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Abstract

Use of advanced statistical models can help industries to design more economical and
rational investment plans. Fault detection and diagnosis is an important problem in
continuous hot dip galvanizing. Increasingly stringent quality requirements in the
automotive industry also require ongoing efforts in process control to make processes
more robust. Robust methods for estimating the quality of galvanized steel coils are
a tool for the comprehensive monitoring of the performance of the manufacturing
process. This study applies different statistical regression models: generalized linear
models, generalized additive models and classification trees to estimate the quality
of galvanized steel coils on the basis of short time histories. The data, consisting
of 48 galvanized steel coils, was divided into sets of conforming and nonconforming
coils. Five variables were selected for monitoring the process: steel strip velocity and
four bath temperatures.

The present paper reports a comparative evaluation of statistical models for bi-
nary data using Receiver Operating Characteristic (ROC) curves. A ROC curve is
a graph or a technique for visualizing, organizing and selecting classifiers based on
their performance. The purpose of this paper is to use them in research to obtain
the best model to predict defective steel coil probability. In relation to the work of
other authors who only propose goodness of fit statistics, we should highlight

one distinctive feature of the methodology presented here, which is the

possibility of comparing the different models with ROC graphs which are

based on model classification performance. Finally, the results are validated
by bootstrap procedures.

Key words: Generalized Linear Models, Generalized Additive Models, ROC
Curve, Bootstrapping.
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1 Introduction

According to Himmelbau (1978), the term fault is generally defined as a de-
parture from an acceptable range of an observed variable or a calculated pa-
rameter associated with a process. A fault is defined as abnormal process
behaviour whether associated with equipment failure, sensor degradation, set
point change or process disturbances. Fault detection is the task of determin-
ing whether a fault has occurred. Fault diagnosis is the task of determining
which fault has occurred. Fault detection and diagnosis is an important prob-
lem in process engineering. A diagnosis problem is characterised by a set of
observations to be explained. When these observations are different from the
expected behaviour, we define a faulty state.

Galvanized steel is a value added product, furnishing effective performance by
combining the corrosion resistance of zinc with the strength and formability
of steel. Fault detection and diagnosis is an important problem in continuous
hot dip galvanizing and the increasingly stringent quality requirements in the
automotive industry have also demanded ongoing efforts in process control to
make the process more robust.

Statistical Process Control (SPC) is a tool oriented to improving
quality and productivity. Control charts are a mature tool widely
employed in industry, from the simplest Shewhart control chart to
the more elaborate and powerful Cumulative Sums (CUSUM) or
Exponentially Weighted Moving-Average (EWMA) charts (Mont-
gomery, 2009). Several researchers have investigated applications
of neural networks (Pacella et al., 2004), and genetic algorithms
(Aparisi and Garćıa-Dı́az, 2007) for manufacturing quality control.
Many authors have proposed various statistical methods to quality
control in the steel industry. Some of the widely used traditional
statistical tools applied for prediction and fault diagnosis in steel
coils manufacturing are Principal Components Analysis (Garćıa-
Dı́az, 2009a), and Logistic Regression (Garćıa-Dı́az, 2009b). Non-
linear statistic and non-parametric strategies as neural networks
(Zheng et al., 2007; Perńıa-Espinoza et al., 2005), have been used
for control quality in hot-dip galvanizing of coils manufacturing.
Modern techniques in Data Mining and Artificial Intelligence have
been used to design dynamic model for predicting the temperature
of the steel strip in the annealing process in a hot-dip galvanizing
line (Mart́ınez-De-Pisón et al., 2010). Ordieres-Meré et al. (2010)
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presents a comparative assessment of the different techniques cur-
rently being used for estimate the mechanical properties of steel
coils before being processed on the hot-dip galvanizing line.

The problem of determining which factors influence the correct manufacture of
parts has been considered from different perspectives and statistical method-
ologies. The investigation of this issue has made frequent use of traditional
statistical methods. Discriminant analysis is one of the most widely used tech-
niques for classification, but the requirement of normality and homoscedastic-
ity are not met. As a result it is often necessary to use different techniques, such
as logistic regression. Other classification techniques based on decision trees
have also been considered more recently. One is “Classification And Regres-
sion Trees” (CART) from machine learning starting in the 1970s (see Qinlan
(1993) for an overview), but it was Breiman et al. (1984) who introduced
these models into statistical science. The study of statistical models to deter-
mine which factors influence the correct manufacture of parts is essential to
influence the aspects that guarantee the successful implementation of quality
control strategies. This study applies different statistical regression models:
generalized linear models, generalized additive models and classification trees
for estimating the quality of galvanized steel coils on the basis of short time
histories. However, there is a research gap in the comparison of models based
on their results or discrimination capacity, given that most of the decisions
about the adjustment of one model over another are based on measures of
goodness of fit. To this end, this study also introduces ROC curves, which can
help us by allowing us to compare models.

Firstly, this study determine which steel coil manufacturing process charac-
teristics affect defective risk and which models fit the data best. In addition to
proper diagnosis of the model after a detailed study of the basic assumptions
from their residuals.

Secondly, the present paper reports a comparative evaluation of statistical
models for binary data using Receiver Operating Characteristic (ROC) curves
following the methodology used for a pipe failure database by Debón et al.
(2010). A ROC curve is a technique for visualizing, organizing and selecting
classifiers based on their performance. ROC graphs are commonly used in
medical decision making, and in recent years have been increasingly used in
machine learning and data mining research. The purpose of this paper is to
use them in research to obtain the best model to predict defective steel coil
probability.

