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ABSTRACT
This paper presents a computational framework for implementing an advanced Monte Carlo 

simulation method, called Subset Simulation (SS) for time-dependent reliability prediction of 

underground flexible pipelines. The SS can provide better resolution for low failure probability 

level of rare failure events which are commonly encountered in pipeline engineering 

applications. Random samples of statistical variables are generated efficiently and used for 

computing probabilistic reliability model. It gains its efficiency by expressing a small probability 

event as a product of a sequence of intermediate events with larger conditional probabilities. The 

efficiency of SS has been demonstrated by numerical studies and attention in this work is 

devoted to scrutinise the robustness of the SS application in pipe reliability assessment and 

compared with direct Monte Carlo simulation (MCS) method. Reliability of a buried flexible 

steel pipe with time-dependent failure modes, namely, corrosion induced deflection, buckling, 

wall thrust and bending stress has been assessed in this study. The analysis indicates that 

corrosion induced excessive deflection is the most critical failure event whereas buckling is the 

least susceptible during the whole service life of the pipe. The study also shows that SS is robust 

method to estimate the reliability of buried pipelines and it is more efficient than MCS, 

especially in small failure probability prediction.  

Key Words: Subset Simulation; Probability of failure; Markov Chain Monte Carlo Simulation; 
Reliability; Failure modes; Underground Pipes 
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1. INTRODUCTION
 

Structural reliability algorithms have been received greater attention over the world, though 

prediction techniques of small failure probabilities are very few till now. In recent years, 

attention has been focused on reliability problems with complex system characteristics in high 

dimensions (i.e., with a large number of uncertain or random variables) (Schueller and 

Pradlwarter, 2007). Prediction of small failure probabilities is one of the most important and 

challenging computational problems in reliability engineering (Zuev et al, 2012). The 

probabilistic assessment of engineering systems may involve a significant number of 

uncertainties in their behaviour. To implement probabilistic assessment for an engineering 

system, main difficulties arise from: (1) the relationship between the random variables, (2) too 

many random variables involved, (3) information about rare scenarios and (4) many interactive 

response variables in the description of performance criteria.  

 

Like other engineering systems, reliability analysis of buried pipeline systems are characterised 

by a large number of degrees of freedom, time-varying and response dependent nonlinear 

behaviour. In the presence of uncertainty, the performance of an underground pipeline can be 

quantified in terms of ‘performance margin’ with respect to specified design objectives. In 

reliability engineering, ‘performance margin’ is denoted as reliability index, probability of 

failure, safety margin, etc. Failure events in pipe reliability analysis can be formulated as 

exceedance of a critical response variable over a specified threshold level. By predicting pipeline 

reliability, the safe service life can be estimated with a view to prevent unexpected failure of 

underground pipelines by prioritising maintenance based on failure severity and system 

reliability (Tee and Li, 2011; Khan et al, 2013). 

 

There is no general algorithm available to estimate the reliability of a buried pipeline system. 

The pipeline reliability is usually given by an integral over a high dimensional uncertain 

parameter space. Methods of reliability analysis such as first order reliability method (FORM), 

second-order reliability method (SORM), point estimate method (PEM), Monte Carlo simulation 

(MCS), gamma process, probability density evolution method (PDEM), etc. are available in 

literature (Sivakumar Babu and Srivastava, 2010; Tee et al, 2014; Mahmoodian et al, 2012; Fang 

et al, 2013a, 2013b). In this context, a robust uncertainty propagation method whose applicability 

is insensitive to complexity nature of the problem is most desirable. Many methods are 
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inefficient when there are a large number of random variables and/or failure probabilities are 

small. Moreover, some methods need a large number of samples which is time-consuming.  

