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Abstract 

Remanufacturing end-of-life (EoL) products is a critical step to effectively retrieve high-

value components or materials from the products. Statistics show that unscrewing is one of 

major activities in remanufacturing. Human-robot collaboration (HRC) is a sensible strategy to 

leverage the strengths of human operators and robots to take off screws under various rust 

conditions. Nevertheless, the capabilities of HRC need to be enhanced in terms of cooperation, 

safety and disassembly efficiency. To address this issue, in this paper, an innovative HRC 

approach enabled by the Stackelberg model for removing screws in EoL products is developed. 

The approach can address the dynamic and uncertain characteristics of human operators to 

achieve human-centric HRC disassembly. In this approach, utilities for the Stackelberge model 

are represented by considering the disassembly efficiency and safety of humans and robots. An 

innovative Particle Swarm Optimisation (PSO)-Pareto algorithm (PSO-Pareto) is designed to 

achieve the best performance in terms of safety and disassembly efficiency. The effectiveness 

and generality of the approach were validated via experiments and case studies, and 

benchmarks with different designs proved the superiority of the approach. 

Keywords: Human-robot collaboration (HRC), Stackelberg model, Optimisation. 

1. Introduction 

Disassembly is a vital process in remanufacturing to retrieve high-value components or 

materials from end-of-life (EoL) products. In current practice, almost all disassembly 

operations on EoL products are performed manually. Nevertheless, it is a labour intensive and 

costly process. In the meantime, EoL products usually contain hazardous and pollutant 

materials, which are harmful to human operators. Thus, manual disassembly has been becoming 

less favourite in modern industries and societies. The future trend is to develop robotic and 

intelligent technologies to facilitate automatic or semi-automatic disassembly processes [1-3]. 

Screws are essential joining components in products. Statistics show that 39.9% of 

disassembly operations are unscrewing [2]. Therefore, effective removal of screws from an EoL 

product is necessary to accomplish disassembly automation. Presently, investigations on the 

disassembly of screws from EOL products using robotics have been undertaken [6]. Most of 



 

 

the developed approaches have been employed to disassemble screws that are under good 

conditions (“normal screws” in the following). Instead, rusted screws, which are inevitable on 

EoL products after their long service lifespans, are challenging to process by robotics. Human 

operators are apt to handle non-standard conditions such as rusted screws, but they are restricted 

in providing highly efficient operations. Therefore, it has stimulated the adoption of 

collaborative robots (cobots) in industries to empower robots to operate with humans jointly, 

i.e., human-robot collaboration (HRC), to meet sophisticated disassembly requirements. 

Presently, an imperative research issue is how to develop an effectual HRC strategy to leverage 

the strengths of cobots and humans to achieve disassembly flexibility and efficiency. 

Game theory was originally designed to help solve economic decision-making problems. It 

was later successfully applied in a wide range of applications in finance, biology and computer 

science. In game theory, the Stackelberg model is an effective collaborative strategy [5]. In the 

model, a leader and a follower are specified during collaboration. The leader would choose 

his/her initial actions according to his/her own goals. The follower determines his/her actions 

accordingly to respond to the leader’s actions. Then, both the leader and the follower adjust 

their actions iteratively to pursuit their best interests until a Nash equilibrium between them is 

achieved (a Nash equilibrium means that the leader or the follower does not gain a better result 

furthermore by changing his/her current actions). The Stackelberg model is appropriate for 

designing HRC-based disassembly on EoL products. The rationale is that during HRC-based 

disassembly processes, a human operator should play a leading role in actions, and a cobot 

should play a subsequent role to ensure human safety. After a Nash equilibrium is obtained in 

the model, the human and the cobot fulfil the best disassembly strategies and functionalities. 

This paper presents an innovative approach for disassembling screws of EoL products based 

on the Stackelberg model. In the approach, a cobot under HRC would only disassemble normal 

screws, while a human operator under HRC would disassemble rusted screws and normal 

screws to leverage the flexibility of the human. Utility functions for the human’s and the cobot’s 

actions are determined. Critical factors contributing to the utility functions include moving 

distance of the human or the cobot required from the current job’s location to the next job’s 

location (the shorter, the more efficient in disassembly), the relative distance between the 

human and the cobot (for safety assurance between them), and their state continuity (to ensure 

efficiency and stability in disassembly). During HRC, the human would take an initial action. 

Then, the cobot would choose an action in the highest utility from its candidate actions that 

respond to the human’s action. Furthermore, the human adjusts his/her action to achieve the 

highest utility under the cobot's new action. The above process is iteratively undertaken until a 

Nash equilibrium is obtained. Each utility is calculated by summing contributing factors using 

weights. In this research, an innovative Particle Swarm Optimisation (PSO)-Pareto algorithm 

is designed to identify the optimal weights of the utilities to ensure HRC safety and the best 



 

 

overall disassembly efficiency. Research innovations are as follows: 

 To the best of the authors’ knowledge, this is the first study to devise the Stackelberg 

model-based approach to optimise HRC in EoL disassembly. The approach can address 

the dynamic and uncertain characteristics of the human to achieve human-centric 

disassembly via close and safe cooperation with the cobot; 

 Experiments and benchmarks were conducted to demonstrate the effectiveness of the 

innovative design of the PSO-Pareto optimisation algorithm in improving the disassembly 

efficiency and safety of HRCs. 

The remainder of this paper is organised as follows. Section 2 reviews the literature related 

to this work. In Sections 3 and 4, after the introduction of the HRC-based disassembly scenario, 

the research methodology is detailed. Section 5 describes experiments to validate the 

methodology and discusses the results obtained. Section 6 concludes the paper. 

2. Related Work 

2.1 Human-robot collaboration for disassembly 

In recent years, HRC has become an actively investigated research topic due to its 

advantages of leveraging the characteristics of humans and robots (cobots) in operations. 

Michalos et al. [16] introduced the vision and architectures proposed by the EU project ROBO-

PARTNER. The project was designed to aspire to combine cobot’s strength, velocity, 

predictability, repeatability and precision with the human intelligence and skills to obtain a 

hybrid solution that would be involving the safe cooperation of human operators with 

autonomous and adapting robotic systems. Hjorth et al. [17] reviewed the current situation of 

HRC-based disassembly and analysed the principles and elements of HRC in the industrial 

environment, such as safety standards, collaborative operation modes, human-robot 

communication interfaces and the design characteristics of the disassembly process. Liu et al. 

[18] designed a system to manage HRC-based disassembly. Multi-modal perception of 

disassembly tasks, sequencing planning of the disassembly tasks, safety issues for the human 

operator in HRC, and motion driven control for the cobot were developed. Nevertheless, in the 

research, detailed disassembly processes were not specified for research validation. Xu et al. 

