

t′∈[t,t+T ]

{
‖p̂s

t′,ij − cs
j‖ − rsj

}}}
,

(39)

∆c = min
j∈[1,Nc]

{
min
i∈[1,n]

{
min

t′∈[t,t+T ]

{
‖p̂c

t′,ij − t̂c
t′,ij‖ − rcj

}}}
.

(40)
Note that the predicted p̂s

t′,ij , p̂
c
t′,ij , and t̂c

t′,ij are computed
in Appendices A and B, with the only difference that we do
not consider the applied joint angle configuration qv , but the
predicted joint angle configuration q̂t′ .

To extend this result over an infinite time horizon, it is
sufficient to ensure that, from time t + T onward, that the
closed-loop system dynamics will not exceed the terminal
energy constraint,

∆V (q, q̇, qv) = κEterm

(
Eterm − V

(
q̂t′ , ̂̇qt′ , qv)) , (41)

where κEterm is a positive arbitrary scaling factor, Eterm > 0 is
a suitable threshold value for which the tuning will be further
explained in Section V-B, and the predicted closed-loop system
energy is given by

V (q̂t′ , ̂̇qt′ , qv) =
1

2
̂̇qt′M(q̂t′)̂̇qt′+1

2
(qv − q̂t′)T KP (qv − q̂t′) ,

(42)
for t′ = t + T . By combining (33) and (41) we obtain the
overall DSM for an infinite time horizon,

∆(q, q̇, qv) = max {min (∆T ,∆V ) , 0} . (43)

Note that, to compute the DSMs, we assume that the
obstacles are static.

3) Theoretical Guarantees: It is worth noting that, al-
though the ERG design does not differentiate between static
and dynamic constraints, the behavior of the ERG will be
different for the two cases. Given static constraints, the ERG
guarantees constraint satisfaction and asymptotic stability to
a local attractor of the navigation field, as detailed in [41].
In the presence of dynamic constraints, the navigation field
becomes time-varying. As a result, it is not possible to guar-
antee asymptotic convergence to a local attractor. Due to the
DSM, however, we can still guarantee stability since the rate of
change q̇v is proportional to ∆ (q, q̇, qv), which goes to zero if
the robot torques, angular velocity, or terminal energy exceed
their limits. Moreover, although the ERG has the overall
tendency to push the robot away from moving obstacles, we
are unable to guarantee collision avoidance in every scenario.
Nevertheless, if the ERG detects that a collision is immanent
(i.e. if the forward trajectory predictions result in ∆ = 0),
the applied reference will stop changing. Given a constant
reference, (9) reduces to a compliant controller [44], with KP

regulating the overall stiffness. Thus, the ERG satisfies the
Power and Force Limiting criterion, since the robot is passive
at the time of collision.

In short, we can guarantee that the robot is never unstable
and that it is asymptotically stable if the environment around it
remains stationary. Additionally, we show that the robot will
not deliberately cause a collision and displays a compliant
behavior if something in the environment bumps into it.

V. RESULTS

We present the results of an experimental validation of
the trajectory-based ERG by means of experiments without
obstacles, with static obstacles, and with dynamic obstacles
(i.e. a human). A video of the experiments can be found at
https://youtu.be/UzbhMzcKSbE. A summary of these results
can be found in Section VI.

A. Experimental Setup

The experiments are performed with the Panda collaborative
robot. The pre-stabilizing control and trajectory-based ERG of
Section IV-A and IV-B are implemented in C++ on a desktop
with an AMD®Ryzen 9 3900x 12-core processor x 24. The
pre-stabilizing control runs at 1 kHz, which is the frequency at
which commands should be sent to the robot. The ERG runs
in parallel at 100 Hz, which has shown to be sufficiently fast
for the purposes of these demonstrations.

Experiments that require online localization of the end-
effector reference or online localization of the dynamic ob-
stacles are executed with the Vicon Nexus software in a
Vicon motion capture system which sends data at 100 Hz.
The Orocos Kinematics and Dynamics Library [45] is used
for kinematic inversion for experiments where an end-effector
reference pose is given to the robot.

