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Abstract

This paper presents nonparametric predictive inference for system reliability
following common-cause failures of components. It is assumed that a single
failure event may lead to simultaneous failure of multiple components. Data
consist of frequencies of such events involving particular numbers of compo-
nents. These data are used to predict the number of components that will
fail at the next failure event. The effect of failure of one or more components
on the system reliability is taken into account through the system’s survival
signature. The predictive performance of the approach, in which uncertainty
is quantified using lower and upper probabilities, is analysed with the use
of ROC curves. While this approach is presented for a basic scenario of a
system consisting of only a single type of components and without consider-
ation of failure behaviour over time, it provides many opportunities for more
general modelling and inference, these are briefly discussed together with the
related research challenges.

Keywords: Common-cause failures, lower and upper probabilities,
nonparametric predictive inference, ROC curves, survival signature, system
reliability

1. INTRODUCTION

A major consideration for reliability of systems is the possible occurrence
of common-cause failures, where multiple components fail simultaneously due
to the same underlying cause. This paper considers the reliability of a system
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following a future failure event, with possible common-cause failures of mul-
tiple components. In particular, the aim is to develop predictive inference for
the reliability of a system with multiple components based on previous failure
event data for this system, or for other systems that are fully exchangeable
with this system. These data are assumed to consist of the numbers of failing
components in past failure events, in each of which at least one component
failed. These failure events did not necessarily involve failure of the whole
system, but each event involves failure of one or more components. Aspects
of ageing are not taken into account, nor any other aspects that are explicitly
related to time, usage or other processes. Such aspects are likely to be im-
portant in some practical applications, developing methodology to deal with
these provides interesting research challenges.

Common-cause failures are important in many applications, as systems
with built in redundancy are at increased risk if multiple components may
fail simultaneously. Basic concepts of modelling common-cause failures are
reviewed by Rasmuson and Kelly [1] and by Mosleh et al [2]. The alpha-
factor model, proposed by Mosleh et al [3] is commonly used, and enables
straightforward analysis in the framework of Bayesian statistics due to the
availability of conjugate prior distributions [4]. A robust Bayesian approach
to this model has recently been proposed by Troffaes et al [5], using a set of
conjugate priors instead of a single prior distribution, following a standard
approach for generalized Bayesian methods in theory of imprecise probabil-
ities [6]. In this paper an alternative statistical method within the theory
of imprecise probability is used, namely nonparametric predictive inference
(NPI) [7]. For the problem considered here, it makes little difference which
specific method for statistical inference is used to predict the number of com-
ponents failing simultaneously at the next common-cause failure event. Due
to its explicitly predictive nature it is attractive to use the NPI approach.
The main contribution of the paper is the link from inference on this number
of failing components to lower and upper probabilities for the event that the
system will still function after the next common-cause failure event. This
link is quite straightforward, as shown in this paper, with the use of the
system survival signature [8], a recently introduced concept which is closely
related to the popular system signature [9] but, in contrast to the latter, is
also conceptually straightforward for systems with multiple types of com-
ponents. The question of the system’s reliability following a common-cause
failure event is of practical interest, as following such an event one may have
more time to consider appropriate maintenance or replacement actions if the
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system is still functioning than in case the system has failed. Such further
actions are not addressed in this paper, but combined with aspects of failure
processes they provide interesting topics for future research.

As mentioned, the main contribution of this paper is to model the link be-
tween failure of components and failure of the system, or indeed functioning
of the system, for the common-cause failure scenario, through the recently in-
troduced concept of survival signatures [8]. For a system with m components,
the state vector x = (x1, x2, . . . , xm) ∈ {0, 1}m is defined such that xi = 1 if
the ith component functions and xi = 0 if not, using an arbitrary but fixed
labelling of the components. The structure function φ : {0, 1}m → {0, 1},
defined for all possible x, takes the value 1 if the system functions and 0 if
the system does not function for the state vector x. The structure function
can be generalized by defining it as the probability that the system functions
for the state vector x, which might be relevant if one is not certain about
its functioning [10], this is not used in this paper but provides interesting
challenges for research and opportunities for applications.

In this paper, attention is restricted to coherent systems, which means
that φ(x) is not decreasing in any of the components of x, so system func-
tioning can never be improved by worse performance of one or more of its
components. It is further assumed that φ(0) = 0 and φ(1) = 1, so the system
fails if all its components fail and it functions if all its components function.
These assumptions could easily be relaxed but they simplify presentation in
this paper and are reasonable for most systems of practical interest. More
importantly, attention is restricted in this paper to systems consisting of ex-
changeable components, which could be called components of a single type.
Most practical systems, in particular also networks, consist of components of
multiple types. This restriction is merely for sake of simplicity of presenta-
tion, the method introduced here can quite straightforwardly be generalized
to systems with multiple types of components.

