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Modeling and discrimination in failure risk

models with interval�censored data. An

application in water supply networks.
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Problem: Since drinking water supply companies pro�ts depend on pipe re-

liability it is important to be able to measure the risk of pipe failure with time

accurately as its improvement could have important social and economic impli-

cations. Therefore, although awareness of the importance of predicting failure

rates in reliability has existed in the literature for many years, the full power

of advanced statistical modeling has only been used for engineering questions in

recent times.

Approach: Using data from a real drinking water supply company in a

medium�sized Spanish city, the network characteristics which a�ect the risk of

failure and the models which best �t the data to predict service breaks were

identi�ed. As, in our data we do not know the exact count of times to failure of
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each pipe we approximated the time until the failure of each pipe by means of

an interval and we apply a model developed by Farrington for interval�censored

data. This method is based on a non�linear model for binary data and uses

standard statistical packages with interpretation analogous to Cox's. In order to

check the consistency of Farrington's model we do an exhaustive validation of

this method and we compare it with some well established models: Cox's model

and the Generalized Linear model.

Results: This study shows that network characteristics a�ect the risk of pipe

failure: an increase in the length and pressure, a small diameter, the material used

and to make the pipes and a heavy tra�c conditions of the street. So we propose

a clear framework for decision support in the diagnosis and rehabilitation of water

supply systems in that company. In order to compare the models, we have used

the ROC curves and the Concordance Index to decide which models provide better

discrimination in order to predict service breakdown: the Farrington model had

the best discrimination and the Cox model the worst.

Key words: Interval�Censored Data, Reliability Analysis, Farrington Model, Con-

cordance Index, ROC Curves.

Process Description

Worldwide, water supply systems (WSS) face the problem of aging infrastruc-

tures and increasing maintenance costs. Drinking water supply companies pro�ts
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and service quality for citizens depend on pipe reliability. The classic reactive

approach used by most companies is obviously not the best way of managing this

essential public service from the point of view of both quality and availability.

Therefore, proactive strategies are required, however, these proactive approaches

require models to evaluate risks, to predict the best measures and to forecast

water supply network performance. In this way, it would be very important to be

able to calculate failure probabilities of pipes over time as forecasting pipe fail-

ures has important economic and social implications. Moreover, the companies

will have a clearer framework to make decisions in the diagnosis and rehabilita-

tion of the pipes. Quantitative tools (statistical indicators, reliable databases,

etc. . . ) are required in the management of water supply systems in order to

assess the current and future state of networks and so forecast the future deteri-

oration of infrastructures. Nowadays, companies managing these networks try to

establish models for evaluating the risk of failure in order to develop a proactive

approach to the renewal process instead of using traditional reactive pipe sub-

stitution schemes. So the power of advanced statistical modeling in the �eld of

reliability is needed although it has only been used for engineering questions in

recent times.

The main objective of this paper is to compare and improve models of relia-

bility data for evaluating the risk of pipe failure. We want to identify which main

network characteristic factors a�ect the risk of failure and which models better

�t data to evaluate the failure probability and predict service breakdown. Data
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from the water supply network of a medium-sized city on the Spanish Mediter-

ranean coast is used. In addition, we will outline the problems related to data

collection and quality and the measures taken to �clean� the database of errors

and inconsistencies.

In reliability analysis, data are related to time from a well-de�ned time origin

until the occurrence of some particular event or end-point. In our study, the

variable of interest is the time (in years) from the installation year of the pipe

(time origin) to the deterioration of the pipe or failure time (end-point). This

variable T is the time until the failure. Now, in standard time-to-event or survival

analysis, occurrence times of the event of interest are observed exactly or are right-

censored, however, in some situations the times of the events of interest may only

be known to have occurred within an interval of time. For example, in clinical

trials patients are often seen at pre-scheduled visits but the event of interest may

occur between visits. As in our data, we do not know the exact number of all

failure times of each pipe then we need to do an approximation of the failure

time of each one by means of an interval. So each pipe may have a di�erent time

interval in which the failure has occurred, and so data are referred to as grouped

or arbitrarily interval-censored data. We describe the database in detail below

and the interval�censored data for our analysis.