[19] developed a disassembly sequencing planner for HRC using a discrete Bees algorithm. In 

this research, first, feasible disassembly sequences for HRCs were generated. The sequences 

were then evaluated. Finally, an optimal disassembly sequence was determined to achieve 

minimised disassembly time, cost and difficulty. In addition, Xu et al. [20] designed an 

improved discrete Bees algorithm to solve the HRC-enabled disassembly line balancing 

problem, which aims to minimize the number of disassembly workstations, the smoothness 

index of disassembly time, and the demand index of components. In the research the safety of 

the human at work was considered through establishing the relationship between the cobot’s 



 

 

speed and HRC’s distance. Parsa et al. [21] developed an HRC-based disassembly planning 

approach for EoL products. Evaluation criteria for remanufacturability on EoL products were 

defined, and suitable components to be disassembled were identified. The criteria include 

cleanability, repairability and economic values of the disassembled components. A genetic 

algorithm was employed to solve the optimal disassembly sequence based on the disassembly 

efficiency and cost. Li et al. [21] proposed an approach for HRC-based disassembly sequencing 

planning. A disassembly task was assigned to either a human operator or a cobot according to 

their characteristics and human fatigue. For instance, highly complex and/or highly flexible 

tasks were assigned to the human, while tasks with high repetitiveness or harmfulness to the 

human were dispatched to the cobot. Huang et al. [23] devised a cobot to dismantle press-fitted 

components originating from automotive water pumps. Active force control provided by the 

cobot was used to ensure that disassembly processes were performed flexibly. However, in the 

research, human factors in the processes were not considered fully, so the system’s flexibility 

was still limited. Huang et al. [24] presented an experimental robotic disassembly cell 

comprising two cobots and a human operator. A case study was designed in the authors’ 

autonomous remanufacturing laboratory, involving the disassembly of an automotive 

turbocharger, to validate the developed methodology. In the disassembly cell, sequential 

disassembly and parallel disassembly were combined to make efficient use of resources and to 

reduce disassembly time and cost. Force control by touching was developed for human-robotic 

interaction to trigger disassembly processes when necessary. 

In summary, the reviewed research has mainly focused on operational sequence planning 

for HRC-based disassembly. Limited research has discussed closer collaboration between 

humans and cobots during disassembly, which should be an important issue to be addressed. 

2.2  Removal of screws in EoL products 

Wegener et al. [1] designed an HRC-based disassembly framework for automobile battery 

disassembly, in which a human operator conducted complex disassembly and a cobot was 

employed for taking simple and repetitive work. In the case study presented in the research, the 

human separated components joined with snap fits or glue and the cobot unfastened screws. 

When the position or orientation of a hexagonal screw in an EoL product was not accurately 

identified, Li et al. [6] designed an approach for automatic screw loosening. When a cobot's 

screwdriver reached a screw, a spiral search strategy was designed to ensure that the screwdriver 

head engaged the screw properly. However, this approach is only applicable to screws without 

defects on the surface and can be removed with standard disassembly tools. Yildiz et al. [7] 

developed an approach combining a Hough circle detection method and a deep convolutional 

neural network to detect screws. By comparison with several classification models, such as 

YOLO-v3, the achieved screw detection rate of this approach was the best, reaching 99%. 



 

 

Difilippo et al. [8] devised an automated screw disassembly system that used a SOAR cognitive 

architecture to improve the system’s performance. SOAR was employed to memorize the 

location of circles that contained screws, which is a useful function to decrease the trial time 

for a cobot to determine whether the circle is a screw. Cruz-Ramírez et al. [9] proposed an 

approach to successfully remove screws that hold the ceiling boards to the light gauge steel 

(LGS) in the construction industry. A hierarchical vision system detected the LGS, and then 

multi-template matching algorithm identified screws. Bdiwi et al. [10] designed an image 

processing algorithm for the automatic detection of motor screws. Screws were recognised 

based on their conditions, such as the greyscale, depth and HSV values. 

The limitation of the approaches presented earlier is that they are only applicable to screws 

without rusted and damaged conditions. It is imperative to design a more flexible and robust 

approach to remove screws in EoL products that are under more complicated conditions. 

2.3  Game theory for human-robot collaboration 

Research combining game theory and HRC has been conducted in recent years, where game 

theory has been introduced to optimise cooperation between a human and a cobot. Liu et al. 

[11] developed an approach of task allocation for HRC-based manufacturing processes. In the 

approach, the tasks of a human and a cobot were defined based on a bilateral game, and then a 

clan game was used to calculate the execution sequence of the tasks. However, in the work, 

utility functions for the actions of the human and the cobot were not explicitly stated. Gabler et 

al. [12] designed an HRC-based game model, which described a scene where a human and a 

cobot interact within proximity in a shared workspace and generated an optimal task 

arrangement by using Nash equilibrium. Nevertheless, the presented model considered the 

human and the cobot equally, which might lead to unsafe risks of the human during HRC due 

to vicious competition. In a scenario where a human is operating a cobot for task learning, Li 

et al. [13] created a game theory-based model to calculate the control force of a cobot. A cost 

function was modelled to specify the contact force between a human and the cobot and the 

control force of the cobot. A dynamic Nash equilibrium was maintained to obtain the most 

appropriate cost functions and forces during HRC. In contrast to the cobot's adaptation to a 

human’s actions, Nikolaidis et al. [14] designed a game theory-based model to ensure that the 

human is adaptive to the cobot. In the model, the reward functions of the human’s and cobot’s 

actions were continuously learned through HRC using game theory. However, it was unable to 

guarantee that the human would take an adaptive action in accordance with the reward function. 

Messeri et al. [15] developed a game-theoretic model that enables cobot to adapt its behaviour 

online to simultaneously optimise the human physiological stress and productivity in real-time, 

where the human's stress and productivity were quantified by using the heart-rate variability 

and the average working time in unit time period, respectively. The action-value functions of 



 

 

the human and the cobot were built with the goal of minimising stress and maximising 

productivity, respectively. A Nash equilibrium solution was taken as the cobot's behaviour 

adjustment strategy. 

For the aforementioned research, the roles of a human and a cobot in HRC have not yet been 

clearly differentiated. Considerations were not taken on how to regulate the human’s action to 

improve the efficiency of HRC under the requirement that the cobot adapts to human’s action. 

Therefore, a more effective game theory model needs to be explored to better support HRC-

enabled disassembly of EoL products. 

3. Stackelberg model-based Disassembly 

3.1 The disassembly scenario 

The disassembly scenario in this research is illustrated in Fig. 1, where screws on EoL 

products are removed using HRC. The rectangular area is the top cover of an EoL product, 

where screws under rusted conditions (in square) and normal conditions (in circle) for removal 

are distributed. A human operator (“the human”) and a cobot (“the cobot”) would cooperate to 

perform screw removal. In this research, it is assumed that the human can move flexibly to 

reach any screw in the scenario. The two circles in Fig. 1 indicate the safety ranges of the human 

when removing a screw. The area between two arcs represents the working range of the cobot 

when it is located in the upper right corner. 

 
Fig. 1: Removal of screws in an EoL product. 

3.1.1 Screw classification 

Some screws in an EoL product could be corroded and rusted (rusted screws). Others may 

still be well preserved and have clean surfaces (normal screws). A rusted screw is more difficult 

to remove than a normal screw, as greater preloading force and friction are necessary. The 

removal of screws by the cobot is usually accomplished with an electric screwdriver mounted 

on the end-effector of the cobot. Nevertheless, the cobot is not suitable for rusted screw removal, 
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as the required operation torque is usually greater than the maximum torque exerted by the 

cobot. On the other hand, humans can remove rusted screws when assisted by external tools 

(e.g., a hammer to loosen and remove rusted screws). Thus, in this research, the cobot was only 

used to disassemble normal screws, and humans disassembled both normal screws and rusted 

screws. 

3.1.2 Safety ranges of the human 

During disassembly, the human and the cobot operate simultaneously under the same space. 