The survival signature for a system with m exchangeable components, de-
noted by Φ(l), for l = 1, . . . ,m, is the probability that the system functions
given that precisely l of its components function [8]. For coherent systems,
Φ(l) is an increasing function of l, and the second assumption above leads
to Φ(0) = 0 and Φ(m) = 1. There are

(
m
l

)
state vectors x with precisely l

components xi = 1, so with
∑m

i=1 xi = l; let Sl denote the set of these state
vectors. Due to the exchangeability assumption for the m components, or
more precisely the assumed exchangeability of the random quantities repre-
senting functioning of the m components, all these state vectors are equally
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likely to occur, hence

Φ(l) =

(
m

l

)−1 ∑
x∈Sl

φ(x) (1)

Coolen and Coolen-Maturi [8] called Φ(l) the survival signature because, by
its definition, it is closely related to survival of the system, and it is close
in nature to the system signature [9]. The survival signature can straight-
forwardly be generalized to systems with multiple types of components, in
contrast to the system signatures for which this is practically impossible [8].

This paper is organised as follows. Section 2 presents the use of non-
parametric predictive inference to predict the number of failing components
at a future common-cause failure event. In Section 3 these inferences are
combined with the survival signature to lead to lower and upper probabil-
ities for the event that the system will still function after the next failure
event. As with any newly proposed procedure, it is important to evaluate
the performance of the presented method, this is non-trivial for methods us-
ing lower and upper probabilities. In Section 4 a novel way to evaluate the
performance of such an imprecise probability method is introduced, which
is fully in line with the predictive nature of the inferences and makes use of
ROC curves. Section 5 concludes the paper with a discussion of the method
and related research challenges.

2. PREDICTING THE NUMBER OF FAILING COMPONENTS

For a system withm exchangeable components, which are assumed through-
out this paper to all function before the failure event of interest, a common-
cause failure event can lead to simultaneous failure of any number f ∈
{1, . . . ,m} of components. The alpha-factor model [2, 3] introduces param-
eters αj, for j = 1, . . . ,m, representing the probability that precisely j of
the m components in the system fail simultaneously, given that a failure
event occurs, hence

∑m
j=1 αj = 1. It is possible to select values αj based

on background knowledge of the system, but in this paper we aim at learn-
ing about these probabilities from available failure data whilst attempting to
add only rather minimal further assumptions. Recently, two Bayesian solu-
tions to the same problem have been presented, one using a non-informative
Dirichlet prior distribution [4] and the other using the imprecise Dirichlet
model (IDM) [5]. Both of these let the numbers 1 to m of possible simulta-
neous failures be represented by m categories, with an assumed multinomial
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distribution for the numbers of observations in these categories. This is a
standard statistical approach, with the IDM the most widely applied impre-
cise probability model in statistics [6, 11] with also interesting applications
in reliability, see for example [12, 13]. There are, however, two issues with
this model. Even while the (set of) prior distribution(s) is chosen in order
to have little influence on the inferences, they do affect these noticeably in
case interest is in categories which have rarely or even never been observed.
Furthermore, any ordering of the categories is not taken into account. The
latter aspect is particularly relevant if one is interested in events involving
unions of categories, for example that the number of simultaneously failing
components is at least two.

This paper presents a nonparametric predictive inference (NPI) alterna-
tive to the combination of the alpha-factor model with (imprecise) Dirichlet
prior(s), also using lower and upper probabilities to quantify uncertainty.
NPI for multinomial data has been presented as an alternative to the IDM
[14], while NPI for real-valued data, including right-censored observations,
has also been applied successfully [15, 16]. However, in this paper attention
is restricted to NPI for ordinal data [17] as this explicitly takes the natural
ordering of the m categories, namely the numbers 1, . . . ,m, into account.
Assume that data are available on n previous common-cause failure events,
which are assumed to be exchangeable with the next event, implying that
they also all involved m components, and all components, in the observed
systems and for the prediction, are exchangeable. Let nj ≥ 0 denote the
number of the observed common-cause events in which precisely j compo-
nents failed simultaneously, so

∑m
j=1 nj = n. It is important to emphasize

that no information or assumption is used about which specific components
failed, just the numbers of components failing at the failure events are of
interest for the inferences considered in this paper.

