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Abstract

Robotic manipulation is currently undergoing a profound paradigm shift due to the increasing needs for flexible man-
ufacturing systems, and at the same time, because of the advances in enabling technologies such as sensing, learning,
optimization, and hardware. This demands for robots that can observe and reason about their workspace, and that
are skillfull enough to complete various assembly processes in weakly-structured settings. Moreover, it remains a great
challenge to enable operators for teaching robots on-site, while managing the inherent complexity of perception, control,
motion planning and reaction to unexpected situations. Motivated by real-world industrial applications, this paper
demonstrates the potential of such a paradigm shift in robotics on the industrial case of an e-Bike motor assembly. The
paper presents a concept for teaching and programming adaptive robots on-site and demonstrates their potential for
the named applications. The framework includes: (i) a method to teach perception systems onsite in a self-supervised
manner, (ii) a general representation of object-centric motion skills and force-sensitive assembly skills, both learned from
demonstration, (iii) a sequencing approach that exploits a human-designed plan to perform complex tasks, and (iv) a
system solution for adapting and optimizing skills online. The aforementioned components are interfaced through a four-
layer software architecture that makes our framework a tangible industrial technology. To demonstrate the generality
of the proposed framework, we provide, in addition to the motivating e-Bike motor assembly, a further case study on
dense box packing for logistics automation.

Keywords: Robotic manipulation, flexible manufacturing, learning from demonstration, task planning, optimal control.

1. Motivation

Flexible manufacturing is a core concept of Industry
4.0 that involves the use of advanced automation and
robotics technologies to build efficient and adaptable man-
ufacturing processes. This approach allows manufacturers
to quickly adjust production processes to meet changing
customer demands, reduce waste, and improve overall ef-
ficiency. To implement flexible manufacturing, companies
must work with a range of advanced sensors, control sys-
tems, and robots, which demands a high degree of inte-
gration and communication between different systems and
components. Robots play a critical role in flexible manu-
facturing systems (FMS) due to their ability to perform a
wide range of different tasks such as pick and place, quality
control, visual inspection, among others [1].

Nevertheless, many advanced industrial tasks common
in FMS (e.g. assembly) are still hard to automate by
robotic manipulators. Particular challenges include the
perception of unstructured workspaces, operation in dy-
namic environments, and physical interaction with tools [2]
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or manufactured elements [3, 4]. More specifically, some
parts often need to be picked up from arbitrary poses
and then put together or processed for various subsequent
steps. However, the particular choice of how and where
to pick such a part often depends on how it needs to be
handled in the remaining process. Explicitly programming
such a task requires a lot of manually-defined conditions
and carefully-tuned parameters [5], which is a challenge
even for experienced human operators.

In recent years, end-to-end learning methods were inves-
tigated as a complementary approach to explicit program-
ming for significantly reducing the amount of manual pro-
gramming work. However, by today, these methods still
need expert developers to work safely and reliably [6, 7].
Also, the additional time and effort to collect training data
as well as the lack of explainability when handling unfore-
seen conditions further limit ease of use in practical FMS.

A compromise between explicit programming and end-
to-end learning methods is the paradigm of learning from
expert demonstrations (LfD) [8]. This paradigm relies
on rich and intuitive human directions for defining mo-
tion skills while still using learning models to abstract the
motion patterns and generalize them from a small set of
demonstrations. In the context of this paper, a motion
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(a) Experimental setup of the e-Bike motor assembly case.

(b) Snapshots of the manual e-Bike assembly process.

Figure 1: (a) Left: Robot workspace, assembly area, and main e-
Bike assembly components; Right : Top view of the initial (top) and
final (bottom) stages of the assembled e-Bike motor. Snapshots of
the assembly process can be seen in Fig. 12. (b) Left: Manual PCB
placing; Middle: Manual gear placing; Right: Manual peg insertion.

skill is understood as a model that outputs a task-space
reference trajectory – that encapsulates the main trend of
the demonstrations – for an underlying tracking controller,
similarly to the definition in [8].

Regardless of the motion generation strategy, another
challenge is to design controllers that able to accurately
track the desired trajectories associated to a motion skill.
The tracking precision of these controllers is often com-
promised by accumulated modeling errors, demanding to
leverage model identification or learning methods [9, 10].
While these approaches enhance control precision, inac-
curacy may still arise from other parts of the integrated
system, for example from inaccurate pose estimation of the
objects of interest in the robot workspace.

This creates the need for endowing the robot with adap-
tation capabilities aimed at refining the skills or controllers
to perform the task satisfactorily. In this context, sample
efficiency is critical as skill or control adaptation may en-
tail real-world interactions, and therefore the fewer sam-
ples are required for adaptation, the safer and less costly
the process is. These requirements make black-box opti-
mizers a promising approach due to their simplicity and
data efficiency [11].

Combining learned skills with dynamic perception of
objects to determine their poses, as well as optimization
techniques to automatically improve configuration choices,
provides a powerful framework for robotic manipulation
in FMS, as considered in this paper. We show that the
learned skills can be sequenced according to a human-
designed task plan to allow robots to perform industrial

tasks of varying complexity. Furthermore, we show how
the different system components support an overall adapt-
ability of task execution and explainability of the actions
performed by the robot. In the following, we explain how
we approach the foregoing challenges around a real-world
industrial task: the assembly of an e-Bike motor.

1.1. The e-Bike Motor Assembly Challenge

Our work is guided by a real-world challenge that con-
cerns the free assembly of an e-Bike motor, which is shown
in Figs. 1, 12 and 13. Bikes that are supported by an elec-
tric motor (e-Bikes) are modern means of transportation
and are rapidly adopted across the world. Solely in Eu-
rope more than 5 MM e-Bikes were sold in 2021, and the
demand is continuously growing. Some people expect that
in few years one out of two bikes sold in Europe will be
equipped with an electric motor. The e-Bike motor con-
sidered here is a Bosch Performance Line motor, a mid-
motor for pedal-assisted bicycles. It consists of multiple
components, including: (i) a PCB board with the elec-
tronic control unit, (ii) gears for the transmission, (iii) a
shaft that connects the motor to the pedals, and (iv) a peg
that is placed around the shaft as part of the transmission
system (see Fig. 1).

Industrial production for e-Bike motors is faced with
many challenges. Due to the high demand, high volumes
of e-Bike motors must be produced. The quality require-
ments on the motors are extremely high, as many people
rely on them in their daily usage. In addition, e-Bike mo-
tors are demanded with a high variance – e.g., Bosch is
currently offering seven variants of e-Bike motors – and
the products are continuously improved with new vari-
ants regularly coming to market. Therefore, robot-based
flexible manufacturing systems promise to enable flexible,
high-quality, and high-volume production lines for this and
other products with similar manufacturing requirements.

Due to the social and economical impact that this prod-
uct may have in the near future and its challenging man-
ufacturing requirements, we chose this use case to analyze
and propose a potential solution to the technical challenges
that a robotic manipulator may face when required to as-
semble a subset of the e-Bike motor parts. To do so, we
designed an e-Bike assembly workstation consisting of a
loading platform where some e-Bike motor components are
picked, and the assembly station where the components are
assembled together (see Fig. 1a). The whole e-Bike motor
is roughly 165mm×146mm×150mm in size. A pre-defined
sequence of sub-tasks should be followed during the whole
assembly process. Particularly, we focus on the following
four sub-tasks:

1.1.1. [Press-PCB]

A PCB of size 156mm × 75mm × 2mm is pressed into
three pins on the motor base to secure the board (see
Fig. 1b). We assume here that in a previous (possibly
manual) assembly step the PCB board has been placed
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appropriately and only the final insertion is carried out
by the robot. Then, this sub-task consists of four stages:
approaching, pressing, transition (between pins location),
pressing and retreating as shown in Fig. 5. The press-
ing should be done with an appropriate force, if too small
then the pins are not securely inserted; if too large then
the PCB may be damaged; while the transition should be
accurate to not miss the pins (with less than 2 mm toler-
ance).

1.1.2. [Mount-Gear]

A spur gear of size 115mm×115mm×37mm is mounted
above the rotor casing (see Fig. 1b). The gear must be gen-
tly slid into the correct position on the motor. Therefore,
the robot must place the gear on the motor, gently slide it
to the right position and finally lightly push it to secure it
in-place. Thus, this sub-task consists of three stages: ap-
proaching, sliding and pushing. The sliding stage is quite
delicate as the metal bottom of the gear needs to follow a
tunnel on the casing into the desired location.

1.1.3. [Insert-Shaft]

A drive shaft of size 16mm×16mm×150mm is inserted
through the opening of the gear into a hole in the metal
casing. This step requires to place the shaft properly on
the motor, to gently wiggle it for finding the right position-
ing, and finally to push it into the casing. This sub-task
consists of three stages: approaching, wiggling and push-
ing. The “wiggling” stage is to insert the bottom of the
shaft into the hole beneath the gear, which has a tolerance
of around 1mm. Furthermore, the shaft is pushed with a
large force in a stiff manner to “click” in position during
the “pushing” stage. This proper placement is vital for
the functionality.

1.1.4. [Slide-Peg]

The peg of size 24mm× 24mm× 102mm is slid between
the inserted shaft and the mounted gear (see Fig. 1b).
Inserting this peg requires to slide it along the previously
inserted shaft. The peg bottom must reach the top of
the shaft with a tolerance of about 1mm. Once properly
placed, the peg has to be slid down the shaft and must
be twisted such that the inline tooth of the shaft and the
peg match. While executing this twisting, the peg should
be pushed with a small force. Therefore, this last sub-
task consists of four stages: attaching, sliding, twisting
and pushing.

It is worth mentioning that the shaft and peg are placed
freely on the loading platform, which means that we do
not assume previously-grasped objects, as commonly done
in several works researching insertion tasks. Moreover,
our robot is not equipped with dedicated grippers for the
aforementioned e-Bike components. Furthermore, due to
the subsequent insertion and pushing tasks, they should
be re-oriented from lying-flat to standing into a fixture,
such that they can be grasped from the top, as shown in
Fig. 12.

1.2. Approach

In this paper, we propose a system approach to program
a robot manipulator on-site by demonstration to perform
flexible automation tasks. The presented approach is de-
signed to serve the requirements identified in case studies
of the aforementioned e-Bike motor assembly as well as
the dense box-packing in logistics presented in Section 3.
Both case studies require a robot to grasp items using vi-
sion sensors and to place them skillfully according to the
task plan. Despite this common theme, these case studies
offer a broad variety of more subtle challenges on grasping
objects and skillful placing. Our intention is to provide
here a comprehensive overview on the methods and the
system integration that proved successful in these indus-
trial case studies. Parts of the methods have been pub-
lished previously in other works. The contribution of the
present paper is to describe how the individual methods
are integrated into a system and how this system creates
a powerful and flexible automation solution. We present
two real use-cases from manufacturing and logistics and
report on the performance and limitations of the system
in these settings. Finally, we discuss if the state of the
art in robot manipulation, exemplified by our methods,
is ready for flexible manufacturing on the shop floor and
provide directions for future research. To the best of our
knowledge, our integrated learning-based system for ad-
vanced manipulation as presented in this paper is unique
in its completeness, technical timeliness and practical de-
ployment on two real use-cases both with a significant eco-
nomic background.

In high-level terms, our integration framework consists
of (i) a vision perception system that estimates poses
of objects of interest for the task (see Section 2.2); (ii)
a learning component that builds an object-centric skill
model using the vision information along with the demon-
stration data – generated by a human operator who kines-
thetically teaches the robot the desired movements for a
particular skill (as explained in Section 2.4); (iii) a skills
sequencing module which builds a complete task model,
out of a set of motion skills, according to a human-designed
task plan (see Section 2.5); (iv) a task execution compo-
nent that reproduces the full task, where the motion skills
adapt according to the perceived objects state (see Sec-
tion 2.6); and lastly, (v) a task optimization component
which refines motion skills as needed (as detailed in Sec-
tion 2.7). A high-level introduction to each of our frame-
work components is given in Section 2, while the corre-
sponding technical details are provided in Appendix D.6.

1.3. Related Work

The goal of this section is to provide a broad overview on
recent developments of robotic manipulation frameworks
and to briefly highlight relevant works on each of the sub-
fields that our interdisciplinary framework builds on.
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Figure 2: Overview of our system structure with its main modules: Perception, low-level impedance control, skill learning and sequencing,
task planning, task online execution, and skill optimization (see Table 1 for a definition of the module inputs and outputs). The yellow,
blue, red, and purple blocks respectively enclose the modules involved into the learning, task execution, skill optimization, and hardware.
Using kinesthetic demonstrations we encode object-centric skills into task-parametrized hidden semi-Markov models (TP-HSMMs), learn the
condition models, and estimate the attractor model if demonstrated force profiles should be tracked. Given a high-level task plan, a desired
sequence of states is determined and later combined with online perception data to compute the optimal state sequence for the task model,
which serves to estimate the reference trajectory tracked by our Riemannian optimal controller. The skill optimization is triggered whenever a
learned skill requires small refinements for a successful execution. Our behavior engine encapsulates the task plan, including action primitives,
learned skills, skill refinement and failure recovery behaviors.