According to the ISO/TS 15066, to ensure the safety of the human, it is essential to set a safety 

sphere centred on the human (“safety range”) where any part of the cobot is restricted not to 

interfere during HRC. A safety range for the human is determined by the maximum of the 

human’s change in location. Safety ranges of the human during disassembly are defined below: 

 Safety range I: For disassembling a normal screw, the human only needs to use one of 

his/her hands to operate an electric screwdriver to take off a screw, and he/she basically 

stays still; 

 Safety range II: For disassembling a rusted screw, the human needs to engage both hands 

to complete the disassembly task by using an electric screwdriver and assisted tools, and 

he/she would take a greater space to adjust his/her posture in order to remove the rusted 

screw more conveniently. 

Therefore, the safety range for safety range II is greater than that for safety range I. The 

ranges are specified below: 

𝑆𝑅ଶ = 𝑘௦ ∗ 𝑆𝑅ଵ   (1) 

where 𝑆𝑅ଵ and 𝑆𝑅ଶ are the safety ranges of the human; 𝑘௦ is a preset value (greater than 1). 

3.1.3 States of the human and the cobot 

A state reflects the condition of the human or the cobot at a certain time. An action is to 

change or maintain the current state of the human or the cobot throughout disassembly. The 

definitions of the states are given in Table 1. Fig. 2 illustrates two states of the cobot. 

Table 1: States for the human and the cobot. 

State Definition 

H
um

an
 

𝑠𝑡𝑎𝑡𝑒௛ିௗ௜௦ The human is disassembling a screw 

𝑠𝑡𝑎𝑡𝑒௛ି௠௢௩ The human is moving his/her location 

𝑠𝑡𝑎𝑡𝑒௛ି௦௧௔ The human is in standby and waits for the next disassembly job 

𝑠𝑡𝑎𝑡𝑒௛ି௘௡ௗ  The human finishes all his/her disassembly jobs 

C
ob

ot
 𝑠𝑡𝑎𝑡𝑒௖ି௥௘௣ The cobot is fine-tuning the posture of its end-effect in order to disassemble a screw 

𝑠𝑡𝑎𝑡𝑒௖ିௗ௜௦ The cobot is disassembling a screw 

𝑠𝑡𝑎𝑡𝑒௖ି௠௢௩ The cobot is moving its location 



 

 

𝑠𝑡𝑎𝑡𝑒௖ି௦௧௔ The cobot is in standby and waits for the next disassembly job 

𝑠𝑡𝑎𝑡𝑒௖ି௘௡ௗ  The cobot finishes all its disassembly jobs 

 
Fig. 2: Some states of the cobot in disassembly operations. 

3.2 Methodology for human-robot collaborative disassembly 

Humans are characterised by dynamics and uncertainties in actions. To ensure the human-

centric role in HRCs and the safety of humans, in this research, a Stackelberg model is designed 

[4]. In the model, the utilities of the human (leader) and the cobot (follower) are determined by 

their states and mutual actions. The definitions in the model are given below: 

 The actions for the human and cobot should satisfy constraints: (1) the relative distance 

between the human and the cobot needs to be greater than the safety range of the human; 

(2) the screw for removal by the cobot should be within the working range of the cobot; 

 The action set that the human can take is 𝑨𝒉, and the action set that the cobot can take is 

𝑨𝒄. |𝑨𝒉| represents the total number of the human’s actions, and |𝑨𝒄| represents the total 

number of the cobot’s actions; 

 𝑎௛ି௜ represents the action that the human is currently taking (𝑎௛ି௜ ∈ 𝑨𝒉, 1 ≤ 𝑖 ≤ |𝑨𝒉|). 𝑎௖ି௝ 

represents the action that the cobot is currently taking (𝑎௖ି௝ ∈ 𝑨𝒄, 1 ≤ 𝑗 ≤ |𝑨𝒄|); 

 𝑈௛(𝑎௛ି௜ , 𝑎௖ି௝)  and 𝑈௖(𝑎௛ି௜ , 𝑎௖ି௝)  represent the utilities of the human and the cobot, 

respectively, when the human takes 𝑎௛ି௜ and the cobot takes 𝑎௖ି௝. 

The HRC process of the Stackelberg model is below: 

1. 𝑎௖ି௝೔
ᇲ is denoted as an action of the cobot with the highest utility when the human takes 

action 𝑎௛ି௜. A set ቄ(𝑎௛ି௜ , 𝑎௖ି௝೔
ᇲ)ቚ𝑖 ∈ (1, … , |𝑨𝒉|)ቅ  is determined; 

2. 𝑎௛ି௜ᇲ  is denoted as the action of the human with the highest utility in the set of 

{𝑎௛ି௜|𝑖 ∈ (1, … , |𝑨𝒉|)}; 

3. (𝑎௛ି௜ᇲ , 𝑎௖ି௝
೔ᇲ
ᇲ ), which satisfies a Nash equilibrium as follows: 

𝑈௛(𝑎௛ି௜ᇲ , 𝑎௖ି௝
೔ᇲ
ᇲ ) ≥ 𝑈௛(𝑎௛ି௜ , 𝑎௖ି௝೔

ᇲ),
1 ≤ 𝑖, 𝑖ᇱ ≤ |𝑨𝒉|, 1 ≤ 𝑗௜

ᇱ, 𝑗௜ᇲ
ᇱ ≤ |𝑨𝒄|

𝑖 ≠ 𝑖ᇱ
   (2) 

Screw 
driver 

Screw 

𝑠𝑡𝑎𝑡𝑒௖ି௥௘௣ 𝑠𝑡𝑎𝑡𝑒௖ିௗ௜௦ 

EoL 
product Camera Cobot 



 

 

𝑈௖(𝑎௛ି௜ᇲ , 𝑎௖ି௝
೔ᇲ
ᇲ ) ≥ 𝑈௖(𝑎௛ି௜ᇲ , 𝑎௖ି௝),

1 ≤ 𝑖ᇱ ≤ |𝑨𝒉|, 1 ≤ 𝑗, 𝑗௜ᇲ
ᇱ ≤ |𝑨𝒄|

𝑗 ≠ 𝑗௜ᇲ
ᇱ    (3) 

The flowchart of the Stackelberg model is detailed in Fig. 3. The utilities of the human and 

the cobot are calculated in the following subsections. 

 
Fig. 3: The Stackelberg model for HRC-based disassembly. 

3.2.1 The utility of the human 

The utility of the human, 𝑈௛(𝑎௛ି௜ , 𝑎௖ି௝), is related to three factors: safety between the human 

and cobot, disassembly efficiency and state continuity. The factors could be contradictory so 

that they should be considered combinedly. 

Start 
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The human chooses an action from 𝑨𝒉 (e.g., starting from 𝑎௛ି௜) 

The cobot chooses the action 𝑎௖ି௝ 
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Calculate the cobot’s utility 
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During the disassembly process, the human prefers to work away from the cobot. The farther 

the human-robot distance is, the safer the human will feel (less safety anxiety). Thus, the safety 

feeling of the human is directly determined by the distance between the human and the cobot 

(the minimum safety ranges of the human and the cobot must be met as a hard constraint). The 

larger the distance, the greater the safety felling is (smaller the safety anxiety). However, a too 

greater distance between the human and the cobot deteriorates the disassembly efficiency of the 

human. Disassembly efficiency is determined by the required moving distance of the human 

from his/her current location to that of the screw for removal. The shorter the distance is, the 

higher the disassembly efficiency. State continuity means whether the human continues or 

abandons his/her current state. The utilities of the human’s safety feeling and disassembly 

efficiency (𝑈௛ି௦௔௙௘௧௬  and 𝑈௛ି௘௙௙௜௖௜௘௡௖௬ ) are calculated according to Equations (4) and (5), 

respectively: 

𝑈௛ି௦௔௙௘௧௬(𝑎௛ି௜ , 𝑎௖ି௝) =
஽೓ష೔/೎షೕି௠௜௡(𝑫೓೎)

௠௔௫(𝑫೓೎)ି௠௜ (𝑫೓೎)
    (4) 

where 𝐷௛ି௜/௖ି௝ is the relative distance between the human and the cobot when they take the 

action set (𝑎௛ି௜ , 𝑎௖ି௝) and 𝑫௛௖ = {𝐷௛ି௜/௖ି௝(1 ≤ 𝑖 ≤ |𝑨𝒉|, 1 ≤ 𝑗 ≤ |𝑨𝒄|)}. 

