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Abstract: Anomaly detection of machine tools plays a vital role in the machinery industry to sustain 
efficient operation and avoid catastrophic failures. Compared to traditional machine learning and signal 
processing methods, deep learning has greater adaptive capability and end-to-end convenience. 
However, challenges still exist in recent research in anomaly detection of machine tools based on deep 
learning despite the marvelous endeavors so far, such as the necessity of labeled data for model training 
and insufficient consideration of noise effects. During machine operation, labeled data is often difficult 
to obtain; the collected data contains varying degrees of noise disturbances. To address the above 
challenges, this paper develops a hybrid robust convolutional autoencoder (HRCAE) for unsupervised 
anomaly detection of machine tools under noises. A parallel convolutional distribution fitting (PCDF) 
module is constructed, which can effectively fuse multi-sensor information and enhance network 
robustness by training in parallel to better fit the data distribution with unsupervised learning. A fused 
directional distance (FDD) loss function is designed to comprehensively consider the distance and 
angle differences among the data, which can effectively suppress the influence of noises and further 
improve the model robustness. The proposed method is validated by real computer numerical control 
(CNC) machine tool data, obtaining better performance of unsupervised anomaly detection under 
different noises compared to other popular unsupervised improved autoencoder methods. 

Keywords: Machine tools; Deep learning; Unsupervised anomaly detection; Hybrid robust 
convolutional autoencoder; noises 

1. Introduction
Machine tools are important and fundamental constitutes for manufacturing industry, which are

widely used in various processes such as turning, milling and drilling [1-2]. In the era of Industry 4.0, 
machine tools are developing towards intelligence, automation, high precision, multi-function and high 
reliability, etc [3-5]. However, machine tools may exhibit unpredictable anomalies which can cause 
production downtime, serious losses or even casualties if not detected in time. Therefore, real-time 
anomaly detection of machine tools is important for economical and reliable production. 

Data-driven methods have been proven to be effective for anomaly detection of machine tools, 
which can be divided into three procedures: signal collection, feature extraction and state detection. 
The collected signals can be vibration signals [6], current signals [7], acoustic signals [8] and 
temperature signals [9]. In general, the effectiveness of feature extraction directly affects the accuracy 
of state detection. Signal processing methods are widely used in feature extraction, such as empirical 
mode decomposition (EMD) [10], wavelet packet decomposition (WPD) [11], variational mode 
decomposition (VMD) [12], and local mean decomposition (LMD) [13]. The extracted features need to 
be subjected to machine learning models for state detection, such as hidden Markov models (HMM) 
[14], support vector machines (SVM) [15], and random forests (SF) [16]. Traditional machine learning 
models can only adapt to small-scale data [17], and feature extraction based on signal processing 
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methods changes with different work tasks and relies heavily on manual feature selection and prior 
knowledge, limiting the generalizability of the methods [18]. 

Unlike the above methods, deep learning-based intelligent methods have been widely studied in 
recent years for anomaly detection and condition monitoring of machine tools due to their adaptive 
feature mining capability and end-to-end convenience. Liang et al. [19] introduced a novel data-driven 
diagnosis system for supporting online anomaly detection in CNC machining. Huang et al. [20] 
constructed a deep CNN-based multi-domain feature fusion method to effectively characterize tool 
wear. Sun et al. [21] proposed a sparse autoencoder-based deep transfer learning network that can 
detect the health status of different machine tools. Cheng et al. [22] combined CNN and LSTM for tool 
wear value monitoring under variable working conditions. Deebak et al. [23] presented a digital-twin 
assisted method for analyzing the operating state of machine tools. Ou et al. [24] proposed a new 
nuclear autoencoder feature learning method for intelligent detection of tool wear states. Shi et al. [25] 
introduced multiple sparse autoencoders fusing features from multiple domains to accomplish a 
progressive tool wear monitoring task. Wang et al. [26] suggested a model with attention and 
monotonicity loss for simultaneous detection of tool wear and prediction. Sun et al. [27] designed a 
LSTM network to identify multiple rear tool wear values based on historical data. Yang et al. [28] 
presented an anomaly detection model based on residuals, which can effectively detect tool wear. 