Robotic manipulation frameworks. While most of the re-
search agenda on robotic manipulation has focused on
solving domain-specific challenges, there exist recent ef-
forts on integrating full manipulation systems in real-world
settings [12]. The optimization-based control framework
introduced in [13] decomposes manipulation tasks into
skills and manipulation primitives, which resembles our
task abstraction. Their experimental work is also close to
ours as their framework allows for free-space motions and
contact-rich skills, which are also part of the case stud-
ies considered in this paper. However, Gold et al. [13]
did not consider the integration of vision perception and
skill optimization in their approach. In a similar vein,
Johannsmeier et al. [5] proposed a manipulation-skills
framework, where each skill was represented by a sim-
ple directed graph, and subsequently a full manipulation
task corresponded to a larger graph composed of sequenced
skills. Unlike our framework, their work builds on hand-
coded parametrized skills. However, the parametric nature
of these skills is leveraged to optimize their performance
for different manipulation tasks using black-box optimiz-
ers, similarly to our skill optimization approach.

In contrast to our approach and that of Gold et al. [13],
deep learning-based approaches have recently been em-
ployed to build manipulation frameworks. On one side of
the solutions spectrum, we may consider imitation learn-
ing as the mechanism to train end-to-end manipulation
frameworks as in [14]. On the other end, we can find
solutions leveraging reinforcement learning to overcome
the need of labeled training data at the cost of longer
training times [15] or to improve generalization of imita-

tion learning-based frameworks [16]. Most of these deep
learning-based frameworks do not impose a specific task
abstraction but instead formulate the manipulation prob-
lem as learning the correct control commands for a large
set of task states. Also, these framework overcome the
need of object pose estimation as the task state is often
described at pixel levels. However, these frameworks are
often not designed to solve long-horizon tasks as the ones
considered in this paper. Moreover, their lack of explain-
ability limits its use in real-world industrial settings.

Learning from demonstration (LfD). Learning motions by
kinesthetic teaching is an intuitive and natural way to
transfer human skills to robots [8]. Specifically, task-
parameterized Gaussian models, reviewed by Calinon [17],
consider an object-centric formulation of motion skills by
incorporating observations from the perspective of dif-
ferent coordinate systems. This enables the adaptation
of learned skills to new object configurations in weakly-
structured and dynamic environments. This object-centric
formulation is indeed exploited in our framework to build
adaptable skill models, which favors their easy reusability.

Skills sequencing. In complex settings where the robot
needs to execute multiple actions, a key limitation of LfD
arises: the need to collect demonstrations of the whole
task that is to be learned. To address this, recent work
focuses on learning not only complete robot motions for
a task but also sequences of re-usable motion skills. For
instance, Lioutikov et al. [18] allowed sequencing of sim-
ple motion skills encoded by dynamic movement primi-
tives for complex tasks over bimanual manipulations. The
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approach proposed by Manschitz et al. [19] learned a se-
quence graph of skills within a movement library from
kinesthetic demonstrations, where the classification of dif-
ferent skills was carried out via Gaussian mixture mod-
els. In Konidaris et al. [20], the skill sequencing problem
was investigated from a hierarchical reinforcement learn-
ing perspective, where each skill is represented by a general
control policy. Most of the above approaches still required
human demonstrations at the complete-task level. In con-
trast, we introduce an approach that requires only demon-
strations at the level of individual motion skills, which are
automatically sequenced given the task plan, goal and ini-
tial system conditions. This approach is beneficial when
different tasks share a subset of these skills, which can be
reused to avoid teaching them every time a new task is
defined.

System integration. Finally, a key challenge for integrat-
ing learned motions is their interplay with the robot hard-
ware and other software components [21], in particular for
adaptation and recovery from failure cases. Abstraction
layers between the learning system and the hardware, as
for example used by De Coninck et al. [22], are a common
approach in this regard. In our system, we use ROS [23]
and FlexBE [24] to implement a software structure of ex-
changeable components following common software stan-
dards [25], where the learned motion skills are one option
for computing controller reference trajectories. This fo-
cus on components rather than strict layers allows for im-
proved adaptation, e.g., by closing the perception-action
loop also at lower layers.

2. Proposed System

Despite the heterogeneity of the challenges arising in the
e-Bike assembly setting, described in Section 1.1, there are
several similarities across the required robot skills. Most
of them require, in some form, to pick an object, to move
it to a target, and to execute a force-sensitive insertion.
However, despite this common theme, the required real-
ization of the skills is quite diverse and specific for each
assembly step. Furthermore, the initial object and tar-
get configurations vary along the course of the assembly
process, and therefore the robot must adapt online ac-
cordingly. Taken together, these requirements amount to
a significant complexity that must be managed during the
robot programming process.

Different machine learning techniques contribute sub-
stantially to managing the complexity of this process.
While major research efforts have been dedicated to us-
ing machine learning without much structure for robotics,
we advocate here a highly structured and compositional
approach, similar to recent works [5, 13]. Guided by the
e-Bike challenges described previously, we argue that it
remains useful to keep a robotics control system architec-
ture, but extensively make use of machine learning ap-
proaches within it. Robot control, learning, planning,

adaptation, and software integration are essential compo-
nents in our robotic manipulation architecture. Here we
provide a high-level technical description of our control
framework, of the models used for skills learning, sequenc-
ing, and synthesis, as well as of the task online execution.
We also describe how to enhance the robot performance
via task-driven skills optimization. Finally, we show how
the control, learning and planning models are interfaced
from a software-engineering perspective, which is impera-
tive to make robotic manipulation a tangible technology in
industry. Figure 2 provides an overview diagram showing
the main modules of our framework. We provide low-level
technical details for each of the framework components
in Appendix D.6 for the interested reader.

2.1. Problem description

Firstly, let us provide a more formal description
of the robotic manipulation problems we tackle here.
Let us consider a multi-DoF robotic arm, whose end-
effector has state xe ∈ R3 × S3 (describing the Carte-
sian position in Euclidean space and orientation quater-
nion in the 3-sphere), that operates within a weakly-
structured and known workspace. Also, we assume
that in the robot workspace there are objects of in-
terest denoted by O = {o1, o2, · · · , oJ}, each of which
has state xoj ∈ R3 × S3, provided by a vision system.
For simplicity, the overall system state is denoted by
xs = {xe, {xoj ,∀oj ∈ O}}. Within this setup, an operator
performs several kinesthetic demonstrations on the arm
to manipulate one or several objects for certain manip-
ulation skills. Denote by A = {a1, a2, · · · , aH} the set of
demonstrated skills, Oa the set of objects involved in a,
and Da the set of available demonstrations. All demon-
strations follow an object-centric structure, i.e., they are
recorded from multiple coordinate systems associated to
the objects in Oa, which often represent the objects pose
in the workspace (see Fig. 4 for an illustration). For exam-
ple, the skill “insert the peg in the cylinder” involves the
objects “peg” and “cylinder”, and the associated demon-
stration data are recorded from the robot, the “peg” and
the “cylinder” coordinate systems.

As described in the e-Bike assembly challenge, the ma-
nipulation tasks we consider consist of a given sequence
of skills, chosen from the demonstrated skills set A, and
pre-defined action primitives1 (e.g. gripper commands).
For example, consider an insertion task involving “locate
the cap, pick the cap, close gripper, re-orient the cap,
open gripper, pick the cap again, close gripper, insert the
cap, and open gripper”. In this case, “locate the cap”,
“close gripper” and “open gripper” are pre-defined action
primitives and involve, e.g., 6D pose estimation, while
the rest corresponds to learned motion skills. Given a

1Action primitives refer to simple commands that can be easily
integrated into the workflow and that are necessary for the execution
of the task.
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Module Inputs Outputs

Perception RGB image I ∈ RW×H×3
+ Object pose xoj ∈ R3 × S3

Skill learning Demonstrations set Da for skill a and object pose
xoj

Learned model parameters Θa

Skills sequencing Skills sequence a? = (a1, · · · , aN ), associated mod-
els parameters Θan and condition models Γan∀ 1 ≤
n ≤ N

Full task model parameters Θ̂a? and condition model Γ̂a?

Task planning Task model parameters Θ̂a? , initial end-effector
pose xe,0, initial objects pose xoj ,0, and task de-
sired goal xG

Most-likely state sequence ŝ?

Task online execution State sequence ŝ?, objects pose xoj ,t and end-
effector pose xe,t

Reference end-effector trajectory {x̂e,t}Tt=1 ∈ R3 × S3

Impedance controller Reference end-effector trajectory {x̂e,t}Tt=1 Control torque inputs τu

Skill optimization Learned model parameters Θa for skill a Optimized model parameters Θ∗a

Table 1: Notation of the high-level information flow of our manipulation framework illustrated in Fig. 2.

sequence of skills a?, our framework computes the corre-
sponding task plan and subsequently retrieves the desired
end-effector pose trajectory {x̂e,t}Tt=1 that is then tracked
by a Cartesian impedance controller to fulfill the task at
hand. Finally, the task execution may be improved to over-
come possible failures or address new task requirements
via data-efficient task optimizers. Next, we provide high-
level technical descriptions for each of the components in-
volved to solve the aforementioned robotic manipulation
challenges.

2.2. Robot Perception for Objects Pose Estimation

In all case studies, perceiving the environment is essen-
tial. All our tasks require to detect objects and to precisely
obtain a grasp pose. The set of objects we aim to detect
and grasp in our setting is fairly broad. Some objects
are characterized by intense colors and textures (e.g. yel-
low boxes in the packing setting described in Section 3),
while other objects are metallic, reflective and textureless
(e.g. the peg in the e-Bike motor assembly). We em-
phasize here that many established methods for 6D pose
estimation are notoriously labor intensive in terms of data
labeling. Given the heterogeneity of our objects portfolio,
such a data labeling effort is prohibitive and will not be
accepted. Rather, we explore methods that do not require
intensive human labeling, but rather generate the labeled
data autonomously.

Specifically, we leverage Dense Object Nets
(DONs) [26, 27], which provide dense pixel-wise de-
scriptors IDON ∈ RW×H×D+ of objects from RGB

images I ∈ RW×H×3
+ (see Fig. 3–left). The dimension

D ∈ N+ represents a user-defined number that controls
the resolution of the descriptor space. The descriptor
image IDON serves as an object-specific keypoint detector
that can be used in a variety of downstream tasks, such
as controller learning [28], rope manipulation [29], and
grasp pose prediction [26, 27], among others.

While computing first an intermediate, descriptor-space
object representation might seem unintuitive, DONs have

several beneficial properties that makes them particularly
appealing for industrial settings. They can be trained fully
self-supervised without human annotation from registered
RGB-D video streams recorded, e.g, by a robot with a
wrist-mounted camera. DONs can be trained and de-
ployed within hours for a set of new objects. Finally, DONs
work well under changing lighting conditions, partial oc-
clusions, and provide dense features even for non-textured
and metallic objects.

In our work we use the dense descriptor representation
to estimate 6D object poses. We collect a dataset with
objects that we wish to learn using a robot and a wrist-
mounted camera. After training the DON, we define a
set of object-specific keypoints for every object. Note that
in case we train the network with multiple object classes,
the keypoint sets will be clearly separated in descriptor
space without overlap. Thus, the keypoint sets will be
unambiguous and unique to each object class. During in-
ference, for every frame we detect these sets of keypoints
in image plane, unproject them to world coordinates and
extract 6D poses. For the detailed description of our in-
ference pipeline we refer to Appendix C and our previous
work [27].

2.3. Robot Impedance Control

All our industrial tasks require the robot to work in con-
tact with the environment, while being precise (e.g. ap-
ply right forces for insertion) and safe (e.g. not breaking
anything). From a control perspective, this means that
the kinematic task-space reference quantities x̂e,t, which
are produced by our skills, need to be tracked fast, accu-
rately and in a compliant manner to avoid large interaction
forces. As we have full access to the robot system itself,
we advocate here to rely on a model-based control archi-
tecture which has proven to be efficient for a long time.