Finally, bootstrap techniques are used to validate the results of the ROC
curves.

The contents of this article are structured as follows. In the second section, we
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briefly present the three models for binary data: Generalized Linear Models,
Generalize Additive Models and Classification And Regression Trees. We also
introduce a Receiver Operating Characteristics (ROC) as a way to evaluate
concordance between models and real data. The third section starts by describ-
ing defective steel coil data. In this third section, we apply the three different
models to these data, commenting on their advantages and disadvantages, as
well as on their suitability in the failure risk analysis in question. The section
ends with a comparison of two different fits by means of the ROC curves.
Finally, we draw some conclusions in which we try to assess their validity not
only for this case but also, to some extent, for any other data.

2 Statistical Models

Statistical models of differing complexity have been suggested in the liter-
ature for predicting fault diagnosis in the steel coil manufacturing process,
from Logistic regression to Generalised Linear Models (GLM). A review of
these statistical models applied in quality control can be found in El Aroui
and Lavergne (1996); Skinner et al. (2004); Hosmer and Lemeshow
(2000). The most recent contributions have also been compiled by Myers
et al. (2010) with special emphasis on applications in engineering and the use-
fulness of these models by means of goodness of fit statistics. These models
were designed to show the impact of each predictive variable for the risk of
failure of a individual product.

GLMs have several areas of application ranging from biological and
biomedical fields to economics, occurrence of natural phenomena
including earthquakes and hurricanes (Liu et al., 2005, 2008) qual-
ity control and reliability engineering (Hamada and Nelder, 1997),
but its use in engineering disciplines is very recent. GLMs are also
applied to statistical quality control because there are many cases of
nonormal responses in industrial experiments (Lewis et al., 2001).
Another possibility is a binary response variable. Studies where the
response variable is either “success” or “failure” (i.e., 0 or 1) are
fairly common in nearly areas of science and engineering. The GLMs
has been used in the manufacturing process field (Myers et al., 2010;
Roshan and Adya, 2001). The application of classification and re-
gression tree models in quality control problems has also been ex-
amined in recent years (Guh, 2005). Steel coils manufacturing is
extremely competitive and the financial margins that differentiate
between success and failure are very tight, with most established
steel companies needing to compete, produce and sell at global level.
The current operating philosophy is try to maintain the strip veloc-
ity at the maximum value or as high as possible, in order to keep
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to the productivity goal. It is of practical interest to locate some
operating conditions that achieve an optimum within the region of
strict compatibility rules based on coil characteristics. The idea is to
find the classifier that is capable of predicting the quality measure
of product based on its manufacturing parameters. CART replaces
equation of usual regression type model with set of rules. This fu-
ture is an important aid for the process engineer as it allows him
to change the operating parameters as the line speed in order to
produce high-quality galvanized steel economically.

2.1 Generalised Linear Models (GLM)

GLM are generalized linear regressions to allow for non-normal, count data
and non-linear transformations. They link the mean response of a specified
conditional distribution to a predictor function. They are based on an assumed
probability mass function (PMF) for discrete (count) data and a link function
that connects the parameters of this PMF to the available covariates. Then
a GLM provides a method for estimating a function of the average of the
response variable as a linear combination of the set of predictive variables,
that is

l(E(Y |X)) = l(m) = η(x) = β0 +
p∑

i=1

βixi. (1)

The function of the response average, l(m), is called the link function, and is
considered to be the same as a linear function of the predictors, η(x), which
is called a linear predictor. where E(Y/X) = m is the expected value of
Y;

∑p
i=1

βixi is the linear predictor, a linear combination of unknown
parameters, β and independent variables xi. Each component yi of Y
has a Binomial, Poisson Gamma,Negative Binomial or Conway-Maxwell
Poisson distribution.

The GLM comprehensive reference is McCullagh and Nelder (1989). GLM
with qualitative predictors are well described in Agresti (2002).

Logistic regression is a specific type of GLM. This model predicts the proba-
bility of a discrete outcome, such as group membership (e.g. galvanized steel
coils conforming and nonconforming), from a set of explanatory variables that
may be discrete, continuous, or dichotomous or a combination of any of these.
The dependent variable in a binary logistic regression model takes the value
1 (nonconforming galvanized steel coils) with a probability of p, or the value
0 (conforming galvanized steel coils) with a probability of (1 − p). The rela-
tionship between the dependent and independent variables is assumed to be
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non-linear. The estimated regression model may be used to predict the proba-
bility of coils conforming given the values of independent variables. Using the
sample data, we obtain the model of estimation of probability function of p.

The application of GLM as tool in coils steel manufacturing quality
control may be found in Garćıa-Dı́az (2009b). The author proposed a
logistic regression model to predict the probability of coils conform-
ing given the values of independent process variables: steel strip
velocity, and four bath temperatures. The best-fist model results
show that steel strip velocity and one bath temperature variables
are statistically significant. The results from using the logistic GLM
suggest that it can provide a sound basis for estimating the prob-
ability of conforming coils and can be useful for quality control in
manufacturing process. This type of model explicitly models zero
counts, and, in many cases, a utility would be more interested in
the probability of having at least nonconforming coil than in pre-
dicting the precise number of nonconforming coils.