On the other hand since Peto (1973) and Turnbull (1976) developed an es-

timator of the survival function in survival analysis for interval�censored data

the literature on interval-censored data has grown. In order to evaluate the pos-
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sible e�ect of several factors on the time T until the failure, parametric and

semi�parametric models have mainly been used. In fact, many research analyses

deal with interval�censored response data extending Cox's proportional hazard

model (Cox, 1972). Therefore, Finkelstein (1986) proposed a method for �t-

ting the proportional hazard model to interval�censored data. Lindsey and Ryan

(1998) reviewed the use of parametric models for the analysis of interval�censored

data. Huang and Wellner (1997) provided a rigorous theoretical account of these

methods. This topic is dealt with in several general survival analysis books, e.g.

Kalb�eisch and Prentice (2002), Lawless (2003) and more recently in Sun (2006).

From a practical point of view, an important problem for most of the available

methods, as we have shown above, is the lack of standard packages of statistical

software. In the parametric models framework, there is a method for modelling

arbitrarily interval�censored data developed by Farrington (1996). It assumes

proportional hazards and it is based on a non�linear model for binary data (see

Collett et al., 2003, cap. 9). We use the Farrington model of easy implementation

using standard statistical packages with interpretation analogous to Cox's. More-

over, the same author develops a comprehensive account of diagnostic methods to

use with proportional hazard models for interval�censored data (Farrington, 2000)

which provides a validation of the obtained model. We have used this method-

ology recently with another database in medicine (Santamaría et al., 2008) for

survival analysis and we have improved the analysis carried out with Cox's model

in García et al. (2005) and in Santamaría (2006).
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On the other hand, as a model that places each pipe in the class to which it

really belongs it could be said to have perfect discrimination. We also investigate

the discrimination ability for all models in this study by means of the concor-

dance C index introduced by Harrell et al. (1996) as a natural extension of the

ROC curve area in survival analysis.

In the following sections, we present the water supply network database and

we calculate the approximate failure times for each pipe by means of intervals.

Next, we describe the Farrington model for interval�censored data and we apply

it to analyze the main characteristic factors a�ecting the risk of failure. We also

contrast and compare the Farrington model with other models in survival and

reliability analysis, and the Cox model and the Generalized Linear model to study

the consistency of the �rst one. Next, we validate the Farrington model by means

of standard diagnostic tools developed by the same author for interval�censored

data. Based on these �ndings, we analyze the ROC curve and the concordance

C index for the three models. Finally, the most relevant conclusions are presented.

Data Collection

Interval�censored data

In the development of the research project we had access to data from the water

supply company of a medium-sized Spanish city. The company gave us access

to a database containing information on pipe sections making up the network.
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The database includes 32387 entries corresponding to the sections. Among other

variables, these entries contain section identi�cation of the pipe, installation year,

date of failure, general characteristics of the pipe (length, diameter and pressure),

tra�c conditions in the street (under sidewalk, normal tra�c and heavy tra�c)

and four di�erent materials that were used to make the pipes (ductile cast iron,

gray cast iron, polyethylene and asbestos cement). Tra�c conditions is classi�ed

by three levels and our reference is heavy tra�c. Material is classi�ed in four

categories and the reference is asbestos cement.

There were some problems with the quality of the data. One of the major

problems with the database was the information about the oldest pipe sections.

Due to the lack of reliability of older data only those pipes installed after 1940

were considered. Failures have only been included in the database since 2000

(when the use of the GIS was established) and there was no possibility of recov-

ering failure data from before that year. This means a very high censoring rate,

up to 98%. Also, no consideration was given to the fact that a pipe section can

fail more than once, because the database structure was not prepared to consider

this fact. So these minor errors had to be corrected prior to using the database,

frequently resulting in the loss of the corresponding failure entries.
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Diagram

Since in the database the exact time of failure of each pipe is unknown we

made an approximation of the time until the failure of each pipe by means of

an interval. So each pipe may have a di�erent time interval in which the failure

occured and the database is referred to as grouped or arbitrarily interval�censored

data. Therefore, for all pipes the failure times are only registered between 2000

and 2006, the installation year of the pipe can be before or within the interval

[2000, 2006] and the date of failure can be before, within or after this interval. We

de�ned the intervals Ai (Table 1) according to all possible cases in the database

