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Abstract  

This paper introduces the concept of safety-related (SR) uncertainty and the methodology to measure SR 

uncertainty. SR uncertainty is concerned with the effect of parameter uncertainty on the uncertainty of 

system unsafety (defined with respect to achieved safety integrity level), which is in direct contrast to the 

effect on overall system uncertainty. The properties of SR uncertainty are discussed and its significance in 

analyzing safety systems is highlighted. The conventional global sensitivity analysis (GSA) to handle 

overall uncertainty is inappropriate when SR uncertainty is of interest.  We present and discuss four 

methods to measure SR uncertainty. Three examples are used to demonstrate the effectiveness of the 

proposed methods in comparison with GSA.  

Keywords: Safety system; Importance measure; Safety-related uncertainty; Global sensitivity analysis; 

Safety integrity level 

 

1. Introduction 

Dealing with uncertainty is among the major challenges for quantitative risk assessment [1, 2]. The 

knowledge of how parameter uncertainty influences the uncertainty in output is indispensible to direct the 

limited resources to the most influential parameters in terms of reducing uncertainty and improving system 

safety [3]. Global sensitivity analysis (GSA) [1, 4-6] is a useful technology to determine which parameters 

influence output the most when uncertainty in the parameters is propagated through the model. It can 

identify critical parameters and rank parameters with respect to reliability and risk [4]. Borgonovo [7] 

classified the GSA-based measures into three categories: 1) nonparametric techniques [8], 2) variance-

based importance measures [9] and 3) moment-independent sensitivity indicators [3]. Essentially, GSA 

quantifies the contribution by individual parameters to the overall output uncertainty [10]. However, in the 

context of safety systems, we may be more interested in how the parameter uncertainty affects output 

uncertainty that is relevant to system safety (or equivalently, unsafety) [11], as discussed subsequently. 

Current techniques are exclusively focused on overall uncertainty, and safety-related (SR) uncertainty has 

largely been under-explored. 

Safety systems are widely used in industry to reduce or prevent risk [11-13]. International standards like 

IEC 61508 [14] require especially for high safety applications a quantification of the achieved safety. In 

order to comply with this standard, the safety system has to be quantified to the “safety integrity level” 

(SIL). The IEC61508 standard discerns four SILs as shown in Table 1 [14]. The achieved SIL of a safety 

system can be obtained by calculating the average probability of failure on demand or safety probability of 

a dangerous failure per hour. However, in practice, uncertainty in model and/or parameters results in a 

probability distribution of system failure covering more than one SIL. This study is mainly focused on 

uncertainty in parameters, and thus model uncertainty is not discussed further. Fig. 1 shows a high integrity 

pressure protection system studied by Rouvroye [11], where the distribution of the failure probability 
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encloses SIL1, SIL2 and SIL3 because of parameter uncertainty. Assume that pSILx is the upper bound 

under safety integrity level x (x=1, 2, 3, 4). Table 1 gives pSIL1 = 10
-1

, pSIL2 = 10
-2

, pSIL3 = 10
-3 

and pSIL4 = 10
-4

 

for the low demand mode of system operation. For example, if SIL2 is required, the distribution in Fig. 1 

can be divided into two parts. The safety part corresponds to failure probability Y >= pSIL2 and unsafety 

refers to the region where Y < pSIL2. Clearly, a small region of unsafety is desired for the safety system. In 

this paper, we consider how the parameter uncertainty influences the uncertainty of the SIL (equivalently 

the unsafety region as given in Fig. 1). This influence, once properly quantified, is an important indicator to 

rank the importance of system parameters in terms of achieved integrity. 

 

Table 1 Safety integrity levels according to the IEC 61508 standard. 

 

 

 

 
Fig.1 The distribution of probability of failure on demand. 