It is important to comment briefly on the assumption of exchangeability
of all components, both in the observed systems and for prediction. For
simplicity, one can consider this assumption as being in line with assuming
all components have the same (unknown) probability of failure in case of
a common-cause failure event. Hence, one could not, for example, apply
the method presented in this paper in a scenario where components that
have been in a system for a longer time undergo some wear, in the sense of
their probability of failure increasing. If one would deem new components
in a system, which replace failed components, to have a lower probability of
failure upon a future common-cause failure event than other components in

5



the system, then one would need to distinguish the components into different
types. This can also be modelled through the general concept of the survival
signature, but for simplicity of presentation this paper restricts attention to
components of a single type. There are, however, scenarios where it seems
quite reasonable to assume exchangeability of the components in case of a
common-cause failure event, for example if the cause of the failures is due to
shocks and the components’ capacity to deal with such shocks is independent
of their age.

NPI for ordinal data [17] provides lower and upper probabilities for events
involving the number Yn+1 of failing components at the next, so n+1-st, fail-
ure event. These NPI lower and upper probabilities are not available in ana-
lytic form for all possible events Yn+1 ∈ C with C any subset of {1, . . . ,m},
generally they are calculated via counting of orderings in an assumed underly-
ing latent variable representation, with a real-valued latent variable assumed
to fall into the different categories, ordered on the real-line, determining the
observation category. Such an underlying model assumption is rather com-
mon in statistics as it leads to quite simple models, but in addition it may
be quite realistic in common-cause failure scenarios, for example one might
consider there to be an underlying variable corresponding to strength of the
cause of the failure event (e.g. strength of wind or earth quake) that would
not be directly observable but could play a crucial role in determining the
number of simultaneously failing components. There are some special events
for which closed-form expressions are available [17] and these include the
events required for the theory presented in Section 3 in this paper. This spe-
cial case involves events of the form Yn+1 ∈ {s, . . . , t}, with 1 ≤ s ≤ t ≤ m,
so the event that the number of components which fail simultaneously at the
next failure event is any value from s to t. This includes events involving just
a single number (s = t), events that the number of failing components is at
least s (with t = m), and at most t (with s = 1). The event with s = 1 and
t = m is trivially true, so both the NPI lower and upper probabilities for this
event are equal to 1 and this event is excluded from further consideration.
Let ns,t =

∑t
j=s nj. Using the notation (x)+ = max(x, 0), the NPI lower and
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upper probabilities for such events are [17]

P (Yn+1 ∈ {s, . . . , t}) =


(ns,t − 1)+

n+ 1
if 1 < s ≤ t < m

ns,t

n+ 1
if s = 1 or t = m

(2)

P (Yn+1 ∈ {s, . . . , t}) =
ns,t + 1

n+ 1
for 1 ≤ s ≤ t ≤ m (3)

The method presented in this paper uses the lower and upper cumulative
distribution functions (CDF), which immediately follow from (2) and (3),
with for j ∈ {1, . . . ,m− 1}

F (j) = P (Yn+1 ≤ j) =
n1,j

n+ 1
(4)

F (j) = P (Yn+1 ≤ j) =
n1,j + 1

n+ 1
(5)

and F (m) = F (m) = 1. Note that Yn+1 cannot be equal to 0, as it is assumed
that at least one component fails at a failure event, hence F (0) = F (0) = 0.

It is important to emphasize that these NPI lower and upper probabilities
are frequentist statistics inferences [6, 7], and can be interpreted as bounds for
a confidence level in the occurrence of the stated event of interest, based on
the available data. The confidence interpretation results from the exchange-
ability assumption and can be interpreted as a long-run frequency where, for
varying data sets but with exchangeability of observed data and the future
observation for each run, the proportion of times that the event will indeed
occur will be between the NPI lower and upper probabilities.

3. SYSTEM RELIABILITY AFTER FAILURE EVENT

The survival signature Φ(l) for a system consisting of m exchangeable
components represents the probability that the system functions if precisely
l of its components function. So the functioning of the system after the
next common-cause failure event can be predicted by combining the survival
signature and NPI for ordinal data, as presented in Section 2. The NPI
lower probability for the event S that the system still functions after the
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next common-cause failure event is

P (S) =
m∑
j=1

Φ(m− j) [F (j)− F (j − 1)] (6)

=
m−1∑
j=1

nj

n+ 1
Φ(m− j) (7)

and the corresponding NPI upper probability is

P (S) =
m∑
j=1

Φ(m− j)
[
F (j)− F (j − 1)

]
(8)

=
n1 + 1

n+ 1
Φ(m− 1) +

m−1∑
j=2

nj

n+ 1
Φ(m− j) (9)

Here the logical assumption Φ(0) = 0 has been used, so the system does not
function if none of its components function. Furthermore, the assumption
that the system is coherent has been used, hence the system survival signature
Φ(l) is non-decreasing in l. These results imply that

P (S) = P (S) +
Φ(m− 1)

n+ 1
(10)