The above deep learning models have shown decent results for dealing with different challenges in 
anomaly detection and condition monitoring of machine tools. However, they all rely on sufficient 
labeled data, which limits their application in industrial scenarios. In the laboratory, it is easier to obtain 
data with accurate labels, but this is often difficult in the engineering practice [29]. Most of the 
machine tools are in normal status during actual operation, and labeled data is often very scarce or even 
unavailable. Therefore, unsupervised anomaly detection solely based on normal operating data 
provides more flexibility and extends the capability of the abovementioned deep learning methods. 
Autoencoder is a classical data reduction and reconstruction method, which has been explored and 
improved by many scholars in recent years to excel its performance in unsupervised anomaly detection 
of different fields. In 2018, Zong et al. [30] proposed a deep autoencoding Gaussian mixture model 
(DAGMM) by fusing autoencoder and gaussian mixture model that uses the joint optimization form to 
solve the problem of decoupling model learning and achieves good unsupervised anomaly detection 
results on public benchmark datasets. In 2019, Gong et al. [31] developed a memory-augmented 
autoencoder (MAE) by adding a memory module to increase the reconstruction error for anomaly data 
by enhancing the training memory for normal data. In 2021, Thill et al. [32] presented a temporal 
convolutional network autoencoder based on dilated convolution for unsupervised anomaly detection in 
electrocardiogram of patients with cardiac arrhythmia. In 2021, Li et al. [33] constructed an 
unsupervised fake news detection method based on autoencoder for detecting anomalies on social 
networks. All of the above improved autoencoder models achieve good unsupervised anomaly 
detection results in their respective fields. However, it is astonishing to find out few studies exist on 
unsupervised anomaly detection of machine tools that consider the improvement of autoencoder. In 
addition, monitoring data of machine tool collected by sensors in industrial scenarios inevitably 
contains various noise disturbances [34]. Therefore, to fill the research gap, this paper aims to study the 
improved autoencoder for unsupervised anomaly detection of machine tools under noises. 

In this paper, a new improved autoencoder method called HRCAE is developed for unsupervised 
anomaly detection of machine tools under noises, which includes the construction of a PCDF module 
and the design of a FDD loss function. The PCDF module is constructed to effectively fuse multi-
sensor information and to train symmetric convolutional networks in parallel to fit the distribution of 
normal data with unsupervised learning. The FDD loss function is designed to fully consider the 
distance and angle differences between the reconstructed data and the original data, thus effectively 
suppressing the noise effect on the data. The effectiveness of the proposed method is validated by real 
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CNC machine tool data. The results indicate that the developed HRCAE can effectively learn the 
distribution characteristics of normal data under different noises, and can obtain better unsupervised 
anomaly detection performance compared with other unsupervised improved autoencoder methods. 

The sections are as follows: Section 2 introduces the related theory of basic CAE. Section 3 
describes the developed HRCAE in detail, including construction of the PCDF module, design of the 
FDD loss function and general steps of the HRCAE. Section 4 shows the experimental verification of 
CNC machine tool data. Section 5 presents the conclusions and future research directions. 

2. Basic CAE 
CAE, as a classical unsupervised learning method, has been widely used in image denoising, data 

reconstruction and other relevant fields [35-37]. It can combine the feature extraction function of CNN 
with the unsupervised feature reconstruction function of autoencoder [38]. In general, the CAE consists 
of multiple convolution encoders and deconvolution decoders, which can be sketched in Fig. 1. 

A convolution encoder usually consists of a convolution layer and a pooling layer to extract data 
feature, which can be expressed as: 

( ( ( )))i iH pool σ X w b                                                       (1) 

where X is the input data; H is the feature obtained after encoding; iw  is the ith convolution kernel in 

the convolution layer, and ib  is the ith bias;  indicates the convolution operation; σ  is the activation 
function; pool(∙) indicates the pooling operation. 

A convolution decoder generally includes a deconvolution layer and an up-sampling layer, which 
can be expressed as: 

ˆˆ ˆ( ( ( )))i iX ups σ H w b                                                         (2) 

where X̂  is the data returned after decoding; ˆ iw  is the ith deconvolution kernel in the deconvolution 

layer, and ˆib  is the ith bias;   indicates the deconvolution operation; ups(∙) indicates the up- sampling 
operation. 

The reconstruction error, which is used to optimize the network's parameters, is denoted as the 

Euclidean distance between X and X̂  as:  

2

1

1 ˆMSE ( )
n

i i
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                                                            (3) 

where n is the data number; ˆ
iX  is the ith reconstructed data; iX  is the ith input data; MSE is the 

reconstruction error, and the network aims to minimize it. 
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Fig.1. The structure of CAE. 