 

Advanced Monte Carlo methods, often called ‘variance reduction techniques’ have been 

developed over the years. In this respect, a promising and robust approach is Subset Simulation 

(SS) which is originally developed to solve the multidimensional problems of engineering 

structural reliability analysis (Au and Beck 2001; Au et al, 2007). A structural system fails when 

the applied load or stress level exceeds the capacity or resistance. SS is well suited for 

quantitative analysis of functional failure systems, where the failures are specified in terms of 

one or more safety variables, e.g., temperatures, pressures, flow rates, etc. In the SS approach, 

the functional failure probability is expressed as a product of conditional probabilities of 

adaptive chosen intermediate events. The problem of evaluating small probabilities of functional 

failures is thus tackled by performing a sequence of simulations of more frequent events in their 

conditional probability spaces; then the necessary conditional samples are generated through 

successive Markov Chain Monte Carlo (MCMC) simulations in a way to gradually populate the 

intermediate conditional regions until the final functional failure region is reached (Zio and 

Pedroni, 2008). 

 

Many researchers, such as Au and Beck (2001), Au et al (2007), Ching et al (2005), Song et al 

(2009) and Zhao et al (2011) have used SS in reliability analysis of engineering structures, such 

as bridges and buildings. However, according to authors’ knowledge, no such work has been 

found in the literature on time-dependent reliability analysis of buried pipeline systems. This 

paper focuses on application of SS for computing time-dependent reliability of flexible buried 

metal pipelines. Failure probabilities for corrosion induced multi-failure events, namely 

deflection, buckling, wall thrust and bending have been predicted in this study. Firstly, the SS is 

applied for estimating the failure probabilities for each failure case individually and then due to 

multi-failure modes, an upper and lower bounds of failure probabilities are predicted as a series 

system. Besides that, coefficients of variation (COVs) and a sensitivity analysis of pipe failure 

due to corrosion induced deflection, as an example of failure event, have also been assessed to 

illustrate the robustness and effectiveness of SS method. The application of SS method is 

verified with respect to the standard MCS. 

 
 
 



4 
 

2. FORMULATION FOR PIPE FAILURE 
 

A system failure occurs when a system does not meet its requirement. The number of potential 

failure modes is very high for buried pipe structures. This is true in spite of the simplifications 

imposed by assumptions such as having a finite number of failure elements at given points of the 

structure and only considering the proportional loadings. It is, therefore, important to have a 

method by which the most critical failure modes can be identified. When the residual ultimate 

strength of a buried pipeline is exceeded, breakage becomes imminent and the overall reliability 

of the pipe is reduced. The critical failure modes are those contributing significantly to the 

reliability of the system at the chosen level. The failure criteria adopted here are due to loss of 

structural strength of pipelines by corrosion through reduction of the pipe wall thickness which 

then lead to pipe failure by excessive deflection, buckling, wall thrust and bending.  

 

2.1 Corrosion of metal pipes  

Buried pipes are made of plastic, concrete or metal, e.g. steel, galvanized steel, ductile iron, cast 

iron or copper. Plastic pipes tend to be resistant to corrosion. Damage in concrete pipes can be 

attributed to biogenous sulphuric acid attack (Tee et al, 2011; Alani et al, 2014). On the other 

hand, metal pipes are susceptible to corrosion. Metal pipe corrosion pit is a continuous and 

variable process. Under certain environmental conditions, metal pipes can become corroded 

based on the properties of the pipe, soil, liquid properties and stray electric currents. The 

corrosion pit depth can be modelled with respect to time as shown in Eq. (1) (Ahammed and 

Melchers, 1994; Sadiq et al, 2004). 

The corrosion pit depth,                                                

n
T kTD �                                                               (1)  

where TD  is pit depth and T  is exposure time.  The parameters k and n are corrosion empirical 
constants and depend on pipe materials and surrounding environments.  
 
For a plain pipe, due to reduction of wall thickness given by Eq. (1), the moment of inertia of 

pipe wall per unit length, I and the cross-sectional area of pipe wall per unit length, As can be 

defined as below (Watkins and Anderson, 2000; Tee and Khan, 2012).  

