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Abstract

We propose a decision model aimed at increasing security in a utility network (e.g., electricity,
gas, water or communication network). The network is modeled as a graph, the edges of which
are unreliable. We assume that all edges (e.g., pipes, cables) have a certain, not necessarily equal,
probability of failure, which can be reduced by selecting edge-specific security strategies. We develop
a mathematical programming model and a metaheuristic approach, that uses a greedy random
adaptive search procedure to find an initial solution and uses tabu search hybridised with iterated
local search and a variable neighbourhood descend heuristic to improve this solution. The main
goal is to reduce the risk of service failure between an origin and a destination node by selecting
the right combination of security measures for each network edge given a limited security budget.

Keywords: network security, metaheuristics, GRASP, ILS, tabu search, VND.

1. Introduction

In modern day society, utility networks such as electricity, water, gas, and communication
networks are taken for granted. People expect that they function at all times, and are capable of
handling all demand placed on them. However, there is a real risk of failure in all types of networks.
Those failures might interrupt the service/connection between origin nodes (i.e., the points from
which the service or the product is sent to the customer through the network) and destination nodes
(i.e., the customer or points to which the product or service is delivered through the network).

Utility networks are critical infrastructures that deserve increased attention to limit the con-
sequences of failures since they may result into serious breakdowns and cascade into dependent
systems (Kröger, 2008). For example, the blackout in India in 2012 left over 600 million peo-
ple without access to energy. This emphasizes the need for adequate protective measures against
network breakdowns (Barker et al., 2013; Romero, 2012).

Network breakdowns can have safety-related (i.e., unintentional) causes such as natural phe-
nomena (e.g., earthquakes, storms), human errors, or mechanical defects such as in pumps and
valves, caused by the regular wear and tear. In addition, network breakdowns can be due to se-
curity-related causes such as intentional terrorist attacks and/or malicious sabotage. We refer the
reader to Reniers et al. (2008) for a further clarification of terms safety and security. For the sake
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of simplicity, in the remainder of this work we will only talk about network security, however, the
solution method developed in this paper is also applicable to safety related causes.

After 9/11, the protection of utility networks against intentional attacks has received great
attention among network providers. Terrorist attacks on utility network are not rare and can cause
huge losses in a nation’s economy (START, 2014).

Network providers and managers can reduce the risk of a network breakdown, due to failures
in one or several network edges, by applying preventive measures to reduce network vulnerabilities.
These preventive measures can be, amongst others, fences, camera’s or security patrols to increase
network security and redundancy or stronger materials for an increase in network safety.

The security budget that can be spent on these security measures, however, is generally limited.
The current economic situation has increased the pressure on limiting many budgets and investments
in security even further. In this paper, a combination of security measures applied to an edge is
called a security strategy for that edge.

The problem defined in this paper is how to allocate a budget among edge-specific security
strategies in order to minimise the risk of a disconnection between a given origin node and a given
destination node. In the remainder, we will say that the utility network is down whenever the origin
and the destination node are disconnected from each other.

Since the budget is limited and the security strategies can only be applied locally, i.e., on specific
links in the network, the security strategies should be chosen in such a way that the reduction of
the risk of the network service being down is as large as possible while keeping the total cost of the
security strategies within the budget.

Once we consider realistic cases with a large number of edges and different security strategies (in
this paper from 5 up to 20), the problem becomes computationally infeasible to solve in a reasonable
amount of time with exact algorithms. Therefore we will explore the use of metaheuristics to support
this decision problem.

The paper is organized as follows. In Section 2, we give a brief overview of the state of the
art. Section 3 clarifies the problem of selecting the best strategies to increase the security of the
whole network. It is described and modelled as an optimisation problem. An illustrative example
is also provided. In Section 4, we present a metaheuristic to solve the network security problem.
Section 5 presents the instance generator, reports the parameter tuning phase and the results of
the computational experiments. Section 6 concludes the paper and presents some ideas for further
developments.

2. Literature review

To guarantee the robustness of networks, a lot of research has been conducted in the field of
survivable networks (see Kerivin & Mahjoub, 2005; Steiglitz et al., 1969). Most work in this field
attempts to improve network robustness by means of redundant paths between nodes. Although
significant research has been done to improve best practices in the field of security, few papers
have addressed the relationship between risk-related variables and cost-effective network security
decisions that impact the objective. Nevertheless, security measure selection problems have received
some attention in more recent literature.