The experimental validation is based on pick and place ex-
periments, in which we do not study how to grasp objects, but
observe the robot dynamics in between consecutive reference
positions. To make the influence of the robot dynamics more
significant, we replaced the standard Panda end-effector of

https://youtu.be/UzbhMzcKSbE
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0.7 kg with a mass of 2.5 kg (i.e. 60% of Panda’s maximum
payload) and attached it with tie wraps to the flange. The
updated mass matrix, Coriolis force vector, and gravity vector
are obtained by the C++ library functions provided by Franka
Emika.

Panda’s actuator saturation, operating region, and
speed limitation values, as listed in Section III-B,
are given by Franka Emika [46], i.e. torque limits
τlimit = [87.0, 87.0, 87.0, 87.0, 12.0, 12.0, 12.0] Nm,
joint angle lower limits qmin =
[−2.8973,−1.7628,−2.8973,−3.0718,−2.8973,−0.0175,
− 2.8973] rad, joint angle upper limits qmax =
[2.8973, 1.7628, 2.8973,−0.0698, 2.8973, 3.7525, 2.8973] rad,
joint velocity limits q̇limit =
[2.1750, 2.1750, 2.1750, 2.1750, 2.6100, 2.6100, 2.6100] rad/s,
and Cartesian velocity limits ẋe,limit = [1.7 m/s, 2.5 rad/s].

B. Tuning Guidelines

Here, we list guidelines for the tuning of the main parame-
ters of the pre-stabilizing control layer and the trajectory-based
ERG and how this relates to the obtained performance and
robustness.

1) First tune the pre-stabilizing control loop gains KP > 0
and KD > 0 for stable regulation control performance.
This step is accomplished without worrying about the
effect on any of the input or state constraints. The stiffer
the pre-stabilized closed-loop system is tuned, the more
aggressive (e.g. including some overshoots) the robot
behavior will be far away from constraints. If the operator
is likely to actively come into contact with the robot, then
it is better to make the pre-stabilizing control-loop more
compliant, by reducing KP .

2) Choose a prediction time horizon that can take into
account the system dynamics. The longer the prediction
horizon, the faster the system will be able to react to
eventual constraint violations in the further future, but
also the higher the computational cost will be.

3) Eliminate numerical noise in the attraction field that can
occur when qv is very close to qr by selecting a strictly
positive, but suitably small value for the smoothing
parameter η. If η is chosen too large, the attraction field
will weaken too early, slowing the convergence to the
reference configuration, i.e. limt→∞ qv(t) = qr.

4) Eliminate numerical noise in the repulsion field that can
occur when the distance between one of the robot links
and one of the obstacles becomes small by selecting
a strictly positive, but small, value for the smoothing
parameters ηw, ηs, and ηc. Typically, these parameters
are chosen smaller than η.

5) Increase the DSM gains κ until no further performance
increase is obtained. These gains are chosen such that
the DSMs of the active constraints have the same order
of magnitude.

6) Choose a terminal energy constraint Eterm by letting the
robot move in an obstacle-free environment at increasing
speeds with the robot’s constraints included in the ERG
while measuring the closed-loop system energy. Take the

maximum closed-loop system energy for which the robot
does not incur into a hard fail-safe.

7) Choose medium influence margins ζ defining from how
far the obstacles are considered in the repulsion field.
Too large values will require too large sensing ranges
for obstacles, whereas too small values will decrease the
reaction time too much.

8) Choose strictly positive static safety margins δ to increase
robustness. This also ensures the NF’s repulsion term
achieves its maximum amplitude while the DSM stays
strictly positive. Hence this allows moving (and not
blocking) the reference in directions pointing outward the
obstacle constraint.

In all the experiments, the control gains of the pre-
stabilizing control detailed in Section IV-A are KP =
diag(120.0, 120.0, 120.0, 100.0, 50.0, 45.0, 15.0) and KD =
diag(8.0, 8.0, 8.0, 5.0, 2.0, 2.0, 1.0), giving moderately aggres-
sive performance. The smoothing parameter of the attraction
field defined in Section IV-B is chosen as η = 0.05, the
prediction sampling time is fixed to 2 ms, and with 100
prediction samples we predict over a time horizon of 200 ms.
The terminal energy constraint is set to Eterm = 12 J. Other pa-
rameters defined in Section IV-B are specified in the following
sections.