𝑈௛ି௘௙௙௜௖௜௘௡௖௬(𝑎௛ି௜ , 𝑎௖ି௝) = −
஽೓ష೔ି௠௜௡(𝑫೓ష∗)

௠௔௫(𝑫೓ష∗)ି௠௜௡(𝑫೓ష∗)
    (5) 

where 𝐷௛ି௜ is the required moving distance of the human to the screw for removal when 

he/she takes 𝑎௛ି௜; 𝑚𝑎𝑥(𝑫௛ି∗) and 𝑚𝑖𝑛(𝑫௛ି∗) are the maximum and minimum of the human’s 

moving distances to the screw for removal when he/she takes an action from 𝐷௛ି௜  (1 ≤ 𝑖 ≤ |𝑨𝒉|). 

The values of 𝑈௛ି௦௧௔௧௘ (the utility for the human’s state continuity) are defined in Table 3. 

Table 3: 𝑈௛ି௦௧௔௧௘ when the human changes from a state (in column) to another state (in row). 

 𝑠𝑡𝑎𝑡𝑒௛ି௠௢௩ 𝑠𝑡𝑎𝑡𝑒௛ି௦௧௔ 𝑠𝑡𝑎𝑡𝑒௛ିௗ௜௦ 𝑠𝑡𝑎𝑡𝑒௛ି௘௡ௗ  

𝑠𝑡𝑎𝑡𝑒௛ି௠௢௩ 0 1 -1 - 

𝑠𝑡𝑎𝑡𝑒௛ି௦௧௔ - -1 - - 

𝑠𝑡𝑎𝑡𝑒௛ିௗ௜௦ - 1 1 - 

𝑠𝑡𝑎𝑡𝑒௛ି௘௡ௗ 0 0 -1 0 

Under the stochastic optimisation process of the above Stackelberg model, a potential 

negative issue is that the human could pick up easier tasks to accomplish (i.e., remove normal 

screws), which compromises the overall optimisation convergence of the Stackelberg model 

for HRC. Thus, to accelerate the optimisation process by ensuring the human chooses more 

rusted screws, a penalty utility (𝑈௛ି௣௘௡௔௟௧௬ିଵ) will be applied to the utility of the human’s action 

if the current screw for removal is a normal screw. In addition, some of the human actions may 

interrupt the current work of the cobot and affect the overall disassembly efficiency. Thus, to 

avoid interfering with the current work of the cobot as much as possible, another penalty utility 

(𝑈௛ି௣௘௡௔௟௧௬ିଶ) will be added to the utility of the human’s action. 𝑈௛ି௣௘௡௔௟௧௬ି  and 𝑈௛ି௣௘௡௔௟௧௬ିଶ 



 

 

are defined below, respectively: 

𝑈௛ି௣௘௡௔௟௧௬ି = ቄ
−1  𝑖𝑓 𝑡ℎ𝑒 ℎ𝑢𝑚𝑎𝑛 𝑟𝑒𝑚𝑜𝑣𝑒𝑠 𝑎 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑐𝑟𝑒𝑤 

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        
  (6) 

𝑈௛ି௣௘௡௔௟௧௬ିଶ = ቄ
𝑈௖ି௦௧௔              𝑖𝑓 𝑈௖ି௦௧௔ < 0 
0                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        

  (7) 

The definition of 𝑈௖ି௦௧௔௧௘ will be explained in the next subsection. 

𝑈௛(𝑎௛ି௜ , 𝑎௖ି௝) is defined below: 

𝑈௛൫𝑎௛ି௜ , 𝑎௖ି௝൯ = 𝑤௛ିଵ ∗ 𝑈௛ି௦௔௙௘௧௬(𝑎௛ି௜ , 𝑎௖ି௝) + 𝑤௛ିଶ ∗ 𝑈௛ି௘௙௙௜௖௜௘௡௖௬(𝑎௛ି௜ , 𝑎௖ି௝) +

𝑤௛ିଷ ∗ 𝑈௛ି௦௧௔௧௘ + 𝑤௛ିସ ∗ (0.5 ∗ 𝑈௛ି௣௘௡௔௟௧௬ି + 0.5 ∗ 𝑈௛ି௣௘௡௔௟௧௬ି )  (8) 

where 𝑤௛ିଵ-𝑤௛ିସ (∑ 𝑤௛ି௜
ସ
௜ୀଵ = 1) are weights to normalise the four utilities. 

3.2.2 The utility of the cobot 

The utility of the cobot, 𝑈௖(𝑎௛ି௜ , 𝑎௖ି௝), is related to three factors, namely, safety feeling of 

the human, disassembly efficiency and state continuity. 

The utility of the cobot’s safety (𝑈௖ି௦௔௙௘௧௬) is the same as that for the human defined in 

Equation (4): 

𝑈௖ି௦௔௙௘௧௬(𝑎௛ି௜ , 𝑎௖ି௝) =
஽೓ష೔/೎షೕି௠௜௡(𝑫೓೎)

௠௔௫(𝑫೓೎)ି௠௜௡(𝑫೓೎)
  (9) 

Disassembly efficiency is determined by the required moving distance of the end-effector 

of the cobot to a screw for removal. The utility for the cobot’s disassembly efficiency 

(𝑈௖ି௘௙௙௜௖௜௘௡ ) is calculated below: 

𝑈௖ି௘௙௙௜௖௜௘௡௖௬(𝑎௛ି௜ , 𝑎௖ି௝) = −
஽೎షೕି௠௜௡ (𝑫𝒄ష∗)

௠௔௫(𝑫𝒄ష∗)ି௠௜௡ (𝑫𝒄ష∗)
   (10) 

where 𝐷௖ି௝ is the required moving distance of the cobot to the screw for removal;  𝑫௖ି∗ =

{𝐷௖ି௝|1 ≤ 𝑗 ≤ |𝐴௖|} ; and 𝑚𝑎𝑥(𝑫௖ି∗)  and 𝑚𝑖𝑛(𝑫௖ି∗)  are the maximum and minimum of the 

moving distances of the cobot to the screw for removal when the cobot takes an action from 

𝐷௖ି௜ (1 ≤ 𝑖 ≤ |𝑨𝒉|). 

The values of 𝑈௖ି௦௧௔௧௘ (the utility for the cobot’s state continuity) are defined in Table 4. 

Table 4: 𝑈௖ି௦௧௔௧௘ when the cobot changes from a state (in column) to another state (in row). 