  

As GSA techniques focus on the overall uncertainty of the model output, they are not suitable to measure 

SR uncertainty. In this work, we analyze how this issue can be addressed. We discuss the relationship 

between these two types of uncertainty, and propose four methods to handle SR uncertainty from different 

perspectives. The first method is based on the principle of reduction in the SR uncertainty if uncertainty in 

one parameter is eliminated. The second method evaluates the mean effect of parameter uncertainty on SR 

uncertainty. The third method assesses the rate of change in system unsafety by changing parameter 

uncertainty. The fourth method identifies which parameter’s uncertainty influences the SR uncertainty the 

most in the view of variance. The proposed methods are applied to three systems models in comparison 

with GSA. The results highlight the need of the proposed measures when SR uncertainty is considered.  

The remainder of the paper is organized as follows. Section 2 briefly reviews GSA and discusses the 

difference between overall uncertainty and SR uncertainty. Section 3 proposes four methods to measure the 

SR uncertainty. In Section 4, three examples are provided to illustrate the properties of the proposed 

methods when compared with GSA indicators.  Section 5 concludes the paper.  
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2. Overall uncertainty and safety-related uncertainty 

2.1. Assessing overall uncertainty through global sensitivity analysis 

Let Y be the output of a system model g(X) and X = (X1, X2,…,Xn) be a set of input parameters. The 

overall uncertainty links the uncertainty about Xi with the uncertainty about Y, which encloses the entire 

distribution of the model output Y [10]. GSA is an effective tool to assess the overall uncertainty due to 

parameter uncertainty. GSA provides a certain measure that quantifies the impact of parameters on system 

output. Various measures have been proposed in the literature [1, 3, 15, 16] and they may be classified into 

three categories [7]: 1) Non-parametric techniques; 2) Variance-based importance measure; and 3) 

Moment-independent sensitivity indicators.   

The first category is based on non-parametric techniques that usually depend on the system model. For 

example, regression-based methods are appropriate when the system output is a linear function of the 

inputs [1]. These model-dependent methods are not discussed further; more details may be found in [1, 15, 

16]. 

The variance-based importance measures consider the entire range of variation of the parameter and 

identify the contribution of individual parameters and their interactions. The variance-based measures are 

independent of the system model under study. A widely used measure due to Iman and Hora [9, 17] is 

    IH [ ]i i iV Y E V Y X V E Y X           (1) 

where V[Y] is the variance of the model output Y, and E{V[Y|Xi]} is the conditional expectation of the 

variance of Y with respect to the i-th parameter Xi. IHi quantifies the expected reduction in output variance 

if uncertainty in Xi is eliminated. The ranking of the importance of parameters based on IHi is the same as 

that based on the first order sensitivity index [18]. Clearly, the variance-based methods rely on a specific 

moment of the output distribution. 

The third category of GSA is the moment-independent sensitivity indicators. These measures investigate 

the influence of parameter uncertainty on the entire output distribution without reference to a specific 

moment of the output [1]. Among this category, CHTi and 
i  are two important measures introduced by 

Chun et al. [3] and Borgonovo [1], respectively. The measure CHTi is defined by 

 
 

1/2
1

2

0
[ ]

CHT
( )

i

t t

i

P P dt

E Y






 (2) 

where i

tP  is the t-th quantile of a cumulative distribution function (CDF) for the “base case”, tP is the t-th 

quantile of a CDF for the “sensitivity case” and E(Y) is the mean of output distribution for the “base case”. 

The base case refers to the situation where the output distribution ( )Yf y  is obtained with all the parameter 

distributions being set to their nominal distributions, whereas in the sensitivity case the output distribution 

| ( )
iY Xf y is obtained by changing the distribution of parameter iX  according to a certain strategy [3]. CHTi 

is essentially the metric distance in terms of quantiles between the base and sensitivity cases.  