C. Obstacle-Free Environment

In case a large step reference is given to the pre-stabilized
robot in an obstacle-free environment, the robot will stop im-
mediately due to an effort or velocity constraint violation. To
avoid any constraint violation in an obstacle-free environment,
we take into account the actuator saturation, operating region,
and speed limitation constraints. The ERG parameters used in
this experiment are κτ = 9.0, δq = 0.1 rad, ζq = 0.15 rad,
κq = 115.0, κq̇ = 70.0, κẋe = 70.0, and κEterm = 7.5.

The robot starts in the initial configuration
q (t ≤ 0.5 s) =

[
0, −π4 , 0,

−3π
4 , 0, π2 ,

π
4

]
rad. At t = 0.5 s,

at t = 3.5 s, and at t = 6.5 s, the robot is asked to
go to the reference configurations qr (2 s < t ≤ 3.5 s) =
[0.72, 0.21, 0.05,−2.47,−0.07, 2.69, 0.75] rad,
qr (3.5 s < t ≤ 6.5 s) = [0.18, 0.24,−0.85,−1.64, 0.14, 1.81,
0.85] rad, and back to the initial configuration
qr (t > 6.5 s) = q (t ≤ 0.5 s).

As depicted in Fig. 4, the desired configurations qr are
always reached in a stable and safe (i.e. ∆ ≥ 0) manner.
We can see that at the moment a new reference step is given,
the future torques, joint velocities, or Cartesian end-effector
velocities are closest to violation. The DSM values of the
latter constraints slow down the rate of change of the applied
reference, such that a feasible reference qv is applied to the
robot. Fig. 5 shows the resulting end-effector positions giving
the joint space step references qr.

D. Static Obstacle Environment

In this section we study the behavior of the robot when
it has to avoid the wall constraint cw · pi ≤ dw with
cw = [cos θ, sin θ, 0]

T , dw = 0.55 m, and where θ = 310◦ rep-
resents the rotation about the z-axis with respect to the robot
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Fig. 4: Obstacle-Free Environment (Exp 1) − The applied
reference qv and the robot configuration q reach different
reference configurations qr (i.e. ‖qr − qv‖ → 0 and ‖qr −
q‖ → 0) in a stable and safe manner (i.e. DSM ≥ 0).

base frame. For the following experiments, we use the ERG
parameters as defined in Section V-C and the wall constraint
ERG parameters which will be specified per experiment.

1) Influence of the wall constraint DSM: To observe the
importance of the DSM in the ERG, we compare the robot
behavior without and with the wall constraint DSM, i.e. ∆w.
The task is for both experiments the same as in Section V-C:
the robot starts in the same initial configuration and receives
the same reference configurations at t = 0.5 s and t = 3.5 s.
For the collision avoidance with the wall constraint, we use
δw = 0.01, ζw = 0.25, and κw = 100. To investigate the
effect of the ∆w, we neglect the Cartesian end-effector velocity
constraint, i.e. ∆ẋe , since it is an auxiliary constraint that will
not be violated in both experiments, but that can slow down
the robot too much around t = 3.5 s.

In the experiment without ∆w, we can see in Fig. 6 that
the predicted joint velocity q̇ violated around t = 3.6 s its
constraint. This smaller overall ∆ slows down the applied
reference and the robot such that the real q̇ does not violate
its constraint during this experiment, as can be seen in Fig.
7. However, in this figure we can see that the wall constraint
is violated around t = 4.3 s with almost 2 cm. This means
that the repulsion field alone is not able to enforce constraints
without a DSM because the applied reference rate is too high
to change the direction and avoid collisions.

Whereas when the wall constraint is included in the com-
putation of the overall DSM, the applied reference qv changes
slower since the overall ∆ is smaller, especially around
t = 3.5 s. And although the predicted wall constraints are
almost violated, as can be seen in the DSM graph of Fig. 8,
the real wall constraints are not, as is depicted in Fig. 9.