(see Diagram). For example, if the installation and the failure years for a pipe

are the same we consider that the age of the pipe is between 0 and 1 year and
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we approximate the age by means of the interval (0, 1], this being a left�censored

observation. If the year of installation and the failure time are di�erent but both

are within the interval [2000, 2006] the observation will be con�ned. In this case

we approximate the age of the pipe by means of an interval where the inferior

limit will be the di�erence between the installation and failure years and the

superior limit will be always one unit more. So we want to consider all months of

the period from the beginning of the year of installation to the end of the year of

failure. However if the installation year is before 2000 (the other case of con�ned

observation) the age of the pipe will be approximated by an interval where the

inferior limit goes from year 2000 to failure year and the superior limit goes from

the year of installation to year of failure. We wanted to approximate the age of

the pipe by means of that interval, as in this case we could exactly determine

the inferior limit but not the superior limit; so we used that approximation as

we did not known possible pipe failures before the year 2000. Finally, if the

failure time is after the year 2006 the observation will be right�censored and we

distinguish two possible cases: if the year installation is inside of the interval

[2000, 2006] we approximate the age for that pipe by means of an interval from

the year installation to 2006, and if the year installation is before the year 2000 we

approximate the age in a similar way as the second case in con�ned observations.
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Type of observation year installation year failure Age Interval Ai

Left-censored 2003 2003 0 (0, 1]
Con�ned 2002 2004 2 (2, 3]
Con�ned 1994 2004 10 (4, 10]
Right-censored 2003 2007 3 (0, 3]
Right-censored 1998 2007 9 (0, 9]

Table 1: Examples of intervals Ai.

Analysis and Interpretation

The Farrington model for Interval-Censored Data.

In reliability analysis there are two basics functions: the �rst one is the reliability

function R(t), the probability that the time until failure T is greater than or

equal to t,

R(t) = P (T ≥ t) = 1− F (t),

with F the distribution function of T .

The second one is the hazard function, or hazard rate, h(t). It is de�ned by

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
,

that is the probability of failure at time t, conditional on the pipe working

until time t. It is assumed the proportional hazards assumption, tested in the
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model checking process, that is, hazard ratio between di�erent pipes is constant

and independent of time.

Let us suppose the time until failure for the ith pipe is observed in the interval

(ai, bi]. We have mentioned before that data in this form are referred to as interval-

censored data. If this time is left-censored (the event occurred before the �rst

observation of the pipe) at time bi, then ai = 0. If it is right-censored (the

event occurred after the last observation) at time ai, then bi = ∞. We say the

interval�censored recurrence time is con�ned when values ai and bi are observed

for an pipe during the follow�up period. Let us suppose n pipes, where there are

l left-censored, r right-censored, and c con�ned, so that n = l + r + c. Then the

overall likelihood function for the n pipes can be written as

l∏
i=1

{1−Ri(bi)}
l+r∏
i=l+1

Ri(ai)
n∏

i=l+r+1

{Ri(ai)−Ri(bi)} (1)

where Ri(t) is the reliability function for the ith pipe.

Farrington shows that this likelihood is equivalent to

n+c∏
i=1

pyi

i (1− pi)1−yi (2)

where y1, y2, . . . , yn+c are n+ c independent binary observations from a Bernoulli

distribution with response probability pi, i = 1, 2, . . . , n+ c.

The left�censored observations contribute to the likelihood function as l binary

observations with yi = 1 and pi = 1 − Ri(bi). The right�censored observations
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contribute to the likelihood function as r binary observations with yi = 0 and pi =

1−Ri(ai). Finally, each con�ned observation contribute to the likelihood function

as two binary observations. The �rst one is de�ned as a binary observation with

yi = 0 and pi = 1 − Ri(ai), while the second one is de�ned with yc+i = 1 and

pc+i = 1− Ri(bi)

Ri(ai)
(see Collett et al., 2003, p. 287 for more details).