 𝑠𝑡𝑎𝑡𝑒௖ି௠௢௩ 𝑠𝑡𝑎𝑡𝑒௖ି௦௧௔ 𝑠𝑡𝑎𝑡𝑒௖ିௗ௜௦ 𝑠𝑡𝑎𝑡𝑒௖ି௥௘௣ 𝑠𝑡𝑎𝑡𝑒௖ି௘௡ௗ  

𝑠𝑡𝑎𝑡𝑒௖ି௠௢௩ 0 1 -1 -1/2 - 

𝑠𝑡𝑎𝑡𝑒௖ି௦௧௔ - -1 - - - 

𝑠𝑡𝑎𝑡𝑒௖ିௗ௜௦ - 1 1 - - 

𝑠𝑡𝑎𝑡𝑒௖ି௥௘௣ - 1 - ½ - 

𝑠𝑡𝑎𝑡𝑒௖ି௘௡ௗ  0 0 -1 -1/2 0 

𝑈௖൫𝑎௛ି௜ , 𝑎௖ି௝൯ is defined below: 

𝑈௖൫𝑎௛ି௜ , 𝑎௖ି௝൯ = 𝑤௖ିଵ ∗ 𝑈௖ି௦௔௙௘௧௬(𝑎௛ି௜ , 𝑎௖ି௝) + 𝑤௖ିଶ ∗ 𝑈௖ି௘௙௙௜௖௜௘௡௖௬(𝑎௛ି௜ , 𝑎௖ି௝) +



 

 

𝑤௖ିଷ ∗ 𝑈௖ି௦௧௔                                                                                                (11) 

where 𝑤௖ିଵ-𝑤௖ିଷ (∑ 𝑤௖ି௝
ଷ
௝ୀଵ = 1) are weights used to normalise the cobot’s utilities. 

4. Optimisation Strategy for HRC Disassembly 

4.1  Evaluation criteria for HRC 

In this research, the following evaluation criteria for the disassembly process are specified. 

Total time (T):  T is the total disassembly time from removing the first screw to removing 

the last screw on an EoL product via HRC. The smaller T is, the higher the disassembly 

efficiency. 

The safety index (S): In HRCs, it is necessary to maintain a safe distance between the 

human and the cobot. Apart from safety assurance, distance can relieve the human’s mental 

pressure during collaboration with the cobot. To better represent safety during the entire 

disassembly process, a safety index (S) is defined below. 

𝑆 =
ଵ

்
∗ ∑ ቀ

ௌோ೟

஽೟
ቁ௧   (12) 

where 𝑆𝑅௧ is the safety range of the human at time t and 𝐷௧ denotes the relative distance 

between the human and the cobot at time t. 

The smaller the safety index is, the farther the average distance between the human and the 

cobot, and the safer the HRC. 

4.2 Optimisation for the weights of utilities 

In the utilities described in Section 3.2, different values of weights 

( 𝑤௛ିଵ, 𝑤௛ିଶ, 𝑤௛ିଷ, 𝑤௛ିସ, 𝑤௖ିଵ, 𝑤௖ିଶ, 𝑤௖ିଷ ) would affect the disassembly efficiency 

(represented in T) and safety (represented in S). 

T and S are considered optimisation objectives, and weights are variables. Pareto 

optimisation is employed here, as it is a sensible strategy to resolve multi-objective optimisation 

problems [25]. In the meantime, an effective algorithm is needed to search for feasible solutions 

to support Pareto optimisation. Particle Swarm Optimisation (PSO) is a population-based 

stochastic optimisation technique inspired by the social behaviour of bird flocking or fish 

schooling. PSO has been proven to perform well in continuous optimisation problems with 

constraints [26]. In this research, Pareto and PSO are combined as a PSO-Pareto algorithm to 

optimise the weights of utilities for HRC-based disassembly. 

In the algorithm, 𝒘𝒊(𝒌) = (𝑤௛ିଵ, 𝑤௛ିଶ, 𝑤௛ିଷ, 𝑤௛ିସ, 𝑤௖ିଵ, 𝑤௖ିଶ, 𝑤௖ିଷ)  represents the i-th 

particle in the population S ((𝒘𝟏(𝟏),…,𝒘𝟏(𝒌) ,…, 𝒘𝟏(𝒎)),…,( 𝒘𝒏(𝟏),…,𝒘𝒏(𝒌) ,…, 𝒘𝒏(𝒎))) 

under the k-th iteration (1 ≤ 𝒌 ≤ 𝒎) during optimisation. As shown in the following formula, 

the objectives of minimising T and S are defined below: 

𝑚𝑖𝑛 𝑓(𝒘𝒊(𝒌)) = 𝑚𝑖𝑛[𝑇(𝒘𝒊(𝒌)), 𝑆(𝒘𝒊(𝒌)) ]                               (13) 



 

 

where 𝑇(𝒘𝒊(𝒌)) and 𝑆(𝒘𝒊(𝒌)) represent T and S for 𝒘𝒊(𝒌) respectively. 

For 𝒘ଵ and 𝒘ଶ, 𝒘ଶ is dominated by 𝒘ଵ if one of the following relations is satisfied: 

𝑇(𝒘ଵ) ≤ 𝑇(𝒘ଶ) and  𝑆(𝒘ଵ) < 𝑆(𝒘ଶ)                                     (14) 

𝑇(𝒘ଵ) < 𝑇(𝒘ଶ) and  𝑆(𝒘ଵ) ≤ 𝑆(𝒘ଶ)                                     (15) 

𝑇(𝒘ଵ) < 𝑇(𝒘ଶ) and  𝑆(𝒘ଵ) < 𝑆(𝒘ଶ)                                     (16) 

Pareto optimal solutions (PS) refer to the particles that are not dominated by other particles. 

The values of their objectives (T and S) are Pareto fronts (PF). The details of the algorithm are 

described below. 

4.2.1 Particle instantiation 

The particle instantiation and updating processes of the PSO-Pareto algorithm are depicted 

in Fig. 4. There are two attributes for each particle, i.e., position and velocity. The position can 

be represented using 𝒘𝒊(𝒌) = (𝑤ℎ−1, 𝑤ℎ−2, 𝑤ℎ−3, 𝑤ℎ−4, 𝑤𝑐−1, 𝑤𝑐−2, 𝑤𝑐−3) , which needs to 

satisfy two constraints, i.e., ∑ 𝑤௛ି௜
ସ
௜ୀଵ = 1  and ∑ 𝑤௖ି௝

ଷ
௝ୀଵ = 1 . The velocity refers to the 

magnitude and direction of the changes in the weights. 

𝒘𝒊(𝒌)ᇱ = 𝒘𝒊(𝒌) + 𝒗𝒊(𝒌)                                                (17) 

where 𝒘𝒊(𝒌) is the position of a particle before the change; 𝒘𝒊(𝒌)ᇱ is the position of the 

particle after the change; and 𝒗𝒊(𝒌) is the velocity. 

According to Equation (17), ∑ 𝒘𝒊(𝒌)ᇱ = ∑ 𝒘𝒊(𝒌) + ∑ 𝒗𝒊(𝒌), where ∑ 𝒘𝒊(𝒌)′ represents the 

sum of weights after the change. As ∑ 𝒘𝒊(𝒌)ᇱ = ∑ 𝒘𝒊(𝒌), the initialisation of the velocity needs 

to meet the constraint ∑ 𝒗𝒊(𝒌) = 0, i.e., ∑ 𝑣௛ି௜
ସ
௜ୀଵ = 0 and ∑ 𝑣௖ି௝

ଷ
௝ୀଵ = 0. 