For both experiments, the reference given at t = 3.5 s
would cause the robot to move its end-effector behind the wall
and is therefore a steady-state inadmissible reference. This is
the reason why, in both cases, the error ‖qr − qv‖ does not
converge to zero at t = 6.5 s, but converges to a steady-state

Fig. 5: Obstacle-Free Environment (Exp 1) − The given joint
space step references qr result in position step references
pe,r in Cartesian space for the end-effector, which the applied
reference and the robot follows, i.e. pe,v and pe respectively.

admissible configuration. This shows that the navigation field
is designed to handle steady-state inadmissible references.

2) Robot follows pose of reference object while avoiding
human’s safe workspace behind virtual wall: In this ex-
periment we show how the trajectory-based ERG could be
implemented in a scenario where a human works near a
robot with a virtual wall separating the human’s and the
robot’s workspaces, as visualized in Fig. 10. Here we use
for the collision avoidance with the virtual wall constraint
the following ERG parameters: δw = 0.01, ζw = 0.10, and
κw = 150. Five reflective markers are attached to the reference
object to let the Vicon motion capture system detect its pose.
To avoid marker occlusions as much as possible and prevent
the robot from touching the wooden plate, an extra upwards
translation is added, such that the end-effector pose reference
is always 25 cm displaced orthogonal to the center of the
wooden reference plate.

When the human gives a reference relatively far away
from the wall, the applied reference can follow the reference
given by the human. When the human moves the wooden
reference plate faster or when the human gives a reference
close to or behind the wall, the overall DSM decreases and
as such the applied reference is unable to change as fast as
the reference. This experiment shows that the robot has a
moderately aggressive behavior far away from the virtual wall,
but moves slower when close to the wall. Since the robot never
penetrates the wall, the human can work safely in its presence.

E. Dynamic Obstacle Environment

In this section we demonstrate how the trajectory-based
ERG could be used in a scenario where the robot and the
human share a workspace in a safe way. Therefore, we analyze
the behavior of the robot in case it has to avoid the head,
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Fig. 6: Static Obstacle Environment Without Wall Constraint
DSM (Exp 2) − The robot reaches the steady-state reference
given at t = 0.5 s and approaches the steady-state inadmissible
reference given at t = 3.5 s. When the step reference at t =
3.5 s is given, a joint velocity constraint violation is detected
in the future, i.e. ∆q̇ < 0, such that ∆ = 0 at 3.6 s.
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Fig. 7: Static Obstacle Environment without Wall Constraint
DSM (Exp 2) − Although ∆q̇ < 0 around 3.6 s in Fig. 6,
the distance of the real (not predicted) q̇ to its constraints is
not violated. However, since ∆w is not taken into account, the
wall constraint is violated around t = 4.3 s by almost 2 cm.

upper arm, and lower arm of a human coworker. The human
head is seen by the robot as a spherical obstacle with a
radius rs

head = 10 cm, the center cs
head is defined by the

reflective markers attached to the baseball cap. The human
upper and lower arm are seen as cylindrical obstacles with
both a radius rc

upperarm = rc
lowerarm = 5 cm. The begin and end

points of the cylinder that represents the upper arm are given
by the reflective markers attached to the elbow and shoulder,
respectively. The end point of the cylinder that represents the
lower arm is also given by the marker attached to the elbow.
The begin point of the lower arm should represent the position
of the wrist, but is attached in between the wrist and the elbow
to make a shorter link in Vicon such that the Vicon system
would easily see the difference between the upper and lower
arm. To make it correct, an extra translation towards the actual
wrist location is added programmatically.

For the following experiments, we use the ERG parameters
as defined in Section V-C, the spherical constraint ERG
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Fig. 8: Static Obstacle Environment With Wall Constraint
DSM (Exp 3) − The robot reaches the steady-state reference
given at t = 0.5 s and approaches the steady-state inadmissible
reference given at t = 3.5 s in a stable and safe way (i.e.
∆ > 0). Since the overall ∆ is smaller, the applied reference
changes slower than in Fig. 6.
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Fig. 9: Static Obstacle Environment With Wall Constraint
DSM (Exp 3) − In this experiment ∆w is taken into account to
compute the overall ∆. Thus, the applied reference is slowed
down enough to avoid any constraint violations.

parameters δs = 0.01, ζs = 0.40, and κs = 150, and the
cylindrical constraint ERG parameters δc = 0.01, ζc = 0.40,
and κc = 150.