2.2 Generalised Additive Models (GAM)

Generalised additive models (GAM) are a natural extension of GLM in the
sense that they adjust nonparametric functions to study the relationship be-
tween predictive variables and the answer. Non-parametric relationships be-
tween response and predictor variables were expressed in terms of smooth
functions. In effect, the predictor η no longer has to be a linear function of
predictive variables, but is

η = α +
p∑

j=1

fj(xj) + ǫ (2)

where fj is a smooth function (splines, locally-weighted regression, . . .). α +∑p
j=1 fj(xj) + ǫ is the predictor, a linear combination of unknown pa-

rameter α and smoothing fj, of independent variables xi.

The GAM was developed as a prognostic tool for the investigation of logistic
regression. GAMs replace the linear component of logistic regression (GLM)
with a flexible additive function.

These models are a semi-parametric approach, an improvement with respect
to the nonparametric techniques as they allow us to use, in a similar way to
generalised linear models, the exact distribution that corresponds to the count
data, the Binomial distribution. The importance these models have in quality
control in manufacturing process is that they allow for an improvement in
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the formulation of some of the nonparametric methods already described in
engineering theory. For example, cubic spline graduation uses Normal approx-
imate distribution. However, this is not necessary with the GAM approach as
these models are able to use an exact distribution. Comprehensive research on
GAM can be found in Hastie and Tibshirani (1990) and Hastie et al. (2001).
GAM have not been used in the forecast of defective steel coil probabilities.

GAM and GLM can be applied in similar situations, but they serve different
analytic purposes. GLM emphasize estimation and inference for the parame-
ters of the model, while generalized additive models focus on exploring data
nonparametrically. GAM are more suitable for exploring the data set
and visualizing the relationship between the dependent variable and
the independent variables.

2.3 Classification And Regression Trees (CART)

Quality control research is frequently faced with handling complex data that
include a large number of variables, which are necessary to obtain information,
find patterns and identify trends. For this purpose Sonquist et al. (1971) pro-
posed the AID program (Automatic Interaction Detection), which represents
one of the earliest methods for the adjustment of data based on classification
tree models. Kass (1980) proposes a recursive algorithm called non-binary clas-
sification CHAID (Chi Square Automatic Interaction Detection). Other newer
methods are: FIRM (Formal Inference-based Recursive Modeling) proposed
by Hawkins (1997) And MARS (Multivariate Adaptive Regression Splines)
proposed by Hawkins (1997). This section focuses on the methodology which
CART uses for the construction of regression trees and classification, using an
algorithm recursive binary partition on each node.

The analysis of classification and regression trees (CART) is generally carried
out in three steps Timofeev (2004):

(1) construction of the maximum tree,
(2) pruning the tree and,
(3) optimal tree selection by cross-validation procedure

The tree is built by the following process: first the single variable is found which
best splits the data into two groups, which are as homogeneous as possible,
observations between groups need to be as different as posible. The “best” is
defined by chosing the partition that minimizes the residual sum of squares
(RSS) using a partitioning regression algorithm,

RSS(partition) = RSS(part1) +RSS(part2).
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The data is separated, and then this process is applied separately to each
sub-group, and so on recursively until the subgroups either reach a minimum
size or until no improvement can be made. The resultant tree model is too
complex and it must be simplified by pruning as it is over-fitting, and will not
representative for new samples. The procedure must only remove the nodes
that improve the tree’s precision very little. The last stage of the procedure
consists of using cross-validation to select the best tree. The main differences
between the algorithms for the construction of decision trees are centered on
the pruning strategies and the rules adopted to remove the nodes.

A detailed description of CART can be found in Hastie et al. (2001). As in the
case of the GAM, CART have not been used in the forecast of defective steel
coil probabilities. The building of a decision tree starts with a description of
a problem which should specify the variables, actions and logical sequence for
decision-making. In a decision tree, a process leads to one or more conditions
that can influence an action or other conditions, until all conditions determine
a particular action, once built you have a graphical view of decision-making.

3 Receiver Operating Characteristic curves (ROC)

There are two objectives for the models described above:

(1) find the factors that have predictive capacity, and
(2) generate a predictive classification.

The first objective has already been covered by selecting a set of available
variables in each one of the models. Regarding the second objective, since
the response is the occurrence of an event, prognostic models may be called
and must assess the predictive ability of each model. Discrimination is a
way of assessing the fit of the model through its ability to distin-
guish between subjects with an event and those which do not have
one. COMENTARIO 28 DEL REFEREE DICE QUE NO SE EN-
TIENDE

ROC curves are particularly useful for comparing the classification power of
different fitted models. ROC curves are well described in Fawcett (2006). We
consider problems where the items can only belong to two classes and some
classification models (or classifiers) that produce a continuous output (e.g., an
estimate of failure probabilities) to which different thresholds may be applied
to predict class. For each individual we have both the model prediction and
the actual class. Given a classifier and a threshold, there are four possible
outcomes, Table 1 showing the possibilities
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Table 1
Results in table form

True class

A B

Predicted
class

A True positives False positives

B False negatives True negatives

Total positives Total negatives

The true positive rate (tp rate) of a classifier is estimated as

tp rate =
True positives

Total positives
.

The false positive (fp rate) rate of a classifier is estimated as

fp rate =
False positives

Total negatives
.

Additional terms associated with ROC curves are

sensivity = tp rate = S

and

specificity = 1− fp rate =
True negatives

Total negatives
= E.