The problem of selecting the right security measures given a limited budget is clearly not an easy
task. Most security planning models in the literature are qualitative and only few of them rely on
quantitative approaches. In case of a pipeline network, the security risk assessment procedure elab-
orated by Reniers & Dullaert (2012) may be used. After a careful pipeline security risk assessment,
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the user is in possession of pipeline segment risk data as well as pipeline route risk data. Assuming
that the security risk analyst determines a set of available security measures and defence strategies
for application to the different pipeline segments and/or for the pipeline routes, a selection of the
most effective security measures with respect to the available budget (either for a single pipeline
segment or for a pipeline route) can be calculated. If the cost of the security measures is known
in advance a mathematical approach can be used to solve the problem of optimal allocation of
security resources by solving a knapsack problem with additional constraints. Reniers et al. (2012)
explain how this well-known problem in the field of Operations Research can be used in security
optimisation problems. A practical application to secure an illustrative pipeline infrastructure used
to transport oil is described in Talarico et al. (2015).

In Bistarelli et al. (2007) a method for the identification of the assets, the threats and the
vulnerabilities of ICT systems is introduced. Furthermore, a qualitative approach for the selection
of security measures to protect an IT infrastructure from external attacks is discussed. In particular,
two security models based on defence trees (an extension of attack trees) and preferences over
security measures are proposed.

In Viduto et al. (2012) the security of a telecommunication network is analysed from a quan-
titative point of view. Knowledge of potential risks enables organisations to take decisions on
which security measures should be implemented before any potential threat can successfully exploit
system vulnerabilities. A security measure selection problem is presented in which both cost and
effectiveness of an implemented set of security measures are addressed. A Multi-Objective Tabu
Search (MOTS) algorithm is developed to construct a set of non-dominated solutions which can
satisfy organisational security needs in a cost-effective manner.

In Sawik (2013) a similar security measure selection problem for an IT infrastructure is for-
mulated as a single- or bi-objective mixed integer programming problem. Given a set of potential
threats and a set of available security measures, the decision maker needs to determine which se-
curity measure to implement, under a limited budget, to minimize potential losses from successful
cyber-attacks and mitigate the impact of disruptions caused by IT security incidents.

The prevention of heavy losses due to cyber-attacks and other information system failures in
an IT network is usually associated with continuous investment in different security measures.
In Bojanc & Jerman-Blaz̆ic̆ (2008) several approaches enabling the assessment of the necessary
investments in security technology are addressed from an economical point of view. The paper
introduces methods for the identification of risks in ICT systems and proposes a procedure that
enables the selection of the optimal level of investments in security measures.

Once security risks have been identified, the potential loss associated with their occurrence, as
well as their probability of occurrence must be determined. Probability theory is used extensively in
reliability theory and in reliability studies of systems. For an overview, we refer to Bazovsky (2004);
Ministry of Defence (UK) (2011); Romeu (2004). Determining both probability of occurrence
and potential impact of each risk is done in a process called risk assessment. Performing a risk
assessment phase allows to take decisions regarding the necessary investment in security controls
and systems. In this paper, a preliminary risk assessment phase is assumed to have been previously
conducted by experts, and that they defined the probability for an edge to fail together with the
costs and benefits of each available security measure. A methodology to conduct risk assessment for
safety-related accidents has been proposed in Antonioni et al. (2009). In Reniers et al. (2014) and
Reniers et al. (2013), security-related risk and threat assessment within chemical plants is studied.

In Agarwal et al. (2013), the focus is on probabilistic attacks and on multiple simultaneous
attacks on telecommunications networks. The probabilities associated to these events are dependent
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on geographical locations. Vulnerable points within the network are identified by applying geometric
tools. Using this approach, it is possible to identify locations which require additional protection
efforts.

The work of Reniers & Dullaert (2012) gives a nice overview of risk assessment for security-
related attacks on pipeline networks. Our approach represents a next step in the process. It
defines a single-objective problem and proposes a quantitative method to select appropriate security
measures.

In Reniers et al. (2012), a mathematically sound methodology is developed to map two types of
systemic risks in chemical industrial areas. By using their model, conclusions can be drawn about
possible prevention measures to lower the systemic risks.

The approach in this paper uses a different objective function which relies on the minimization
of the risk of the network to be not accessible between a couple of network nodes instead of the
maximization of the effectiveness of the security measures used. Moreover, in our work, since a
list of security measures is defined for each edge of the network, the model incorporates not only
decisions taken at the level of the network, as done in Reniers & Dullaert (2012), Reniers et al.
(2012) and Sawik (2013), but it depends on the choices made at the level of single network edges.

3. Problem description

A utility network can be represented by a graph G = {N , E}, where N represents a set of nodes
and E a set of edges, connecting the nodes. All edges i ∈ E have a probability of failing, denoted
as pi. A set of security strategies Si, is defined for each edge i ∈ E .