These NPI lower and upper probabilities are derived by minimising and
maximising, respectively, the probability for event S corresponding to ev-
ery possible precise probability distribution within the bounds specified by
the NPI results presented in Section 2. For non-coherent systems the ap-
proach can also be used, but the optimisation results are not available in
general forms. For a series system, Φ(m) = 1 and Φ(l) = 0 for all l < m,
so P (S) = P (S) = 0, which is trivial as a series system cannot function if
at least one of its components has failed. For a parallel system, Φ(l) = 1 for
all l ≥ 1 so P (S) = n1,m−1

n+1
= n−nm

n+1
and P (S) = n1,m−1+1

n+1
= n−nm+1

n+1
. For a

k-out-of-m system with k ∈ {2, . . . ,m− 1}, which functions if and only if at
least k of its m components function, Φ(l) = 1 for l ≥ k and Φ(l) = 0 for
l < k, hence P (S) =

n1,m−k

n+1
and P (S) =

n1,m−k+1

n+1
.

From Equation (10) the imprecision ∆(S) for event S, which is the differ-
ence between the corresponding NPI upper and lower probabilities for this
event, follows immediately,

∆(S) = P (S)− P (S) =
Φ(m− 1)

n+ 1
(11)
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Figure 1: System for Example 1

This imprecision is obviously decreasing as function of n, which is fully in line
with intuition. Furthermore, straightforward analysis can be used to derive
relations between the NPI lower (or upper) probabilities for the event S for a
specific system based on different data sets in which all categories have been
observed in the same proportion. Consider a data set A with in total na

observed failure events, of which na
j involved precisely j failing components,

and data set B with in total nb = wna observed failure events, of which
nb
j = wna

j involved precisely j failing components, and w > 1 such that the
resulting nb

j are all integers. While there is not much insight to be gained
from such relations, it follows easily that, for all such w > 1, the NPI lower
and upper probabilities are logically nested, that is

P a(S) ≤ P b(S) ≤ P̂ (S) ≤ P
b
(S) ≤ P

a
(S) (12)

where P̂ (S) =
∑m−1

j=1
nj

n
Φ(m− j), the empirical estimator for the probability

that the system functions, as based on the empirical proportions
nj

n
of the

observations for each number of simultaneously failing components. The
NPI approach always provides lower and upper probabilities that bound the
corresponding empirical estimator in this logical way [7, 18]. All inequalities
in (12) tend to be strict except in some trivial cases with either values equal
to 0 or 1.

Example 1.

The system in Figure 1 has the survival signature with the following val-
ues: Φ(1) = 0, Φ(2) = 0.6, Φ(3) = 0.9 and Φ(4) = 1, in addition to the trivial
values Φ(0) = 0 and Φ(5) = 1. Suppose that n = 10 failure events for com-
ponents of such a system have been observed, with n1 = 4 events involving a
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Figure 2: System for Example 2

single failing component, n2 = 3 events involving simultaneous failure of two
components, and n3 = 2, n4 = 0 and n5 = 1 the number of events involv-
ing the simultaneous failure of three, four and five components, respectively.
Interest is in the event S that the system, with all its components currently
functioning, will still function after the next failure event, which is assumed
to be exchangeable with these 10 previous events with regard to the number
of simultaneously failing components. The NPI lower probability for this
event, given by Equation (7), is P (S) = 0.718 and the corresponding NPI
upper probability, given by Equation (9), is P (S) = 0.809. The imprecision

in this case is ∆(S) = Φ(4)
11

= 0.091.
As a second data set for the same system consider n = 40 failure events

with n1 = 25, n2 = 10, n3 = 4, n4 = 1 and n5 = 0. This leads to NPI lower
probability P (S) = 0.888 and P (S) = 0.912. The imprecision in this case is

∆(S) = Φ(4)
41

= 0.024.

Example 2.

The system in Figure 2 was used by Al-nefaiee and Coolen [19] to illus-
trate specific aspects of nonparametric predictive inference for system failure
time using the system signature. The system signature and system survival
signature are directly related for systems with a single type of components,
as discussed by Coolen and Coolen-Maturi [8]. The survival signature for
this system is given by Φ(1) = Φ(2) = 0, Φ(3) = 0.057, Φ(4) = 0.343,
Φ(5) = 0.619, Φ(6) = 0.857 and the trivial values Φ(0) = 0 and Φ(7) = 1.

Suppose first that available data consist of n = 100 observed failure
events, with n1 = 70, n2 = 20, n3 = 10 and nj = 0 for j ∈ {4, . . . , 7}.
This leads to NPI lower and upper probabilities P (S) = 0.7506 and P (S) =
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0.7591 for system functioning after the next failure event, with imprecision
∆(S) = P (S) − P (S) = Φ(6)

101
= 0.0085. If there are only n = 10 observa-

tions, with numbers of failing components occurring in the same ratios, so
n1 = 7, n2 = 2, n3 = 1 and nj = 0 for j ∈ {4, . . . , 7}, then the corresponding
NPI lower and upper probabilities are P (S) = 0.6892 and P (S) = 0.7671,

with imprecision ∆(S) = Φ(6)
11

= 0.0779. Together with P̂ (S) = 0.7581 these
values illustrate the inequalities (12).