In order to specify the model, the next step is to obtain the expression of the

reliability function Ri(t). For this purpose it is assumed that the hazards are

proportional and the reliability function satis�es

Ri(t) = R0(t)exp(β
′xi) (3)

with R0(t) the baseline reliability function and xi the vector of values of p ex-

planatory variables for the ith individual, i = 1, 2, . . . , n. The baseline reliability

function will be modelled as a step function, where the steps occur at the k or-

dered censoring times, t(1), t(2), . . . , t(k), with t(1) < t(2) < . . . < t(k) (subset of the

times at which observations are interval�censored). The procedure for choosing

these times is explained later.

Let us de�ne

θj = log
R0(t(j−1))

R0(t(j))
(4)

where t(0) = 0, so that θj ≥ 0, and at time t(j) we have

R0(t(j)) = e−θjR0(t(j−1)), (5)
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for j = 1, 2, . . . , k.

The �rst step in the baseline reliability function occurs at t(1), so R0(t) = 1 for

0 ≤ t < t(1). From t(1) and using (5) we have R0(t(1)) = exp(−θ1)R0(t(0)) which

implies that R0(t) = exp(−θ1) for t(1) ≤ t < t(2). Similarly, from t(2) the reliability

function is exp(−θ2)R0(t(1)) which implies that R0(t) = exp{−(θ1 + θ2)}, t(2) ≤

t < t(3) and so on, up to R0(t) = exp{−(θ1 + θ2 + · · ·+ θk)}, t ≥ t(k). Thus,

R0(t) = exp

(
−

j∑
r=1

θr

)
(6)

for t(j) ≤ t < t(j+1), and the baseline reliability function at any time ti is given

by

R0(ti) = exp

(
−

k∑
j=1

θj dij

)
, (7)

where dij = 1 if t(j) ≤ ti and dij = 0 if t(j) > ti for j = 1, 2, . . . , k.

Combining results from equations (3) and (7), we obtain the reliability func-

tion for the ith individual at times ai, bi.

From Ri(ai) and Ri(bi) the response probability pi of (2) may be expressed in

terms of unknown parameters θ1, θ2, . . . , θk and the unknown coe�cients of the p

explanatory variables in the model, β1, β2, . . . , βp. We obtain (see Collett et al.,

2003, p. 289)

pi = 1− exp

{
− exp (β′Zi)

k∑
j=1

θj dij

}
, (8)
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Type of observation Value of yi Interval Ai

Left-censored 1 (0, bi], i = 1, 2, . . . , l
Right-censored 0 (0, ai], i = l + 1, . . . , l + r
Con�ned 0 (0, ai], i = l + r + 1, . . . , n

1 (ai−c, bi−c], i = n+ 1, . . . , n+ c

Table 2: De�nition of intervals Ai.

where dij = 1 if t(j) is in interval Ai (intervals Ai are as it is shown in Table 2)

and dij = 0 in other cases for j = 1, 2, . . . , k.

This leads to a non�linear model (generalized non-linear model) for a set of

binary response variables, with values yi and the corresponding probabilities pi,

given by equation (8) for i = 1, 2, . . . , n+c. The model contains k+p unknown pa-

rameters, θ1, θ2, . . . , θk and β1, β2, . . . , βp. In the SAS software, the proc nlmixed

code (SAS Institute Inc., 1999) is used to �t the model for the response probabil-

ities in equation (8) by means of the de�nition of the distribution of the binary

response variables yi. In this way the estimated parameters θ̂1, θ̂2, . . . , θ̂k and

β̂1, β̂2, . . . , β̂p are obtained.

Once an appropriate model has been found, we may estimate the baseline

reliability function from equation (6),

R̂0(t) = exp (−
j∑
r=1

θ̂r) (9)
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for t(j) ≤ t < t(j+1), j = 1, 2, . . . , k where t(k+1) = ∞ and θ̂j is the estimated

value of θj as mentioned above. The estimated reliability function for the ith

pipe, R̂i(t), is obtained by (3) substituting R0(t) for (9) and β for β̂ (the vector

of estimated coe�cients of explanatory variables). The hazard can be obtained

from the reliability function by means of well known relationships.