 
Moment of inertia, 12/)( 3

TDtI ��  (2) 
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Cross-sectional area, Ts DtA ��  (3) 
 

where t is the thickness of the pipe wall. The pipe is assumed as a thin-walled pipe with 

10/ �tD  where D is mean diameter. The corrosion empirical constants (k and n) and pipe wall 

thickness (t) are considered as random variables. 

2.2 Pipe failure criteria 

In this paper, the chosen dominating failure criteria of flexible pipes are characterised by 

corrosion induced deflection, buckling, wall thrust and bending stress. 

Deflection 

The performance of flexible pipes in its ability to support load is typically assessed by measuring 

the deflection from its initial shape. Deflection is quantified in terms of the ratio of the horizontal 

(or vertical) increased diameter to the original pipe diameter. The critical or allowable deflection 

for flexible pipe, cry�  is normally determined as 5% - 7% of inside diameter of pipe (Gabriel, 

2011). The actual deflection, y�  can be calculated as shown in Eq. (4) (BS EN 1295:1, 1997; 

Watkins and Anderson, 2000). 0)( ����� ycryXZ  is the limit state function for this failure 

mode where 0)( �XZ  represents failure state and 0)( �XZ  indicates a safe state.   

 

�
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where Kb is deflection coefficient, LD  is deflection lag factor, D is mean diameter = Di + 2c 

where Di is inside diameter and c is distance from inside diameter to neutral axis, E is modulus of 

elasticity of pipe material and 'E  is modulus of soil reaction =
)21)(1(

)1(

ss

ssEk
��

�
�

��

 where Es is 

modulus of soil and k�  is a numerical value depends on poison’s ratio, s�  (Babu and Rao, 2005).  

 

The loads acting on the pipe are governed by the term scL PWD 
  where cW  is soil load and sP  

is live load. Soil load can be calculated by multiplying unit weight of soil ( s� ) by the height of 

soil on the top of pipe invert (H) (Sarplast, 2008).  
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Buckling pressure 

Buckling is a premature failure in which the pipe is not able to maintain its initial circular shape 

and the structure becomes unstable at a stress level that is well below the yield strength of the 

structural material (Sivakumar Babu and Srivastava, 2010). The actual buckling pressure should 

be less than the critical buckling pressure for the safety of structure. The actual buckling pressure, 

p and the critical buckling pressure, crp  can be calculated as shown in Eqs. (5) and (6), 

respectively (AWWA, 1999). 0)( ��� ppXZ cr  is the limit state function for this failure mode 

where 0)( �XZ  represents failure state and 0)( �XZ  indicates a safe state.   

 

swwsw PHRp 

� ��                             (5) 

�
�
	



�
�� 3

'32
D
EIEBRp swcr                                                                        (6) 

 

where wR  is water buoyancy factor = 1 – 0.33 ( wH /H), w�  is unit weight of water, wH  is height 

of groundwater above the pipe and 'B  is empirical coefficient of elastic support 

= )41/(1 213.0 He�
 . 

Wall stress/thrust 

If the buried depth is not enough then the pipe wall can crush due to earth and surface loading. 

Buried depth should be sufficient to avoid the crushing of the side wall. Two wall thrust analyses 

are required: (1) accounts both the dead load and live load and employs the short term material 

properties throughout the procedure, (2) accounts only the dead load and employs the long-term 

material properties throughout the process. Then, the most limiting value is used for reliability 

analysis. The critical and actual wall thrust can be estimated as shown in Eqs. (7) and (8), 

respectively (Hancor, 2009). 0)( ��� acr TTXZ  is the limit state function for this failure mode 

where 0)( �XZ  represents failure state and 0)( �XZ  indicates a safe state. 