The measure i  is defined by 

  
1

[ ]
2 ii X iE s X   (3) 

with 

      | d
ii Y Y Xs X f y f y y   (4) 

where fY(y) is the density function of Y and  | iY Xf y  is the conditional density function of Y given Xi. This 

measure denotes the expected shift between the distribution of output Y and conditional distribution of 



4 

 

output Y given Xi. The main difference the two measures is that CHTi requires to hypothesize a “sensitivity 

case” as discussed previously, while 
i does not.  

Subsequently, the measures of IHi and 
i  will be used to assess overall system uncertainty, against 

which the proposed SR uncertainty measures will be compared.  

 

2.2. Safety-related uncertainty 

When we consider safety systems, besides the overall uncertainty we are also interested in SR 

uncertainty, i.e. how the achieved safety level is affected by parameter uncertainty. For example, safety 

systems that need to comply with the IEC 61508 should reach a certain SIL and thus be considered safe 

(otherwise they are considered unsafe). Usually, a point estimate (i.e. average) of the probability of failure 

on demand (or safety probability of a dangerous failure per hour) is used to judge whether the system 

achieves the required SIL. However, when the uncertainty of parameters is considered, the probability of 

failure on demand itself becomes a random variable, and its distribution may enclose more than one SIL. 

For example in Fig. 1, if SIL-2 is the required safety level, the region to the right of the dashed line (i.e. the 

failure probability Y > pSIL2) is considered unsafety. For safety systems, a minimal unsafety region is 

desired. The primary objective of this paper is to identify which parameter influences the unsafety region 

the most. The uncertainty of the unsafety region due to parameter uncertainty is called SR uncertainty.  

 

  

Fig.2 The density  Yf y (solid) and conditional density  
| i iY X x

f y
 (dashed). 

 

Fig. 2 illustrates the fundamental concept of SR uncertainty. The i  measure from GSA (Eq.(3)) 

calculates the overall difference between  Yf y  and  
| i iY X x

f y
 (the shaded area in Fig. 2 (a)), while the 

SR uncertainty concerns with the change of unsafety probability when the uncertainty in Xi is eliminated. 

As shown in Fig. 2 (b), if given i iX x , the size of conditional unsafety region 
| i iY X x

S 
 equals to the 

original unsafety region, we say that the parameter iX  in the value ix  has no contribution to SR 

uncertainty. Moreover, it is possible that SR uncertainty will increase by reducing the uncertainty of certain 

parameters, which is impossible for overall uncertainty. These parameters have adverse effect on reducing 

SR uncertainty and should be ranked as the least important to SR uncertainty, since the existence of their 

uncertainty is desired for reduced system unsafety. Therefore, no effort may be needed to reduce these 

parameters’ uncertainty.  

 

2.3. Overall uncertainty and SR uncertainty may rank the importance of parameters 

differently 
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Since GSA is focused on the overall uncertainty while SR uncertainty is only concerned with the 

uncertainty that is directly related to achieved safety, these two methods may differ in ranking the 

importance of parameters.  Fig. 3 illustrates an example where two parameters, X1 and X2, are considered.  

 

 

Fig.3 The density  Yf y and conditional density  
| i iY X x

f y
, i = 1,2. (a)(b): overall uncertainty; (c)(d): SR 

uncertainty. 

 

In Fig. 3, the shaded area 
| i iY X x

S


  is the shift between the two densities  Yf y  and  
| i iY X x

f y
, i=1,2. 

A comparison between Fig. 3(a) and (b) show 
1 1 2 2| |Y X x Y X x

S S 
  

   , and the measure by Borgonovo [1] 

indicates 1 2  , i.e. 2X  is more influential than 1X . However, the SR uncertainty measure, as shown in 

Fig. 3(c) and (d), shows 
1 1 2 2| |Y X x Y X x

S S  
   , i.e. the shift between  Yf y and  

1 1|Y X x
f y

 is greater than 

the shift between  Yf y and  
2 2|Y X x

f y
 with regard to system unsafety. Hence, 1X  is concluded to be 

more influential than 2X . Two completely opposite results may be obtained, depending on either overall 

uncertainty or SR uncertainty is considered. In practice, GSA techniques become inappropriate when SR 

uncertainty is of concern. Next, the methods to quantify the SR uncertainty are proposed. 