Let us now consider the selection of times C={t(1), t(2), . . . , t(k)}. It would

appear desirable that times t(j) were all di�erent censoring times, which means

shaving di�erent values for ai and bi. This would introduce too many θ parameters

into the non-lineal model and for this reason it is necessary to choose a subset of

disposable times.

As mentioned above the procedure for choosing the partitioning t(j) times is

carried out in the following way (see Collett et al., 2003, p. 291). Each interval

used in this model of binary data, denoted earlier by Ai, must include at least one

of the times t(j). If this is the case, at least one of the values of dij in equation (8)

would be unity, and so
k∑
j=1

θj dij will be greater than zero. Let us suppose that

interval Ai is (ui, vi]. We take t(1) to be the smallest of the values of vi, t(2) the

smallest vi such that ui ≥ t(1). Again, we take t(3) to be the smallest vi such that

ui ≥ t(2), and so on, until t(k) as the smallest value of vi such that ui ≥ t(k−1).

In this way, we obtain the minimal set of times used in calculating the baseline

reliability function, so that all the intervals Ai include at least one of these times

t(j). The �tting model could be improved including a greater number of steps

in the subset C={t(1), t(2), . . . , t(k)}. This entails adding a new θ�parameter for
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each additional time point. All these times are added one by one. So, each �tted

model (one for each additional time) will lead to a value of the −2 log L̂ statistic.

So, the smaller the value of this statistic, the better the model.

Application to water supply networks

In the process of performing the reliability function of the model, a minimal set of

ordered censoring times was chosen: C={1,2,3,4,5,6,15}. With this minimal set

C, in order to choose the variables, we use the statistic −2 log L̂ for the model. In

the �tting process we concluded that length, diameter, pressure, tra�c conditions

and the material are prognostic factors on the failure time of the pipes. Table

3 shows the estimated parameters for the hazard ratios of the prognostic factors

from the generalized non�linear model. Each individual regression coe�cient

value can be interpreted in this way, for the explanatory variable length the

increase in the risk of failure for an increase of 1 m in the section pipe is 0.3%. In

the case of the diameter, the risk of failure decreases by approximately 1% for an

increase of 1 mm while the risk increases by 2.11% for each increase of 1 pascal in

pressure. On the other hand, pipes situated under sidewalks and normal tra�c

decrease the hazard rate by about 65% and 42% respectively compared to pipes

under heavy tra�c. Finally, pipes made with ductile cast iron were 0.23 times

less likely to su�er failure than those made with asbestos cement. The rest of the

materials gave results that were not signi�cant.

In the second step we increased the number of censoring times of C one by
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Variable β̂ Exp(β̂) s.e.(β̂) p-value.

length 0.0033 1.0033 0.000 < .0001
diameter -0.0039 0.9961 0.000 < .0001
pressure 0.0209 1.0211 0.003 < .0001
under traf -1.0079 0.3649 0.213 < .0001
normal traf -0.5367 0.5846 0.218 0.0141
ductile -1.4346 0.2382 0.094 < .0001
gray iron -0.1124 0.8936 0.158 0.4770
polyethylene -0.1016 0.9033 0.230 0.6586

Table 3: Estimated parameters for failure time. Generalized non�linear model.

one in the �tted model. The modelling procedure did not show any value which

reduces −2 log L̂ signi�catively. So the minimal set C provides the best �tted

model so Ai
⋂

C is non�empty and the expansion of the set C does not improve

our �tted model.

In order to check the consistency of the Generalized non�linear model we

contrasted the results obtained with some well established methods: the semi�

parametric Cox regression model and the Generalized Linear Model (GLM). The

Cox regression model, also called the Proportional Hazard Model, is designed to

analyze the time lapse until an event occurs or time lapse between events. The

covariables, one or more predictor variables, are used to predict the event. The

Proportional Hazard Model Cox (1972) has been widely used in analizing survival

data. The model speci�es that the time until failure T , given the covariables

vector x, has the hazard function
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h(t, x) = h0(t)eβ
′
x

where h0(t) is an unspeci�ed baseline function and β is the regression coe�-

cient vector.