1) Robot stays in initial configuration while avoiding the
human’s arm and head: As shown in Fig. 11, when the human
arm and head approach the robot, the robot moves away and
keeps a safe distance from the human. Whereas the moment
the human arm and head are far enough, the robot moves
quickly back to its initial configuration. This is also depicted
in Fig. 12 at time t = {0.5, 4.5, 9.2, 13.0, 15.9, 19.5, 23.0} s.
Around t = 21 s and t = 28 s, the human moves faster than
the robot, whereby the robot cannot avoid the human, resulting
in human arm constraint violations. Thereby, the overall DSM
becomes zero, i.e. ∆ = 0, such that the applied reference does
not change for a moment and the robot comes to a standstill.
This is the worst case scenario, but the human will not get hurt
by the robot since the robot’s speed is zero at the moment the
human touches the robot.
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Fig. 10: Static Obstacle Environment with Virtual Wall Be-
tween Human and Robot (Exp 4) − The robot follows the
wooden reference plate with five reflective markers detected
by the Vicon motion capture system while avoiding the virtual
wall. The end-effector pose reference, depicted as the green
plate in the RVIZ visualization figure, is always 25 cm dis-
placed orthogonal to the center of the wooden reference plate
in the upwards direction to avoid marker occlusions. The robot
has a moderately aggressive behavior far away from the virtual
wall, moves slower close to the wall, and never penetrates the
wall but converges to a steady-state admissible approximation
of the reference.

Fig. 11: Dynamic Obstacle Environment with Robot in Initial
Configuration (Exp 5) − The robot tries to stay in its initial
configuration. When the human arm and head (blue cylinders
and sphere in RVIZ figure) approach the robot, the robot
moves away from the human arm and moves quickly back
to its initial configuration once the human arm is far enough
away. The distance between the human arm and head, and the
applied robot configuration qv is depicted with the magenta
lines in the RVIZ figure. This distance and direction is used
to compute the repulsion field of the moving spherical (i.e.
head) and cylindrical (i.e. upper and lower arm) obstacles.
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Fig. 12: Dynamic Obstacle Environment with Robot
in Initial Configuration (Exp 5) − At time t =
{0.5, 4.5, 9.2, 13.0, 15.9, 19.5, 23.0} s the robot moves away
from the approaching human arm (i.e. ∆arm → 0) and moves
quickly back to its initial configuration once the human arm
is far enough (i.e. increasing ∆arm). Around t = 21 s and
t = 28 s, the human moves faster than the robot, whereby the
robot cannot avoid the human, resulting in a safe collision,
since ∆ = 0, as such q̇v = 0, which means that the robot will
be hit by the human when it is at standstill.

2) Robot follows reference object pose while avoiding the
human’s arm and head: For this experiment, the same wooden
reference plate is used as in Section V-D2, as can be seen in
Fig. 1. As shown in Fig. 13 at t = 1.1 s and at t = 11.4 s, when
the human is far enough away from the robot, the robot can
increase its speed and can reach the reference pose. Whereas
when the reference pose is closer to the human arm at t = 6.2s
and at t = 17.3 s or to the human head at t = 8.9 s, the
robot moves away from the human and goes to a steady-state
admissible configuration. Around t = 25.2 s the human arm
moved faster to the robot than the robot could move away,
and the robot comes to a standstill for about 1.5 s.

VI. DISCUSSION

In Section V, we presented an extensive set of experimental
studies of the proposed trajectory-based ERG framework, in-
cluding highly dynamic human-robot coexistence experiments.
These studies demonstrate the following key results when
applied to the Panda collaborative robotic manipulator.
• R1: The method is computationally efficient and allows

high-rate real-time (1 kHz) computation of the control
commands.