ROC graphs are two-dimensional graphs in which the tp rate is plotted on the
Y axis and the fp rate is plotted on the X axis. A ROC graph depicts relative
tradeoffs between benefits (true positives) and cost (false positives).

If the cost of a false positive is similar to a false negative, the best model is the
one with the ROC curve closest to the left and top of the chart (model without
misclassification, S=E=1). The worst is that which shows the ROC curve
closest to the main diagonal of the graph (model with no predictive value).
Resulta obvio que lo ideal seŕıa trabajar con pruebas diagnósticas
de alta sensibilidad y especificidad, pero esto no siempre es posible
pues dependen de la tecnoloǵıa y opciones que se disponen. Then,
to assess the classification power of the model, it was first verified
whether the specificity and sensitivity have acceptable levels. Para
las técnicas de screening o también llamadas de tamizaje se prefiere
a las técnicas con gran sensibilidad y de bajo costo ya que permite
estudiar un gran número de casos con menores costos y minimizando
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los riesgos. Las técnicas con alta especificidad se las prefiere como
pruebas confirmatorias ya que permiten saber definitivamente si un
caso es favorable o no (si es positivo con gran seguridad es positivo).

The assessment of the predictive ability of the model is defined by the area
under the ROC curve (AUC) constructed for all possible cutoff points to
classify as positive or negative events. Since the AUC is a portion of the area
of the unit square, its value will always be between 0 and 1, the random
guessing procedure having an area of 0.5. The greater the AUC, the better
the classifier.

There are other tools that allow classification of the defective and non-defective
steel coils such as discriminat analysis. However, ROC curves have the advan-
tage of being able to decide about the breakage point or risk for the classifi-
cation.

The strategies for the validation of the results of the ROC curves can be
threefold:

(1) to test the model in another different sample,
(2) develop the model with 75 % of the sample and calculate the predictive

power with the remaining 25%, or
(3) use the same sample, but calculating predictive indicators using bootstrap

techniques.

In this paper we use the last one because we have only one sample and
its size is small. Starting from the observations, we simulate N bootstrap
samples, n = 1, 2, . . . , N , where each sample is selected randomly, with re-
placement and with the same size as the original sample. For each bootstrap
sample, the AUC is estimated, with fitted probabilities from the model ad-
justed with the original data. This yields N realizations of AUC for each model.
Both samples were compared using a unilateral t-test for paired samples.

4 Application to real data

4.1 Industrial process under study

An overview of the industrial process is shown in Figure 1. The strip heated
in the annealing furnace goes into a zinc pot which contains molten zinc.
Air knives above the zinc pot blow compressed air. The strip is cooled in a
cooling tower and passes a coating gauge, skin-pass mill and exit looper. In
a continuous hot dip galvanizing line, the steel strip is coated by passing it
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Fig. 1. Simplified model of the hot dip galvanizing line processing plant: each coil
is welded in a welding machine and goes to an annealing furnace; the strip heated
goes a zinc pot which contains molten zinc (galvanizing bath operation), the strip
is cooled and passes a coating gauge, skin-pass mill, quality control inspection, and
exit looper.

through a pot of molten zinc normally between 450 and 480 oC (average bath
temperature of 460oC) and withdrawing it from the pot through a pair of
air-wiping jets, to remove the excess liquid zinc, as shown schematically in
Figure 2. Galvannealing is an in-line process during which the zinc layer of
the steel strip is transformed into a iron-zinc alloy (ZnFe) layer by diffusion.
Depending on the annealing temperature, annealing time, steel grade, alu-
minium content in the Zn bath, and other parameters, different intermetallic
ZnFe phases are formed in the coating, which influence the formability of the
galvanized material (Tang, 1999). The material consumption is compen-
sated by the ingots of Zn-Al alloys which are added to the bath to
maintain a constant bath Zn level and Al content. Local decreases
in the temperature near the melting ingot surface reduce the solu-
bility of iron and aluminum, and are considered to be the primary
source of dross particles. Control of bath temperature is therefore of
primary importance in order to prevent this precipitation phenom-
ena. The presence of an ingot significantly changes the temperature
distribution and also results in important variations in the local
aluminum concentration, since the makeup ingot has a higher alu-
minum concentration. It was shown that precipitates form near the
ingot surface because this region is surrounded by a solution with
a temperature which is lower than the average bath temperature
of 460 0C (Ilinca et al., 2007). The temperature of the molten zinc
coating bath must also be carefully controlled to avoid excessive
temperature variations of steel strips in the inlet of the bath which
could cause excess alloy layer formation in the bath on the heavier
zinc coated side.
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Fig. 2. Galvannealing section (zinc pot) of a hot dip galvanizing line. Schema of gal-
vanizing bath operation and variables location used to quality and process control:
the input strip temperature of the zinc pot zone (TP12), the input strip velocity
(Vmedia), and temperature of the zinc bath (T1, T2 and T3).

4.2 Data

Data for 48 batches (steel coils) were available. Five variables were selected
for monitoring the process: the steel strip velocity (Vmedia), the input strip
temperature of the zinc pot zone (TP12) and three bath temperatures (T1, T2,
T3). The data were analyzed to determine whether or not a fault occurred in
the process. The entire data consisting of 48 galvanized steel coils was divided
into sets. The first training data set was 25 conforming coils and the second
data set was 23 nonconforming coils.