Consider further the same data with n = 100 except now with n3 = 9
and n7 = 1, so for one observed failure event actually all 7 components failed
instead of just three. This leads to P (S) = 0.7472 and P (S) = 0.7557, so
both slightly smaller than for the earlier case with the nearly identical 100
observations, while the imprecision remains equal to ∆(S) = 0.0085.

4. PERFORMANCE EVALUATION

The method for prediction of system functioning after a future common-
cause failure event, as presented in Section 3, is quite straightforward and
leads, for each individual application, to lower and upper probabilities for
the event that the system will still function after such an event. Due to the
use of NPI, these lower and upper probabilities have powerful properties in
the frequentist statistics framework [7], and the imprecision, so the difference
between the corresponding upper and lower probabilities, reflects the amount
of information in the available data. It is important to investigate the be-
haviour of this method further, in particular to get insight into the quality
of the predictions. Due to the use of lower and upper probabilities this is not
straightforward, because the additional dimension of uncertainty, reflecting
the indeterminacy through imprecision, may not have a clear benefit per se.
Indeed, the imprecision is a consequence of limited information from data
and limited assumptions. Zaffalon et al [20] have proposed a method to
measure the quality of an imprecise prediction by a single number. Their
metric consists of an objective component and an aspect related to the de-
cision maker’s risk aversion to variability of predictions. Such an approach
has advantages, as in contrast to intervals, single numbers can be uniquely
ordered, which is helpful to compare different methods. However, an alter-
native method is proposed here to illustrate and investigate the performance
of the presented predictive method. This novel method for performance eval-
uation does not rely on subjective input and reflects imprecision, which is
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important, for example, to study the effect of the number of available data
on the inferences.

This new method for investigating the performance of imprecise predic-
tive inferences is presented and applied to investigate how the inferential
method presented in Section 3 is influenced by the number of available data.
The new method uses the theory of Receiver Operating Characteristic (ROC)
curves, a well established method for comparison of the performance of di-
agnostic methods [21, 22]. While main developments and applications of
ROC methods have mostly been reported in medical statistics, they have
been increasingly applied in recent years, including to reliability problems.
For example, they have been used for the comparison of different statistical
models for failures in water supply networks [23] and steel coil manufactur-
ing [24]. Only basic nonparametric methods for ROC analysis are used in
this paper, with necessary adaptation to deal with imprecise probabilities as
inputs. It is, however, worth mentioning that NPI provides an interesting
alternative to the established ROC methods, again with a fully predictive
nature [25], its application to scenarios as considered in this paper is left as
a topic for future research.

The method presented in Section 3 has as input the numbers nj, for
j = 1, . . . ,m, of events in which j components failed simultaneously, with
data of in total n =

∑m
j=1 nj events. The output of the method consists of

the corresponding NPI lower and upper probabilities, P (S) and P (S), for
the event S that the system still functions after the next failure event. At
the moment these lower and upper probabilities are calculated, the actual
future functioning status of the system will of course be unknown, hence
these lower and upper probabilities can be regarded as a diagnostic tool,
with higher values more indicative of system functioning. Insight into the
performance of this method can be gained through simulation studies, which
are described next. It is important here to simulate in such a manner that
the quality of the prediction can be investigated. This can be achieved by
simulating several cases involving different mixtures of distributions, and
then to see if the method picks up the difference well in its predictions.
Furthermore, the simulations will illustrate the effect on the inferences of the
amount of data available, where typically imprecision should tend to decrease
with increasing numbers of available data.

The simulation study is performed as follows, describing one run in detail.
Two probability distributions are assumed over the integers {1, 2, . . . ,m},

12



from each n+1 values are sampled with replacement. Of these n+1 values for
each distribution, one is drawn by simple random sampling, this will serve as
a future observation and be denoted by nf . The remaining n values sampled
from each distribution serve as data, with nj the number of times the value
j is included in this simulated data set. Interestingly, it is not important
how these n+ 1 values are simulated as the NPI approach only requires the
future observation of interest to be exchangeable with the observed data,
which is ensured by the random selection of one of these n+1 values to serve
as the future observation. The NPI lower and upper probabilities, P (S) and
P (S), are calculated on the basis of this simulated data set {n1, . . . , nm}. The
simulated future observation nf functions as the number out ofm components
failing at the next failure event, and is used to simulate an actual future
observation of the functioning status of the system by drawing a value for a
Bernoulli distributed random quantity Sf which takes the value Sf = 1 with
probability Φ(m − nf ) and Sf = 0 else. Hence, Sf simulates the status of
the system after the next failure event, with Sf = 1 indicating functioning
and Sf = 0 failure of the system.