 

3. Safety-related uncertainty measures 

The relevant notations used in this paper are as follows. 

(1) .  1 2, , , n

nX X X X R  is the set of uncertain input parameters. 
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(2).    , : nY g X g X E R R    is the function relationship between output Y and input 

parameters X , i.e. the known system model. 

(3).  1 2, , , nx x x x  is a realization of X . 

(4).  Xf x  is the joint density of X . 

(5).  
iX if x  is the marginal density of 

ix . 

(6). ( )Yf y  is the density function of the model output Y. 

(7). ( )
iY X

f y  is the conditional density of Y given one parameter Xi being fixed. 

(8). pSILx is the upper bound under safety integrity level x (x=1, 2, 3, 4). Table 1 gives pSIL1=10
-1

, 

pSIL2=10
-2

, pSIL3=10
-3 

and pSIL4=10
-4

 for the low demand mode of system operation. 

 

3.1. Method 1 

Assume that SILx is the required safety integrity level. Let S be the failure probability of safety system 

above pSILx: 

  
SILx

Y Y
p

S f y dy


   (5) 

Further, let 
| i iY X x

S 
 be the failure probability of safety system above pSILx given 

i iX x :  

  
| |i i i iSILx

Y X x Y X xp
S f y dy 



 
   (6) 

Then, the reduction of SR uncertainty due to observing the i-th parameter may be measured by: 

 
|

M1 i i
Y Y X x

i

Y

S S

S




  (7) 

In Eq.(7), 
ix  may simply be taken as the expected value of Xi, i.e. 

ix =E(Xi). Note that when considering 

SR uncertainty, the safety system should satisfy the required SILx (i.e. E[Y]  pSILx). Method 1 quantifies 

the change in the probability of unsafety if the uncertainty in Xi is eliminated.  

Since 
YS  and 

| i iY X x
S 

 are the failure probabilities, [0,1]YS   and 
|

[0,1]
i iY X x

S 
 , and thus M1i takes 

values in (-∞,1]. M1i=1 means complete reduction of the system unsafety (the shaded area in Fig. 4(a)) if 

the uncertainty in Xi is eliminated and M1i=0 indicates that the uncertainty of Xi has no effect on the system 

unsafety. In contrast, M1i< 0 denotes increase in the system unsafety (the shaded area in Fig. 4(b)) if the 

uncertainty in Xi is eliminated. In this case, we may prefer to keep the existing uncertainty in Xi. Hence, the 

parameter with the highest M1i value is ranked as the most influential as far as reducing unsafety 

probability is concerned. 

One natural extension of M1i is to replace 
| i iY X x

S 
 by the expectation of | iY XS  with respect to Xi, giving 

rise to a new measure 'M1i : 

 
   |

|'
[ ]

M1
i i

SILx i
Y X i Y X i

p Y Y X

i

Y Y

S f x f y dydx S E S

S S



 
 

 
 (8) 

In analogous to M1i, 
'M1i  takes values in (- ,1] and its magnitude quantifies the influence of parameter 

uncertainty on the system unsafety. The sign of 'M1i  denotes the “direction” of the influence, also similar 

to M1i. Therefore, the parameter with the highest 'M1i  value is ranked as the most influential with regard to 

SR uncertainty.  
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Fig.4 The reduction in the probability of unsafety with eliminated uncertainty in Xi. 

 

3.2. Method 2 

The definition of Method 2 is given by   

 
( )

M2
( )

i Y
i

Y i

V X S

S V X





 (9) 

This method measures the rate of change in system unsafety due to the change in the variance of Xi. If 

M2 0i  , reducing the uncertainty of Xi will reduce system unsafety 
YS . On the contrary, a negative M2i 

suggests an increase of system unsafety by reducing the uncertainty of Xi. Therefore, the parameter with the 

highest M2i value is ranked as the most influential with regard to SR uncertainty. 