Generalized Linear Models are an extension of linear models for non�normal

distributions of the response variable and non�linear transformations. Therefore,

we want to �nd a linear function

E(y|x) = m = β0 +

p∑
i=1

βixi,

where a constant variance for the variable Y is supposed. Then, GLM provides

a method for estimating a function for the response variable mean as a linear

combination of the set of predictive variables, that is,

l(E(y|x)) = l(m) = η(x) = β0 +

p∑
i=1

βixi

The function of the response mean, l(m), is called a link function, and is

considered to be the same as a linear function of the predictors, η(x) which is

called a linear predictor. Each component yi of Y has a Binomial, Poisson or

Gamma distribution. The GLM comprehensive reference is in McCullagh and

Nelder (1989).

The results for both models are shown in Table 4. The interpretation of
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the parameters in the Cox model is similar to the Farrington model. Length

and pressure increase the risk of failure by 0.4% and 2.3% respectively for an

increase of one unit in each of these measurements, while the diameter decreases

the risk of failure by approximately 1% for each increase of 1 mm. Pipes under

sidewalks and normal tra�c decrease the hazard rate by about 52% and 42%

respectively compared to heavy tra�c. Finally, pipes made with ductile cast

iron and polyethylene were 1.393 and 5.629 times more likelier to su�er failure

compared to pipes made of asbestos cement.

The GLM allows us to analyze the data on the assumption that the number

of pipe failures follows a Poisson distribution. The model is formally a Poisson

Generalized Linear Model with a logarithmic link function. These models have

been used before by Boxall et al. (2007) and more recently by Debón et al. (2010).

We can conclude that the mean failure increases slightly for an increase of one

unit in length and pressure of the pipes and decreases for an increase of one unit in

diameter. On the other hand, pipes under sidewalks and normal tra�c decrease

the mean number of failures respectively compared to pipes under heavy tra�c.

Finally, ductile cast iron decreases the mean number of failures while gray iron

increases it with respect to asbestos cement.

The analysis of the three models described above shows that pipes which

were more prone to failure had the following characteristics: long lengths and

large diameters, high pressure and installed under a heavy tra�c. As regards

the material, the three models do not provide the same results: pipes made with
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Cox model Generalized Linear model

Variable β̂ Exp(β̂) s.e.(β̂) p-value β̂ s.e.(β̂) p-value
length 0.004 1.004 0.000 0.000 0.003 0.0004 0.000
diameter -0.003 0.997 0.001 0.003 -0.003 0.0009 0.000
pressure 0.023 1.023 0.005 0.000 0.027 0.0045 0.000
under traf -0.723 0.485 0.264 0.006 -1.156 0.2639 0.000
normal traf -0.548 0.578 0.272 0.044 -0.787 0.2718 0.004
ductile 0.331 1.393 0.146 0.023 -1.795 0.1805 0.000
gray iron -0.132 0.876 0.184 0.473 0.310 0.1827 0.089
polyethylene 1.728 5.629 0.266 0.000 0.168 0.2808 0.550

Table 4: Estimated parameters for failure time. Cox and Generalized Linear
models.

ductile cast iron in the Farrington and GLM models and, pipes made ductile cast

iron and polyethylene in the Cox model. We can observe that the values and

signs of the coe�cients are similar in the three models, despite small di�erences

in the coe�cients corresponding to materials. The results of the Cox and GLM

are similar to as the Farrington method. This fact gives support to the Farrington

model as a suitable model for dealing with the approximated age de�ned above

by means of interval�censored data.

Validation of the model

In order to determinate if the Farrington model was �tted correctly to our set

of interval�censored survival data we employed residuals derived from those for

right�censored data. Farrington (2000) shows that many standard diagnostic

tools of survival analysis have counterparts for interval�censored data. Speci�-

cally, it develops interval�censored versions of residuals of Cox and Snell (1968),
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Lagakos (1980) and deviance residuals (Therneau et al., 1990). We used these

results to carry out the validation of our results. All results obtained in this

section were calculated with S�Plus software (Venables and Ripley, 2000).

In the �rst step, we checked the assumption that times until the failure of

the pipes are independent of the observation process and in the second step, we

highlight those pipes whose times until failure are not well �tted by the model

(possible outliers).