Specifically, we employ a Cartesian impedance con-
troller that is implemented via a classical computed-torque
scheme [30]. We formulate the controller in SE(3), the Eu-
clidean group of rigid body motions. This allows a proper
treatment of the tracking errors based in the Lie algebra,
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Figure 3: Left: the RGB image depicting the metallic shaft with two manually annotated keypoints, and the evaluated descriptor space
image. Note that for simplicity we use a 3-dimensional descriptor space, such that the descriptor values of pixels can be associated with RGB
colors. Right: the simplified pose estimation approach and the pose estimation result using the annotated keypoints and the current camera
view.

which avoids approximations introduced by representing
orientations via, e.g. Euler angles [30]. Note that the con-
troller performance heavily depends on the quality of the
underlying robot dynamics model, which is often unavail-
able. Hence, we leverage learning techniques to come up
with a more precise robot model to improve control track-
ing accuracy.

2.3.1. Cartesian Impedance Control in SE(3)

As pointed out previously, several of the robot skills con-
sidered in our use cases involve contact with the environ-
ment. To control a variety of required contact forces across
skills, we resort to indirect force control [31], which has re-
cently gained interest due to the rise of torque-controlled
robots, for which impedance control is a standard strat-
egy. Impedance controllers provide a compliant behavior
in all phases of a contact task (e.g, non-contact, transition
and contact) but are limited in their force tracking abil-
ity, mainly from partial knowledge of the environment. To
cope with this limitation, we adopt two distinct method-
ologies: impedance and set-point adaptation. Impedance
adaptation adjusts the controller parameters (e.g., inertia,
damping, and stiffness) to improve tracking in response to
force, position, or velocity measurements. Set-point adap-
tation improves force tracking by adjusting the controller
set-point (e.g., the reference position) based on force track-
ing errors or on estimations of the environment stiffness
variations. Both adaptation strategies are tackled from a
learning perspective as described in Section 2.4.

Our control framework employs a classical acceleration-
resolved Cartesian impedance scheme [32], which includes
an optional feedforward term that can be designed, for ex-
ample, to maintain downward pressure in insertion tasks.
As we work with a 7-DoF robot, we also add a nullspace
joint-space acceleration to resolve redundancy by track-
ing a reference joint configuration. Moreover, we selec-
tively use an integral action on the error term to enforce
high-accuracy along specific directions of free-space motion
skills (see Appendix B.1 for technical details). Note that
for the task-space directions which are absent of interac-
tion forces, the postulated impedance control law is equiv-
alent to an inverse dynamics position control scheme [30].
Therefore, the more compliant the controller is, the more
the closed-loop behavior degrades due to disturbances.

Consequently, we place high importance on accurate mod-
eling of the manipulator dynamics as described next.

2.3.2. Model Identification

As discussed earlier, the controller performance may de-
grade if the robot dynamics model is inaccurate. To ad-
dress this problem, we resort to classical model identifica-
tion methods to access more precise dynamic parameter
estimates to improve the robot control accuracy. Specif-
ically, an inverse model of the robot is identified to map
the desired joint accelerations to actuation torques in the
computed-torque control law. Given that there are no ex-
ternal forces acting on the robot in the identification ex-
periments, the robot dynamics model can be written as
τu = Φ(θ, θ̇, θ̈)Ψ, such that it is linear in the so-called

barycentric parameters [33], Ψ =
[
ΨT

1 , . . . ,Ψ
T
7

]T
. These

represent the barycentric parameters of every link and fric-
tion coefficients of the joints connecting all consecutive
links, starting with the joint connecting the base with link
1. The barycentric parameters consist of the mass, the
first- and second-order moments of inertia. We param-
eterize asymmetric Coulomb friction and viscous friction
by three parameters per joint.

Since Φ is not unique in general, let us assume an equiv-
alent relation τu = Φ̂(θ, θ̇, θ̈)Ψ̂ where the columns of

(θ, θ̇, θ̈) 7→ Φ̂(θ, θ̇, θ̈) are linearly independent. The goal

is to identify suitable parameters Ψ̂ based on experimental
data. Due to the above linearity, this can in principle be
achieved by solving a convex regression problem (see Ap-
pendix B.1 for details). To this end, we designed an exper-
iment to “maximize” the information contained in the data
by using a parametric harmonic trajectory as in [34]. The
base frequency is chosen sufficiently low such that a large
part of the configuration space is covered without violating
joint velocity, acceleration, and jerk limits. The number of
harmonics is limited to not excite undesired high-frequency
phenomena. Under the foregoing conditions, we formulate
a non-convex optimization problem that can be solved to
achieve local optimality through nonlinear programming
solvers (see Appendix B.1 for details). With this aim, we
use CasADi [35] to formulate the optimization, perform
automatic differentiation, and solve the problem using the
interior-point solver IPOPT [36].
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(a) Demonstrations (b) End-effector local model (c) Peg local model (d) HSMM transition graph

Figure 4: Illustration of object-centric demonstrations of a reaching task encoded by a TP-HSMM. (a) End-effector trajectories ( ) are
recorded from the perspective of the initial end-effector and red peg poses ((b)-(c), respectively). High-precision patterns are modeled by
narrow Gaussians, in different coordinate systems, at the beginning (green ellipse in (b)) and the end (light purple ellipse in (c))
of the demonstrations. (d) The temporal evolution of the skill is represented by the transition graph and duration distributions associated to
each Gaussian component. Note that in this example, each TP-HSMM state is represented by a single Gaussian. The first state ( ) encodes
the start phase of the reaching task, the second state ( ) models the intermediate robot motion, and the third state ( ) encapsulates the
time instants where the end-effector reaches the peg.

Once measurements from the optimal trajectories are
collected, the convex regression problem to estimate the
barycentric parameters is solved while enforcing physical
feasibility in a semi-definite program [37, 38, 39]. Physical
feasibility refers to whether bodies that correspond to the
inertia parameters could exist in reality, this includes the
body masses to be positive, the inertia tensors to be posi-
tive definite, and furthermore that the so-called triangle in-
equality on the Eigenvalues of the inertia tensors hold [40].
Without the additional constraints proposed in [38, 39],
the parameters obtained from solving the convex regres-
sion are not guaranteed to be physically feasible because
of noise and unparameterized phenomena captured by the
data. By ensuring physical feasibility to hold, the esti-
mated parameters may not only used for controlling our
real robot but also for forward simulation.

2.4. Learning Motion Skills from Human Demonstrations

As outlined above, we have multiple requirements on
the representation of robot motion skills, namely: (i) they
should be easy to teach and train, (ii) able to reproduce
motions and forces with high precision, (iii) adapt to var-
ious object pose configurations, and (iv) be data efficient.
We further assume that the manipulated objects are only
characterized by their pose in the robot workspace, pro-
vided by the perception module (see Section 2.2). Given
the aforementioned conditions, the available learning mod-
els matching these criteria lie midway through the spec-
trum of LfD approaches (where one extreme corresponds
to pure deep neural networks, while the opposite extreme
represents plain replay methods) [41].

Specifically, we leverage a task-parametrized version of
hidden semi-markov models (TP-HSMMs, more details in
Section 2.4.1). This approach provides a probabilistic en-
coding of the spatial and temporal patterns of human
demonstrations, it is easy to train, and usually requires less

than ten demonstrations for most skills considered in our
use cases. As our manipulation skills display full-pose tra-
jectories, composed of Cartesian and quaternion data, we
take advantage of Riemannian-manifold theory to extend
TP-HSMMs to handle data belonging to non-Euclidean
spaces. Moreover, we exploit the same TP-HSMM to learn
force-based skills, where the model encodes trajectories of
a virtual attractor system that encapsulates the demon-
strated force patterns (see Section 2.4.2), analogously to
set-point adaptation methods in indirect force control [31].

2.4.1. TP-HSMM

Within our LfD setup, an operator provides several
kinesthetic demonstrations of a motion or force-based skill.
The demonstration data follow an object-centric structure,
meaning that the data are recorded from multiple coordi-
nate systems, often associated to the pose of the objects
manipulated during the skill at hand. The representa-
tion of these coordinate systems via translation and rota-
tion components provides the task parameters for the skill
model. These task parameters are used to define an affine
transformation of the recorded data Da, resulting in a set of
demonstrations that are locally projected with respect to
each object pose. The training procedure consists of run-
ning a modified version of the Expectation-Maximization
(EM) algorithm to learn a task-parametrized hidden semi-
Markov model.

More specifically, the TP-HSMM, with parameters Θa,
fits Gaussian mixture models (GMMs) to the projected
data in order to encode the spatial patterns of the demon-
strations. This model also encapsulates the sequential
and temporal patterns of the skill by learning a transi-
tion graph and a set of duration probabilities. The former
allows us to learn different skill instances (e.g., grasping an
object with different relative orientations), while the latter
permits to encode the skill timing, which may be relevant
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Figure 5: Stages of the force-based skill Press-PCB described in
Section 1.1. Note that different forces need to be applied at different
locations as shown in Fig. 6.

when approaching or dropping an object. Figure 4 pro-
vides an illustration of the object-centric demonstration
data, the local data encoding, and the TP-HSMM graph.
In summary, a TP-HSMM provides different abstraction
levels of the demonstrations, namely, raw spatial trajec-
tories encoding (via local GMMs), demonstrations timing
(via duration probabilities), and skill structure (via the
transition graph). The first two levels are relevant for the
reproduction of a single skill (as described in Section 2.5.2),
while the latter is exploited for sequencing several skills
(see Section 2.5). A technical explanation of this model
is provided in Appendix D. Further details on the use of
TP-HSMM in industrial settings can be found in [42].

2.4.2. Force-based Skills Learning

For assembly tasks that involve force-sensitive interac-
tion with the environment, stiff kinematic trajectory track-
ing as mentioned above is often inadequate. As shown
in Fig. 5 and Fig. 6, the electrical PCB board should be
pressed into various pins with different forces. As a re-
sult, this pressing skill requires tracking not only for kine-
matic, but also force trajectories and associated stiffness
levels. To address these challenges we leverage a force-
based LfD approach which explicitly accounts for the in-
teraction forces between the robot end-effector and the
environment to build the skill model.

Specifically, our force-based LfD framework builds on
the concept of set-point adaptation for indirect force con-
trol. The main idea is to leverage a virtual mass-spring-
damper (MSD) system subject to an external force, whose
dynamics is used to define an attractor trajectory to drive
the robot motion, as previously proposed in [43]. The ob-
jective of using the virtual MSD model is twofold: (i) it
allows us to encapsulate the dynamics of the demonstrated
interactions into a compact and simple model, and (ii) it
provides us a mechanism to vary the robot compliance by
either adapting the MSD set point or its stiffness matrix
(see the technical details in Appendix D.5).

Thus, learning a force-based skill involves recording the
position, velocity, acceleration and sensed forces of the
robot end-effector from a set of kinesthetic demonstra-
tions. These data are then transformed to attractor tra-
jectories using the virtual MSD model, whose stiffness ma-
trix matches the default stiffness of the underlying robot
impedance controller. Examples of a demonstrated pose
trajectory and the corresponding attractor trajectory for
the press-pcb skill are shown in Fig. 6. Note that the re-

Figure 6: Time-series plots of demonstrated position and force along
the z-axis, and corresponding attractor trajectory for the Press-PCB
skill shown in Fig. 5.

sulting attractor pose can differ greatly from the demon-
strated pose when large velocities and sensed forces are
present. The resulting set of attractor trajectories is then
used to learn a TP-HSMM model as described in Sec-
tion 2.4.1. Moreover, we can associate a “local” stiffness
matrix to each of the Gaussian components of the learned
TP-HSMM by estimating the stiffness that best explains
the local dynamics encoded by the component (see details
in Appendix D.5). These local stiffness matrices allow
us to define a time-varying robot compliance during the
reproduction of the force-based skill. This model fulfilled
learning and reproduction requirements of several force-
based skills that are part of the e-Bike use case [44].

2.4.3. Skill Condition Models Learning

As explained in Section 1.1, many of the sub-tasks of
the e-Bike motor assembly process involve sequencing sev-
eral types of skills. This means that every time the robot
executes a skill, the state of the environment changes. For
example, after executing an object reorientation skill, the
pose of the manipulated object and the robot end-effector
vary. In order to adapt the learned skill models to these
changes in the environment, we need to capture the rela-
tive configuration among the workspace objects and the
robot end-effector before and after executing a specific
skill. To achieve this, we propose to extend the skill model
by learning condition and effect models.

Specifically, for each skill a ∈ A and corresponding
demonstrations set Da, an extended model Θ̃a = (Θa, Γa)
is learned by the method proposed in [42, 45], see Ap-
pendix D.6 for details. This extended model represents:
(i) the skill model Θa as the TP-HSMM that encapsu-
lates both temporal and spatial properties in the demon-
strations set Da, as described in Section 2.4.1; and (ii) the
condition model Γa = (γ1,a, γ1T,a,γT,a), which is com-
posed of:

(a) The precondition model γ1,a encoding the configura-
tion of the system state before executing the skill;
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Figure 7: Illustration of the condition and effect models for the grasp
skill as described in Section 3. Each row represents a different in-
stance of the grasp skill.