For each security strategy j ∈ Si of edge i, a cost cij is given, as well as the probability of failure
of edge i given that security strategy j has been chosen, pij . Exactly one security strategy per edge
can be selected. Each edge also has a default ”do-nothing” strategy j = 0 with cost ci0 = 0.

The model proposed in this paper makes the assumption that only edges are vulnerable to failure
and that nodes are not.

In the problem defined in this paper, an origin node o and a destination node d in the network,
are gvien. The quality of a solution (e.g., a selection of a security strategy for each edge) is defined
as the probability that no path exists between node o and node d. This would make it impossible
for a service or good from node o to reach node d (e.g., it would be impossible to make a phone
call from node o to node d). The goal is to minimise this probability.

In this paper, since the decision problem is introduced for the first time, the problem is simplified
by making the assumption that only one supplier and one customer exist in the network. In a
realistic network, the network operator is not only dealing with the question if there is a connection
to a customer, but also with the issue of having enough capacity to deliver his product or service
in a reliable way. In this paper, since we are dealing with only one customer, an abstraction is
made of this last problem. The assumption is made that the load placed on the network by the
customer is considerably lower than the load the network can handle. This reduces the problem to
a much simpler “path or no path” problem. In future research, this can be extended to a model
where multiple source and destination nodes are considered. In addition supplier capacity, customer
demand and importance of either of them might be considered.

To calculate the probability that no path exists between a given origin and a given destination
node, probability theory is used.

4



Table 1: Set of security strategies Si for edge i

Strategy Security measures Cost Probability
0 - 0 0.6
1 Fences 100 0.5
2 Camera type A 150 0.45
3 Camera type B 200 0.4
4 Fences&Camera type A 250 0.32
5 Fences&Camera type B 300 0.25

3.1. Illustrative Example

A security strategy can be a combination of individual security measures (see e.g., Table 1). A
combination of security measures can have a different effectiveness than the sum of the impact of
the individual security measures due to interaction effects. In some cases, combinations of single
security measures might not be available due to their incompatibility.

To clarify the computation used to determine the total risk that no path exists between nodes o
and d, an example in Figure 1 is shown. Edge i in Table 2 corresponds to the edge with probability
pi in this figure.

o d

p2 = 0.4 p3 = 0.2

p1 = 0.7

Figure 1: Utility network G with a source o and a destination d. On each edge the associated probability of an event
happening is reported

Given the topology of the network, there are eight possible scenarios, of which three are critical,
that remove every path between nodes o and d. To find these critical scenarios, in the approach
discussed in this paper, all possible situations are considered and tested. Table 2 contains all
scenarios l. The cases in which no path exists in the network between nodes o and d, are the
scenarios 4, 5 and 7. All scenarios l are defined as a combination of edges that fail, contained in
set EFl , and edges that do not fail, contained in set ENl . A critical scenario is a scenario where
the edges that do fail, if they fail all at once, will disable every path between node o and node d.
The set of critical scenarios is defined as C. For all scenarios l ∈ C the following property holds:
EFl ∪ ENl = E . The cardinality of set C depends on the topology of the network G and the position
of nodes o and d within the network.

For example, the first line in Table 2 shows a scenario where no edges fail, hence all paths
between node o and node d exist. The fourth line, however, shows a scenario where both edges
1 and 2 fail. Therefore no path exists from node o to node d, even if edge 3 does not fail. The
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l EFl ENl Rl

0 - - - 1 2 3 0.144
1 1 - - 2 3 - 0.336
2 2 - - 1 3 - 0.096
3 3 - - 1 2 - 0.036
4 1 2 - 3 - - 0.224
5 1 3 - 2 - - 0.084
6 2 3 1 - - 0.024
7 1 2 3 - - - 0.056

Table 2: List of scenarios for network G

probability Rl associated to the occurrence of this scenario, is equal to p1 · p2 · (1− p3) that is
0.4·0.7·(1−0.2) = 0.224. The same reasoning applies to the remaining scenarios reported in Table 2,
which contains all possible scenarios for this graph. As we are dealing with every possible scenario,
the scenarios are independent events. Therefore, it is possible to compute the total probability of a
disconnection between node o and node d as the sum of the occurrence probabilities of all critical
scenarios, defined as

∑
l∈C Rl. In this example, scenarios 4, 5 and 7, for which the sum is equal

to 0.364. Each time a security strategy is changed or updated, the probability for each scenario
should be recalculated. And the objective function, total probability for a disconnection between
node o and node d, also changes.