3. The proposed method 
We develop the HRCAE driven by multi-sensor information for unsupervised anomaly detection 

of machine tools under noises. The proposed method consists of two steps: constructing a PCDF 
module, and designing a FDD loss function. 
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3.1. Construction of the PCDF module 
The model training in existing studies to anomaly detection of machine tools relies on labeled data, 

yet this is often very scarce or even unavailable in engineering practice. We construct the PCDF 
module that can cope with the above shortcomings, as described below. 

The vibration data of machine tools with noises collected by multiple sensors is acquired and 
inputs to the convolutional network in multiple channels for the fusion to obtain richer health 
information. Inspired by the Inception network [39] with parallel convolutional blocks, we form a 
PCDF module by paralleling two convolutional networks to learn richer characteristics. The network 
width is enlarged by parallel training to improve network robustness, which can better fit the 
distribution of normal data for unsupervised anomaly detection. The structure of the PCDF module is 
shown in Fig. 2, where the convolution and deconvolution layers can be expressed by the following 
equations. 

( ( ))i iH σ X w b                                                        (4) 

ˆˆ ˆ( ( ))i iX σ H w b                                                         (5) 

where Eq.(4) is the convolution layer; ,  i iw b are the ith one-dimensional convolution kernel and the 

corresponding bias here. Eq.(5) is the deconvolution layer; ˆˆ ,  i iw b  are the ith one-dimensional 
deconvolution kernel and the corresponding bias here. Compared to Eqs.(1-2), we discard the pooling 
layer and the up-sampling layer because they are accompanied by a certain degree of data feature loss 
[40-41], which is not conducive to the distribution fitting of the normal data. The specific parameters of 
the PCDF module are shown in Table 1. 

v
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 Frequency domain signal 
with noise 

(Normal data only)

X-directional vibration
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Fig.2. The structure of PCDF module. 

Table 1 
The structural parameters of PCDF module. 

No. Layer Channel size Kernel size/stride Batch normalization Activation function 

1 Conv1 3×16 3/1 Yes LeakyReLU 
2 Conv2 16×32 3/1 Yes LeakyReLU 
3 Conv3 32×64 3/1 Yes LeakyReLU 
4 Dconv1 64×32 3/1 Yes LeakyReLU 
5 Dconv2 32×16 3/1 Yes LeakyReLU 
6 Dconv3 16×3 3/1 No No 
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3.2. Design of the FDD loss function 
The current prevalent CAE mainly chooses Eq. (3) as the reconstruction error. However, 

Euclidean distance is difficult to faithfully describe the similarity of complex feature spaces [42]. We 
design a new FDD loss function, which can measure the distribution similarity between data from the 
perspectives of angle and distance to effectively suppress the effect of noises, thus further improving 
the model robustness for anomaly detection of machine tools. 

Several studies have demonstrated that effective combination of Euclidean distance and Cosine 
similarity can achieve good results in the fields of image recognition [43], language conversion [44-45], 
music classification [46], etc. The Euclidean distance is a spatial distance between data, focusing on the 
difference in values for each dimension. The Cosine similarity measures the geometric angle between 
data, and is insensitive to the numerical difference in each dimension, enabling better capture of feature 
difference in direction. A visual representation of the difference between Cosine similarity and 
Euclidean distance is shown in Fig. 3. The formula for calculating the Cosine similarity is expressed as 
follows. 

X
X̂

Euclidean 
distance

Cosine 
similarityx

y

z

 
Fig.3. The difference between Euclidean distance and Cosine similarity. 
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where CS [ 1,1]   is the Cosine similarity between data, and the smaller value indicates the larger 

directional difference. CS can complement MSE well, and the distance and angle differences between 
data are fully considered. Thus, the designed FDD loss function can be obtained as follows: 

(1 CS)FDD MSE
2


  λ                                                      (7) 

where λ is an adjustable hyperparameter, which is used to balance the weight of distance and angle 

difference between data. The loss value is fed into Adam optimizer [47] to automatically optimize the 

network’s learning parameters, which can be expressed as follows. 