(b) The effect model γ1T,a encapsulating how the system
state changes from the initial state to the final state
after executing the skill;

(c) The final condition model γT,a encoding the system
state configuration after executing the skill.

The aforementioned condition models have a GMM struc-
ture and are described in detail in Appendix D.6.

Once the associated task parameters are given, the
above models can be used to compute the full trajectory,
check the initial satisfiability, and predict the resulting
state for the skill a. An illustration of the condition and
effect models for a grasping skill is shown in Fig. 7. It
displays the relative pose configurations between the end-
effector and the object at the beginning and the end of
the demonstrations, respectively. Notice that these mod-
els encapsulate all different instances, i.e. branches in the
TP-HSMM model, of the same skill. These condition mod-
els are also leveraged to sequence several skills as explained
next. We omit the detailed notations and their derivations,
and refer the readers to our previous works [42, 45] and
the technical Appendix D.6.

2.5. Skills Sequencing and Task Planning

2.5.1. Modular Skills Sequencing for a Task

Consider a given task as the desired skill sequence
a? = (a1, · · · , aN ), which can be either manually specified
or derived from a high-level planner. Since each skill in
a? may have many branches (i.e. the skill instances), the
entire task can be executed in many different ways, which
is combinatorial to the number of branches of each skill an
within the task. A common approach is to manually spec-
ify these branching conditions to guide the desired task

execution. Our objective is to avoid this manual process
via a modular composition of skills within the task.

More precisely, the task model associated with a?, de-
noted by Θ̂a? , is computed recursively as follows. Start-
ing from the first two consecutive skills (a1, a2), the corre-

sponding skill models Θ̃a1 and Θ̃a2 are composed into one

Θ̂a1a2 by applying the three following steps:

(1) Concatenate copies of Θa2 to every final state of Θa1 ;
for example, if the skill model Θa1 contains two in-
stances, then it has two final states, and thus two
copies of Θa2 are concatenated to Θa1 .

(2) Modify the components of each copy of Θa2 accord-
ing to the effect model γ1T,a1 ; this means that the
effect model indicates the possible variations of task
parameters for each final state in Θa1 , and then each
concatenated copy of Θa2 is updated accordingly.

(3) Computing the transition probability from every final
state of Θa1 to every initial state of the copies of Θa2 ,
according to the final condition model γT,a1 and the
precondition model γ1,a2 .

Afterwards, Θ̂a1a2 is composed with the skill model Θ̃a3 in
the same way. This process is repeated until aN is reached,
yielding (Θ̂a? , Γ̂a?), that is the composed model encapsu-
lating the whole task in a TP-HSMM. The technical details
about the aforementioned steps are given in our previous
work [42].

2.5.2. Task Planning

The derived model Θ̂a? is used to reproduce the skill
sequence a? as follows. First, the initial system state xs,1,
describing the initial robot and objects poses, is obtained
from the robot perception system. The goal system state
xs,G is defined, e.g., by a high-level task planner. Then,

the most-likely state sequence ŝ? within model Θ̂a? , given
xs,1 and xs,G, is generated by a Viterbi-like algorithm over

the task model Θ̂a? , as in [42]. Note that ŝ? contains
skill-specific subsequence of states, denoted by ŝ?n, to be
followed for each skill an ∈ a?.

During the online execution of each skill an ∈ a?, the
current system state xs,t is observed (e.g., the pose of ob-
jects of interest) and used to compute the task param-
eters and update the global GMMs associated with the
states in ŝ?n. Afterwards, the trajectory tracking control
described in the next section is used to track ŝ?n. This pro-
cess repeats for all skills in a?. Note that simply tracking
ŝ? without observing the actual intermediate system state
xs,t would often fail due to perception and motion noise.
More implementation details for this workflow are given
in Section 2.8.

2.6. Motion Trajectory Generation

To generate a smooth reference trajectory following the
transformed GMM components, we use linear quadratic
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Figure 8: Left: Illustration of a learned TP-HSMM with 5 compo-
nents on the Riemannian manifold S2 from 3 demonstrations ( ).
Right: The reproduced trajectory ( ) from an arbitrary initial
state ξ1 using Riemannian LQT.

optimal tracking (LQT) as a trajectory generation tool.
To do so we exploit a linear double integrator dynamics in
the control formulation such that the reference end-effector
follows a virtual spring-damper system. This allows us to
compute an optimal and smooth reference trajectory in
closed form without knowledge of the actual robot dy-
namics. The cost function components are composed of
the time stamped means and covariances of the compo-
nents provided by the HSMM model.

Figure 8 illustrates the learning and reproduction
pipeline on Riemannian manifolds. For simplicity, we con-
sider the S2 manifold and 3 demonstrations. We learn a
TP-HSMM with 5 states and a single task parameter (we
illustrate the resulting GMM on the left side of Fig. 8).
Then, we arbitrarily choose an initial state ξ1 ∈ S2 and
solve the control problem in (D.3). We retrieve the optimal
trajectory via forward integration and illustrate it on the
right side of Fig. 8. Note that our system architecture al-
lows a completely independent development of the learning
and the control framework due to the abstraction provided
by the interface layer, see Section 2.8. More details about
motion trajectory generation are given in Appendix D.4.

2.7. Skill optimization

Although learning robot skills from human demon-
strations using TP-HSMM suffices to perform relatively-
elaborated tasks, the skill reproduction might still be
prone to errors due to sensor noise or inaccurate tracking
control. For example, reaching and placing skills may not
demand high accuracy, as opposed to insertion tasks which
require highly-precise force-sensitive interactions due to
low geometric tolerances. This often demands to refine
the skill to overcome sensory and control inaccuracies for
successful executions.

Another way we exploit skill refinement in our robotic
manipulation tasks concerns minimizing the interaction
forces of the force-sensitive skills. When learning from
demonstrations, the human operator may not pay partic-
ular attention to the forces applied to the handled pieces.
Therefore, reducing the interaction forces is of particular
interest to mitigate possible damage of the assembly parts
due to unnecessarily high forces. Hence, our objective is

to make the robot more compliant while still being able
to perform the insertion skills successfully. Consequently,
endowing robots with fast and data-efficient refinement
strategies is imperative to adapt previously-learned skills
under uncertain environmental conditions or to optimize
their performance. In this section, we present two ap-
proaches that we leverage to address this problem: self-
supervised learning and Bayesian optimization.

2.7.1. Self-supervised strategies

One possibility to achieve the required skill precision
considers training a neural network to predict the nec-
essary refinements for the learned skill. This strategy is
particularly useful in situations where fine-tuning of the
learned skills is only necessary for a very limited number
of parameters. In this work we use this approach to pre-
dict small corrections to the final end-effector pose of the
reaching skill, prior to insertion. To avoid tedious manual
data labeling, we adopt a self-supervised training strategy:
We first collect self-supervised training data during an on-
line phase, which we then use in an offline phase to train
the refinement network.

For data collection, we employ a simple random-search
strategy that applies pose offsets w.r.t. the final end-
effector pose of the reaching skill and subsequently tries to
execute an insertion skill at the resulting explored poses.
Since the final end-effector pose of the skill is already close
to the target, this random strategy usually finds the cor-
rect pose after few trials. Specifically, we record training
data composed of the force/torque sensor readings ft and
the robot end-effector pose xe,t for each trial pose, and we
label each data point with the ground-truth pose. Note
that goal achievement can be easily determined by the z-
position of the robot end-effector and the corresponding x
and y coordinates can thus be used as ground-truth labels.

To deal with sequential data, we use an LSTM
as refinement model, which is trained on the col-
lected insertion sequences. At each step, the LSTM
model gθ(xrel

e,t,ft;x
rel
e,1:t−1,f1:t−1) receives as inputs the

force/torque measurements ft as well the robot end-
effector pose xrel

e,t relative to the final pose of the reaching
skill. The LSTM model g(θ) predicts the offset ∆xt rela-
tive to the ground-truth goal pose, conditioned on all pre-
vious measurements xrel

e,1:t−1,f1:t−1. The LSTM parame-
ters θ are optimized using the mean squared error between
predicted and ground-truth offsets.

2.7.2. Geometry-aware Bayesian Optimization

An alternative approach to refine robot skills is black-
box optimization. This is advantageous due to its data effi-
ciency, making it favorable over deep reinforcement learn-
ing when the refinement process may require real-world
interactions. In this work, we leverage Bayesian optimiza-
tion (BO) [46] to refine the parameters of the skill model.
For example, we employ BO to adapt a skill reference pose
trajectory by refining the associated TP-HSMM parame-
ters Θa, or to modify the applied forces in contact-rich
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Figure 9: System architecture of our robotic manipulation frame-
work.

tasks by optimizing the stiffness of the attractor model of
a force-based skill.

BO is a sequential search algorithm for finding a global
maximizer ψ∗ = argmaxψ∈X f(ψ) of an unknown objec-
tive function f , where X is some domain of interest. The
black-box function f has no closed form, but can be ob-
served point-wise at any arbitrary query point ψ ∈ X .
These observations are noise-corrupted outputs y ∈ R, for
which E[y|f(ψ)] = f(ψ) is assumed to be the true value.
Commonly, BO specifies a prior belief over the possible ob-
jective functions via a Gaussian Process (GP) [47]. This
model is refined at each BO iteration according to the
observed data Dn = {(ψi, yi)}ni=1 via Bayesian posterior
updates. An acquisition function γn : X → R guides the
search for the optimum by resolving the explore-exploit
tradeoff. This function assesses the utility of candidate
query points for the next evaluation of f using the GP
posterior mean and variance. After N queries, BO makes
a final recommendation ψN , representing its best estimate
of the optimizer ψ∗.

2.8. Software Structure

For the aforementioned refinement cases, the domain
of interest X possesses a non-Euclidean geometric struc-
ture. Therefore, we leverage our recent works on geometry-
aware BO (GaBO) [48, 49] to work on domains repre-
sented by Riemannian manifolds. This allows us to lever-
age the geometry of X as inductive bias in BO, which
favors faster convergence and low-variance solutions. For
example, when optimizing the TP-HSMM parameters Θa,
non-Euclidean geometries arise in the mean vectors of the
Gaussian distributions that encode demonstration data in
R3 × S3. Also, the attractor model’s stiffness of a force-
based skill belongs to the manifold of symmetric positive-
definite matrices S++ and it can therefore be more effi-
ciently optimized using GaBO.

Specifically, we employed GaBO to refine the peg inser-
tion skill so that it produces lower interaction forces. To do
so, we optimize the mean of the last Gaussian component

Figure 10: Example of the information flow during skill execution.

of the TP-HSMM model (which dominates the approach-
ing motion before insertion) and the corresponding attrac-
tor’s stiffness matrix (which influences the applied forces).
Thus, the optimization parameters are ψ = {µ̂K ,Kρ

K},
and consequently the problem domain X ≡ R3×S3×S3

++.
Our objective f is a function of the mean norm of the
sensed forces and the mean squared error between the end-
effector and ground-truth goal poses. Note that a clear
drawback of BO is that its exploration-exploitation trade-
off inherently requires the robot to fail. To reduce the
failed trials, we extended GaBO with a GP classifier to
bias the acquisition function so that new query points are
more likely to belong to high-reward – success – regions,
similarly to [50, 51]. After the optimization process, the
best estimate ψ∗ replaces the former model parameters
set, thus resulting in new optimized TP-HSMM parame-
ters Θ∗a . We also recently leveraged signal temporal logic
(STL) specifications to define objective functions captur-
ing desired spatial and temporal requirements [52]. This
allowed us to represent high-level task objectives as logi-
cal semantics, this making their design more user-friendly.
For the insertion task, we could define a STL specifica-
tion that encouraged the robot to reduce the approaching
motion timing and the contact forces during insertion. De-
tails about the insertion skill refinement results are given
in Section 3.1.1.

The system architecture of our flexible robotic manip-
ulation framework is illustrated in Fig. 9. In general, our
system is divided into four layers as described below.

The highest layer is the Integration Layer, which coordi-
nates the different software modules and is used to define
the task for a specific use case. Here, we use FlexBE [24]
to implement a specific task like the E-Bike motor assem-
bly and coordinate among function modules. In addition,
task refinement is considered at this layer to improve task
execution over time and identify improved task parameters
to be passed to the individual modules.

The integration layer is connected to the Interface Layer
using common ROS interfaces, e.g. action servers or ser-
vices. This layer provides ROS interfaces to our algorith-
mic components, and each interface is implemented by a
set of ROS nodes. This allows us to develop algorithms
regardless of the used middleware or programming lan-
guage. Different interfaces may communicate with each
other, e.g., (I) when executing a skill, the skill interface
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Figure 11: Two examples for coordinating the different motions and
primitives in FlexBE. Top: the main behavior to select one of the
four described task variations. Bottom: re-orientation procedure
that includes the re-orientation skill (initial state) and several prim-
itives.

may use the control interface to move the robot; (II) the
skill interface may query the perception interface for the
current system state.