The resulting output from one simulation run is a triple (P (S), P (S), Sf )
for each of the two distributions used for the simulation. The full simulation
study consists of a predetermined number K of such independent runs, lead-
ing to 2K such triples. It is important here that two (or more) probability
distributions have been used for the simulations, if only a single distribution
were used all values Sf would have been exchangeable and it would not al-
low investigation of success of the method as there would not be any reason
why higher values of P and P would tend to correspond to value Sf = 1
than for lower values of P and P . Informally, the performance of the pre-
dictive method is good if values Sf = 1 occur mostly in triples with higher
values of P (S) and P (S) while Sf = 0 occurs mostly in triples with lower
values of P (S) and P (S). Hence, these lower and upper probabilities can be
considered as diagnostic tools to indicate the future system status, enabling
the method’s performance to be evaluated using ROC analysis based on the
output of these simulations. In particular, the area under the ROC curve
(AUC) is an established tool to measure the diagnostic quality of a classi-
fication method, where AUC of about 0.5 indicates that the method does
not perform better than random allocation while AUC close to 1 indicates
excellent performance.

In order to investigate the method’s performance, the data resulting from
the K simulation runs, so in total 2K triples (P (S), P (S), Sf ) as in each
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run two probability distributions were used, are divided into two groups,
depending on the value of Sf . So Sf = 1 for one group of simulation runs
with the system functioning after the next failure event, let K1 denote the
number of simulation runs for which the output is in this group. Similarly,
Sf = 0 for the group of simulation runs with the system failing at the next
failure event, the number of simulation runs in this group is denoted by
K0, of course K0 + K1 = 2K. Application of ROC analysis to indicate
the performance of this method would now be relatively straightforward,
e.g. using standard nonparametric methods for such an analysis in order
not to make further modelling assumptions, apart from the fact that the
indicators consist of intervals [P (S), P (S)] for each run, while normally for
ROC analysis the information on which to base the diagnosis is assumed to
be a single value. To deal with this, optimal bounds for the ROC analysis
for all possible combinations of probabilities within the intervals [P (S), P (S)]
can be derived, as described next. These bounds reflect the imprecision in
the NPI method.

Some further notation is introduced for this ROC analysis. For simula-
tion run j ∈ {1, . . . , K1} with Sf = 1, the NPI lower and upper probabilities
for the event that the system will function at the next observation are de-

noted by P 1
j(S) and P

1

j(S), respectively. For simulation run l ∈ {1, . . . , K0}
with Sf = 0, the corresponding notation is P 0

l (S) and P
0

l (S). For any set

of probabilities p1
j ∈ [P 1

j(S), P
1

j(S)], j = 1, . . . , K1, and p0
l ∈ [P 0

l (S), P
0

l (S)],
l = 1, . . . , K0, there is a single corresponding nonparametric estimate of the
ROC curve, say ROC(p1, p0) with p1 = (p1

1, . . . , p
1
K1

) and p0 = (p0
1, . . . , p

0
K0

).
It is easy to see that these ROC curve estimates depend monotonically on
p1 and p0. If an element of p1 is increased then the ROC curve can only
change by moving upwards, with the area under the ROC curve (denoted
by AUC) increasing. Similarly, if an element of p0 is increased then the
ROC curve can only change by moving downwards, with the AUC decreas-

ing. This implies that the set of all ROC(p1, p0) with p1
j ∈ [P 1

j(S), P
1

j(S)],

j = 1, . . . , K1, and p0
l ∈ [P 0

l (S), P
0

l (S)], l = 1, . . . , K0, is bounded from

below by ROC = ROC(P 1(S), P
0
(S)), with P 1(S) = (P 1

1(S), . . . , P 1
K1

(S))

and P
0
(S) = (P

0

1(S), . . . , P
0

K0
(S)), and this set is bounded from above

by ROC = ROC(P
1
(S), P 0(S)), with P

1
(S) = (P

1

1(S), . . . , P
1

K1
(S)) and

P 0(S) = (P 0
1(S), . . . , P 0

K0
(S)). Of course, these bounds are optimal because

they are actually obtained for the combinations of lower and upper proba-
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Failing components: 1 2 3 4 5 6 7

A 0.6 0.2 0.1 0.1 0 0 0
B1 0.4 0.2 0.1 0.1 0 0 0.2
B2 0.2 0.2 0.2 0.2 0.2 0 0
B3 0.1 0.1 0.1 0.1 0.1 0.2 0.3
B4 0 0 0 0.1 0.1 0.2 0.6