1 1 1 1(1 ) ( )t t θ tm β m β J θ                                                       (8) 
2

2 1 2 1(1 )( ( ))t t θ tv β v β J θ                                                     (9) 

1
1

2

(1 )

( (1 ) )

t
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t t t
t

m β
θ θ α

v β ε



 

 
                                                 (10) 

where tθ  is the network’s learning parameters at the tth iteration; α is the learning rate; 1( )θ tJ θ   is 

the computed gradient of the tth iteration; tm  is the exponential moving average of the calculated 

gradient for the tth iteration; tv  is the exponential moving average of the squared calculated gradient 

for the tth iteration; in general, 1 0.9β  , 2 0.999β  , 810ε  . 
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3.3. General steps of the HRCAE  
The general steps of the HRCAE are shown in Fig. 4 and explained in detail as below. 
Data Preparation: Acquire CNC machine tool vibration data collected by multiple sensors, adding 

Gaussian random noises, performing normalization operation and FFT transform. The data with noises 
is then divided into training set and validation set containing only normal data, and a test set containing 
both normal and anomaly data. 

Model initialization: Set the model hyperparameters such as weight coefficient λ, learning rate α, 
iteration number T, and PCDF module structure. The learning parameters θ of the network are 
randomly initialized. 

Model off-line training: The training set with only normal data is fed into the constructed PCDF 
module in multiple channels, and two convolutional distribution fitting networks are trained in parallel. 
The reconstructed data X̂  is obtained based on Eqs. (4-5). The FDD loss values of the two networks 
are calculated and added based on Eqs. (3), (6-7), and the learning parameters θ of the network are 
iteratively updated based on Eqs. (8-10).  

Model online validation: The validation set with only normal data is fed into the trained PCDF 
module, and after obtaining the reconstructed data, the sum of the FDD loss value for each sample in 
the two networks is calculated. Because there may be very few unfitted noise samples and considering 
the model’s robustness, the loss value containing 95% of normal data is chosen as the threshold value 
for anomaly data. 

Model online testing: The test set containing normal and anomaly data is fed into the trained 
PCDF module, and the sum of FDD loss value is calculated for each test sample to determine the 
normal or anomaly based on the threshold value. Finally, evaluation indexes such as accuracy, recall, 
precision and F-score are displayed. 
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Fig.4. General steps of the HRCAE. 

4. Experimental verifications 
We test the effectiveness of the proposed method on a high-speed CNC machine. Section 4.1 

describes the CNC machine tool datasets and division rules. Section 4.2 verifies the validity of the 
proposed method for unsupervised tool anomaly detection under different noises. Section 4.3 validates 
the benefit of fusing multi-sensor information and discusses the hyperparameter λ in the FDD loss 
function. 
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4.1. Description of datasets 
Datasets are derived from a high-speed CNC milling machine operating under dry milling 

operation [48], and the data acquisition system is shown in Fig. 5. The specific operating parameters 
are set as follows: spindle speed is 10400 rpm; X-direction feed rate is 1555 mm/min; Y-direction 
cutting depth is 0.125 mm; Z-direction cutting depth is 0.2 mm. Tool vibration in the X, Y and Z 
directions is measured by piezoelectric accelerometers on the workpiece with sampling frequency of 50 
kHz [49]. 

 
Fig.5. Data collection system [50]. 

A total of three datasets are used to record the wear degree of three tools, which are C1, C4 and 
C6, respectively. Each dataset has 315 sampling processes that record the variation of tool wear degree, 
with each sampling process recording tool wear degree in three directions. We average the wear degree 
in these three directions, and the wear degree above 0.10 mm is considered as anomaly data. Since 
there are few normal data in C6 dataset, we conduct unsupervised anomaly detection on the C1 and C4 
datasets, and the dataset information is shown in Table 2. The C1 dataset contains data for tool wear 
degree from 0.04 mm to 0.16 mm. In order to simulate the full degradation process, for the training and 
validation sets, tool wear degree varies from 0.04 mm to 0.09 mm with normal data only, 100 samples 
randomly selected at 0.01 mm intervals, 600 samples in total; the test set of tool wear degree contains 
the full range of 0.04 mm to 0.16 mm, with 100 samples randomly selected at 0.01 mm intervals, for a 
total of 1300 samples. The length of each sample is 1024 sampling points; the training set, validation 
set and test set are from different sampling processes. The C4 dataset contains data with tool wear 
degree from 0.03 mm to 0.20 mm. The training set, validation set and test set are divided by the same 
rules as the C1 dataset in Table 2. It is important to emphasize that we only divide the dataset by tool 
wear degree and do not need to use specific wear degree labels in the training of the model, so the 
model training is unsupervised. 

Table 2 
Introduction to datasets. 