 

3.3. Method 3 

The third method proposed in this paper is a variance-based measure, and the definition is given by 

 
|( )

M3 ( )
( )

iY X

i i

i

V S
V X

V X





 (10) 

where |( )
iY XV S  is variance of system unsafety with respect to Xi. This method measures the change in the 

variance of system unsafety due to the change in the variance of Xi. It should be noted that M3i measures 

the absolute change in the variance of system unsafety by varying the uncertainty in Xi, while M2i 

measures the relative change in system unsafety by changing the uncertainty in Xi. If M3 0i   (or 

M3 0i  ), the reduction in uncertainty of Xi will decrease (or increase) the uncertainty of YS . Thus, the 

parameter with the largest M3i value poses the greatest influence on the uncertainty of YS .  

 

3.4. Numerical computation 

The proposed SR uncertainty measures are computed using Monte Carlo (MC) simulation. For each 

simulation run, m MC samples are generated from the distribution of input parameters  Xf x , based on 

which the output distribution ( )Yf y , and thus the system unsafety in Eq.(5) can be approximated. To 

calculate 
| i iY X x

S 
, we may replace the i-th parameter of all the m samples by E(Xi), followed by the 

computation of the conditional output distribution and thus its integration as in Eq.(6). Then, M1i can be 

obtained for each input parameter. Similar procedure can be used for obtaining 'M1i . 

The partial derivatives in Methods 2 and 3 are approximated by finite difference. Specifically, the 

variance of Xi is reduced by a small amount (and denoted by 
'

iX ): 

 '( ) ( ) ( )i i iV X V X V X   (11) 
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and the measures are calculated as follows: 

 
'( ) ( )

M2
( ) ( )

Yi iY Y
i

Y i Y i

S SV X V XS

S V X S V X


 


  (12) 

 
'|| |

( ) ( )( )
M3 ( ) ( )

( ) ( )

ii i
Y XY X Y X

i i i

i i

V S V SV S
V X V X

V X V X


 


 (13) 

where 'Y
S  and '|

( )
iY X

V S  are respectively system unsafety and the variance of system unsafety with the 

variance of Xi being reduced by 100α% .  

Normally, in finite-difference method where the function to be differentiated is deterministic, a small 

value for α (yet not small enough to be comparable with the computer’s numeric precision) is desired, such 

as 0.001. However, Eqs. (12) and (13) are stochastic functions, and thus using such a small α is numerically 

unstable unless an extremely large number of MC samples are used. In this study, a relatively large value 

α=0.2 is adopted based on empirical study, which will be further discussed along with the results in the next 

section.  

In addition, the sample size is taken as m=10000. To ensure the robustness of the MC method, N=100 

replicated simulations are performed and the average values of the importance measures are reported. The 

choice of these settings gives reliable results, and it is consistent with those reported in the literature [19]. 

 

4. Examples  

Three examples are selected to demonstrate the application of the proposed methods, including two 

simple models and a two-out-of-three system.  

 

4.1. Example 1: a simple example for illustration 

To understand the relationship between the proposed methods and GSA, consider a simple example 

given below  

  1 2 11Y X X   (14) 

where the uncertainty of X1 and X2 are given by the following probability density function: 

    
1 1 1, 2,16Xf x Beta x  (15) 

    
2 2 2 ,16,2Xf x Beta x  (16) 

The distributions of X1 and X2 are positively and negatively skewed respectively as shown in Fig. 5. The 

corresponding distribution of model output Y is shown in Fig. 6. The statistical properties of the parameters 

and the model output are summarized in Table 2. 

 

 
Fig.5 The distribution of parameters: (a) X1; (b) X2. 
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Fig.6 The distribution of model output Y. 