As expected, the computation time needed to update the objective function every time a move
is applied, grows exponentially if the number of edges increases (see Figure 2(a)). This is due to
the number of critical scenarios, which grows significantly depending on the number of edges and
on the topology of the network. As shown in Figure 2(b), the relationship between the number of
critical scenarios in C and the computational time is approximately linear.
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(a) Number of edges versus CPU time
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(b) Critical scenarios versus CPU time

Figure 2: Relationship between the number of edges (a) and critical scenarios (b) and CPU time needed to update
the objective function after a move is executed.

Despite the fact that the update of the objective function is expensive in terms of computational
time, an estimation of the objective value proves to be difficult. A naive approach to estimate the
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objective value could be the restriction of the critical scenarios to scenarios with a limited number
of edges that fail, as scenarios with a higher number of failing edges have a low probability to occur.
This approach, however, can result in unexpected behaviour. Depending on the topology of the
network and the values assigned to edges and security strategies, it is possible that the objective
value for the network, where all security strategies are the “do-nothing” strategy, is lower than the
objective value of the network where one security strategy is selected. This is counterintuitive as
the selection of a security strategy should always lower the objective value in comparison to the
objective value where all security strategies are the “do-nothing” strategy. A small example is given
in Figure 3. All edges have a probability of failure equal to 1%. Edge E is allocated a security
strategy, which reduces its probability of failure to 0.7%. Table 3 shows all the critical combinations
where at most 3 edges fail at the same time. The first column indicates which edges are failing.
The second column contains the risk for that critical combination when the security strategy is not
applied. The third column contains the risk when the security strategy is applied on edge E. The
bottom line contains the objective value. As the problem is a minimisation problem, this table
shows that when the security strategy is applied to edge E, the objective value worsens.

o d

A

C

B

D

E

F

I
G

H

Figure 3: Relationship between the number of edges (a) and critical scenarios (b) and CPU time needed to update
the objective function after a move is executed.

3.2. Mathematical model

In order to mathematically state the decision problem associated to the selection of the best set
of security strategies to increase the overall network security, the risk of no path being available
between node o and destination d has to be defined. For this reason, a set C is defined.

Let B represents the available security budget and xij a binary variable, that takes values 1
when the security strategy j on edge i is applied, and 0 otherwise.
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Failing edges no security measure security measure
A C 0.0000932 0.0000935
A D 0.0000932 0.0000935
B C 0.0000932 0.0000935
B D 0.0000932 0.0000935
A B C 0.0000009 0.0000009
A B D 0.0000009 0.0000009
A C D 0.0000009 0.0000009
A C E 0.0000009 0.0000007
A C F 0.0000009 0.0000009
A C G 0.0000009 0.0000009
A C H 0.0000009 0.0000009
A C I 0.0000009 0.0000009
A D E 0.0000009 0.0000007
A D F 0.0000009 0.0000009
A D G 0.0000009 0.0000009
A D H 0.0000009 0.0000009
A D I 0.0000009 0.0000009
B C D 0.0000009 0.0000009
B C E 0.0000009 0.0000007
B C F 0.0000009 0.0000009
B C G 0.0000009 0.0000009
B C H 0.0000009 0.0000009
B C I 0.0000009 0.0000009
B D E 0.0000009 0.0000007
B D F 0.0000009 0.0000009
B D G 0.0000009 0.0000009
B D H 0.0000009 0.0000009
B D I 0.0000009 0.0000009
E F I 0.0000009 0.0000009
E H I 0.0000009 0.0000009
F G I 0.0000009 0.0000009
G H I 0.0000009 0.0000009
Objective value 0.0003992 0.0003993

Table 3: Result for an instance when estimating the objective value by restricting the critical combinations to those
with a maximum of 3 failing edges.
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min
∑
l∈C

Rl (1)

s.t. ∑
i∈E

∑
j∈Si

cij · xij ≤ B (2)

pi =
∑
j∈Si

pij · xij ∀i ∈ E (3)

Rl =
∏
i∈EFl

pi ·
∏

k∈ENl

(1− pk) ∀l ∈ C (4)

∑
j∈Si

xij = 1 ∀i ∈ E (5)

xij ∈ {0, 1} ∀i ∈ E ,∀j ∈ Si (6)

The objective function (1) minimizes the total risk that no path exists between nodes o and d.
The total network risk is given by the sum of risks associated to single scenarios happening, as these
scenarios are statistically independent. Constraint (2) ensures that the total cost associated to the
selected security strategies does not exceed the predefined security budget B. Equation (3) is used
to define the probability pi associated to a failure of edge i, given a selected security strategy for
that edge. Equation (4) defines the risk of a scenario happening which disconnects all paths in the
network between nodes o and d. Equation (5) forces the decision process to select at maximum one
security strategy to protect each edge i. When xi0 = 1 no security strategy is applied for edge i.
Finally, constraint (6) represents the domain of the decision variable, which ensures that no partial
security strategies are allowed.