Datasets Training set 
(Only normal data) 

Validation set  
(Only normal data) 

Test set  
(Normal and anomaly data) 

C1 
600 
(6×100) 
0.04 mm-0.09 mm 

600 
(6×100) 
0.04 mm-0.09 mm 

1300 
(13×100) 
0.04 mm-0.16 mm 

C4 
700 
(7×100) 
0.03 mm-0.09 mm 

700 
(7×100) 
0.03 mm-0.09 mm 

1800 
(18×100) 
0.03 mm-0.20 mm 
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Fig.6. Vibration signals of datasets under different noises: (a) C1 dataset; (b) C4 dataset. 

Fig. 6 shows the vibration signals of the two datasets under different noises. As noises increase, 
the destructive effect on the vibration signals becomes more apparent. Under the heavy noise, the 
amplitudes of the vibration signals in both datasets are almost doubled compared to the signals without 
the addition of noise, which puts high demands on the robustness of the model. The value of signal-to-
noise (SNR) is calculated as below: 

10SNR 10log ( ) s

n

P
P

                                                          (11) 

where sP  is the data power; nP  is the noise power; SNR is the signal-to-noise ratio in dB, and its 

smaller value means more heavy noise. 

4.2. The validity of the HRCAE 
In this paper, to reduce the random effect for experiments, all the methods are repeated five times. 

The algorithms are run in Pytorch 1.7.1 of Windows 10, with GPU GTX1650 4G. Based on the greedy 
algorithm idea [51], we search for a relatively better combination of hyperparameters by controlling the 
variables. The main hyperparameters are set as follows: the number of iterations is set to 300; the 
learning rate is set to 0.01, which decays 0.1 at 20, 200 iterations respectively; the hyperparameter λ in 
FDD loss function is set to 0.2. In the future, we will explore simpler and more general hyperparameter 
setting methods based on existing study [52]. 

First, we examine the unsupervised anomaly detection capability of the developed HRCAE under 
heavy noise and compare it with the commonly used unsupervised methods based on autoencoder, 
including CAE, MAE [31], DAGMM [30], sparse autoencoder (SAE) [53] and denoising autoencoder 
(DAE) [54], in which the superiority of the PCDF module and the FDD loss function are also verified. 
The evaluation indexes of anomaly detection on the C1 and C4 datasets for each method are calculated 
as follows: 

Accuracy = (TP + TN) / (TP + TN FP FN)                                        (12) 

Precision = TP / (TP FP)                                                  (13) 

Recall = TP / (TP FN)                                                    (14) 

F-score = 2 (Precision Recall) / (Precision + Recall)                                 (15) 
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where TP indicates correctly detected as anomaly data; FP indicates error detection as anomaly data; 
TN means correctly detected as normal data; FN means error detection as normal data. Accuracy can 
reflect the quality of global classification; F-score combines two indexes of precision and recall, which 
is an important index of how well anomaly data is detected. 

Table 3 shows the evaluation indexes of each method for anomaly detection on the C1 dataset. 
The accuracy and F-score of the proposed method reach 95.95% and 96.21% under heavy noise with 
SNR=1 dB ( / 80%n sP P ), which are the optimal and the most stable among all methods. Although 

the recall of DAGMM reaches 98.43% and the precision of DAE-FDD reaches 97.81%, the other 
three evaluation indexes of them are unsatisfactory. The PCDF-MSE shows an improvement of 
5.95%, 3.24%, 7.89% and 5.86% in each evaluation index compared to the CAE-MSE; the HRCAE 
shows an improvement of 1.27%, 0.80%, 1.60% and 1.32% in each evaluation index compared to the 
CAE-FDD. These improvements indicate that the constructed PCDF module has stronger robustness 
than the single convolutional distribution fitting network. After replacing MSE with FDD loss function, 
four evaluation indexes of MAE are improved by 8.21%, 5.28%, 10.34% and 8.27% respectively; 
SAE’s evaluation indexes are improved by 6.90%, 5.79%, 7.63% and 7.22% respectively; DAE’s 
evaluation indexes are improved by 6.08%, 2.79%, 9.58% and 7.80% respectively; CAE’s evaluation 
indexes are improved by 5.78%, 3.14%, 7.69% and 5.60% respectively; PCDF module’s evaluation 
indexes are improved by 1.10%, 0.70%, 1.40% and 1.06% respectively, and the stability of all methods 
is improved. The stability of anomaly detection results for above methods is also improved. It 
shows that the designed FDD loss function has universal applicability to various unsupervised 
improved autoencoder methods and can effectively measure the reconstruction errors of data from 
distance and angle directions to suppress the impact of heavy noise. The running times of all methods 
are shown in Table 3. The off-line training time of DAGMM is the longest, and the online validation 
test times of all methods are within 3s except DAGMM. 