 

 

 

Fig. 4: The PSO-Pareto algorithm (the figure only shows the updating process of 𝑤௖ି௝. Each particle is 

positioned on the triangular plane to meet the constraint ∑ 𝑤௖ି௝
ଷ
௝ୀଵ = 1. The position of a particle is the 

coordinates. The velocity of a particle is a vector parallel to the triangular plane to meet the constraint 

∑ 𝑣௖ି௝
ଷ
௝ୀଵ = 0. (a,b,c) and v(i) are the position and velocity of the particle at iteration i. (a’,b’,c’) and 

v(i+1) are the position and velocity of a particle at iteration i+1. pBest refers to the Pareto optimal 

position in the history of the particle, and gBest refers to the Pareto optimal position in the history of all 

the particles.) 

4.2.2 Determination of gBest and pBest 

pBest refers to the Pareto optimal position of a particle in its history, and gBest refers to the 

Pareto optimal position of all the particles in their history. To obtain pBest and gBest, the 

following two strategies are adopted, and Fig. 5 is used to illustrate the process. 

The filtering strategy: For a set of particles S, the Pareto optimal solution set PS obtained 

from S is shown in triangles, and other particles are in squares. For a particle 𝒘𝒊(𝒌) (represented 

as a square in black), dominated particles are filtered out from PS according to Equations (14)-

(16) as a new set PSm. The solutions in triangles in the dashed box belong to PSm. 

Particle density strategy: The solution space is divided into rectangular grids. The length 

and width of the grid are set as dt and ds. The density of a particle is defined as the number of 

particles in the same grid. 

𝑤௖ିଶ 

𝑤௖ିଵ 

𝑤௖ିଷ 

(a,b,c) 

(a’,b’,c’) 

The historical positions 
of other particles 

gbest 

pbest 
v(i) 

v(i+1) 

The historical position 
of the current particle 



 

 

 
Fig. 5: The process of identifying gbest and pBest of a particle. 

The algorithm is an iterative process towards optimal solutions, and the current particle is 

represented as 𝒘𝒊(𝒌) . Since particle 𝒘𝒊(𝒌)  tends to move towards gBest during the next 

iteration, to avoid local convergence, the particle with the lowest density in PSm is chosen as 

gBest to explore more spaces in the following search process. The determination of pBest for 

particle 𝒘𝒊(𝒌)  is similar to that of gBest except that the Pareto optimal solution set PS is 

obtained from the historical solution set of particle 𝒘𝒊(𝒌). 

4.2.3 Particle updating strategy 

In each iteration, the position and velocity of each particle are adjusted according to its gBest 

and pBest as follows: 

𝒗𝒊(𝒌 + 𝟏) = 𝑐 ∗ 𝒗𝒊(𝒌) + 𝑐ଵ ∗ 𝑟ଵ ∗ (𝑝𝐵𝑒𝑠𝑡 − 𝒘𝒊(𝒌)) + 𝑐ଶ ∗ 𝑟ଶ ∗ (𝑔𝐵𝑒𝑠𝑡 − 𝒘𝒊(𝒌))          (18) 

𝒘𝒊(𝒌 + 𝟏) = 𝒘𝒊(𝒌) + 𝒗𝒊(𝒌)                                             (19) 

where 𝑐 is an inertia factor (0 < 𝑐 < 1); 𝑐ଵ and 𝑐ଶ are acceleration factors; and 𝑟ଵ and 𝑟ଶ are 

random numbers in the interval [0, 1]. 

A larger 𝑐 is beneficial, as the algorithm can jump out from a local minimum point and 

facilitate a global search. A smaller 𝑐  is useful to fine-tune a local search to ensure the 

algorithm’s convergence. Thus, to optimise the process, a linearly changing inertia factor can 

be used, i.e., let 𝑐 decrease from the maximum value to the minimum value in a linear way. The 

formula for the change of 𝑐 is as follows： 

𝑐 = 𝑐௠௔௫ −
௞∗(௖೘ೌೣି௖೘೔೙)

௠
                                               (20) 

where 𝑐௠௔௫  and 𝑐௠௜௡  represent the maximum and minimum values of 𝑐 , respectively; k 

represents the current iteration step; and m represents the maximum number of iteration steps. 

Based on the above procedures, the flowchart of the algorithm is described in Fig. 6. 
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Fig. 6: The flowchart of the PSO-Pareto algorithm. 

5. Validation Experiments for the Approach 

5.1 Case studies 

5.1.1 Descriptions of case studies 

The conditions of screws for disassembling (rusted or normal), the spatial relationship 

between the screws, the human and the cobot, and the working state of the cobot will impact 
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on HRC. As shown in Table 5, some cases are established to demonstrate the process and 

effectiveness of the research presented in this paper according to the above factors, respectively 

(in each case there is a human operator, a cobot and three/four screws denoted as S1, S2, S3/S4). 

The parameters in the case are given in Table 6. 

Table 5: The description of case studies. 

Cases Illustration Description 

Case 1  

 

 All screws are in the working range of the 
cobot 

 No rusted screw 
 𝐷௛ି𝑆2

< 𝐷௛ି𝑆1
, 𝐷௖ି𝑆4

< 𝐷௛ି𝑆3
 

 𝑈௛ି௦௔௙௘௧௬(𝑆ଵ, 𝑆ସ)= 𝑈௛ି௦௔௙௘௧௬(𝑆ଶ, 𝑆ଷ) 

Case 2 

 

 The screws are in the working range of 
the cobot 

 S1 and S3 are rusted 
 𝐷௛ି𝑆2

= 𝐷௛ି𝑆1
 

Case 3 

 

 S1 and S3 are not in the working range of 
the cobot 

 No rusted screw 
 𝐷௛ି𝑆1

= 𝐷௛ି𝑆3
> 𝐷௛ି𝑆2

 

Case 4 

 

 The screws are in the working range of 
the cobot 

 No rusted screws 
 The cobot is disassembling S2  
 𝐷௛ି𝑆1

= 𝐷௛ି𝑆2
< 𝐷௛ି𝑆3

 

Table 6: Parameters in the case study. 

Parameter Time 

The speed of the human for disassembling a rusted screw 8s 

The speed of the human for disassembling a normal screw 6s 



 

 

The speed of the cobot for disassembling a normal screw 2s 

The speed of the cobot for repositioning a normal screw 2s 

Moving speed of the hand of the human for disassembly 10 cm/s 

Moving speed of the end-effector of the cobot for disassembly 5 cm/s 

Safe range I of the human 15 cm 

Safe range II of the human 25 cm 

5.1.2 Comparative analysis for the Stackelberg approach and the non-game approach 

To demonstrate the effectiveness of the Stackelberg model-based approach, a comparison 

was made with a non-game theory-enabled approach (“non-game approach” in the following). 

The non-game approach refers to a situation in which both the human and the cobot take the 

most profitable actions only for him/her/its-self regardless of considering each other’s action 

(illustrated in Fig. 7).  