 

Table 2 Statistical properties of the parameters and the model output. 

 
 

Assume that the required SIL is level 1 and the failure probability greater than pSIL1=10
-1

 is considered 

unsafe. Table 3 shows the results of M2i and M3i when varying the parameter α in the finite difference 

method (Eqs. (12)(13)). The last column in the table refers to the percentage that the rankings (from N=100 

repeated MC simulations) are consistent with the final ranking (from the average of these 100 repetitions). 

A larger percentage indicates a more stable calculation. Clearly, when a small α (0.001 or 0.01) is used, 

finite difference does not give stable approximation to the partial derivatives. This phenomenon can be 

rectified, in theory, by using a very large number of MC samples. Nevertheless, it is practically more 

desirable to choose a relatively large α to achieve reasonable calculation while maintaining a low 

computational cost. Based on the results in Table 3, α=0.2 appears to be a good choice and is adopted for 

this example. Furthermore, the same procedure has been carried out for all the three examples presented in 

this paper and the results all supported the choice of α=0.2 (details not reported for the rest two examples 

for the sake of conciseness).  

 
Table 3 SR uncertainty measures (M2i and M3i) calculated by varying α. 
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Besides the four proposed measures, two GSA indicators (   and IH) are also calculated and the results 

are shown in Table 4.  

 

Table 4 Uncertainty importance measures and their ranking (bracketed, “E” refers to equal ranking). 

 
 

Table 4 shows that X1 and X2 are equally important according to 
i and IHi. The two GSA measures are 

unable to distinguish the importance of the two parameters, so is the proposed 'M1i
 measure. However, M1i, 

M2i and M3i suggest that X1 is more influential than X2 with regard to SR uncertainty. M1i indicates that if 

the uncertainty of X1 (X2) is eliminated, the system unsafety region is reduced by 90% (34%). M2i denotes  

higher relative reduction of system unsafety by reducing the variance of X1 (0.42) than that by reducing the 

variance of X2 (0.29).  M3i also supports the conclusion that X1 is more important than X2 in the view of SR 

uncertainty. Note that 'M1i
 cannot distinguish X1 and X2 in this example because  | iY Y XS E S .  

The importance ranking may be potentially used to improve the system safety by reducing parameter 

uncertainty. Following the ranking based on SR uncertainty, the uncertainty of X1 may be reduced. As an 

example, suppose that the standard deviation of X1 is reduced from 0.72×10
-1

 to 0.23×10
-1

, and the original 

and reduced distribution of model output Y are shown in Fig. 7(a). For comparison, we may choose to 

reduce the standard deviation of X2 from 0.72×10
-1

 to 0.23×10
-1

 instead of changing that of X1, and the 

original and reduced distribution of model output Y are shown in Fig. 7(b).  

 

 
Fig.7 The distribution of model output Y with reduced uncertainty of (a) X1, (b) X2. 

 

As shown in Fig. 7(a), the white and blue bars compose the original distribution of model output Y, while 

the white and green bars represent the distribution of Y with reduced uncertainty of X1. The reduced SR 

uncertainty in case 1 is 1S (blue bars on the right of the dashed line in Fig. 7(a)). Similarly, 2S  in Fig. 

7(b) is the reduced unsafety probability in case 2. Clearly 1 2S S   , suggesting that reducing the 

uncertainty in X1 is more effective than reducing the uncertainty in X2 towards reducing the SR uncertainty. 

In comparison, the overall shift (the blue bars and green bars) in the two cases are the same, and this is why 
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the GSA measures, 
i and IHi that consider overall uncertainty of the system, are unable to distinguish the 

two input parameters. This example also indicates that the 'M1i
 measure may not be appropriate to assess 

SR uncertainty. 

  

4.2. Example 2: two components in series 

The previous example is extended to a system with two components in series shown in Fig. 8.  