Table 3 
Evaluation indexes and times of each method on the C1 dataset with SNR=1 dB. 

Unsupervised 
methods 

Evaluation indexes (%) Times (s) 
Accuracy  Precision Recall F-score Off-line Online 

HRCAE 95.95±0.75 96.85±0.25 95.60±1.50 96.21±0.74 36 2.5 
PCDF-MSE 94.85±1.61 96.15±0.98 94.20±2.75 95.15±1.58 36 2.5 
CAE-FDD 94.68±1.65 96.05±0.75 94.00±3.59 94.89±1.64 19 1.9 
CAE-MSE 88.90±4.46 92.91±5.75 86.31±6.56 89.29±4.29 19 2 
MAE-FDD 94.00±1.75 96.02±0.84 92.71±3.63 94.30±1.78 78 2.4 
MAE-MSE 85.79±3.96 90.74±4.67 82.37±9.15 86.03±4.37 78 2.5 
DAGMM 84.51±1.56 78.35±1.17 98.43±2.51 87.24±1.38 355 3.1 
SAE-FDD 90.62±6.23 96.76±1.16 85.37±11.35 90.41±6.84 20 2.0 
SAE-MSE 83.72±10.05 90.97±7.97 77.74±15.67 83.19±11.13 20 2.0 
DAE-FDD 88.11±8.62 97.81±0.61 79.69±16.25 87.03±10.98 19 1.9 
DAE-MSE 82.03±11.67 95.02±2.20 70.11±22.15 79.23±14.96 19 2.0 

Fig. 7 shows the visual test results of methods on the C1 dataset with SNR=1 dB. The horizontal 
coordinates indicate the tool wear degree of the test set, which ranges from 0.04 mm to 0.16 mm, and 
the vertical coordinates are the loss function value of each sample. Tool wear degrees less than 0.10 
mm are normal samples; those above 0.10 mm are anomaly samples, and the dotted line is the 
threshold value for detecting anomaly samples. To express the aesthetics, the average loss value of five 
adjacent samples is taken as a point for plotting the curve. Because of the different model structures 
and loss functions of each method, as well as the different optimal spaces of each stochastic 
training, there are differences in the loss values of each method. It can be observed that the visual 
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test results of each method can correspond to the evaluation results in Table 3. The proposed method 
HRCAE and the PCDF-MSE differentiations between normal and anomaly samples are relatively more 
obvious compared to other methods. This indicates that the constructed PCDF module can better fit the 
distribution of normal samples to distinguish the anomaly samples. After replacing MSE with FDD 
loss function, the discriminative degree of each method for normal and anomaly samples is improved 
to some extent, which again demonstrates the robustness of FDD loss function under heavy noise. 

(b)

(c) (d)

(a)

(e) (f)

(g) (h)

(i) (j)  
Fig.7. The visual test results of each method on the C1 dataset with SNR=1 dB: (a) HRCAE; (b) 

PCDF-MSE; (c) CAE-FDD; (d) CAE-MSE; (e) MAE-FDD; (f) MAE-MSE; (g) SAE-FDD; (h) SAE-
MSE; (i) DAE-FDD; (j) DAE-MSE. 
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Table 4 
Evaluation indexes and times of each method on the C4 dataset with SNR=0 dB. 

Unsupervised 
methods 

Evaluation indexes (%) Time (s) 
Accuracy  Precision Recall F-score Off-line Online 

HRCAE  96.25±1.17 96.01±1.09 97.95±2.32 96.95±0.99 43 2.9 
PCDF-MSE 93.91±2.42 96.72±0.48 93.20±4.15 94.89±2.18 42 2.9 
CAE-FDD 93.00±2.79 95.71±2.52 92.89±6.85 94.10±2.58 23 2.3 
CAE-MSE 88.31±5.48 96.11±2.95 84.26±7.84 89.67±5.03 23 2.3 
MAE-FDD 94.43±1.83 96.34±0.89 94.49±3.31 95.38±1.59 94 2.9 
MAE-MSE 91.14±4.32 95.78±1.65 89.56±8.49 92.35±4.08 94 2.9 
DAGMM 53.22±2.63 97.81±0.32 23.98±4.32 38.37±5.39 424 3.9 
SAE-FDD 92.21±1.65 96.25±1.08 90.80±2.55 93.43±1.47 23 2.3 
SAE-MSE 78.95±8.05 95.69±1.19 68.53±12.91 79.37±9.20 23 2.3 
DAE-FDD 88.66±6.68 95.21±3.63 85.60±8.54 89.90±6.12 23 2.3 
DAE-MSE 77.57±8.47 94.66±2.98 66.89±13.39 77.87±10.09 23 2.3 