In the non-game approach, the utilities of the human and the cobot are re-defined, denoted 

as 𝑈௛
ᇱ ൫𝑎௛ି௜ , 𝑎௖ି௝൯ and 𝑈௖

ᇱ൫𝑎௛ି௜ , 𝑎௖ି௝൯, respectively. Different from the defined utilities of the 

human in the Stackelberg model-based approach where the penalty items (for the 

interactions/collaborations between the human and the cobot) are considered, the penalty items 

are not considered in the non-game approach, so that the formulas of 𝑈௛
ᇱ ൫𝑎௛ି௜ , 𝑎௖ି௝൯  and 

𝑈௖
ᇱ൫𝑎௛ି௜ , 𝑎௖ି௝൯ are represented as follows:  

𝑈௛
ᇱ ൫𝑎௛ି௜ , 𝑎௖ି௝൯ = 𝑤௛ିଵ ∗ 𝑈௛ି௦௔௙௘௧௬ + 𝑤௛ିଶ ∗ 𝑈௛ି௘௙௙௜௖௜௘௡௖௬ + 𝑤௛ିଷ ∗ 𝑈௛ି௦௧௔        (21) 

𝑈௖
ᇱ൫𝑎௛ି௜ , 𝑎௖ି௝൯ = 𝑈௖൫𝑎௛ି௜ , 𝑎௖ି௝൯                                        (22) 

As shown in Fig. 7, it is assumed that the action set of the human in the non-game approach 

is {𝑎௛ିଵ, … , 𝑎௛ି௠}, and the action set of the cobot is {𝑎௖ିଵ, … , 𝑎௖ି௡}. It is assumed that when 

the action combination (𝑎௛ି௞, 𝑎௖ି௞) is selected by the human and the cobot, the human obtains 

the highest utility; however, when the action combination (𝑎௛ି௟, 𝑎௖ି௟) is selected, the cobot has 

the highest utility. That is: 

(𝑎௛ି௞ , 𝑎௖ି௞) = argmax
ଵஸ௜ஸ௠,ଵஸ௝ஸ௡

𝑈௛
ᇱ ൫𝑎௛ି௜ , 𝑎௖ି௝൯                                   (23) 

(𝑎௛ି௟ , 𝑎௖ି௟) = argmax
ଵஸ௜ஸ௠,ଵஸ௝ஸ௡

𝑈௖
ᇱ൫𝑎௛ି௜ , 𝑎௖ି௝൯                                 (24) 

For the non-game approach, based on the above processes, the optimal actions chosen by 

the human and the cobot will be (𝑎௛ି௞, 𝑎௖ି௟).  



 

 

 

Fig. 7: The description of the non-game approach. 

 The four cases presented in Table 5 are analysed and compared by using the Stackelberg 

approach and the non-game approach, respectively (it is assumed that the weight values in the 

utilities of the human and cobot in both approaches are the same). The results are show in Table 

7 (𝑆௜(H) means that the human removes 𝑆௜, 𝑆௜(C) means that the cobot removes 𝑆௜). 

Table 7: The analysis and comparative results of the approaches for the four cases. 

Cases The Stackelberg approach The non-game approach 

Case 1 

Disassembly Process:                   
𝑆ଶ(H) → 𝑆ଷ(C) → 𝑆ସ(C) → 𝑆ଵ(H) 
T: 16.7 

S: 0.63 

Disassembly Process:                   
𝑆ଶ(H) → 𝑆ସ(C) → 𝑆ଷ(H) → 𝑆ଵ(C) 

The cobot enters the safe range of the 
human. Thus, the task fails. 

Case 2 

Disassembly Process:                   
𝑆ଵ(H) → 𝑆ସ(C) → 𝑆ଷ(H) → 𝑆ଶ(C) 

T: 20.3 

S: 0.71 

Disassembly Process:                   
𝑆ଶ(H) → 𝑆ସ(C) → 𝑆ଵ(H) → 𝑆ଷ(H) 

T: 31.3 

S: 0.76 

Case 3 

Disassembly Process:                   
𝑆ଷ(H) → 𝑆ଶ(C) → 𝑆ଵ(H) 

T: 18.6 

S: 0.76 

Disassembly Process:                   
𝑆ଶ(H) → 𝑆ଷ(H) → 𝑆ଵ(H) 

T: 28.4 

S: 0.67 

Case 4 

Disassembly Process:                   
𝑆ଶ(C) → 𝑆ଷ(H) → 𝑆ଵ(C) 

T: 11.0 

S: 0.35 

Disassembly Process:                   
𝑆ଵ(H) → 𝑆ଶ(C) 
The cobot enters the safe range of the 
human. Thus, task fails. 

In Case 1 and Case 3, results generated by the non-game approach are failed to ensure the 

safety requirement (the cobot enters the safe range of the human). 

Human’s actions Cobot’s actions 
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  𝑎௛ି௞ 

  𝑎௛ି௟ 
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…
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The non-game approach 

  𝑎௛ି௠ 
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  𝑎௖ି௡ 

…
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 In Case 2, results generated by the Stackelberg approach are both better than those by the 

non-game approach in terms of disassembly efficiency and safety index. The main reason is 

that 𝑈௛ି௣௘௡௔௟௧௬ି  in the Stackelberg approach functions, which leads the human to remove the 

rusted screw 𝑆ଵ.  

In Case 3, when the Stackelberg approach is used, T=18.6 and S=0.76; When the non-game 

approach is used, T=28.4 and S=0.67. It indicates that the Stackelberg approach can achieve a 

better disassembly efficiency than the non-game approach (the safety requirements of both the 

approaches are satisfactory). The reason is that in the non-game approach, all the screws are 

assigned to the human to be removed, while in the Stackelberg approach, 𝑈௛ି௣௘௡௔௟௧௬ିଶ takes 

the working state of the cobot into account, so that the disassembly tasks are allocated to the 

human and cobot more reasonably.  

The above case studies demonstrate that the Stackelberg approach can achieve safe and more 

efficient disassembly for HRC in comparison with the non-game approach. The Stackelberg 

approach is also more robust in solution generation. 

5.2 Case study 2 

5.2.1  The EoL product, essential parameters and optimised results 

To further prove the applicability of the Stackelberg approach to more complex conditions, 

Fig. 8 shows an EoL product in which the top cover and the main body are joined using eight 

M6 screws. Some screws were rusted, and the rest were normal screws. The parameters in the 

case are given in Table 8. 

 
Fig. 8: Disassembly of a product. 

Table 8: Screw information of the case study. 

Screw no. S1 S2 S3 S4 

Coordinate [1,1,0] [1,39,0] [9,1,0] [9,39,0] 

Classification Normal Rusted Normal Normal 

Screw no. S5 S6 S7 S8 

Coordinate [17,1,0] [17,39,0] [24.3,1,0] [24.3,39,0] 

Classification Rusted Normal Rusted Rusted 

X 
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500 

400 



 

 

Screw no. S9 S10 S11 S12 

Coordinate [25.7,1,0] [25.7,39,0] [34.7,1,0] [34.7,39,0] 

Classification Rusted Normal Rusted Normal 

Screw no. S13 S14 S15 S16 

Coordinate [42,1,0] [42,39,0] [49,1,0] [49,39,0] 

Classification Normal Normal Rusted Normal 

Some near-optimal solutions obtained by the Stackelberg approach are shown in Table 9. 

When the value of T increases, the value of S will decrease accordingly. Decision makers can 

choose the appropriate solutions according to their needs. 

Table 9: Some near-optimal solutions obtained by the approach presented in this research. 

 𝑤௛ିଵ 𝑤௛ିଶ 𝑤௛ିଷ 𝑤௛ିସ 𝑤௖ିଵ 𝑤௖ିଶ 𝑤௖ିଷ T S 

n.1 0.209 0.309 0.336 0.146 0.180 0.230 0.590 85.7 0.527 

n.2 0.016 0.195 0.787 0.002 0.617 0.031 0.352 88.0 0.495 

n.3 0.078 0.421 0.404 0.097 0.549 0.146 0.305 88.4 0.47 

n.4 0.260 0.193 0.524 0.023 0.540 0.103 0.357 89.8 0.466 

n.5 0.359 0.179 0.430 0.032 0.566 0.054 0.380 90.3 0.451 

n.6 0.08 0.416 0.341 0.163 0.555 0.082 0.364 91.7 0.443 

n.7 0.394 0.120 0.371 0.115 0.499 0.198 0.303 97.4 0.442 

5.2.2  Comparative analysis 

5.2.2.1 Comparison with a non-game theory-enabled approach 

Similarly, to demonstrate the effectiveness of the Stackelberg approach, a comparison was 

made with the non-game approach. 