 

 
Fig.8 System with two components in series. 

 

Assume the failure probability of the two components are 
1 11X  and 

2 11X , respectively. Hence, the 

failure probability of the system is  

 1 2 1 2

11 121

X X X X
Y


   (17) 

Using the same parameter distribution as in Table 2, the results are shown in Table 5.  

 

Table 5 Uncertainty importance measures and their ranking (bracketed, “E” refers to equal ranking). 

 
 

Table 5 shows that M1i, M2i and M3i give the same ranking for the two parameters, that the uncertainty 

in X1 is more influential on the SR uncertainty than that in X2 is. GSA measures give the opposite 

conclusion by considering the overall system uncertainty. Again, 'M1i
 still cannot distinguish X1 and X2 in 

this example, because we observed that  | iY Y XS E S . The importance of X1 on SR uncertainty, in 

comparison with X2, was also verified (detailed not reported here) by reducing the input uncertainty and 

observing the change of unsafety probability, similar to the method presented for Example 1. 

 

4.3. Example 3: two out of three (2oo3) system 

In this example, a more practical system with a 2oo3 (two-out-of-three) architecture, which is widely 

used in industry, is considered [20]: 

 

      

     

  

2

1 1

1

2

33 1 1

1 2 6

3 1

PFD D D

D D D D

D D D D D D

TY T DC MTTR

DC T MTTR DC

DC MTTR DC MTTR

 

  

   

   

   

  

 (18) 

Table 6 and the values are within the recommend ranges of IEC 61508 standard. The proof-test interval 

T1 can be fixed to one year according to [14]. The other parameters are assumed to follow the conventional 

lognormal distribution [11], whose mean and variance can be obtained by converting the range in Table 6 

(See Appendix A for detail). Subsequently, MC simulation is used to calculate the output distribution and 

the importance measures. The mean of the output distribution,  
PFDYf y , is 5.6×10

-4
. based on which we 

assume that the safety system requires SIL-3. The results of the five measures are shown in Table 7. 
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Table 6 The parameters used in the 2oo3 model. 

 

 

Table 7 Uncertainty importance measures and their ranking. 

 
 

Table 7 shows that M1i, M2i, M3i and IHi (hereafter the “four measures”) give the same ranking. 

D ranks 1st for all the measures except 'M1i
.  ranks 2nd according to the “four measures” while it ranks 

3rd according to 
i  and 'M1i

. 
DDC  ranks 3rd according to the “four measures” while it ranks 2nd based on 

i  and 1st based on  'M1i
.  For all the measures, MTTR ranks 4th and 

D ranks 5th, and their values are far 

less than the values of other parameters. Hence, the effect on both overall and SR uncertainty due to 

uncertainty of MTTR and 
D  is negligible. In the view of the most important parameter, the rank given by 

'M1i
 is very different from those given by other measures. It appears that 'M1i

 can only identify the group 

of the most influential parameters ( DDC , D and  ), but it cannot distinguish them in detail. As a result, 

'M1i  is not recommended to measure SR uncertainty.  

Above discussion also shows that the proposed methods (expect 'M1i ) and the two GSA measures give 

similar results, though they focus on different aspects of system uncertainty. This is because the effect of 

parameter uncertainty with regard to overall uncertainty and SR uncertainty is similar in the example. 

To further illustrate the importance of SR uncertainty, the probability distributions of two parameters,   

and DDC , are modified to beta distribution with the following density functions: 

    ,2,16f x Beta x   (19) 

    ,1.2,1.8
DDCf x Beta x  (20) 

which are heavily skewed when compared with the original log-normal distribution. By keeping all other 

settings unchanged, the results are given in Table 8. 
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Table 8 Uncertainty importance measures and their ranking (   and 
DDC  are changed to conform to beta 

distributions). 