4.3 Generalized linear models

As is common with dichotomous data, the estimation of the covariable effects
are analyzed on the probability associated with a defective steel coil. We begin
with the Generalised linear Model analysis which allows us to analyze the data
on the assumption that the number of defective coils is Binomial. Its mathe-
matical expression is in equation (1). Our model is formally a Binomial Gen-
eralized linear Model with several link functions, it was fitted in R (R Devel-
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opment Core Team, 2009). The most commonly used GLM regressions
can be obtained using R command glm except negative binomial
regression which can be obtained using glm.nb into MASS library.
Detailed arguments and estimations are available in Venables and
Ripley (2002). But the recently GLM with Conway-Maxwell Poisson
distribution can be obtained using library COMPoissonReg (Sellers
and Lotze, 2011).

The results of the GLM Regression are shown in Table 2, which includes the
value of the Deviance for each of the Binomial model with corresponding links.
There are many commonly used link functions, and their choice can
be somewhat arbitrary. The Binomial family links are logit, probit,
cauchit, (corresponding to logistic, normal and Cauchy CDFs re-
spectively) log and cloglog (complementary log-log), Deviance is a
quality of fit statistic for a model, it is calculated 2 times the log-
likelihood of the full model minus 2 times the log-likelihood of the
model and ∇Deviance es el incremento de Deviance de un modelo
respecto del anterior. To explore the changes in the number of terms
in a model we consider the Mallows statistic Cp which penalizes the
complexity of models because it increases with the number of pa-
rameters. Then, we must choose the model with the lowest Deviance
and Cp (see formulas and details in McCullagh and Nelder (1989)
and Venables and Ripley (2002)). From these results we can conclude
that although there are no major differences in link, the best results are for
the clog-log link fit. Therefore this link was used for the regression.

Table 2
GLM Regression

Link Deviance ∇Deviance Cp

cauchit 50.803 62.803

logit 49.956 0.847 61.956

probit 49.705 0.252 61.705

cloglog 48.946 0.759 60.946

The results of the GLM Regression with cloglog link are shown in Table 3,
which include the value of the coefficients β for each of the covariates, the
standard error se(β) and the p-values or significance associated for each of
the coefficients.

According with their p-values (≤ 0.1) only Vmedia and TP12 are
significant variables. The meaningfulness of the positive coefficient β which
corresponds to the Vmedia can be interpreted thus: the failure probability
increases with the speed. On the contrary, the meaningfulness of the negative
coefficient which corresponds to TP12 can be interpreted thus: the failure
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Table 3
GLM Regression

Covariables β se(β) t-value p-value

Intercept -150.87 -992.70 -0.152 0.8792

Vmedia 0.1154 0.0409 2.822 0.0048

TP12 -0.6929 0.2928 -2.366 0.0180

T1 0.8749 0.7067 1.238 0.2157

T2 -1.3195 0.8663 -1.523 0.1277

T3 1.4189 2.3570 0.602 0.5472

probability decreases when the temperature increases.

The next step is to select the most relevant covariables for adjustment. The
R command step will be used to select a formula-based model by the Akaike
information criterion (AIC is a measure of the relative goodness of fit of a
statistical model and it provides a means for comparison among models, the
preferred model is the one with the minimum AIC value). This command takes
all the possible selection of variables into account and chooses the minimum
number of significant variables that fit best.

Then, we can check model assumptions and fit using its residuals. The graphs
of the residuals may indicate a problem in the choice of link function, a wrong
scale of one of the linear predictors, omission of a quadratic term predictor or
heteroscedasticity. In addition, high levels of residuals reported outliers. In this
case, it is necessary to eliminate some of these observations and reformulate
the model. Deviance residuals are usually used for these purposes, and graphs
are to represent residuals versus fitted values and against the predicted values.
The first standard graphs are shown in Figure 3 using R command plot.

Figure 3 shows in the upper left panel the plot of the deviance residuals
versus the predicted values where there are two groups, the variance does not
remain more or less constant with the average, i.e. the dispersion of residuals
fluctuates around zero. So you have two different groups for the fitted values
corresponding to failures and non failures. In the top right panel there is a
Q-Q plot of standardized deviance residuals. If these residuals are adjusted
perfectly to the diagonal, their distribution is exactly normal. Especially at
the ends, our residuals are separated from the line, which means that the
distribution of these residuals has thicker tails than the Normal distribution.
The graph in the lower left panel is the representation of the square root of the
absolute value of the deviance residuals versus predicted values. Curvatures
will indicate the absence of a quadratic term or a bad choice of link function. In
this case, it seems that the data does not reasonably fit a straight line because
there are some points that are more spread for that reason we need to
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Fig. 3. Checking the assumptions for a proper GLM model.

check the linear relationship using the GAM model in next section.
The last graph, located in the lower right panel, determines the influential
points using Cook’s distances, which is a measure of the difference between
the fitted values of the model and the model without each of the observations.
If this statistic is very large, we face an outlier, this observation can be seen in
39, so we repeated the analysis without this observation. This is carried out
to improve the model so that it considers the behavior of the majority of the
data better, and is not too influenced by any one data point.