• R2: The applied reference is updated at a rate of 100 Hz.
This rate is imposed by the perception layer, which
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Fig. 13: Dynamic Obstacle Environment with Robot Following
Reference Object Pose (Exp 6) − The robot can follow the
reference object pose, but cannot track it perfectly the moment
the human arm (at t = 6.2 s and t = 17.3 s) or head (at t =
8.9 s) is nearby and as such goes to a steady-state admissible
configuration. In the worst case scenario, when the human arm
moves faster than the robot arm, the robot comes to a standstill
resulting in a constraint violation (around t = 25.2 s) which is
safe since the robot energy is zero at the moment of collision.

relies on the Vicon system. The trajectory-based ERG has
an average computational time of 1.07 ms for the most
computationally demanding experiment (Exp 6), as can
be seen in Fig. 14.

• R3: To exploit multi-core processor capabilities, the NF
and DSM run in parallel. Due to the trajectory predic-
tions, the time required to compute the DSM is typically
an order of magnitude larger than the time needed to
compute the NF. Therefore, the computational time of
the ERG is equal to the time required to compute the
DSM plus the time required to compute the update of
the applied reference qv .

• R4: The method converges to either the target reference
or a steady-state admissible approximation thereof.

• R5: The trajectory-based ERG provides provably safety
under actuator inputs and state constraints, including
collision avoidance towards static and dynamic obstacles.
Note that by only implementing the navigation field, the
robot can only move safe when it is moving slowly. The
moment the robot needs to move fast, it has to be able to
quickly accelerate and decelerate, resulting in a robot that
cannot stop immediately if necessary. The dynamic safety
margin avoids constraint violations that might otherwise
happen as a result of transient dynamics.

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 Navigation Field

Trajectory Predictions

Dynamic Safety Margin

Explicit Reference Governor

Fig. 14: Average Computational Time of Trajectory-Based
ERG with Standard Deviation for Exp 1 to Exp 6 − The
NF and DSM run in parallel on a multi-core processor and
because the time required to compute the DSM is mostly an
order larger than the time necessary to compute the NF, the
computational time of the ERG is equal to the time required
to compute the DSM plus the time required to compute the
update of the applied reference qv . Since the time needed to
compute the trajectory predictions are included in the DSM
computational time, we can see that they have the highest
impact on the overall computational time of the DSM, and so
of the ERG. The computational time of the ERG is in average
1.07 ms for the most computational demanding experiment.

VII. CONCLUSION

In this article, we formulated the trajectory-based ERG
algorithm for a robotic manipulator in the presence of actuator
saturations, limited joint ranges, velocity constraints, and ob-
stacles. We showed that the proposed computationally efficient
constrained control framework is able to steer the robot arm to
the desired end-effector pose (or an admissible approximation)
while avoiding constraint violations. Moreover, we provided
validation cases in which a human and the robot could safely
execute their tasks while sharing their workspace in close
proximity with each other.

We believe this work shows that collaborative robotic ma-
nipulators can be safe towards their environment while also
moving fast, thus increasing the speed and so the production
efficiency in human-robot co-shared workspaces.
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APPENDIX A
ROBOT PARAMETRIZATION FOR SPHERICAL OBSTACLES

Referring to Figure 15, we note that the point ps
ij can be

computed using

ps
ij = pi + λs

ij (pi+1 − pi) , (44)

where λs
ij ∈ [0, 1] is a parametrization factor. If we project cs

j

onto link i, i.e. pipi+1, we obtain the point ps
ij , which means

that pipi+1 ⊥ ps
ijc

s
j ,

(pi+1 − pi)T
(
cs
j − ps

ij

)
= 0 , (45)

and that ps
ij belongs to pipi+1. Combining (44) and (45) gives

us the parametrization factor λs
ij ∈ [0, 1],

λs
ij =

(pv,i+1 − pv,i)T
(
cs
j − pv,i

)
(pv,i+1 − pv,i)T (pv,i+1 − pv,i)

, (46)

where

λs
ij = 0 if λs

ij < 0 , (47a)

λs
ij = 1 if λs

ij > 1 . (47b)

link i

sphere j

Fig. 15: Parametrization of Robot Link i with respect to Sphere
j − The distance ‖ps

ijc
s
j‖ defines the shortest distance between

link i and sphere j. The point ps
ij can be found by orthogonally

projecting cs
j onto pipi+1.