The Component Layer contains our core algorithmic
contributions described in Section 2. Each component is
connected to a ROS node in the interface layer by im-
porting the components as libraries. Maintaining this sep-
aration allows us to develop algorithms in different pro-
gramming languages best suited to the concrete goal of
the component while still being able to use them jointly
in our system via the interface layer. Most components
are connected to underlying data bases, e.g., deep-learning
networks or skill models.

The lowest layer in our system is the Hardware Layer.
This layer provides interfaces to the actual hardware. Our
main connection between the hardware and the component
layer is ROS Control [53], which allows for easy switching
between hardware and simulation. Due to the layered ar-
chitecture in our system, all other components can trans-
parently run both on hardware and in simulation.

Information about the current world state is mainly ex-
changed on the interface layer through tf, the transform
library [54], and the ROS parameter server, see Fig. 10.
All components of the interface layer can access this in-
formation and use it to react to changes. This also allows
asynchronous reads and writes on the world state, e.g.,
always executing a skill with the most recent task param-
eters obtained by the perception stack.

2.8.1. Runtime View

A typical execution flow includes the following steps: (I)
a skill execution is requested by the integration layer, in
our case FlexBE. This request includes all necessary in-
formation for task execution as described in Section 2.5.2,
e.g., the desired goal state; (II) the skill interface retrieves
the relevant information from tf/rosparam. These are
mainly task parameters and the current world state, see
Section 2.5.2; (III) after computing a suitable solution in
Section 2.6, the resulting trajectory is sent to the control
interface for execution; (IV) the state of the execution is
monitored by the skill interfacefor adapting to a changing
world state; (V) after finishing the execution, the control
interface reports the outcome to the skill interface, which
can then react, e.g., by recomputing (and executing) the
skill on failure or reporting success to the integration layer.

2.8.2. Failure Recovery

One of the key issues in fully autonomous robotic sys-
tems is failure detection and recovery. Our current frame-
work can monitor failures that may arise due to sensing
or perception errors, inadequate grasping, unpredicted en-
vironment changes, among others. On the one hand, a
learned skill model may be used to supervise the exe-
cution process by comparing the sensory-motor patterns
encoded by the model with those sensed during task re-
production. Thus, possible failures may lead to sensory
data that significantly differs from the patterns encoded
in these learned models. On the other hand, as shown
in Fig. 11, the flexibility of FlexBE allows us to define
recovery behaviors that re-scan the robot workspace to
update and verify the current system state. Both failure
detection and recovery behaviors go hand in hand with an
online adaptation strategy in order to sequence remaining
skills on-the-fly. Once the system state is updated, the
sequencing algorithm can be used to re-compute the opti-
mal execution branch for each skill. In this way, human
intervention is only needed when the current system state
is not recognized.

3. Experiments

In this section, we describe the experimental setup on
a 7-DoF robotic manipulator. As initially motivated, we
consider the e-bike motor assembly task as an application
that can be solved under our framework. Different steps
of this task are shown in Fig. 12. In addition, we also con-
sider a bin sorting task in Section 3.2 to demonstrate the
generality of our framework for addressing other manipu-
lation tasks. Videos of both experiments are attached as
supplementary material.

3.1. e-Bike Motor Assembly Task

As introduced in the task description provided in Sec-
tion 1.1, the assembly task consists of four sub-tasks that
are to be executed in a specific sequence. We first give
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Figure 12: The experiment setup (left) with marked entities, and snapshots of the [Mount-Gear] task showing the grasp gear (middle) and
mount gear (right) skills.

Figure 13: Snapshots of the insert shaft skill, including close-ups
that show the complexity of the insertion process.

technical details on how this task is realized in hardware
and prepared by providing the required skill demonstra-
tions and refinements.

The Franka Emika Panda robot has 7 DoF and is capa-
ble of direct kinesthetic teaching. The arm is extended by
a wrist-mounted ATI FT45 sensor and a parallel gripper
for the assembly task. As shown in Fig. 12, the work-
station consists of the loading platform where components
are picked and the assembly station where the components
are assembled together. For learned skills, between 2 and
4 demonstrations were performed to specify the desired
motions. In the following, we refer to the skills listed in
Tab. 2. The individual sub-tasks of the assembly sequence
are prepared as follows:

• [Press-PCB] : This task was solved with a single
press pcb skill which consisted of pressing down on
the PCB board in three different locations.

• [Mount-Gear] : Here, we used two skills - grasp gear

and mount gear.

• [Insert-Shaft] : This is a complex sub-task which we
addressed with two skills for picking and re-orienting
the shaft (pick shaft, orient shaft), followed by
re-grasping and insertion (insert shaft). The latter
skill, shown in Fig. 13, encompasses a simultaneous
pushing and “wiggling” motion. Furthermore, to suc-

Skill Name M T [s] N TP t (Θy |K?) [s]

grasp gear 3 1.2 8 {r, o} 3 | −
mount gear 3 4.8 18 {r, g} 14 | 12
pick shaft 3 1.3 7 {r, o} 4 | −
orient shaft 3 1.8 12 {r, o} 5 | −
insert shaft 2 5.7 23 {r, g} 20 | 18

pick peg 3 2 10 {r, g} 3 | −
orient peg 3 1.8 12 {r, o} 5 | −
slide peg 2 5.3 24 {r, o} 18 | 15
press pcb 4 6 22 {r, g} 15 | 10

Table 2: For each skill, the number of demonstrations M , the trajec-
tory length T , number of components N , choice of task parameters
TP, and the training time for Θy and K? (for forceful skills). Note
that r, g, o are the robot, global, object frame, respectively.

cessfully execute this skill, the self-supervised refine-
ment strategy described in Section 2.7 was used.

• [Slide-Peg] : Analougus to the previous task, this
problem was solved with three skills for picking,
re-orienting, re-grasping and insertion (pick peg,
orient peg, slide peg).

Note that the shaft and peg are placed freely on the
loading platform. This requires to re-orient them from
lying-flat to standing into a fixture, such that they can be
subsequently grasped from the top, as shown in Fig. 12.
In other words, such re-orientation skill allows the robot
to reduce the sub-tasks uncertainty by taking the objects
from arbitrary poses to a fixed fixture whose configuration
is more precisely known. We also leveraged skill refinement
for reducing undesired contact forces during re-orientation.

3.1.1. Assembly Task Results

As shown in Table 2, some skills such as picking and
re-orientation do not involve force tracking, while other
skills such as insertion, pressing and sliding require specific
force profiles during execution. Consequently, as described
in Section 2.4.2, an attractor model is learned for such
skills along with the optimal stiffness. Figure 14 shows
the optimized translational and rotational stiffness for the
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Figure 14: The learned attractor model (top), the optimized
translation stiffness (middle) and the optimized angular stiffness
(bottom), for the last stage of push-shaft skill (left) and twist peg
(right).

Figure 15: Choice of different branches for the picking skill (three
branches in total, differentiated by color) in the assembly use case,
given different positions of the object. The plot represents the area of
the loading platform where three different skill instances (branches)
can be activated.

insert shaft and slide peg skills. It can be seen that in-
sertion requires relatively high translational stiffness upon
contact while twisting requires high rotational stiffness.
Furthermore, some skills such as picking and re-orientation
contain multiple branches due to different orientations of
the object. Then, as described in Section 2.4.3, a condition
model is learned to select the correct branch in new sce-
narios. An example of the picking skill is shown in Fig. 15.

During skill reproduction, for kinematic skills such as
picking and re-orientation, the 6-D poses of the shaft and
the peg are obtained via the trained DON, as shown in
Fig. 16. For force-based skills, the learned attractor model
is applied online provided with the observed robot posi-
tions and external forces. Table 3 shows the success rate
of executing each skill with 10 repetitions. The Press-
PCB and Mount-Gear sub-tasks are reliably reproduced
without any manual tuning of the associated task param-
eters, while a small shift in the object pose is needed for
the Insert-shaft and Slide-Peg sub-tasks to compensate for
the tracking error of the underlying impedance controller.
This is achieved by leveraging the skill optimization pro-

Figure 16: Visualization of the 6D pose estimation via DON for the
shaft (left) and peg (right) in the assembly use case.

cesses described in Section 2.7. Note this such skill refine-
ment is necessary to overcome the tracking errors caused
by robot model mismatch during identification, and the
internal joint force or torque control mechanism. Figure 6
highlights the differences between the executed trajectory,
the reference attractor trajectory, and the demonstrations.
In addition, it also shows that the exerted force profile dur-
ing execution matches the demonstrations accurately.

3.1.2. Benchmarks

Our proposed framework is compared against three
main baselines for the aforementioned 4 sub-tasks: The
direct replay of the demonstration (demo-replay), the
standard kinematic skill model (pose-based) as proposed
in [42], and manually-tuned skills (manual) by following
the procedure proposed in [5]. Pose-based methods sim-
ply ignore the force profile when learning the skill model,
while the manual method demands tuning by an operator
of all fixed reference trajectory and the associated stiffness
carried out.

The resulting success rate is summarized in Table 3.
First, the success rate of demo-replay and pose-based
methods are quite low for all four skills, especially when
delicate force interaction is required. Often, via both
methods, the skill execution simply reaches the key ref-
erence points without exerting the desired forces, e.g., the
robot only touches the pins without any pushing force dur-
ing Press-PCB. Moreover, raw human demonstrations are
quite shaky in general, as shown in Fig. 17. Replaying such
small unnecessary movements is often harmful for the ex-
ecution, which makes demo-replay reproductions ineffec-
tive. Lastly, the manual tuning in the insert shaft and
slide peg skills leads to rather reliable executions. How-
ever, the time taken to program such skills is significantly
longer than our self-refinement strategy (hours vs. min-
utes empirically). In addition, the resulting trajectory of-
ten follows a zig-zag pattern with harsh transitions due to
linear interpolation between manually-chosen waypoints,
as shown in Fig. 17.

3.2. Bin Sorting Task

To demonstrate the transferability of our framework
across different industrial use cases, we consider in the fol-
lowing a second application that typically occurs in indoor
logistic systems of warehouses. In this use case, unsorted
boxes arrive in a bin and should be picked and sorted into a
packing formation as shown in Fig. 18. To achieve a dense
packing, the boxes should be picked with different orien-
tations when close to the bin boundaries and placed with
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Figure 17: Comparison of executed trajectories via demo-replay,
manual tunning and our method, for the Insert-Shaft skill (left)
projected on y − z plane and Slide-Peg skill (right) projected on
x− z plane.

Methods Press-PCB Mount-Gear Insert-Shaft Slide-Peg

Pose-based 0 3 0 1
Demo-replay 0 4 0 2

Ours 9 10 8 9
Manual N/A N/A 9 9

Table 3: Success rate of four different methods out of 10 repeated
executions. Manual skills are not programmed for the first two skills.

different maneuvers for different sorting formations. More
specifically, the first row of the formation has to be placed
by rotating the object 90◦, while the last row should be
inserted by slight tilting and wiggling due to tight space.
We used the same 7-DoF Franka Emika Panda robot, this
time extended by a suction gripper.

First of all, to obtain reliable predication of the grasp
poses, we rely in the shown experiment on a dense pixel-
wise graspability estimation with RGB-D input, based on
UNet [55], which is trained on annotated pixel-wise labels
of expected graspability. Results from the perception sys-
tem are shown in Fig. 19, where the candidate grasping
pose with the highest score is chosen.

In order to learn and execute this bin sorting task, we
used the same system described in Section 2, except the
perception method for object pose estimation, which was
here replaced by the grasp-pose based approach. For con-
trolling the robot motions, two different skills were demon-
strated, one for picking and one for placing. Following
the same learning strategy as described in Section 2.4, the
skill to pick boxes from the bin is taught such that differ-
ent trajectories (i.e., skill instances) are taken for different
boundaries of the bin. Figure 20 shows the area within
the bin where five different branches, corresponding to the
skill instances, are activated. The target grasping pose is
used to compute the task parameter for the picking skill.

For the placing skill, three branches (i.e., skill instances)
in total are demonstrated for the first column, middle
columns, and the last column respectively, as shown in
Fig. 18. One particular challenge for this placing skill
is that all trajectories need to be robust to uncertainties
in the grasping position, originating from perception and
from motion control during picking. Note that the poten-
tial of LfD is again leveraged in this skill as we need to
demonstrate a wiggling motion to fit the box in the tight

space left for the last placing maneuver. Hard coding such
a motion is a clearly tedious process. It is also worth men-
tioning that with three or less demonstrations for each
branch, the placing skill can be reproduced reliably and
thus, suffice to complete the whole bin sorting task.