Although the selection of the link remains the same, the significance of the
variables have changed, the results appear in Table 4 and their validation is
shown in Figure 4 which shows that the residuals have improved their behavior
significantly. In Table 4 the values listed above the double line are model
coefficients including all variables and below the double line are when the
non-significant variables are omitted (p-value ≥ 0.1).
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Table 4
GLM Regression without influential points

Covariables β se(β) t-value p-value

Intercept 64.47002 1052.35184 0.061 0.95115

Vmedia 0.10160 0.03296 3.082 0.00205

TP12 -1.50223 0.50878 -2.953 0.00315

T1 1.72442 0.93005 1.854 0.06372

T2 -2.42899 1.11397 -2.180 0.02922

T3 2.01210 2.63032 0.765 0.44429

Intercept 853.6715 433.5346 1.969 0.04894

Vmedia 0.1003 0.0331 3.028 0.00246

TP12 -1.3539 0.4334 -3.124 0.00179

T1 1.6650 0.9169 1.816 0.06939

T2 -2.2241 1.0352 -2.149 0.03167

Examination of the partial residual plots is also interesting. These graphs
help us to understand the relationship between the response and each of the
explanatory significant variables of the model. They also help identify if there
are problems such as lack of linearity or constant variance and which variables
cause them. The partial residual graphs were obtained in R using the faraway
library (Faraway, 2009).

Figure 5 shows all independent variables versus their respective partial resid-
uals in the GLM model. The effects of the two variables in the model are
important because there is enough variation in their values. The variables in
the model appear to form two distinct groups, defective coils (filled square)
and non-defective (circle), with a greater linearity in non-defective. These
graphs (Figure 5) show that the model fits the data relatively well.

In summary, the result (Table 4 above the double line) provides us
with GLM is a logistic regression model where the T3 temperature
do not influence the production of defective coils (p-value ≥ 0.1).
The meaningfulness of the positive coefficient β which corresponds
to the Vmedia and T1 can be interpreted thus: the failure probabil-
ity increases with the speed. On the contrary, the meaningfulness
of the negative coefficient which corresponds to TP12 and T2 can
be interpreted thus: the failure probability decreases when the tem-
perature increases.
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Fig. 4. Checking the assumptions for a GLM model without influential points.

4.4 Generalized additive models

In order to check the consistency of these previous results, we use a different
technique: Generalised Additive Model (GAM) analysis which allows us to
analyze the data on the assumption that the number of defective steel coils
is Binomial. They allow to us to incorporate explanatory variables in a non-
linear way in the model. Our model is formally a GAM with Binomial family
and cloglog link, it was fitted in R. The detailed arguments and estimations
are available in Faraway (2006).

Results of the Generalised Additive Model are shown in Table 5 with T3
non-significant variable (p-value ≥ 0.1) . The first graphics standard,
which are shown in Figure 6 the partial predictions for each predictor, were
performed with command plot. Notice that the 95% confidence limits
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Fig. 5. Partial residuals of variables in the GLM model.

for T3 cover the zero axis, confirming the insignificant of this term.
The plot also shows that the partial predictions corresponding to
rest of variables that have a linear pattern.

Influential points are determined with Cook’s distances through the cooks.distance
command that we used in the previous model, these distances are shown in
Figure 7. It can be seen that observation 39 corresponds to a high value, so
as before, we repeated the analysis without this observation.
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Table 5
GAM Regression

Covariables edf Ref.df Chi.sq p-value

s(Vmedia) 2.270 2.270 7.874 0.0257

s(TP12) 1.000 1.000 5.290 0.0214

s(T1) 1.592 1.592 5.611 0.0397

s(T2) 1.000 1.000 4.456 0.0348

s(T3) 1.000 1.000 0.516 0.4724

The significant variables have not changed, the results appear in Table 6 and
their validation is shown in Figure 8 where smooth functions is written as
s(x, df), x is the univariate predictor, and df is the target equivalent
degrees of freedom, used as a smoothing parameter (values for df
should be greater than 1, with df=1 implying a linear fit). This Fig-
ure 8 suggest a linear relation for all variables excepto para V media
para la que sugiere una curva muy suave por lo que pensamos que
se confirma la linealidad que supone the GLM model.

Table 6
GAM Regression without influential points

Covariables edf Ref.df Chi.sq p-value

s(Vmedia) 4.142 4.142 1.005 0.91924

s(TP12) 1.000 1.000 8.698 0.00319

s(T1) 1.151 1.151 4.443 0.04360

s(T2) 1.000 1.000 6.066 0.01378

s(T3) 1.000 1.000 0.750 0.38637

4.5 Classification and regression trees

Tree models are quite popular because the structure is easier for non technical
people to understand. The following packages are available from the CRAN (R
Development Core Team, 2009), rpart Recursive PARTitioning and regression
trees, and tree Classification and regression trees. Trees can be used for several
different types of response data. Our model is formally a classification tree,
it was fitted in R with rpart function of rpart. The Detailed arguments and
estimations are available in Faraway (2006). Figure 9 shows the result-
ing tree, the interpretation of this tree is straightforward. The top
circle (root node) in Figure 9 contains all steel coils (25 conform-
ing / 22 nonconforming). This node is split based on the value of
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Fig. 6. Plots of the component smooth functions and partial residuals on the scale
of the linear predictor

principal separation variable. The first ramification point represents
the first risk factor selected by the procedure. When a split occurs,
the subsamples, also called nodes, end up either in a circle or in a
rectangular box. The rectangular boxes are referred to as terminal
nodes and the circles are non-terminal nodes. Terminal nodes do
not split further, while non-terminal nodes do. From here on, node
will be used instead of subsample. The information available at each
node is explained below.