APPENDIX B
ROBOT PARAMETRIZATION FOR CYLINDRICAL OBSTACLES

Note: In the NF section, all joint angles q represent the
applied joint angles, i.e. qv , and all the joint positions pi
represent the joint positions of the applied reference configu-
ration, i.e. pv,i. Whereas in the DSM section, all joint angles
q represent the predicted joint angles, i.e. q̂t′ , and all the
joint positions pi represent the joint positions of the predicted
reference configuration, i.e. p̂t′,i.

To compute pc
ij and tc

ij , we need to analyze two different
cases: the case where the robot link and the cylinder are
parallel to each other and the case where they are skew. In
the parallel case, the parametrization of the robot link or the
cylinder will be simplified to the point-line case, as illustrated
in Figure 16 and detailed in Algorithm 1.

For the skew case, both the robot link and the cylinder
need to be parametrized. Similar to (45), the shortest distance
‖pc

ijt
c
ij‖ should be perpendicular to link i and cylinder j,

(pi+1 − pi)T
(
tc
ij − pc

ij

)
= 0 , (48a)(

pc1
j − p

c0
j

)T (
tc
ij − pc

ij

)
= 0 , (48b)

with pc0
j and pc1

j the start and end point of cylinder j. As in
(44), pc

ij belongs to pipi+1 and tc
ij belongs to pc0

j p
c1
j ,

pc
ij = pi + λc

ij (pi+1 − pi) , (49a)

tc
ij = pc0

j + µc
ij

(
pc1
j − p

c0
j

)
, (49b)

with λc
ij ∈ [0, 1] and µc

ij ∈ [0, 1] the parametrization factors
for link i and cylinder j, respectively. Combining (48) and
(49) gives,

λc
ij = − c

T
0 b b

Ta+ bT b cT0 a

bT b aTa− aT b bTa
, (50)

µc
ij =

aTa

bT b

bT b cT0 a− cT0 b bTa
bT b aTa− bTa bTa

− c
T
0 a

bTa
, (51)

where

λc
ij = 0 if λc

ij < 0 , λc
ij = 1 if λc

ij > 1 , (52a)

µc
ij = 0 if µc

ij < 0 , µc
ij = 1 if µc

ij > 1 (52b)

with a = pipi+1, b = pc0
j p

c1
j , c0 = pip

c0
j , and c1 = pip

c1
j .

This is illustrated in Figure 17 and detailed in Algorithm 2.
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15

Algorithm 1: Code to obtain the points pc
ij and

tc
ij for the case that robot link i and cylinder j are

parallel to each other.
Input : pi, pi+1, pc0

j , and pc1
j

Output: λc
ij , p

c
ij , and tc

ij

1 Project cylinder j on robot segment i: begin
2 d0 = a

‖a‖ · c0;
3 d1 = a

‖a‖ · c1;

4 Find λc
ij and µc

ij: begin

5 µc
ij =

bT
(

pi+pi+1
2 −pc0

j

)
bT b

← parametrization
factor for closest point on cylinder j w.r.t.
center of robot link i;

6 if 0 ≤ µc
ij ≤ 1 then

7 λc
ij = 0.5 ← center of robot segment i is
good estimation

8 else if(
µc
ij < 0 ∧ d1 ≥ ‖a‖

)
∨
(
µc
ij > 1 ∧ d0 ≥ ‖a‖

)
then

9 λc
ij = 1;

10 µc
ij =

bT (pi+1−p
c0
j )

bT b

11 else if
(
µc
ij < 0 ∧ d1 ≤ 0

)
∨
(
µc
ij > 1 ∧ d0 ≤ 0

)
then

12 λc
ij = 0;

13 µc
ij =

bT (pi−p
c0
j )

bT b

14 else if
(
µc
ij < 0 ∧ 0 < d1 < ‖a‖

)
∨(

µc
ij > 1 ∧ 0 < d0 < ‖a‖

)
then

15 µc
ij = 0.5;

16 λc
ij =

aT

(
p

c0
j

+p
c1
j

2 −pi

)
aTa

17 Find pc
ij and tc

ij: begin
18 pcij = pi + λc

ij (pi+1 − pi) ← closest point on
robot link i to cylinder j;