 

The critical wall thrust, psycr AFT ��                                                                        (7) 

where yF  is the minimum tensile strength of pipe and p�  is capacity modification factor for 

pipe. 
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The actual wall thrust, )2/)(( 0DPCPWT wLsAa 

�                                                                  (8) 

where oD  is outside diameter and LC  is live load distribution coefficient. The loads acting on 

the pipe considered in wall thrust analysis are soil arch load AW , live load sP  and hydrostatic 

pressure wP . Hydrostatic pressure wP  can be calculated by multiplying unit weight of water ( w� ) 

by the height of groundwater above the pipe ( wH ) whereas soil arch load AW  can be calculated 

by multiplying geostatic load ( spP ) by the vertical arching factor ( AFV ) where spP  

= ))(1011.0( 0
7 DHs

��
� , AFV  = 0.76-0.71(( hS  - 1.17)/( hS  + 2.92)), hS  is hoop stiffness factor 

= sss EARM /� , s�  is soil capacity modification factor, sM  is secant constrained soil modulus 

and R is effective radius of pipe. 

Bending  

A pipe subjected to increasing pure bending will fail as a result of increased ovalisation of the 

cross section and reduced slope in the stress-strain curve. Under the effect of earth and surface 

loads, the buried pipe may bend through pipe wall. The allowable bending stress cr�  is the long 

term tensile strength of the pipe material whereas the allowable strain cr�  for flexible pipes is 

0.15% to 2% (Mohr, 2003). The bending stress and strain are important to ensure that these are 

within material capability. Actual bending stress and bending strain can be calculated using Eqs. 

(9) and (10), respectively (Gabriel, 2011). 0)( ��� bcrXZ ��  or 0)( ��� bcrXZ ��  is the 

limit state function for this failure mode where 0)( �XZ  represents failure state and 0)( �XZ  

indicates a safe state.  

 

Bending stress, 2
0 /2 DyED yfb ���                                                            (9) 

Bending strain, 2
0 /2 DyD yfb ���                                                                       (10) 

 

where fD  is shape factor and 0y  is distance from centroid of pipe wall to the furthest surface of 

the pipe. y�  is pipe deflection which can be calculated as shown in Eq. (4). In this study, Kb, s� , 

E, Es, Ps and H are assumed as random variables.  
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3. RELIABILITY PREDICTION  
 

3.1 Basic equations for Subset Simulation 

Subset Simulation is an adaptive stochastic simulation procedure for efficiently computing a 

small failure probability. For simplification, F is denoted as the failure event as well as its 

corresponding failure region in the uncertain parameter space. Given a failure event F, let 
FFFFF m ���� ........321 . If the failure of a system is defined as an exceedance of one 

uncertain demand Y over a given capacity y, that is )( yYF �� , then a sequence of decreasing 

failure events can simply be defined as }{ ii yYF ��  where yyyyy m ����� ��321  and 

i= 1, 2, 3,..., m where m is the number of conditional events. In this study, Y is the actual value of 

structural performance such as corrosion-induced deflection, buckling, wall thrust or bending 

stress whereas y represents the allowable or critical limit for the considered failure modes. A 

conceptual illustration of the SS method is presented in Figure 1 for a two-dimensional case 

(Song et al, 2009).  

 
Figure 1: Illustration of failure events in SS method  

 

The probability of failure (Pf) can be calculated based on the above sequence of failure domains 

(or subsets) which enables computation of Pf as a product of conditional probabilities )( 1FP  and 

)|( 1 ii FFP 
  as follows (Schueller and Pradlwarter, 2007; Phoon, 2008).               

                                                                       
                                      (11) 
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When )( 1FP  is denoted by 1P  and )|( 1�ii FFP  for mi ,....3,2�  is denoted by iP , Eq. (11) 

expresses the failure probability as a product of conditional probabilities 1P  and ),...,3,2( miPi � . 

In the first step, it is natural to compute conditional failure probabilities based on an estimator 

similar to Eq. (12), which requires simulation of samples according to the conditional 

distribution � that lies in iF  (Au and Beck, 2001). The probability 1P  can be determined by 

application of the direct MCS simulation as shown in Eq. (12). 

 

                                                                                                            (12)   

 

where ),......,3,2,1( 1
)1( Nkk ��  are independent and identically distributed samples simulated 

according to probability density function (PDF) q. )( )1(
1 kFI �  is an indicator function, when   

1
)1( Fk �� , )( )1(

1 kFI � =1, otherwise 0.  