As usual we have assumed that the observation process that generates the

interval censoring is independent of time until failure and covariates. Therefore

it is useful to examine plots of the distribution of interval lengths by observation

number and by all covariates on the �tted model. In Figure 1 we can see that

the plots do not reveal any systematic di�erences in the observation process from

covariates or prognostic factors.

The model�checking procedure to detect possible outliers is based on martin-

gale and deviance residuals developed by Farrington (2000) for interval�censored

data. Given a sample of interval�censored observations (a1, b1], . . ., (an, bn] and

estimated reliability functions R̂i, the martingale residuals are given by the fol-

lowing expression

r̂Mi =
R̂i(ai)log(R̂i(ai))− R̂i(bi)log(R̂i(bi))

R̂i(ai)− R̂i(bi)
(10)

for i = 1, 2, . . . n.
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Figure 1: Distribution of interval length by observation diameter, length, mate-
rial, pressure and tra�c covariates.

In large samples, martingale residuals have zero mean under the correct model.

In fact, we can see that only one pipe (pipe number 765) has a longer time until

failure than the rest, however it has some bad prognostic factors (Figure 2). As

the martingale residuals take values in the interval (−∞, 1], we have plotted

deviance residuals (a transformation of the martingale ones), which are more

symmetrically distributed about zero and so the plots based on these residuals
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Figure 2: Martingale residuals by observation diameter, length, material, pressure
and tra�c covariates.

are easier to interpret. Deviance residuals are given by the expression

rDi = sgn(rMi )

[
2log

{
R0(ai)

ηi −R0(bi)
ηi

R0(ai)exp(β
′Zi) −R0(bi)exp(β

′Zi)

}]1/2

(11)

where

ηi =
log{Λ0(bi)} − log{Λ0(ai)}

Λ0(bi)− Λ0(ai)
, (12)
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ηi = 0 if bi = ∞, ηi = ∞ if ai = 0, and Λ0 is the cumulative hazard function

de�ned by Λ0 = 0 if t = 0 and, Λ0 = θ1 + · · ·+ θj if t = tj , j = 1, . . . , k.

Figure 3 shows deviance and martingale residuals plotted against the loga-

rithm of interval length (or −1 for right�censored observations). The deviance

transformation again only suggests one apparent outlier slightly separated from

the bulk of the data, pipe number 765.

Figure 3: Log-cumulative hazard functions for explanatory variables against log-
arithm of selected times.

Discrimination ability of the model

In order to compare the Farrington model above with the Cox and the generalized

linear models we assesed the discrimination ability of each one of them. Discrim-

ination quanti�es the ability of the model to correctly classify pipes into one of

two categories (failures and non-failures). The model that places each pipe in the

category to which it truly belongs can be said to have perfect discrimination. Ini-

tially a measurement for the discrimination was suggested by Harrell et al. (1996)

in dichotomous outcomes whose development was motivated by the extension of
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the concept of the receiver operating characteristic (ROC) curve which quanti�es

discrimination in logistic regression. However, measuring discrimination in reli-

ability analysis is more di�cult than logistic regression. Therefore, Pencina and

D'Agostino (2004) developed a measure for good discrimination in the context of

survival analysis: the C index. We show how, in reliability analysis, the C index

allows us to discriminate between two models in our analysis.

The C index considers that pipes with longer predicted failure time actually

survive longer without experiencing any failure. we have the actual survival time

Xi and the predicted survival Ti given by the model. Harrell et al. (1996) points

out that predicted probabilities of survival until any �xed time point, Yi, can be

used instead of the predicted survival times Ti. Moreover, this interchange be-

tween probabilities can be used in the most common models in reliability analysis

such as proportional hazards and accelerated failure time models. Next we order

the pipes from the smallest actual survival time to the highest actual survival

time. We form all posible pairs of pipes and then we compare them. We have

the following four posible situations for each pair of pipes:

1. Xi > Xj and Yi > Yj ⇒ concordant pair.

2. Xi < Xj and Yi < Yj ⇒ concordant pair.

3. Xi > Xj and Yi < Yj ⇒ discordant pair.

4. Xi < Xj and Yi > Yj ⇒ discordant pair.
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It is assumed that distributions of survival times and predicted probabilities

of reliability analysis are continuous. This avoids any ties in Y's, but not in X's.