(a) (b)

(c) (d)

(e) (f)  
Fig.8. The visual test results of each method on the C4 dataset with SNR=0 dB: (a) HRCAE; (b) 

PCDF-MSE; (c) CAE-FDD; (d) CAE-MSE; (e) MAE-FDD; (f) MAE-MSE. 

On the C4 dataset, four evaluation indexes of all methods for anomaly detection are shown in 
Table 4. Under the heavy noise with SNR=0 dB ( / 100%n sP P ), the proposed method HRCAE 

achieves 96.25%, 96.01%, 97.95%, and 96.95% for the four evaluation indexes, respectively, showing 
superior and stable anomaly detection results over other methods. Although the DAGMM has the 
highest precision, its other three evaluation indexes are very bad, and the volatility is very high 
compared to the C1 dataset. After replacing the MSE with the FDD loss function, all methods show the 
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improvement in four evaluation indexes and have better stability, which are consistent with the 
performance on the C1 dataset. On the C4 dataset, the PCDF module also shows advantages compared 
to other methods. The running time regularity of all methods on the C4 dataset is consistent with that 
on the C1 dataset. Fig. 8 shows the corresponding visual test results of six methods on the C4 dataset. 
Tool wear degree for the test set ranges from 0.03 mm to 0.20 mm, and wear degree above 0.10 mm are 
anomaly samples. Other plotting principles are the same as Fig. 7. On the C4 dataset, the PCDF 
module can better discriminate between normal and anomaly samples than other models, and the FDD 
loss function can further enhance the model's discrimination ability, which are consistent with Fig. 7. 

(a) (b)

(c) (d)  
Fig.9. The ROC curves of methods under different noises on the C4 dataset: (a) SNR=0 dB; (b) SNR=1 

dB; (c) SNR=2 dB; (d) SNR=4 dB. 

Subsequently, we plot ROC curves and confusion matrixes to show the anomaly detection results 
of methods under different noise effects. Fig. 9 shows the ROC curves for different methods on the C4 
dataset with SNR of 0 dB, 1 dB, 2 dB, and 4 dB ( /n sP P  is approximately 100%, 80%, 60%, and 40%). 
The area under the curve (AUC) is used to measure the anomaly detection performance of each method 
and ranges from 0.5 to 1 [55]. The higher AUC value represents the better performance of the method, 
and the AUC values for methods are listed in parentheses of right corner. At SNR values of 0 dB, 1 dB, 
2 dB, and 4 dB, the curves of the proposed method are closest to the upper left corner, and their AUC 
values are 99.38%, 99.19%, 99.54%, and 99.91%, respectively, which are stable and better than other 
methods. As for the PCDF module, the AUC values of the HRCAE compared to the CAE-FDD are 
improved by 1.08%, 1.17%, 0.57%, and 0.87% with SNR of 0 dB, 1 dB, 2 dB, and 4 dB; the AUC 
values of the PCDF-MSE compared to the CAE-MSE are improved by 2.56%, 1.05%, 2.38%, and 
1.99%, respectively. After replacing MSE with FDD loss function, the AUC values of DAE are 
improved by 5.84%, 4.25%, 4.14% and 2.60% respectively; SAE are improved by 4.62%, 4.18%, 
3.82% and 2.77% respectively; CAE are improved by 2.37%, 1.28%, 2.92% and 2.28% respectively; 
PCDF module are improved by `0.89%, 1.40%, 1.11% and 1.16% respectively. 
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Fig.10 shows the confusion matrixes for methods on the C1 dataset with SNR of 1 dB, 2 dB, 4 dB, 
and 7 dB ( /n sP P  is approximately 80%, 60%, 40%, and 20%). Coordinate 0 represents normal 

samples, with the total number of 600, while coordinate 1 represents anomaly samples, with the total 
number of 700. The horizontal coordinate is the predicted value and the vertical coordinate is the true 
value. We can intuitively see that the proposed method HRCAE has good classification results under 
different noises. At the SNR values of 1 dB, 2 dB, 4 dB, and 7 dB, the proposed method achieves F-
score of 96.50%, 98.30%, 97.68%, and 98.24%, with small volatility under different noises. Both the 
constructed PCDF module and the designed FDD loss function show enhancement effects, further 
demonstrating the robustness of the proposed method for anomaly detection under different noises.  