 

The conditional distribution of �  lies in Fi, that is )(/)()()|( i iF FPIqFq
i
��� � . Computing the 

conditional probabilities, Markov Chain Monte Carlo (MCMC) simulation provides a powerful 

method for generating conditional samples on the failure region (Au and Beck, 2001; Au and 

Beck, 2003). With the application of the MCMC simulation by the modified Metropolis-

Hastings algorithm, samples can be generated as follows. 

 

                                                                    (13)                      

where ),....,3,2;,......,3,2,1()( miNk i
i

k ���  are independent and identically distributed 

conditional samples. )( )(i
kFi

I �  is an indicator function which is equal to 1 when i
i

k F�)(� , 

otherwise 0.  

 

Based on Eqs. (12) and (13), Eq. (11) can be rewritten as follows
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On the basis of reliability analysis using SS, the failure probability Pf can be transformed into a 

set of conditional failure probabilities Pi (i =1, 2, 3,…,m). Based on Eq. (14), the partial 

derivative of the failure probability with respect to distributional parameter � (the mean � or the 

standard deviation �) of normal random variables can be obtained, which is so-called reliability 

sensitivity as shown in Eq. (15) (Song et al, 2009). 

                                                                                                                   (15) 
                                                                                                                                              

 

 

Reliability sensitivity analysis can reflect the significance of the distributional parameter with 

respect to the failure probability. According to sample means, reliability sensitivity of Eq. (15) 

for each variable can be obtained using Eq. (16) and (17) as follows (Song et al, 2009). 
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3.2 Methodology 

Subset Simulation expresses the failure probability as a product of larger conditional failure 

probabilities for a sequence of intermediate failure events, thereby converting a rare event 

simulation problem into a sequence of more frequent ones (Au et al, 2007). During the 

simulation process, the conditional samples are generated from specially designed Markov 

chains (MC), so that they gradually populate each intermediate failure region until they reach the 

final target failure region (Au and Beck, 2001). In this study, the intermediate threshold values 

are chosen adaptively in such a way that the estimated conditional probabilities are equal to a 

fixed value which is 1.00 �p  (Au and Beck, 2001; Au and Beck, 2003; Zio and Pedroni, 2008). 

 

Procedure of SS algorithm for adaptively generating samples corresponding to specified target 

probabilities can be summarised as follows. 

�
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1. Generate N samples ),.....,2,1(,0 Nkk ��  by direct MCS, i.e., from the original PDF (.)q . The 

subscript ‘0’ denotes the samples corresponding to conditional level 0; 

2. Set i = 0; 

3. Compute the corresponding response variables ),.....,2,1(, NkY ki � ; 

4. The value of 1
iy  is chosen as the Np )1( 0� th value in the ascending order of 

),.....,2,1(, NkY ki �  (from step 3), so that the sample estimate of )()( 11 

 �� ii yYPFP  is 

always equal to 0p . 0p  and N are chosen such a way that Np0  is always an integer; 

5. If mi yy *
1 , proceed to step 10 below; 

6. On the other hand, if mi yy �
1 , with the choice of 1
iy  performed at step 4 above, identify 

the Np0  samples ),.....,2,1( 0Npuu
i ��  among ),.....,2,1(, Nkki ��  whose response Y lies in 

}{ 11 

 �� ii yYF , these samples are at ‘conditional level i + 1’ and distributed as )|(. 1
iFq ; 

7. Starting from each one of the samples ),.....,2,1( 0Npuu
i ��  (from step 6), use MCMC 

simulation to generate Np )1( 0�  additional conditional samples distributed as )|(. 1
iFq , so 

that there are a total of N conditional samples 1,1 ),.....,2,1( 

 �� iki FNk� , at conditional level 

i+1; 

8. Set 1
+ ii ; 

9. Return to step 3 above; 

10. Stop the algorithm. 

Note that the total number of samples employed is NT = N + (m – 1) (1 – p0) N. 