  
 

Table 8 shows that the ranking given by the proposed methods and the two GSA measures are different 

with regard to the most and least important parameters. 
DDC ranks 1st according to M1i and M2i, while it 

ranks 2nd based on 
i and 3rd by using IHi, 

'M1i
 and M3i. D ranks 2nd according to M2i, 

'M1i
and M3i 

while it ranks 1st based on 
i and IHi, and 3rd based on M1i.  ranks 3rd by 

i and M2i while it ranks 2nd 

according to IHi and M1i, and 1st based on M3i. All the proposed SR uncertainty measures agree that MTTR 

is the least important while the two GSA methods give 
D  the lowest rank. 

It should be noted that the SR measures do not always agree with each other in terms of the exact 

ranking of parameters. This phenomenon is not surprising since these SR measures are defined from 

different perspectives. In practice, the most appropriate SR uncertainty measure is likely to depend on 

specific applications and thus should be carefully selected. 

 

5. Conclusions 

Traditionally, quantitative risk assessment has been focused on investigating how the uncertainty of 

input parameters affects that of system output in an overall sense. This paper introduces the concept of 

safety-related uncertainty and highlights its relevance for the analysis of safety systems. The conventional 

GSA that provides information about the overall uncertainty is inappropriate to measure SR uncertainty. 

Therefore, four new methods are developed in this paper to quantify and rank the impact of individual 

parameters on SR uncertainty, and they are demonstrated through the application to three examples. In the 

first two examples, the proposed SR uncertainty measures correctly rank the parameters with regard to 

achieved safety, while the GSA measures either are unable to distinguish the importance of the two 

parameters (example 1), or give the opposite conclusion by considering the overall uncertainty (example 2). 

In the third example, the proposed methods and GSA measures obtain inconsistent results in particular 

regarding the most and least important parameters when the distributions of   and DDC  are heavily 

skewed. The results indicate the need of the proposed measures when SR uncertainty is considered. 

Nevertheless, the measure 'M1i  appears to be incapable of assessing the parameters’ importance 

appropriately in the studied examples.  
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Appendix A. Converting data into lognormal distribution 

In practice, data are often given in the form of a triplet (minimum, typical, maximum), duple (minimum, 

maximum), or even a point estimate [11]. Probabilistic analysis requires to convert such data into a certain 
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distribution with required characteristics. This appendix explains how to convert data into lognormal 

distribution based on the results in [11].  

The density function of lognormal distribution is given by: 

       
2

02

1 1
exp ln ln

22
f x x x

x  

 
   

 
 (A.1) 

The median of the lognormal distribution is x0. The problem now is how to choose the parameters   and x0. 

First, we discuss the form of triplet. Let m, T and M denote the minimum, typical and maximum values, 

respectively. In this case, m is defined by dividing the typical value by a certain factor F (m=T/F) and M is 

given by multiplying the typical value with the same factor (M = T × F). The following method can be used 

to determine   and x0. 

1). Choose x0 equal to the typical value T. 

2). Choose   in such a way that the probability for obtaining values between the minimum and the 

maximum is given by P (In  Example 3 of this paper, P is taken as 0.95). This implies that   is chosen so 

that : 

     
2

02

1 1
exp ln ln

22

M

m

P x x dx
x  

 
   

 
  (A.2) 

Define the auxiliary variable z as  

 
1

ln
2

x
z

T

 
  

 
 (A.3) 

In addition, the definition of the Gaussian error function is 

    2

0

2
exp

x

erf x t dt


   (A.4) 

From Eqs. (A.2)(A.3)(A.4) we have 

  
1

ln
2

P erf F


 
  

 
 (A.5) 

Now   can be calculated with the help of the inverse function of the error function 

 
 

 

ln

2

F

inverf P
   (A.6) 

The error function and its inverse function are available in many computation software packages, e.g. 

Matlab. 

If the form of duple (minimum, maximum) is given, a similar approach can be followed by using 

 
M

T mM and F
m

   (A.7) 
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