19 tcij = pc0
j + µc

ij

(
pc1
j − p

c0
j

)
← closest point on

cylinder j to robot link i;

link i

cylinder j

for

(a) µc
ij ∈ [0, 1] for λc

ij = 0.5

link i

cylinder j

for

(b) µc
ij < 0 for λc

ij = 0.5

Fig. 16: Parametrization of Robot Link i and Cylinder j − The
distance ‖pc

ijt
c
ij‖ defines the shortest distance between link i

and cylinder j in the case they are parallel to each other.

link i

cylinder j

(a) λc
ij ∈ [0, 1], µc

ij ∈ [0, 1]

link i

cylinder j

(b) λc
ij ∈ [0, 1], µc

ij /∈ [0, 1]

link i

cylinder j

(c) λc
ij /∈ [0, 1], µc

ij ∈ [0, 1]

link i
cylinder j

(d) λc
ij /∈ [0, 1], µc

ij /∈ [0, 1]

Fig. 17: Parametrization of Robot Link i and Cylinder j −
The distance ‖pc

ijt
c
ij‖ defines the shortest distance between

link i and cylinder j in the case they are skew to each other.
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Algorithm 2: Code to obtain the points pc
ij and tc

ij

for the case that robot link i and cylinder j are skew
to each other.

Input : pi, pi+1, pc0
j , and pc1

j ,
initial λc

ij and µc
ij from (50)

Output: λc
ij , p

c
ij , and tc

ij

1 Find λc
ij , µ

c
ij , p

c
ij , and tc

ij: begin
2 if λc

ij ∈ [0, 1] and µc
ij ∈ [0, 1] then

3 pc
ij = pi + λc

ij (pi+1 − pi) ;
4 tc

ij = pc0
j + µc

ij

(
pc1
j − p

c0
j

)
;

5 else if λc
ij /∈ [0, 1] and µc

ij ∈ [0, 1] then
6 if λc

ij < 0 then
7 λc

ij = 0;
8 else if λc

ij > 1 then
9 λc

ij = 1 ;
10 pc

ij = pi + λc
ij (pi+1 − pi) ;

11 µc
ij =

bT (pc
ij−p

c0
j )

bT b
;

12 if µc
ij < 0 then

13 µc
ij = 0;

14 else if µc
ij > 1 then

15 µc
ij = 1 ;

16 tc
ij = pc0

j + µc
ij

(
pc1
j − p

c0
j

)
;

17 else if λc
ij ∈ [0, 1] and µc

ij /∈ [0, 1] then
18 if µc

ij < 0 then
19 µc

ij = 0;
20 else if µc

ij > 1 then
21 µc

ij = 1 ;
22 tc

ij = pc0
j + µc

ij

(
pc1
j − p

c0
j

)
;

23 λc
ij =

aT (tc
ij−pi)

aTa
;

24 if λc
ij < 0 then

25 λc
ij = 0;

26 else if λc
ij > 1 then

27 λc
ij = 1 ;

28 pc
ij = pi + λc

ij (pi+1 − pi) ;
29 else if λc

ij /∈ [0, 1] and µc
ij /∈ [0, 1] then

30 µij |λc
ij=0 =

bT (pi−p
c0
j )

bT b
;

31 µij |λc
ij=1 =

bT (pi+1−p
c0
j )

bT b
;

32 if µij |λc
ij=0 < 0 then

33 µij |λc
ij=0 = 0;

34 else if µij |λc
ij=0 > 1 then

35 µij |λc
ij=0 = 1;

36 if µij |λc
ij=1 < 0 then

37 µij |λc
ij=1 = 0;

38 else if µij |λc
ij=1 > 1 then

39 µij |λc
ij=1 = 1;

40 tc
ij |λc

ij=0 = pc0
j + µij |λc

ij=0

(
pc1
j − p

c0
j

)
;

41 tc
ij |λc

ij=1 = pc0
j + µij |λc

ij=1

(
pc1
j − p

c0
j

)
;

42 if ‖pitc
ij |λc

ij=0‖ < ‖pi+1t
c
ij |λc

ij=1‖ then
43 pc

ij = pi;
44 tc

ij = tc
ij |λc

ij=0;
45 else
46 pc

ij = pi+1;
47 tc

ij = tc
ij |λc

ij=1;
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