 

3.3 Advantages of Subset Simulation 
  

Estimating small failure probabilities to precisely assess the risk involved in a system remains 

quite a challenging task in structural reliability engineering. FORM, SORM or PEM are suitable 

solutions to estimate reliability of large-scale systems. Due to their inherent assumptions, these 

methodologies are sometimes lead to incorrect results which are involved with multiple design 

points and/or non smooth failure domains. On the other hand, MCS is a traditional simulation 

algorithm to compute failure probabilities in structural systems, which in spite of being robust to 

solve the problem; it becomes computationally expensive where small failure probabilities to be 

calculated, since it requires a large number of evaluations of the system to achieve a suitable 

accuracy.  



12 
 

 

SS requires much less samples to achieve a given accuracy. It can be used to obtain conditional 

samples in each simulation level to compute efficiently the probabilities related to rare events in 

reliability problems with complex system characteristics and with a large number of uncertain or 

random variables in failure events. Choosing the intermediate failure events ),...,3,2,1( miFi �  

appropriately, the conditional probabilities involved in Eq. (11) can be made sufficiently by 

subset simulation process (Ching et al, 2005). For example, probability of failure 410��fP  is 

too small for efficient estimation by direct Monte Carlo simulation. However, the conditional 

probabilities, which are the order of 0.1, can be evaluated efficiently by simulation because the 

failure events are more frequent as supported by the results in Figure 8. The problem of 

simulating the rare events in the original probability space is thus replaced by a sequence of 

simulations of more frequent events in the conditional probability spaces. 

 

4 NUMERICAL EXAMPLE 

The time-dependent structural reliability for an underground flexible metal pipe has been 

predicted in this example, where pipe failure probability, sensitivity and COV analysis are 

conducted by applying SS and MCS. Calculations are presented for a buried steel pipe under a 

heavy roadway subject to corrosion and external loadings. A typical pipe section is shown in 

Figure 2. Numerical values are based on industrial practice and have been obtained from the 

literature (Ahammed and Melchers, 1997; Sadiq et al, 2004). The materials properties and 

parameters are listed in Table 1. There are 9 random variables where the means and COVs are 

listed in Table 2.  

 

The pipe corrosion rate is modelled using Eq. (1). Assuming the change of pipe surface due to 

corrosion is uniform over the entire surface area. It is assumed that the pipe is thin-walled 

circular (plain) and placed above ground water level, i.e. Hw = 0. According to the references by 

Ahammed and Melchers (1997) and Sadiq et al (2004), most of the random variables in Table 2 

are normally distributed as these variables are found symmetric around their mean. However, the 

deflection coefficient (Kb) accounts for the bedding support which varies with the bedding angle 

and this variable’s logarithm is found normally distributed.  
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Figure 2: Geometrical details of the buried steel pipe section (not to scale) 

 Table 1: Material properties and parameters 

Symbol description Value 

Buoyancy factor, Rw 1.00 

Trench width, Bd 2.00 m  

Outside pipe diameter, Do 1.231 m  

Inside pipe diameter, Di 1.189 m  

Deflection lag factor, DL 1 

Soil constrained modulus, Ms 2.02×103 kPa  

Shape factor, Df 4.0 

Allowable deflection, cry�  5% of Di 

Capacity modification factor for pipe, p 1.00 

Capacity modification factor for soil, s 0.90 

Poisson’s ratio, s�  0.3 

Live load distribution coefficient, LC  1 

k�  1.5 
Allowable strain 0.2% 

Minimum tensile strength of pipe, Fy 450 MPa 
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 Table 2: Statistical properties of random variables 

Material properties Mean (�) COV (%) Standard Deviation (�) 