Both of the approaches were executed for 200 times. Statistical results are summarised in 

Table 10. The minimum T and S values obtained with the game approach are both smaller than 

those of the non-game method. 

Table 10: Statistical results of the optimal results obtained by the two approaches. 

Method T values S values 

Game method 85.7 0.41 

Non-game method 89.6 0.42 

5.2.2.2 Comparison of solutions with optimisation and without optimisation 

To demonstrate the effectiveness of PSO-Pareto in this research, the results with/without 

optimised weights were compared. Both approaches were executed 200 times with/without 

optimised weights 200 times. The statistical results are shown in Table 11. 

 

 



 

 

Table 11: Solution comparison with/without optimisation. 

 With optimisation Without optimisation 

The proportion of successes 100% 62.1% 

The smallest T value 85.7 91.6 

The average T value 95.4 101.5 

The smallest S value 0.41 0.46 

The average S value 0.47 0.54 

During the process, non-optimised weights could cause the human and the cobot to make 

wrong decisions that lead to incompletion of a disassembly task, i.e., they gave up the 

disassembly task considering safety. It can be seen from Table 11 that with optimised weights, 

all the obtained disassembly solutions were able to conduct 100%, and without optimised 

weights, only 62.1% of the disassembly solutions were acceptable from the safety consideration. 

Meanwhile, from the smallest T value and S value, the average T value and S value, solutions 

with optimised weights were statistically better than those without optimised weights. 

5.2.2.3 PSO-Pareto under different parameters 

The performance of PSO-Pareto under different parameters was compared by using a 

hypervolume (HV) value [27]. HV measures the volume of the areas surrounded by the Pareto 

front PF* and a reference point. When the reference point is fixed, the larger the HV value is, 

the smaller the T and S corresponding to PF*, indicating better results. To facilitate computation, 

T and S were normalised. 

 
Fig. 9: The HV value for a Pareto front. 

For instance, the performance of PSO-Pareto under different numbers of populations was 

compared in terms of HV. The population numbers were set to (10, 20, 30, 40, 50, 60). For each 

population, the experiment was executed ten times, and each run was carried out until the HV 

value converged. The average HV value and running time are shown in Table 12. The ratio of 

the increase in the HV value to the increase in the running time (∆HV/∆time) indicates the 

efficiency of the run with a specific number of populations. The higher the ∆HV/∆time is, the 

higher the efficiency of the run is. Fig. 10 describes ∆HV/∆time under different numbers of 
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populations. When the number of populations is 30, the ∆HV/∆time is the highest, indicating 

that 30 is the optimal number of populations. Through the same procedure, optimal values of 

other parameters in the algorithm were obtained (shown in Table 13). 

Table 12: The algorithm with different numbers of populations. 

Number of populations Average HV Average running time (s) 

10 0.37423 221.3 

20 0.37656 423.5 

30 0.38213 612.6 

40 0.38352 785.7 

50 0.38471 987.6 

60 0.38578 1135.3 

 

Fig. 10: ∆HV/∆time under different numbers of populations. 

Table 13: Other optimal parameters for the algorithm. 

Parameter Value 

𝑐௠௔௫ , 𝑐௠௜௡ 0.9,0.5 

𝑐ଵ 2 

𝑐ଶ 2 

5.2.2.4 Comparison of different optimisation algorithms 

The performance of PSO-Pareto was also compared with the Non-dominated Sorting 

Genetic Algorithm II (NSGA II), which is another mainstream multi-objective optimisation 

algorithm [28]. In NSGA II, the crossover rate and the mutation rate were set to 0.9 and 0.1, 

respectively. For both of the algorithms, the population number was set to 50. The experiments 

were executed for ten times. The average HV values of the two algorithms are shown in Fig. 

11. It clearly demonstrates that the PSO-Pareto algorithm outperformed NSGA II. 



 

 

 
Fig. 11: The HV values of two optimisation algorithms. 

5.3 Practical experiment 

The Stackelberg approach was implemented in the authors’ laboratory. As shown in Fig. 12, 

the UR5 cobot were used to cooperate with a human operator to carry out joint disassembly of 

screws on an EoL product. OnRobot's screwdriver was mounted into the end-effector of the 

cobot for screw disassembly, and a 3D structural light camera was equipped to locate the screw 

positions intelligently. The blue area represents the safety range of the human operator. 

 

Fig. 12: The developed HRC platform for screw removal. 

The technical framework of a more practical experiment is shown in Fig. 13. Fig. 14 shows 

the distribution of screws on the keyboard. Key parameters for the case are given in Tables 14. 

The positions of the screws are relative to the base coordinate system of the cobot. Through 

using PSO-Pareto algorithm, a set of weight values that make the human-cobot collaborative 

disassembly time shortest is obtained, and it is used to carry out the actual HRC dismantling 

screw experiment. The Gantt chart of the screw disassembly process is shown in Fig. 15. 
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Fig. 13: The technical framework of the practical experiment. 

 

Fig. 14: The distribution of screws on the EoL product. 

Table 14: Screw information of the case study. 

Screw no. S1 S2 S3 S4 

Coordinate [-633,-24,18] [-643,-24,18] [-649,-24,18] [-629,-20,18] 

Classification Normal Rusted Normal Normal 

Screw no. S5 S6 S7 S8 

Coordinate [-636,-20,18] [-643,-20,18] [-649,-20,18] [-655,-20,18] 

Classification Rusted Normal Rusted Normal 

Screw no. S9 S10 S11 S12 

Coordinate [-629,-16,18] [-636,-16,18] [-643,-16,18] [-649,-16,18] 

Classification Normal Normal Rusted Normal 

Screw no. S13 

Coordinate [-655,-16,18] 

Classification Normal 

S1 S2 S3 

S4 S5 S6 S7 S8 

S9 S10 S11 S12 S13



 

 

 

Fig. 15: The Gantt chart of an optimal solution for HRC in disassembly screws. 

6. Conclusions and Future Work 

In remanufacturing an EoL product, there is often a need to remove the screws that hold it 

together. This paper presents an innovative HRC approach enabled by the Stackelberg model 

to optimise the process of removing screws. With this approach, the dynamic and uncertain 

characteristics of a human operator are well addressed to achieve human-centric HRC 

disassembly. Meanwhile, utilities in the Stackelberg model are represented by considering the 

disassembly efficiency and safety between humans and robots, and an innovative PSO-Pareto 

algorithm is designed to achieve the best performance in terms of safety and efficiency. Finally, 

case studies were used to validate the effectiveness of the approach, and the superiority of the 

approach was justified through comparison with a non-game model-based approach and 

different optimisation algorithms. 

In the future, the generality of the designed approach will be further verified in actual and 

complex disassembly scenarios. Functions of predicting human operators’ actions are expected 

to be added to enhance the safety resilience of the approach. In addition, multi-agent 

reinforcement learning algorithms could be considered to improve the ability of the approach 

to address uncertain situations. 
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