• “0, 1”: category of the dependent variable (0 for conforming steel
coil and 1 for nonconforming steel coil).
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• “25/22”: number of objects for each category or class of the de-
pendent variable (0/1).

• “V media ≥ 118.6m/min”: split or separation variable with the cut-
off point.

• and so on for all the ramifications.

We force it to consider a larger tree and then examine the cross-validation
criterion for all the trees using the command printcp which only displays the
results in the console and plotcp which visualize cross-validation results as a
graph in Figure 10. Figure 10 gives a visual representation of cross-
validation results, representing Cp statistics versus xerror, a good
choice of Cp for pruning is often the leftmost value for which the
mean lies below the horizontal line.

We can select the size of the tree by minimizing the xerror value in the output
of the command printcp and selecting the corresponding value of Cp with the
command prune.rpart, Figure 11 shows the selected tree to avoid over-
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Fig. 8. Plots of the component smooth functions and partial residuals on the scale
of the linear predictor

dispersion based on the complexity parameter Cp.

This tree is not particularly successful because the maximum tree has large
“deviance residuals”(these residuals are examined in a plot not shown
here because is similar to other figures yet explained), especially for
observation 5 and the resulting pruned tree only uses one independent variable.
We must point out that when fitting a tree, it is very important not to over-fit
or under-fit it, because if the tree is under-fitted, then it will not be flexible
enough and may overlook the important structure in the data. We propose
repeating the process obtaining the clasification tree adjusted to the data
without observation 5. The final tree obtained is shown in Figure 12.
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Fig. 9. Maximum tree model for the quality performance steel coils. The cases fall
into two classes: ”0” for conforming and ”1” for nonconforming steel coil. The first
ramification point (split) represents the first risk factor selected by the procedure.
The values in each node are the prediction for the node (0 or 1) and the numbers
m/n denotes the proportion of training cases reaching that node classified into each
class (0/1).

Figure 12 shows that the conditions to obtain non defective coils are main-
taining the velocity below 118.6, but if that speed is exceded, maintaining the
TP12 above 458.8, once built you have a graphical view of decision-making.
The results of final CART analysis using binary conforming qual-
ity as the outcome variable are presented in Figure 12. For Vmedia
the classification tree analysis yielded a split point (threshold) of
118.6 m/min. This produced two subgroups with respective qual-
ity incidences of 10 conforming coils and zero nonconforming coils
if Vmedia < 118.6 m/min, and 15/22 conforming/nonconforming
coils if Vmedia ≥ 118.6 m/min. This latter subgroup was further
partitioned on the basis of the data for quality coil decline in TP12,
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and the classification tree analysis yielded a split point (thresh-
old) of 458.8 0C. The resultant groups had quality incidences of 11
conforming coils and seven nonconforming coils if TP12 ≥ 458.8
0C, and 15/22 conforming/nonconforming coils if 15/22 conform-
ing/nonconforming coils if TP12 < 458.8 0C. The result provides
us with CART is that the T1, T2 and T3 temperatures do not in-
fluence the production of defective coils. This is due to variations
in zinc bath temperature measured by T1, T2 and T3 were very
small, fluctuating around the target temperature of 460 0C. In this
case, although the three variables are not influence in the noncon-
forming coils production, it is not unreasonable to conclude that
the bath temperature is not important. In a modern galvanizing
plant the automatic temperature control of the zinc bath is efficient
enough to maintain the bath in its set point ≈ 460 0C. The analysis
described above showed that steel coil which was less prone to be
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Fig. 11. Pruned Classification Tree of size 2 terminal nodes (1 split: Vmedia) for
the quality performance steel coils based on minimal cross-validation.

defective is produced under the following conditions: low Vmedia,
high TP12, and maintaining the zinc bath temperature close to the
460 0C by monitoring of T1, T2 and T3 temperatures. The study
has sought to provide insight into the impact of different variables
on the risk of defect in steel coil. Our results confirm and extend
previous studies (Garćıa-Dı́az, 2009b) in which the influence of pro-
cess variables on nonconforming coils production has been found to
be associated with increased strip velocity (Vmedia) and with the
input strip temperature of the zinc pot zone (TP12).
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factor (Vmedia) selected by the procedure, and the second split represents the sec-
ond risk factor (TP12). The values in each node are the prediction for the node (0
or 1).

4.6 ROC curve

The above models are designed to show the impact of each variable in the
defective steel coil probabilities. To evaluate the discriminate performance of
the models and to compare them we can draw the ROC curve and calculate
the AUC. They are typically used for any test in which there are two possible
outcomes that are of interest to the researcher. Does the test give a correct
positive result (A) or a correct negative result (B). In this case, it corresponds
to the fact that either the steel coil is actually defective (A) or not (B). A
ROC curve is considered to be a summary measurement in the sense that it
uses all possible decision thresholds for the test to create the curve.
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The ROC curves were obtained in R using the ROCR library (Sing et al.,
2007). When comparing the ROC curves for the two models, tests with larger
areas are typically considered to be better tests, it is possible for tests to have
the same area and yet not be considered to be equivalent. Thus, it is important
to compare ROC curves and their areas.
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Fig. 13. ROC curves.

Figure 13 shows ROC curves based on the corresponding models whose com-
parison allows us to say that the defective probabilities obtained by CART
discriminates better between the steel coils that are defective than those that
are not, because its curve is almost always above the corresponding GLM
model curve.