Elastic modulus of pipe, E 213.74×106 kPa (Normal) 1.0 2.1374×106kPa  

Backfill soil modulus, Es 103 kPa (Normal) 5.0 50 kPa  

Unit of weight of soil, �s 18.0kN/m3 (Normal) 2.5 0.45 kN/m3 

Wheel load (Live load), Ps 80.0 kPa (Normal) 3.0 2.4 kPa  

Multiplying constant, k 2.0 (Normal) 10.0 0.1 

Exponential constant, n 0.3 (Normal) 5.0 0.015 

Thickness of pipe, t 0.021 m (Normal) 1.0 0.00021 m  

Height of the backfill, H 3.75 m (Normal) 1.0 0.00375 m  

Deflection coefficient, Kb 0.11(Lognormal) 1.0 0.0011 

 

 

5 RESULTS AND DISCUSSION 
 
In the case of buried pipes, the assessment of Pf on yearly basis is useful because it enables 

calculation of reliability over time. The Pf  for corrosion induced excessive deflection, buckling, 

wall thrust and bending stress with respect to time have been estimated using SS and MCS with 

material properties and random variables presented in Tables 1 and 2. In SS, the Pf is predicted 

as a sum of the sub failure events within each failure mode. The simple but pivotal idea behind 

SS is that a small failure probability can be expressed as a product of larger conditional failure 

probabilities for some intermediate failure events, suggesting the possibility of converting a 

problem involving rare events simulation into a sequence of problems involving more frequent 

events. SS is applied in this study with a conditional failure probability at each level equal to 

1.00 �p . The total number of samples, N used in MCS is 106 for all the failure modes whereas 

SS needs 500 samples to achieve the similar accuracy of the results. The results presented in 

Figures 3 to 8 are in log scale of Pf to scrutinise the effectiveness of SS method in the region of 

small failure probability (< 0.1). 
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Figure 3: Probability of failure due to corrosion induced deflection 

  

 

Figure 4: Probability of failure due to corrosion induced buckling  = 500
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Figure 5: Probability of failure due to corrosion induced wall thrust  

 

 

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

Pr
ob

ab
ili

ty
 o

f f
ai

lu
re

Time (year)

SS (N = 500)

MCS (N= 1000000)

 

Figure 6: Probability of failure due to corrosion induced bending stress  
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As shown in Figures 3 to 6, the results reveal that corrosion-induced excessive deflection is the 

most critical failure event whereas buckling has the lowest Pf during the whole service life of the 

pipe. Considering the failure probability of 0.1 (10%) as a threshold level for the safe service life 

(Babu and Srivastava, 2010), the study illustrates that the safe service life in the worst case 

scenario is about 50 years.   

 

 
Figure 7: Probability of failure in series system due to corrosion induced multi-failure modes 

 

Pipeline contains multiple failure events in which any of the modes can lead to a system failure. 

The failure modes are correlated due to common random variables between the failure events. 

Therefore, a series system is considered for pipe failures prediction. The correlation coefficients 

between different failure modes show that all the failure modes are strongly correlated 

positively, i.e., where the failure modes might happen concurrently within a buried pipeline 

system (Tee and Khan, 2013). Thus, applying the theory of systems reliability, the probability of 

failure for a series system, Pf,s can be estimated by Eq. (18) (Fetz and Tonon, 2008).                                        

 
  (18) 

 

 

where Pf,j  is the probability of failure due to jth failure mode of pipe and r is the number of 

failure modes considered in the system. The expected value of Pf for series system is determined 

in-between upper and lower bounds using Eq. (18) and the results are shown in Figure 7. The 

number of conditional levels is chosen to cover the required response level whose failure 
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probability is estimated. The results show that the Pf values using MCS and SS have a good 

agreement over the pipe service life.  