4. Discussion

When developing an integrated learning system such
as the manipulation framework presented in this paper,
adaptability and explainability are important aspects to
consider when facing unstructured and variable environ-
ments [3, 6, 21]. Consequently, we discuss both aspects
in the sequel. Still, despite the satisfactory advancements
in integrating control, learning and planning into a single
framework for advanced industrial robotic manipulation
tasks, the complexity of flexible manufacturing settings
gives rise to several issues that are discussed as well in the
remainder of this section.

4.1. Adaptability

Adaptability considers the ability of the robot to adjust
the task execution to the currently observed environment.
We addressed this topic at multiple levels of our frame-
work. Firstly, each motion skill can individually adapt to
object pose changes due to the task-parameterized formu-
lation of the learning model presented in Section 2.4. For
example, when demonstrating how to pick an object like
the metal cap, the motion is learned and generalized with
respect to the pose of the cap and thus, applicable for
a wide range of different cap poses. Secondly, when ob-
serving that some cases are executed less accurately, those
can be improved by additional demonstrations or through
data-efficient refinement based on BO. In this regard, we
consider that robot motion skills learning and refinement
are technologies that can be readily used for a wide range
of weakly-structured industrial settings, which seldome de-
mand online adaptation.

When sequencing multiple skills, our approaches de-
scribed in Sections 2.5 and 2.6 ensured that also previ-
ous or subsequent skills are adjusted whenever the robot
needs to adapt e.g., by exploiting the learned condition
models. From a software perspective, such an adaptation
is made possible by separating the selection of skills, as
commanded by the skill interface, from the management
of perceived object data. Our skills sequencing approach
was built on the assumption that the task plan is provided
by an operator. We believe this is a realistic assumption,
as a plethora of industrial processes are still being per-
formed by executing a sequence of sub-tasks predefined
by human operators. We argue that such task domain
knowledge should be leveraged instead of discarded when
it comes to integrate learning systems in industry.

Finally, at a task level, adaptation is supported by the
FlexBE framework. This enables us to formulate recovery
behaviors for various sorts of failures like the two cases
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Figure 18: Snapshots for the bin sorting task: picking unsorted boxes (left), insertion and sorting via different maneuvers (right three).

Figure 19: Grasp pose results in the bin picking use case.

described in Section 3. Facilitated by the layered structure
of our software system presented in Section 2.8, different
motion skills and primitives can be easily composed to
address different sorts of tasks. During the setup phase of
a new task, composition at the task level can be adjusted
online during execution to best incorporate all variations
of the environment.

4.2. Explainability

Explainability considers how the system facilitates that
a user or expert understands the past and future actions
taken by the robot. A strong contribution to such an
insight into our system was provided by the predictabil-
ity resulting from the demonstrated motion skills (Sec-
tion 2.4). When a robot learns an end-to-end policy, it
is often hard to predict which actions a certain input will
lead to. Even in the case of manually-defined motion plan-
ners, many sampling-based approaches like the RRT fam-
ily might result in unexpected motions [56]. In contrast,
LfD approaches such as ours allow a user to ensure that
motions are similar to what is expected, i.e., what was
demonstrated.

In addition to expecting a certain trajectory profile, the
specific trajectory obtained during execution (Section 2.6)
was visualized in advance for possible inspection. More-
over, each segment of the continuous trajectory can be
associated with a discrete component of the skill, adding
a possible semantic notion. Similarly, the progress of the
task execution was visualized in terms of the current skill,
as well as the past and remaining parts of the task. All the
aforementioned features facilitate monitoring labor during
human supervision.

Figure 20: Choice of different branches for the picking skill (five
branches in total) in the bin sorting use case, given different positions
of the object. Each branch is characterized by a different color.
The plot represents the area within the bin where five different skill
instances (branches) are activated. The target grasping pose is used
to compute the task parameter for the picking skill.

Note that the foregoing advantages naturally arise when
leveraging two types of inductive bias in our robotic ma-
nipulation framework: Human domain knowledge and ge-
ometry. The former is mainly exploited when learning
the robot motion skills and when providing the high-level
plan of the task, which the skills sequence schema builds
on. The latter is employed to formulate proper statistical
models, trajectory optimizers, and controllers for full-pose
robot end-effector motions, which make our framework not
only technically sound, but also more reliable when learn-
ing and executing robot manipulation tasks.

Last but not least, the modular approach taken in our
system architecture (as illustrated in Figs. 2 and 9) allows
us to debug and improve each core module independently
when needed. For example, we could evaluate if a refer-
ence trajectory retrieved by our skill model could be better
tracked by the robot Cartesian impedance controller when
using model parameters estimated by our model identifi-
cation method. We argue that this modular analysis and
improvement may be harder to perform when using end-
to-end frameworks.

4.3. Current limitations

4.3.1. Skills sequencing

When sequencing several skills for a specific task, the
computation time of our approach grows combinatorially
in the number of final states for each skill along the se-
quence. In other words, the more branches there are in
one skill, the more time consuming to compose it with
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other skills. This is because all branches should be com-
pared in terms of likelihood for both the current skill and
the subsequent one, as explained in Section 2.5. Therefore
our framework, at its present state, cannot be used for
real-time replanning. Nonetheless, several methods can
be used to accelerate this process: (i) as done here, the
skill sequence can often be decomposed in independent
sub-sequences, which can be planned separately; (ii) prune
early-on transitions whose probability is below a threshold
both in the skill model and the transition probability ma-
trix; (iii) construct Θ̂a specifically for the given initial and
final states, i.e., combine the computed transition proba-
bility with forward and backward observation probability.
Secondly, as discussed in our previous work [45], certain
skills may be formulated with free task parameters, which
could be optimized in a general way for various tasks. This
issue is not addressed here since all task parameters are
assumed to be attached to physical objects in the scene.
Combination of these two methods will be addressed in
future research.

4.3.2. Open-loop skill execution

Our framework did not consider settings where the envi-
roment conditions may dynamically change once the robot
workspace scanning and subsequent skill execution have
been started. This assumption worked successfully for
the use cases reported in this paper. However, open-loop
skill execution naturally comes at the cost of compromis-
ing adaptability in highly-varying settings. In these cases,
close-loop approaches are preferred, but these demand to
endow the robot with rich and redundant sensory systems
composed of, for example, multiple and in-hand cameras
to track the state of the objects of interest. Such sensory
systems arise interesting research challenges not addressed
in this paper such as fast multi-view object pose estima-
tion, online robot skill adaptation, among others.

4.4. Future directions

As briefly discussed previously, a more flexible manipu-
lation framework should deal with settings where objects
move during the execution of a skill, e.g., while the robot
approaches an object, as shown during one of our failure
experiments. In this case, the perception system should
be able to track the objects of interest in (near) real-time.
Based on the new object location, the robot needs to adapt
its reference trajectory by first recomputing the sequence
of the most-likely states and then generating an adapted
motion using our Riemannian optimal controller. In this
context, our current efforts are devoted to develop deep
learning techniques for 6D pose estimation and tracking
of industrial objects using multiple cameras.

However, a multi-view setting may not suffice when the
grasped object slightly slides in the robot gripper, chang-
ing its relative pose w.r.t the robot end-effector. Detecting
such changes may reduce failures as the robot may be able
to quickly adapt the skill execution accordingly. To do

so, we plan to explore in-hand camera settings [57] and
tactile sensing [58] to track the object pose while grasped
more accurately. This multi-modal tracking also demands
to have skills that can be adapted in an online manner as
needed.

5. Conclusions

This paper introduced a robotic manipulation frame-
work for flexible manufacturing systems. Its main compo-
nents were built on the synergy of learning from demon-
stration, skills sequencing, optimal control and black-box
optimization. Our system architecture was designed as
a combination of software layers and modules that made
possible the easy integration and interaction of different
hardware components, algorithms, controllers, and user
interfaces. We successfully tested our framework on dif-
ferent subtasks of a real e-Bike assembly process and on
a dense box-packing setup, where the robot properly se-
quenced and executed the necessary motion skills and ac-
tion primitives to reach the given task goal. We demon-
strated that our FlexBE-based framework allowed us to
monitor the robot execution to detect failures and to re-
plan the task according to the updated environment state.
We concluded this work by highlighting how adaptability
and explainability are core features in our robotic manip-
ulation framework, and discussed its current limitations
and future extensions.

Appendix A. Notation

Table A.4 provides the notation employed to describe
the most important variables and parameters used in the
technical description of each of the components of our
framework.

Appendix B. Impedance Control

Appendix B.0.1. Lie groups

We consider elements of the matrix Lie group SE(3) to
represent frame configurations which can be written as
homogeneous transformation matrices of the form

X =

[
R p
0 1

]
,

where R ∈ SO(3) represents the orientation and p ∈ R3

the translation. The tangent vector space at the identity of
SE(3) is called the Lie algebra se(3) which contains twists

ĉ =

[
[ω]× v

0 0

]
,

where [ω]× ∈ so(3) denotes an angular velocity in skew-
symmetric matrix form and v ∈ R3 a translational veloc-
ity. As se(3) is isomorphic to R6, the twist x̂ can also be
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Symbol Description

M Riemannian manifold
TpM Tangent space of manifold M at p ∈M
R3 Three-dimensional Euclidean space
S3 3-sphere
SO(3) Special orthonormal rotation group
SE(3) Special Euclidean group of rigid motions
θ Robot joint configuration in R7

xe End-effector pose in R3 × S3
Xe End-effector pose in SE(3)
Xe,d Desired end-effector pose in SE(3)
ĉ End-effector twist in se(3)
R End-effector rotation matrix in SO(3)
p End-effector position vector in R3

ω End-effector angular velocity in R3

v End-effector linear velocity in R3

Ψ Barycentric parameters of the robot dynamics
model

xoj Pose of object oj in R3 × S3
xs System state
A Set of demonstrated skills
Oa Set of objects involved in skill ah
Da Set of available demonstrations for skill ah
N (µ,Σ) Gaussian distribution with mean µ ∈ Rn and co-

variance Σ ∈ Rn×n

NM(µ,Σ) Riemannian Gaussian distribution with mean µ ∈
M and covariance Σ ∈ TµM

Θ Parameters set of a TP-HSMM
Expp(·) Exponential map at p ∈M
Logp(·) Logarithmic map at p ∈M
A‖qp Parallel transport from TpM to TqM
AdX Adjoint operator at X

Table A.4: Notation

specified via its coordinate vector x = [vT,ωT]T. Further-
more, we respectively denote the adjoint operator and the
matrix commutator (i.e., the Lie bracket of SE(3)) as

AdX =

[
R [p]×R
0 R

]
and adx̂ =

[
[ω]× [v]×

0 [ω]×

]
.

Via AdX, Cartesian vectors from the tangent space at X
can be mapped to the identity. A physical interpretation
of the adjoint mapping is the transformation of generalized
velocities under a change of reference frame given by X.

The Lie logarithmic map allows to exactly transfer an el-
ement from the SE(3) manifold to se(3), its tangent space
at the identity. In this work, we use the capitalized log-
arithmic map which maps elements X directly to vectors
x [59].

Log : SE(3)→ R6; X→ x

.
The vector x = Log(X) is referred to as the exponential

coordinates of X and can be interpreted as parametrizing
a constant twist which moves a frame from the identity to
configuration X in one unit of time.

Appendix B.1. Cartesian Impedance Control on the Lie
group SE(3)

In order to formulate the tracking control law, we de-
note the current end-effector frame and the desired end-
effector frame configurations with respect to any given

inertial frame as XeXe,d ∈ SE(3) respectively. Corre-
spondingly, the associated generalized body velocities are
defined by the twist coordinate vectors c, cd ∈ R6 with
the respective accelerations being ċ, ċd ∈ R6. Note that
we use left-trivialized velocities in this work, which rep-
resent body twists in the corresponding body coordinate
frame, i.e., ĉ = Xe

−1Ẋe (see [60] for details). Follow-
ing [61], we define the natural tracking error in terms of
the SE(3) group operation as E , Xe

−1Xe,d, i.e., as the
desired end-effector frame expressed in the current end-
effector frame. Accordingly, the adjoint operator which
maps elements from the tangent space at Xe,d to the Lie
algebra at Xe is given by AdE = Ad−1

C AdCd . Considering
that d

dt (AdE) = AdE adE−1Ė as in [60], allows us to write
the error velocity and its derivative as

e = c−AdE cd,

ė = ċ−AdE ċd −AdE adê .cd (B.1)

We employ a classical acceleration-resolved Cartesian
impedance control scheme, where the goal is to impose
error dynamics of the form

Z(E, e, fext) = M−1
d

(
fext + K Log(E)−Be−AdT

E−1 fff

)
,

(B.2)

where Md,K,B ∈ R6×6 are positive definite matrices al-
lowing to shape the desired inertia, stiffness and damping
properties in Cartesian space. Note the use of exponen-
tial coordinates in (B.2) to express the error in the Lie
algebra [61]. The optional feedforward wrench fff can be
designed, e.g., to maintain downward pressure in insertion
tasks.