In addition, the AUC corresponding to CART is 0.8156 greater than the AUC
corresponding to GLM of 0.8122. This confirms the superiority of the CART
in our data. It should be taken into account that although the models were
adjusted without the outliers, they were validated for all the data. Likewise,
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Figure 13 shows the ROC curve of each model. To verify that the CART
model provides ROC curves with greater AUC and can be consid-
ered better than the GLM for different data sets we used the boot-
strap techniques as described earlier. The result of the paired t-test
H0 : AUCGLM = AUCCART versus H0 : AUCGLM < AUCCART have t-
value=-3.606 with p-value = 0.0003263(two-tailed), 0.0001632 (one-
tailed), rejecting H0 showing that there is enough evidence to admit
that the CART model is better than GLM.

From an economic viewpoint, quality costs have emerged as a finan-
cial control tool for management and as an aid in identifying oppor-
tunities for reducing quality cost. The idea is to find the classifier
that is capable of predicting the quality measure of product based
on its manufacturing parameters. CART replaces equation of usual
regression type model with set of rules. This future is an important
aid for the process engineer as it allows him to change the operating
parameters as the line speed in order to produce high-quality gal-
vanized steel economically. Useful rules for a process engineer are
explained below. The CART analysis showed that steel coil which
was less prone to be defective is produced under the following con-
ditions: low Vmedia (Vmedia < 118.6 m/min), high TP12 (TP12 ≥
458.8 oC), and maintaining the zinc bath temperature close to the
460 ◦C by monitoring of T1, T2 and T3 temperatures.

5 Conclusions

Statistical analysis for estimating the quality of galvanized steel coils on the
basis of short time histories of the velocity and temperature distribution of
a typical galvanizing bath have been carried out using statistical regression
models: generalized linear models, generalized additive models and classifica-
tion trees. We have compared two different models by choosing the best fits for
each one of them. Specifically, we have compared the GLM and CART
in Figure 13, not GAM which is only used to confirm the linear re-
lationship. The comparison is carried out by applying the ROC curve, from
which we can conclude that the GLM model produces a worse classification
of galvanized steel in defective or not than CART. Then, the meth-
ods are tested in terms of discriminative ability. According with
the results of the paired test applied to the corresponding AUC to
the GLM and CART model the difference between them is statis-
tically significant. In addition, the CART model was much easier
to use and interpret, because the decision rules generated could be
applied without the need for mathematical calculations (Figure 12).
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The study sought to provide insight into the impact of operating variables
such as line speed and temperature distribution in the bath on the risk of
defect in steel coils. The results show that it is essential to include the steel
strip velocity and temperature near the inlet of the bath to forecast the risk
of nonconforming steel coil. The temperature of the molten zinc coating bath
must also be carefully controlled to avoid excessive temperature variations in
the steel strips at the inlet of the bath which could cause excess alloy layer
formation in the bath on the heavier zinc coated side. The presence of an
ingot significantly changes the temperature distribution and also results in
important variations in the local aluminum concentration, since the makeup
ingot has a higher aluminum concentration. It was shown that precipitates
form near the ingot surface because this region is surrounded by a solution
with a temperature which is lower than the average bath temperature of 460
oC.

The results show that the CART do provide good estimates of quality coils
and can be useful for quality control in manufacturing process. From this
model (Fig. 12) we can conclude that steel coil which were less prone to be
defective are produced under the following conditions: Vmedia less than 118.5
and TP12 greater than 458.8. Our results confirm and extend previous
studies in which the influence of process variables on nonconforming
coils production has been found to be associated with increased
strip velocity and with the input strip temperature of the zinc pot
zone. The CART model developed in the present paper shows that
the nonconforming steel coil incidence was best described by an
interaction between strip velocity and input strip temperature of
the zinc pot zone. The model indicates that nonconforming steel
coil incidence is likely to increase in conditions above 118.6 m/min
strip velocity and below 458.8 ◦C input strip temperature of the zinc
pot zone. However, when input strip temperature is above 458.8
0C, this interaction disappears and there appears to be little effect
on nonconforming steel coil incidence. The result provides us with
CART is that the bath temperatures (T1, T2 and T3 variables)
do not influence the production of defective coils. This is due to
variations in zinc bath temperature were very small, fluctuating
around the target temperature of 4600C. The analysis described
above showed that steel coil which was less prone to be defective is
produced under the following conditions: low Vmedia, high TP12,
and maintaining the zinc bath temperature close to the 460 0C by
monitoring of T1, T2 and T3 temperatures.

In relation to the work of other authors, we should highlight one distinctive
feature of the methodology presented here, which is the possibility of compar-
ing the different models with a simple and objective criterion. We are able to
provide measures of goodness of fit statistics and a detailed study of residuals
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with different graphs.

In short, we propose statistical tools which provide a clear framework for
decision support in quality control in manufacturing processes.

Acknowledgments

The authors are indebted to the anonymous referees whose suggestions im-
proved the original manuscript.

References

Agresti, A., 2002. Categorical Data Analysis. Wiley, 2a Edición.
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Garćıa-Dı́az, J. C., 2009a. Safety, Reliability and Risk Analysis: Theory, Meth-
ods and Applications. Vol. 1. Taylor & Francis Group, London, Ch. Fault
detection and diagnosis in monitoring a hot dip galvanizing line using mul-
tivariate statistical process control., pp. 201–204.
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