 

 

Figure 8: COV of pipe failure probability due to corrosion induced deflection for 50-year of 
service life 

 

Nevertheless, one of the advantages of SS over MCS is that SS is able to estimate small failure 

probability more efficiently which is demonstrated in Figure 8. In this analysis, the sample 

average values and COVs of failure probabilities are calculated using 50 independent simulation 

runs. For comparison, the same numbers of samples are used for both MCS and SS methods. The 

total numbers of samples, N used for obtaining estimates of failure probability at 0.1, 0.01, 0.001 

and 0.0001 are 500, 950, 1400 and 1850, respectively. The COVs of failure probability estimates 

produced by MCS can be calculated based on NFPFP )(/)}(1{ �  (Au and Beck, 2007). COVs 

of failure probabilities due to corrosion induced deflection for 50-year of service life are plotted 

in Figure 8 for both SS and MCS. The results show that COVs achieved by SS and MCS are 

approximately the same in the large probability region. The values of COV for SS and MCS 

coincide at Pf  = 0.1, since according to the SS procedure with 1.00 �p , this probability is 

computed based on an initial MCS. The study shows that the COVs are increased with 

decreasing failure probabilities because it is more difficult to estimate smaller failure probability, 

which is the main concern of SS. The value of COV estimated using SS are always less than that 

using MCS and the difference is larger when the failure probability is getting smaller as shown 
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in Figure 8. Thus, it is inefficient to use ordinary MCS when the failure probabilities are small. 

SS is robust and more accurate and efficient compared to MCS in the prediction of small failure 

probabilities. 

 

The improvement in accuracy also comes with considerable saving in computational time mainly 

due to smaller samples involved. The computational speed is measured in terms of Central 

Processing Unit (CPU) time on a 1.6-GHz Pentium IV personal computer. The study illustrates 

that SS (with 500 samples) needs 5–6 minutes to obtain the results whereas MCS (with 106 

samples) spends 15–17 minutes to achieve the similar accuracy. Therefore, on the same 

computer, the saving in computational time of SS is about 67% as compared to MCS, which 

indicates the supremacy and accurateness of the proposed SS method. The computational time 

for MCS is generally higher than SS due to the high number of samples needed. 

 

 
Figure 9: Sensitivity of multiplying constant (k) for corrosion induced deflection during pipe 
service life 
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Figure 10: Sensitivity of exponential constant (n) for corrosion induced deflection during pipe 
service life 

 

Finally, two sensitivity analyses based on sample means are selected to evaluate the relative 

contribution of each random variable in pipe reliability estimation throughout the service life by 

applying Eqs. (15-17) and the results are shown in Figures 9 and 10. Note that due to page 

constraint, the COV and sensitivity analyses have been presented only for failure due to 

corrosion induced deflection. Corrosion constants (multiplying constant, k and exponential 

constant, n) in Eq. (1) are considered as the dominant influencing parameters in pipe reliability 

(Tee et al, 2013). The study shows that, at the early stage of pipe service life, multiplying 

constant (k) and exponential constant (n) have a negligible effect on pipe reliability but the effect 

increases significantly with the pipe age as shown in Figures 9 and 10. The similar trend has 

been found for other failure criteria, i.e., buckling, wall thrust and bending stress. This is 

attributed to the fact that corrosion does not cause any problem to new pipes but is mainly the 

root cause of failure and collapse for aging pipes. 

 

6 CONCLUSIONS 

A Subset Simulation approach is proposed for time-dependent reliability estimation of buried 

pipeline system subject to corrosion induced failures modes. The results show that this method is 

robust to the choice of the intermediate failure events. One of the major complications to 

estimating small failure probabilities is to simulate rare events. SS resolves this by breaking the 
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problem into the estimation of a sequence of larger conditional probabilities. It is found that the 

reliability analysis calculated by SS is in good agreement with that from MCS, while the 

efficiency of the SS method, which is indicated by the sample size and computational time, is 

higher than that of MCS. The study also shows that SS is robust and more accurate than MCS in 

small failure probability prediction based on COV analysis. The analysis shows that behaviour of 

buried pipes is considerably influenced by uncertainties due to external loads, corrosion 

parameters, pipe materials and surrounding soil properties etc. where excessive deflection is the 

most critical failure event whereas buckling is the least susceptible during the whole service life 

of the pipe. The estimation of failure probability can be utilised to form a maintenance strategy 

and to avoid unexpected failure of pipeline networks during service life.   
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