Using (B.2), it is easy to see that a control input function
u , ċ of the form

u = Z(E, e, fext) + AdE (ċd + adê cd) , (B.3)

cancels out the additional terms in (B.1) and ensures the
desired dynamics ė = Z(E, e, fext). To derive the final
computed torque law, we consider the dynamics of a ma-
nipulator with joint configuration q ∈ Rn

H(θ)θ̈ + N(θ, θ̇) = τu + J(θ)Tfext, (B.4)

where H(θ) ∈ Rn×n denotes the positive-definite iner-
tia matrix, the vector N(θ, θ̇) ∈ Rn collects the nonlin-
ear terms stemming from Coriolis effects and gravity, and
τu ∈ Rn are the actuator torques. Furthermore, the ge-
ometric Jacobian J(θ) ∈ R6×n is used to map the gener-
alized force fext ∈ R6, expressed w.r.t. the end-effector
frame C, to its equivalent joint torque. In the following,
we drop dependencies on θ for notational simplicity.

Via the Jacobian, the kinematic quantities can be
mapped to task space by c = Jq̇ and ċ = Jq̈+ J̇q̇. There-
fore, considering the control input in (B.3), the joint-level
reference acceleration can be computed as

q̈u = J†
(
u− J̇q̇

)
+ q̈ns. (B.5)
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The additional term q̈ns in (B.5) denotes an added ac-
celeration in the the nullspace of the Jacobian J in order
to resolve redundancy, as we are working with a 7-DoF
platform [30]. This is done by formulating an attractor
to a desired reference joint configuration. Inserting (B.5)
in the manipulator dynamics (B.4) after inverting them
yields the final computed-torque law

τu = H
[
J†
(
u− J̇q̇

)
+ q̈ns

]
+ N− JTfext. (B.6)

We alleviate the need to measure the external forces by
choosing Md = (JH−1JT)−1 to be the manipulator in-
ertia matrix H projected to operational space [30]. For
this specific choice of Md, the external wrench fext can-
cels in (B.6) and the input control (B.3). This comes at
the cost of a configuration-dependent impedance behav-
ior. If certain directions of free motion require increased
accuracy, we selectively add an integral action on the error
term Log(E) in (B.3).

In task-space directions which are absent of interaction
forces, the postulated impedance control law is equiva-
lent to an inverse dynamics position control scheme [30].
Therefore, the closed-loop behavior is the more degraded
by disturbances the more compliant the controller is made.
Consequently, we place high importance on accurate mod-
eling of the manipulator dynamics which is described be-
low.

Appendix B.2. Model Identification

In order to obtain more accurate estimates of the robot
dynamics model parameters, we proceed as follows. An
inverse model of the robot is identified to map the desired
joint accelerations to actuation torques in the computed-
torque control law (B.6). Provided that there are no ex-
ternal forces acting on the robot during the identification
experiments, the robot dynamics (B.4) can be reorganized
as τu = Φ(θ, θ̇, θ̈)Ψ, such that they are linear in the so-

called barycentric parameters [33], Ψ =
[
ΨT

1 , . . . ,Ψ
T
7

]T
.

Since Φ is not unique in general, we assume an equiv-
alent relation τu = Φ̂(θ, θ̇, θ̈)Ψ̂ where the columns of

(θ, θ̇, θ̈) 7→ Φ̂(θ, θ̇, θ̈) are linearly independent. Then, us-
ing the experimental data, we can estimate the barycentric
parameters by solving the following regression problem:

min
θ(·)

∑
k

∥∥∥Φ(θ(tk), θ̇(tk), θ̈(tk)
)

Ψ− τu (tk)
∥∥∥2

. (B.7)

To this end, we designed an experiment that “maxi-
mizes” the information contained in the recorded data.
Following [34], a parametric harmonic trajectory is se-
lected: θ̄(t) := θ̄0+

∑nh

l=1 al sin(kωbt)+bl cos(kωbt), where
θ̄0, a1...nh

, b1...nh
∈ Rn, ωb denotes some base frequency,

and nh is the number of harmonics. The base frequency is
chosen sufficiently low such that a large part of the con-
figuration space can be covered without violating physi-
cal constraints. The number of harmonics is limited such

that nhωb is sufficiently low to not excite undesired high-
frequency phenomena. We then formulate the following
optimization problem

max
θ̄0,ak,bk∈Rn

logdet

(
N∑
k=1

Φ̂T
k Φ̂k

)
subject to θl ≤ θ̄(tk) ≤ θu, k = 1, . . . , N,

θ̇l ≤ ˙̄θ(tk) ≤ θ̇u, k = 1, . . . , N,

θ̈l ≤ ¨̄θ(tk) ≤ θ̈u, k = 1, . . . , N,
...
θ l ≤

...
θ̄ (tk) ≤

...
θ u, k = 1, . . . , N,

(B.8)

where Φ̂k is short for Φ̂
(
θ̄(tk), ˙̄θ(tk), ¨̄θ(tk)

)
and

tk = 0, . . . , 2π
ωb

sec.

The optimization problem (B.8) is non-convex and can
be solved to local optimality using a suitable Non-Linear
Programming (NLP) solver. We used CasADi [35] to for-
mulate the optimization problem and perform the auto-
matic differentation, the NLP was solved by the interior-
point solver IPOPT[36]. Once measurements were col-
lected, the convex regression problem (B.7) was solved
while enforcing physical feasibility of the barycentric pa-
rameters by a semi-definite programming approach [37,
39].

Appendix C. 6D Pose Estimation

In our manipulation framework we wish to predict 6D
object poses from their descriptor space representations.
Specifically, using the descriptor space image IDON of an
object we select N object-specific keypoints, or descrip-
tors {di}Ni=1, di ∈ RD. The keypoints can be selected
manually, or by an automated process using object masks.
Assuming rigid objects, the set of selected keypoints form
an object specific, annotated pointcloud with 3D coordi-
nates A = [x,y, z] ∈ RN×3. The coordinates (xi, yi, zi)
can be computed by unprojecting the selected keypoint lo-
cations in camera frame. We store a centralized version of
the annotated pointcloud A∗, s.t. 1TA∗ = 0T.

During object pose estimation, we evaluate the descrip-
tor image IDON using the RGB camera image I and locate
the most likely image coordinates of the target keypoints
di. The image coordinates (ui, vi) can be computed by

(ui, vi) = arg min
(u,v)

dist (IDON(u, v),di) ,

with dist(·, ·) as distance metric. To mea-
sure prediction confidence we compute c(u, v) =
exp(−dist(IDON(u, v),di)/η) with a temperature pa-
rameter η ∈ R+. We discard keypoints with confidence
c(u, v) < clow, clow ∈ [0, 1), typically the ones that are
occluded in the current image. We are now left with
M ≤ N detected keypoints in image coordiantes. We
unproject these keypoint coordinates (ui, vi) in camera
frame using the depth image and camera intrinsics. The
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unprojected keypoints form an annotated pointcloud with
coordinates B = [x,y, z] ∈ RM×3. Finally, we compute
the object pose TO ∈ SE(3) in camera coordinates by
solving TO[A∗,1M ]T = [B,1M ]T. The resulting object
pose TO is transformed to xo ∈ R3 × S3 through a simple
homeomorphic transformation.

Note that the above 6D pose estimation procedure might
fail in several circumstances. As keypoints are assumed to
be unique, our method is prone to fail in case of symmet-
ric objects. Additionally, there might not exist a unique
solution for TO in case of insufficient or colinear keypoints.
Nevertheless, we use heuristics to define unique poses to
such objects. For example, for rotation-symmetric objects
like the shaft in Fig. 3, we can align one axis of the coor-
dinate system with a keypoint pair and another with the
z-axis of the camera. The resulting pose will be fully de-
termined, albeit camera-view dependent, as done in [27].

Appendix D. Skills learning

In order to understand the formulation of TP-HSMMs,
we first provide a brief introduction to task-parametrized
Gaussian mixture models (TP-GMMs) which are the back-
bone of TP-HSMMs. We then provide a general back-
ground on the main Riemannian tools used in this paper
to extend TP-HSMMs to the Riemannian data regime.

Appendix D.1. Task-parametrized GMM (TP-GMM)

We assume we are given M demonstrations, each of
which contains Tm data points for a dataset of N =∑
m Tm total observations ξ = {ξt}Nt=1, where ξt ∈

Rn for the sake of clarity. Also, we assume the same
demonstrations are recorded from the perspective of P
different coordinate systems. In our setting, these de-
scribe the object poses in the robot workspace, here-
inafter also called task parameters. Such task-parameters
make it possible to design an object-centric learning
model. One common way to obtain object-centric data
is to transform the demonstrations from a static global

coordinate system to coordinate system p by ξ
(p)
t =

A(p)−1

(ξt − b(p)), where {(b(p),A(p))}Pp=1 is the trans-
lation and rotation of the coordinate system p w.r.t.
the world frame, which we assume is static across the
demonstration. Then, we fit a Gaussian Mixture Model
(GMM) with K components in every coordinate system

p to the transformed demonstrations {ξ(p)
t }Nt=1. The re-

sulting TP-GMM is described by the model parameters

{πk, {µ(p)
k ,Σ

(p)
k }Pp=1}Kk=1, where πk is the prior probability

of each component, and {µ(p)
k ,Σ

(p)
k }Pp=1 are the param-

eters of the k-th Gaussian component within coordinate
system p. Note that the mixing coefficients πk are shared
by all frames and the k-th component in coordinate sys-
tem p must map to the corresponding k-th component in
the global frame. Expectation-Maximization (EM) is a
well-established method to learn such models.

Once learned, the TP-GMM is used to reproduce a tra-
jectory for the learned skill. Namely, given the observed
coordinate systems {b(p),A(p)}Pp=1, which represent a new
configuration of the objects of interest, the learned TP-
GMM is transformed into a single GMM with parameters
{πk, (µ̂k, Σ̂k)}Kk=1. The parmeters of this GMM is a prod-
uct of affine-transformed Gaussian components across dif-
ferent frames, as follows

Σ̂k =

[
P∑
p=1

(
Σ̂

(p)
k

)−1
]−1

, µ̂k = Σ̂k

[
P∑
p=1

(
Σ̂

(p)
k

)−1

µ̂
(p)
k

]
,

(D.1)
where the parameters of the updated Gaussians at each

coordinate system p are computed as µ̂
(p)
k = A(p)µ

(p)
k +

b(p) and Σ̂
(p)
k = A(p)Σ

(p)
k A(p)T . While the task parameters

may vary over time, we dropped the time index for sake of
clarity. Figure 4 illustrates the object-centric structure of
TP-GMM for a simple reaching task. More details about
TP-GMM can be found in [17].

Appendix D.2. TP-HSMMs

Hidden Semi Markov Models (HSMMs) extend the
standard hidden Markov Model (HMM) by embed-
ding temporal information of the underlying stochastic
process, which means that the state process is semi-
Markovian (see Fig. 4d). Specifically, a transition to
the next state depends on the current state as well as
on the elapsed time since the state was entered. A
task-parameterized HSMM (TP-HSMM) model is defined

as Θ =
{
{ahk}Kh=1, (µ

D
k , σ

D
k ), πk, {(µ(p)

k ,Σ
(p)
k )}Pp=1

}K
k=1

,

where ahk is the transition probability from state h to
k, (µDk , σ

D
k ) describe the Gaussian distributions for the

temporal duration of state k, {πk, {µ(p)
k ,Σ

(p)
k }Pp=1}Kk=1

equal the TP-GMM introduced earlier, representing the
observation probability corresponding to state k. In
our HSMM, K corresponds to the number of Gaussian
components in the “attached” TP-GMM.

We then learn a robot skill from demonstrations by
training a TP-HSMM, which captures the complete spatio-
temporal nature of the demonstrations. This allows us to
encode different skill instances and timing patterns due to
additional structure gained by exploiting the HSMM tran-
sition and duration probabilities. For motion synthesis,
we exploit the HSMM forward algorithm to compute the
belief state. This allows us to extract a stepwise reference
trajectory featuring the spatio-temporal patterns encoded
by our TP-HSMM. Specifically, given a partial sequence of
observed data points {ξ`}t`=1, assume that the associated
sequence of states in Θ is given by st = s1s2 · · · st. As
shown by Tanwani et al. [62], the probability of data point
ξt belonging to state k, i.e., st = k, is given by the forward
variable αt(k) = p(st = k, {ξ`}t`=1):

αt(k) =

t−1∑
τ=1

K∑
h=1

αt−τ (h)ahkN (τ |µDk , σDk ) otτ , (D.2)
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Figure D.21: Left: Illustration of the Log and Exp maps with
geodesic γx→y ( ). Note that ‖v‖2 = ‖γx→y‖2. Right: Illus-
tration of the parallel transport operation. vx is a vector ( )
defined in the tangent space of x, while the parallel transported vec-
tor A‖yxvx will lie in the tangent space of y and is considered parallel
to vx.

where otτ =
∏t
`=t−τ+1N (ξ`|µ̂k, Σ̂k) is the emission prob-

ability and (µ̂k, Σ̂k) are the parameters of the global
affine-transformed Gaussian components given the learned
model and the current task parameters.