Table 1: Probability distributions used in 4 cases for simulation

Case 1 2 3 4

n = 10 (0.3653, 0.7291) (0.5225, 0.7755) (0.6470, 0.8459) (0.8041, 0.9416)
n = 100 (0.5361, 0.6121) (0.6274, 0.6987) (0.7228, 0.7893) (0.8528, 0.9041)
n = 500 (0.5622, 0.5969) (0.6491, 0.6827) (0.7277, 0.7587) (0.8592, 0.8832)

Table 2: Results (AUC,AUC) of simulation study

bilities as indicated. Optimal bounds for the AUC values for all considered
ROC curves follow immediately, with the lower bound AUC the area under
ROC and the upper bound AUC the area under ROC.

The method is now implemented for the system in Example 2 in Section
3. Four cases have been investigated, with two probability distributions over
the integers {1, . . . , 7} used in each case. These cases are specified in Table
1. One distribution was kept constant, it is indicated as distribution A. The
second distribution used differs per case, and is indicated by Bi for Case
i ∈ {1, 2, 3, 4}.

Note that the probability distributions B3 and particularly B4, used in
Cases 3 and 4, are substantially different from probability distribution A.
Therefore, in Cases 3 and 4 the method should be able to perform well in
prediction, as higher values of P (S) and P will be more likely to result from
the simulations using probability distribution B3 or B4 than those using A,
and hence the corresponding predicted status of the system will also more
likely be a failure. Table 2 presents the values AUC and AUC for this
investigation, all based on K = 1, 000 simulation runs (hence with 2, 000
simulated triples in each full simulation), and with different sizes n of the
simulated data sets.

The results in Table 2 indicate that the method performs indeed in line
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with expectations. The quality of prediction increases if the two probability
distributions included in one simulation case differ more substantially, and
the imprecision AUC − AUC decreases for larger values of n. For n = 10,
the value of AUC for Case 1 is less than 0.5, which might be interpreted as
indicating that a classification performance better than random allocation
is not guaranteed in this case, but it is certainly possible given that the
corresponding AUC is greater than 0.5. This is actually not surprising as
the two distributions used in Case 1 do not differ very much and the number
of observations used in each simulation is small. These simulations were
also carried out with larger values of K, but the results were close to those
reported in Table 2.

This performance evaluation method has been presented here in detail as
it appears not to have been reported in the literature before, and it has the
clear advantage of reflecting, through the imprecision, the influence of the
amount of available data on the performance of the method.

5. DISCUSSION

The nonparametric predictive inference (NPI) approach to statistics [6, 7]
has strong frequentist properties and explicitly focuses on prediction, hence
on the next event of interest. In this it is different from main methods of
frequentist statistics, where emphasis tends to be on estimation of population
characteristics. In practice, the latter setting is quite indirect if one is indeed
interested in the next event. One could follow estimation inferences by pre-
diction, but such a two-stage approach has many possible problems and, as
the NPI approach shows, is not necessary. One could argue about the nature
of reliability of a system, whether this is a property of the system (which
perhaps would fit better with the classical frequentist approach to statistics)
or whether it is a future event, which is the point of view we have taken here.
Beyond this, NPI lower and upper probabilities are considered as quantifica-
tions of the uncertainty, based on available data and quite weak modelling
assumptions, for the event of interest, namely functioning of the system after
the next common-cause failure event. Of course, if one would make different
modelling assumptions, one would get different uncertainty quantifications,
there is no claim in the NPI approach that these are intrinsic properties of
the system. This explicit view of reliability related to a future event for
which prediction is an adequate inference, also led to the need to judge the
performance of the method differently than would have been appropriate if
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one had aimed at estimating a system property (or statistically, a ‘popu-
lation property’), hence the new approach for such a possible performance
evaluation method in Section 4.

The basic approach presented in this paper can be generalized in sev-
eral ways. These are all relevant for further development of the approach
towards practical implementation for substantial real world systems and net-
works, and all require some additional research. A detailed study in which
the prediction method presented here is compared with a variety of alterna-
tive methods, including the (imprecise) Bayesian approach to the α-factor
model will be of interest. In particular, it will also be important to include
a variety of measures to evaluate the performances of the methods. As this
latter issue of suitable methods for performance evaluation of imprecise prob-
abilistic methods has only quite recently received attention, and is currently
an active area of research, such a detailed study of performance of differ-
ent prediction methods is left as an important topic for future research. It
is felt that the performance evaluation method presented in Section 4 has
important advantages, investigating its properties in comparison to alterna-
tive evaluation methods is therefore also important, ideally in a variety of
classification problems.