(a)

(b)

(c)

(d)

 
Fig.10. Confusion matrixes of methods under different noises on the C1 dataset: (a) SNR=1 dB; (b) 

SNR=2 dB; (c) SNR=4 dB; (d) SNR=7 dB. 

4.3. Discussions on multi-sensor and λ values 
Next, we verify the advantage of fusing multi-sensor information under different noises. Fig.11 

shows the accuracy and F-score of the proposed method under different sensor data. The figure legend 
XYZ indicates the muti-sensor data in three vibration directions, X, Y and Z indicate the single-sensor 
data in the vibration direction along that axis. Under the heavy noise with SNR = 0 dB on the C4 
dataset, the average accuracies are 96.25%, 88.99%, 87.98%, and 79.49% for multi-sensor data and 
single-sensor data in X, Y, and Z directions, respectively; the F-values are 96.95%, 90.36%, 89.27%, 
and 80.64%, respectively. Under the influence of noise with SNR = 7 dB on the C1 dataset, the average 
accuracies are 97.60%, 86.66%, 86.85%, and 78.77% for multi-sensor data and single-sensor data in X, 
Y, and Z directions, respectively; the F-values are 97.80%, 86.08%, 86.73%, and 76.31%, respectively. 
Under the different noises in both datasets, the proposed method can effectively fuse multi-sensor 
information, and the anomaly detection results are significantly better than those of single-sensor data, 
reducing the requirements for sensor location arrangement and selection. 

Finally, we investigate the values of the hyperparameter λ in the FDD loss function. Fig.12 shows 
the evaluation indexes of the proposed method at different λ values under the heavy noise on the C1 
and C4 datasets. To ensure that both distance and angle differences are useful, the MSE and CS loss 
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values need to be of the same order of magnitude. According to data preparation and Eqs.(3), (6-7), we 
choose λ values in the range of 0.05-0.3. With the increase of λ values, each evaluation index has a 
certain fluctuation. The fluctuation of recall is more intense compared with the other three evaluation 
indexes, which indicates that anomaly samples are relatively more sensitive to λ values; the accuracy 
and F-score first increase and then decrease. When λ=0.2, the proposed method is optimal in terms of 
accuracy, recall and F-score on both datasets. 
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Fig.11. The evaluation indexes of the proposed method under different sensor data: (a) Accuracy on the 

C4 dataset with SNR=0 dB; (b) F-score on the C4 dataset with SNR=0 dB; (c) Accuracy on the C1 
dataset with SNR=7 dB; (d) F-score on the C1 dataset with SNR=7 dB.  
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Fig.12. The evaluation indexes of the proposed method at different λ value: (a) SNR=1 dB on the C1 

dataset; (b) SNR=0 dB on the C4 dataset. 

5. Conclusions 

To tackle challenges of difficulty to obtain labeled data and the presence of noises in anomaly 
detection of machine tools, a new unsupervised anomaly detection method named HRCAE is 
developed in this paper. The proposed method constructs a novel PCDF module and designs a FDD 
loss function to improve the robustness of anomaly detection. The constructed PCDF module can 
effectively fuse multi-sensor information and enhance the robustness of the network with parallel 
training to better learn the data distribution. The designed FDD loss function integrates the distance and 
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angle differences between the reconstructed data and the original data to further improve the robustness 
of the model.  

The proposed method is validated by real CNC machine tool data and the comparison results show: 
(1) The constructed PCDF module can better fit the distribution characteristics of normal data for 
identification of anomaly data. (2) The designed FDD loss function can effectively suppress the effect 
of noises to improve the method reliability and has a certain degree of universality. (3) Compared with 
other commonly used unsupervised improved autoencoder methods, the proposed method can obtain 
better unsupervised anomaly detection under different noises. In future work, we will further evaluate 
the generalization of the proposed method to unsupervised anomaly detection on other mechanical 
devices. For the hyperparameters in the model, we will continue to explore a more general automatic 
hyperparameter determination approach to reduce the difficulty of model preparation. 
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