Not all pairs are either concordant or discordant. Thus in constructing the C

index, only those pairs of pipes in which at least one had a failure are used. This

results in either failure versus failure or failure versus non-failure comparisons.

Such pairs are called usable. On the other hand, if two pipes did not develop

any failures by the end of the study we can not compare them in terms of the

predictions. In this case, pairs formed by such pipes are called unusable. For each

pair of pipes it is de�ned

cij =


1 if Xi < Xj and Yi < Yj or Xi > Xj and Yi > Yj

0 otherwise

(13)

In order to construct the C index we assume N pipes such that N = k + n

where k is the number of failures and n is the number of non�failures. Let ch

denote the number of pipes that are concordant with the hth pipe in the data,

h = 1, 2, . . . , N . With the de�nition (13) of cij we can write

ch =
∑
h6=j

chj

Let dh be the corresponding number of discordant pairs. Then the C index

is the proportion of all usable pairs in which the predictions and outcomes are

concordant
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C =
pc

pc + pd

with

pc =
1

N(N − 1)

∑
h

ch

and

pd =
1

N(N − 1)

∑
h

dh

where pc denotes the number of pipes that are concordant with the h-th pipe in

the sample, h = 1, . . . , N and pd are de�ned in the same way.

The estimated value of the C index was found to be 0.83 for the Farrington

model and 0.70 for the Cox model. We concluded that the agreement between the

predicted and observed outcomes are closer in the Farrington model. Also for the

GLM model we calculated the ROC curve area following the methodology used

by Debón et al. (2010) which was 0.82. Since the C index is an natural extension

discrimination method to the ROC method we were able to compare the three

models. We did not use the ROC curve for the Farrington and Cox model because

the data are censored and so the discrimination would not be good. It can be

seen that the Cox model produces the worst �t.
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Conclusions

This paper is motivated by the research of time until failure of pipes and by

the prognostic factors associated to them. As we did not know some failure

times of pipes before year 2000 we approximated the age of the pipe's sections by

means of interval�censored data and therefore we decided to employ a generalized

non�linear model developed by Farrington. We think that this option is very

interesting because its implementation is easy using standard statistical software

and the interpretation of results is analogous to Cox's model. This author also

provides residuals derived from those for right�censored data and as interval�

censored data are more awkward to examine than right�censored data, these

residuals at least provide a easy way of doing so.

In the model checking, we have presented index plots of interval lengths to

check if the observation process that generates the interval censoring was inde-

pendent of time until failure and the covariates: index plots of martingale and

deviance residuals to identify outliers and the log�cumulative hazard functions

for each explanatory variable against the logarithms of selected times (those used

in constructing the baseline reliability function). From these plots we can see

that the Farrington model is well �tted to our data. Only one pipe is highlighted

because it presented some bad prognostic factors and its time until failure was

long. From the deviance residual plot we can conclude that it was not actually

an outlier observation.

28



The study sought to provide insight into the impact of di�erent variables on

the risk of failure in water supply networks. All variables resulted signi�cant in

the three models. We conclude the main network characteristics a�ect the risk

of failure: an increase in the length and pressure, a small diameter, the material

used and to make the pipes and a heavy tra�c conditions of the street. So we

propose a clear framework for decision support in the rehabilitation of water

supply systems for that company.

We compared the Farrington model with the Cox and Generalized Linear

models. Although the ROC (receiver operating characteristic) analysis method is

widely used to compare two competing diagnostic tests, we only have calculated

it for the GLM model because the ROC analysis don't show a correct discrim-

ination with censored data. So we calculated the C index (motivated by the

extension of the concept of the ROC) for the Farrington and Cox models. The

C index is an natural extension discrimination method to the ROC curve allowing

comparison of the three models. In that comparison we concluded that the Cox

model produces the worst �t. Moreover, this methodology allowed us to establish

a threshold at which a pipe can be considered high-risk, which lead the company

to make decisions about the renewal of the network.
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