If a failure event occurs, involving one or more components but not leading
to system failure, it may be of interest to consider the reliability of the
system in case of a future further failure event. This could provide important
insights into whether or not replacement of (some of) the failed components is
required. Assuming that inspection after a failure event reveals with certainty
which of the system’s components have failed, such inspection leads to a
changed structure of the system, with only its functioning components taken
into account, for which the survival signature can be computed. This will
involve less computation than the derivation of the original survival signature
for the full system. Hence, implementation of the approach presented in
this paper appears to be straightforward, yet one has to be careful with
regard to the use of the available data and whether or not it is reasonable
to assume that the number of components failing at the next failure event
is independent of the number of components that have failed and also which
components have failed. Data on common-cause failure events, as assumed
in this paper, cannot automatically be used in case the system has a reduced
number of functioning components, in practice it is unlikely that one would
have a substantial data set related to the actual reduced system. With some
additional assumptions one could use the original data set in an adapted form,
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for example by changing each value by taking into account the probability
that one or more of the failed components for the data would be in the set of
components that have now failed in the system, but this requires some more
research. This topic has close links to similar considerations for the system
signature [26], yet the statistical aspects mentioned here appear not yet to
have been considered in detail in the literature.

Coolen and Coolen-Maturi [8] introduced the survival signature as an
alternative to the system signature [9] particularly for its generalization to
systems with multiple types of components, which of course is the case for
most real world systems and networks. The prediction of system failure time
using NPI and the survival signature has been presented by Coolen et al
[27]. As shown in this paper, the survival signature provides an attractive
and quite straightforward method for inference in case of common-cause fail-
ures, which are also important to study for such more general systems with
multiple types of components. The approach presented in Section 3 can, quite
straightforwardly be generalized to systems with multiple types of compo-
nents, where care is required due to the fact that an observed failure event
in the data would not necessarily imply that at least one component of each
type had failed. A more important consideration, however, would be whether
or not one can assume independence of numbers of failures of components of
different types, at the next failure event. If one is happy to assume this, then
indeed the generalization is pretty straightforward, but in practice it may be
important to take dependencies between such numbers of failing components
into account. If one has historical data for the system, with detailed infor-
mation about the numbers of components of all types failing simultaneously,
then such inference is possible, but NPI for general multivariate ordinal data
has not yet been developed. There are several heuristic approaches that
could be applied, but the NPI approach is particularly attractive due to its
foundational properties as a frequentist statistics procedure, hence further
research is required to enable appropriate generalization.

Many reliability problems involve networks, for example in energy provi-
sion. Recently, Aslett et al [28] have presented Bayesian statistical inference
for system reliability using the survival signature, including an introduction
of survival signatures for networks, which typically have at least two types of
components (the nodes and the links between them). Further research is re-
quired to upscale the approach to large real-world networks, but for such net-
works common-cause failures are important to be taken into account, hence
the method presented in this paper will be useful for such applications.
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Recently, Coolen and Coolen-Maturi [10] discussed how further aspects of
uncertainty and indeterminacy about the system’s functioning can be dealt
with by generalizing the system structure function to a (possibly imprecise)
probability instead of a binary function. In particular, this enables scenarios
with multiple tasks to be dealt with, where it is not certain what kind of task
the system has to deal with next, and where one can even consider as yet
unobserved or even unknown tasks. This generalization can also be combined
with the method presented in this paper, which provides a further interesting
research topic.

In this paper attention has been restricted to the next failure event. This
can be generalized in several ways. One can consider multiple future failure
events, where NPI would take the dependence between such future events
explicitly into account. NPI for multiple future events for ordinal data has
not yet been presented but is relatively straightforward to develop due to
the assumed underlying real-valued latent variable structure [17] and the fact
that NPI has been presented for multiple future real-valued observations [29].
One can also consider reliability of the system at a certain future moment
in time, assuming failure events to happen according to a stochastic process.
This is also left as an interesting topic for future research, where particularly
any dependence between the process and the numbers of failing components
at a failure event would lead to challenging research questions and, in order
to implement NPI, substantial amounts of data being required. Related to
such a process view over time, it is also of interest to include aspects of
wear-out (or burn-in) over time.

The approach presented here can also be used as a basis for a range of asset
management decisions, for example one can explore the system reliability if,
after a failure event, a few but not all failed components are replaced. Such
considerations would probably involve aspects of costs, due to the explicit use
of observable random quantities in the NPI approach the formulation of cost
functions is quite straightforward. There is no need to rely on concepts such
as average costs per unit of time over an infinite time horizon, as often used
in traditional Operational Research methods for inspection and maintenance
planning based on renewal reward theory, which tend to be made more for
mathematical convenience than for their real importance [30]. This provides
also a range of interesting challenges for future research.
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