Furthermore, the same forward variable can also be used
during reproduction to predict future steps until Tm. In
this case however, since future observations are not avail-
able, only transition and duration information are used,
i.e., by setting N (ξ`|µ̂k, Σ̂k) = 1 for all k and ` > t
in (D.2), as explained by Yu et al. [63]. At last, the se-
quence of the most-likely states s?Tm = s?1s

?
2 · · · s?Tm is de-

termined by choosing s?t = arg maxk αt(k), ∀1 ≤ t ≤ Tm.
We can then use s?Tm to define a probabilistic stepwise
reference computed from the mean and covariance of the
corresponding Gaussian component of state s?t .

Appendix D.3. Riemannian Manifolds

As pointed out earlier, the demonstrations consist of
time-varying end-effector poses, which correspond to po-
sition and orientation data in the form of Cartesian and
quaternion variables. To train our learning model, we need
to compute statistics over non-Euclidean data (due to the
orientation), thus classical Euclidean methods are inade-
quate. This is due to classical techniques overlooking the
geometry of the data space, and instead relying on rough
approximations that lead to e.g., inaccurate estimations of
Gaussian distribution parameters and unstable controllers.
We instead consider the robot task space as a Riemannian
manifold M [64]. For each point x in the manifold M,
there exists an Euclidean tangent space TxM. This allows
us to carry out Euclidean operations locally, while being
geometrically consistent with manifold constraints.

In order to switch between M and TxM, we resort to
well-known local Riemannian operations, namely the ex-
ponential and logarithmic maps. The exponential map
Expx : TxM→M maps a point in the tangent space of
point x to a point on the manifold, while maintaining the
geodesic distance. The inverse operation is called the log-
arithmic map Logx : M → TxM, for an illustration see
Fig. D.21-left. These mappings allow us to locally project

manifold data to the Euclidean space, where local statis-
tics are computed, and then project these back to the
manifold. Note that we also need to compute statistics
over data that may not lie on the same tangent space. In
such situations, we exploit the parallel transport operation
A‖yx : TxM→ TyM, which moves elements between tan-
gent spaces without introducing distortion (see right side
of Fig. D.21). The exact form of the aforementioned op-
erations depends on the Riemannian metric associated to
the manifold, which in our case corresponds to the formula-
tions in [64]. Notice that we also exploit Riemannian man-
ifolds to retrieve the control actions for each skill within
the task plan using a Riemannian optimal controller, as
explained in Section 2.6.

Appendix D.4. Motion Trajectory Generation

For motion trajectory generation we apply the Rie-
mannian extension to the finite-horizon Linear Quadratic
Tracking problem. We assume the dynamics are defined in
the tangent space of the robot end-effector state ξ ∈MR,
namely TξMR. Also, we define the tangent-space robot
state as xt = [Logξt(ξt)

T,vTt ]T ∈ TξtMR, with velocity
vt and v1 = 0. Note that due to the differential formu-
lation the tangent space position is 0 and the full state
becomes xt = [0T,vTt ]T. Given the global GMM com-
ponents of the sub-sequence ŝ?h parametrized by {µi,Σi}
with i ∈ ŝ?h, our control problem becomes:

min
u

T∑
t=1

Logξt(µŝ?h(t))
TΣ̃ŝ?h(t)Logξt(µŝ?h(t)) + uT

tRut,

(D.3)

s.t. xt+1 = Axt +But, xt+1, xt,ut ∈ TξtMR,

A =

[
I I∆t
0 I

]
, B =

[
0
I∆t

]
,

ξt+1 = Expξt(xt+1) ∈MR,

with time horizon T = |ŝ?h|. After finding the optimal
control sequence (in our case, acceleration) we perform
forward integration to obtain the reference trajectory. No-
tice that the cost function, control signal and dynam-
ics are defined in the tangent space of the current state
TξtMR. To avoid the distortion of the objective we need
to parallel-transport the covariance to this tangent space
with Σ̃i = A‖ξtµiΣiAT

‖ξtµi
. Additionally, during forward in-

tegration, we have to propagate the velocity between con-
secutive time-steps with vt+1 = A

‖
ξt+1
ξt

vt ∈ Tξt+1
MR.

We assume 0 target velocity, therefore we omit this term
in the cost function. Solving this optimal control problem
follows the same ideas as the Euclidean formulation, that
is, minimizing the Bellman error in a forward-backward
computation pass. After obtaining the reference trajec-
tory {ξt}Tt=1 in R3 × S3 we compute its SE(3) equivalent
{Cd,t}Tt=1. Finally, we rely on the Cartesian impedance
controller introduced in Section 2.3 to track it with the
robot end-effector.
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Appendix D.5. Force-based skills

Kinesthetic demonstrations for a force-based skill con-
tain multi-modal data:

Dm = {ξt}Tmt=1 =
{(

(xe,t, ẋt, ẍt,ft),xo,t

)}Tm
t=1

, (D.4)

where at each time t the observation ξt consists of the
robot pose xt, its velocity ẋt, its acceleration ẍt, the ex-
ternal force and torque ft, and finally the object pose xo,t.
Such observations are often obtained from a state estima-
tion module, a perception module or dedicated sensors.

Given these demonstrations, we employ the attrac-
tor interaction model [44] to transform the pose and
force demonstrations to attractor trajectories by assum-
ing that the attractor is driven by a virtual mass-spring-
damper system. Consider any demonstration Dm = {ξt}
from (D.4), the associated attractor trajectory {yt} can
be computed by:

Logxe,t
(yt) = K−ρt (Kν

t ẋt + ẍt − ft) , (D.5)

where (xe,t, ẋt, ẍt,ft) ∈ ξt is part of the demonstration
data, Kρ

t , Kν
t are the stiffness and the damping terms, the

design of which is described in the sequel, K−ρt = (Kρ
t )−1

for brevity, and Log() is the logarithmic mapping defined
in Sec. Appendix D.3. Intuitively, the position, veloc-
ity, acceleration and force demonstrations are transformed
into a single entity: the pose of a virtual attractor. Exam-
ples of the demonstrated pose trajectory and the computed
attractor trajectory for the press-pcb skill are shown in
Fig. 6. It can be seen that the resulting attractor pose can
differ greatly from the demonstrated pose when large ve-
locities and sensed forces are present. In other words, (D.5)
allows us to transform each demo Dm ∈ D into an attractor
demo Ψm = {(yt, xo,t)}, i.e., the attractor trajectory and
the associated object pose. As a result, the standard pro-
cedure as described in Sec. Appendix D.1 can be followed
to learned a TP-HSMM model from the set of attractor
demonstrations Ψ = {Ψm}.

Furthermore, the stiffness and damping terms Kρ
t , Kν

t

are equally important to track the demonstrated force pro-
files. Instead of solving them for each time instant, we pro-
pose to optimize these terms locally for each component
within Θy. Particularly, consider a component k within
Θy. For each attractor trajectory Ψm, the accumulative
residual of the computed attractor trajectory with respect
to this component is given by:

εm =
∑
ξt∈Dm

pt,k
(
Logµk(xe,t)−K

−ρ
k (Kν

t ẋt + ẍt − ft)
)
,

(D.6)
where pt,k is the probability of state xe,t belonging to com-
ponent k, which is a by-product of the EM algorithm when
deriving Θy, µk is the mean of component k from Θy,
(xe,t, ẋt, ẍt,ft) ∈ ξt is the demonstration point at time t
of Dm, K−ρk is the inverse of the stiffness term to be op-
timized, while the damping term Kν

t remains unchanged.
Consequently, the optimal local stiffness for the component

k can be computed by minimizing the complete residual
over all demonstrations, namely:

Kρ,?
k = min

Kρ
k

∥∥∥∥∥∑
Dm

εm

∥∥∥∥∥ , s.t. Kρ
k � 0, (D.7)

which requires the stiffness matrix to be positive semidef-
inite. The above optimization problem belongs to the
semidefinite program (SDP), which can be solved ef-
ficiently using techniques such as interior-point meth-
ods [65].

To summarize, an initial choice of Kρ
t and Kν

t is set
to compute the attractor model as described in (D.5). A
common choice is the default stiffness of the underlying
impedance controller in (2.3.1) and its critical damping
term. Afterwards, the local stiffness of each component
can be optimized by (D.7) as described above, denoted
by {Kρ,?

k }. Note that the learned stiffness varies along the
attractor trajectory in order to match the robot stiffness
during kinesthetic teaching.

Appendix D.6. Skill Condition Models

We first recall the precondition and effect model pro-
posed in our earlier work [45]. In particular, the
learned precondition model, denoted by γ1,a, contains
TP-GMMs for the initial robot state, namely, γ1,a =

{(µ̂(p)
1 , Σ̂

(p)
1 ), ∀p ∈ P1,a}, where P1,a is the chosen set of

task parameters obtained from the initial system state
(e.g., initial pose of objects). In addition, we introduce
here the final condition model γT,a, which is learned in
a similar way as γ1,a, but for the final robot state, i.e.,

γT,a = {(µ̂(p)
T , Σ̂

(p)
T ), ∀p ∈ PT,a}, where PT,a is the chosen

set of frames derived from the final system state. In other
words, γ1,a models the initial configuration before execut-
ing skill a, while γT,a models the final configuration after-
wards. Furthermore, the learned effect model γ1T,a, encap-
sulates TP-GMMs for the predicted final system state, i.e.,

γ1T,a =
{
{(µ̂(p)

1,o, Σ̂
(p)
1,o), ∀p ∈ P1,a}, ∀o ∈ Oa ∪ e

}
, where

P1,a is defined in γ1,a. The differences among the fore-
going models are: The task parameters for γT,a are com-
puted from the final system state, while those for γ1,a and
γ1T,a are extracted from the initial system state. Their
full derivation is given in [45]. For the sake of notation,
we define Γa , {γ1,a,γT,a,γ1T,a}.

The aforementioned transition models are then used to
compute the transition probabilities of the task model Θ̂a?

for a given desired skill sequence, as summarized in Sec-
tion 2.5. We here provide further details on this process,
which works as follows: Firstly, the transition probability
from one final component kf of Θa1 to one initial compo-
nent ki of Θa2 is:

akf ,ki ∝ exp

−∑
p∈Pc

KL
(
γ

(p)
T,a1

(kf )||γ(p)
1,a2

(ki)
) ,

(D.8)
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where KL(·||·) is the KL-divergence from [66], γ
(p)
T,a1

(kf )
is the GMM associated with component kf for frame p,

γ
(p)
1,a2

(ki) is the GMM associated with component ki for
frame p; Pc = PT,a1 ∩ P1,a2 is the set of common frames
shared by these two models, which can be forced to be
nonempty by always adding the global frame. This pro-
cess is repeated for all pairs of final components in Θa1

and initial components in Θa2 . Note that the out-going
probability of any final component in Θa1 should be nor-
malized.

Secondly, given one final component kf of Θa1 , each
component k of Θa2 should be affine-transformed as fol-
lows:(

µ̂
(p̂)
k , Σ̂

(p̂)
k

)
,
(
µ

(p)
k , Σ

(p)
k

)
⊗
(
b

(p̂)
kf
, A

(p̂)
kf

)
, (D.9)

where the operation ⊗ is defined as the same operation

of (D.1), and (b
(p̂)
kf
,A

(p̂)
kf

) is the task parameter computed

from the mean of Γ
(p̂),o
1T,a1

(kf ), where o is the object associ-
ated with the old frame p in Θa1 and p̂ is the new frame
in γo

1T,a1
(kf ). Note that the change of frames is essential

to compute directly all components of Θa2 given an initial
system state of Θa1 . The same process is also applied to
each component of γ1T,a2 by changing its frames based on
γo

1T,a1
(kf ).

Finally, other model parameters of Θ̂ such as duration
probabilities, initial and final distributions are set with mi-
nor changes from Θa1 and Θa2 . For instance, the duration
probability of Θa2 is duplicated to the kf multiple copies,
the initial distributions Θa2 are set to zero as the initial

states of Θ̂ correspond to those of the first model Θa1 ,
the final components of Θa1 are removed since the final

states of Θ̂ are now those of Θa2 updated to its multiple
instances.
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