4. Solution approach

The decision problem of selecting appropriate security strategies given a budget constraint, in
order to reduce the risk of disconnection between node o and node d, belongs to the more general
category of knapsack problems.

More specifically, since the objective function is not linear, it belongs to the class of non-linear
knapsack problems, also known as the non-linear resource allocation problem, which belongs to the
category of combinatorial optimization problems (Bretthauer & Shetty, 2002)

The metaheuristic that has been developed in this paper is shown in Algorithm 1. Our variable
neighborhood tabu search metaheuristic is composed of three consecutive steps: (1) a greedy ran-
dom adaptive search procedure (GRASP) is used during the constructive phase (see Section 4.1)
to generate an initial solution; (2) a variable neighbourhood descent (VND) is used during the
improvement phase (see Section 4.2) to improve the solution generated by the GRASP and; (3) two
perturbation heuristics are used during the diversification stage (see Section 4.3) to escape from
local optima. In addition a tabu list is used during the whole execution of the heuristic to avoid an
exploration of solutions that have been analysed in previous iterations.

The first step of this iterative solution approach consists of running a GRASP constructive
heuristic.
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Algorithm 1 Metaheuristic structure

Initialize both Problem and Heuristic parameters
x← GRASP()
x∗ ← ∅, f(x∗)←∞
max-iter-no-improvement ← 0
iterations ← 0
while (iterations < MaxIterations) do

x← VND(x)
if (f(x) < f(x∗)) then

x∗ ← x,f(x∗)← f(x)
max-iter-no-improvement ← 0

else
max-iter-no-improvement ← max-iter-no-improvement +1

end if
if (max-iter-no-improvement<MaxPerturbuations) then

x← Perturbation(x)
else

x← GRASP heuristic()
end if
iterations ← iterations+1

end while
return x∗

After the GRASP procedure is finished, a local search is used to improve the current solution
by using a VND heuristic. This local search is executed until the algorithm finds no more im-
provement. Once this is the case, a perturbation is applied to escape the local optimum, and the
algorithm continues with a local search from this perturbed solution. If after a predefined number
of perturbations no better solution can be found, the algorithm is restarted from a new solution
generated by the GRASP heuristic.

4.1. Constructive phase

Our solution approach uses a greedy randomized adaptive search procedure (GRASP) to gen-
erate an initial solution x.

GRASP is a well-known constructive heuristic (see Feo et al. (1991) for more details), that,
starting from an empty solution, generates a complete solution by upgrading one strategy at a time
until either the security budget has been depleted or no security strategy upgrades are available.

The criticality of an edge is a value measuring the importance of that edge for the security of
the network. The higher the criticality, the greater the impact of that edge on the risk reduction
and thus on the improvement of the objective function. In our algorithm, the number of times that
that edge occurs in a critical scenario multiplied by the remaining probability of that edge, after
the application of a security strategy, is used as an estimator of criticality.

At each iteration of the GRASP heuristic the strategy to be upgraded in the current solution
is randomly selected from a restricted candidate list (RCL). The RCL contains the first α critical
edges ordered by decreasing value of criticality for which: (a) no security strategy has previously
been included in the current solution and (b) at least one security strategy, not contained in the
tabu list and whose cost is lower than the remaining budget, is available.
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The size of the RCL, α, is a parameter that controls the balance between greediness and ran-
domness. If α is large, the selection is relatively random, while if α = 1 the greedy construction is
completely deterministic.

In this way, at each iteration of the GRASP heuristic the list RCL contain the first α edges that
can likely have a higher impact on the total risk considering the overall network. At each iteration
of the GRASP heuristic an edge i is randomly chosen from the RCL and an available strategy j
whose cost is lower than the remaining budget is selected for that edge. Two possible selection
mechanisms can be used so select a strategy j for edge i at each iteration of the heuristic:

• Best improvement provides at each iteration the combination (i, j) which yields the largest
reduction in the objective function given the α considered edges and their available security
strategies; This is more demanding in terms of computation time.

• First improvement which guarantees a fast selection of a feasible combination (i, j). From
the α edges one edge is chosen randomly, and for this edge a security strategy is selected in a
random fashion. This selected combination (i, j) is than checked on feasibility, which means
it is not used in the current solution, not contained in the tabu list and is less costly than the
remaining budget. If the selected combination is not feasible, a new combination is selected in
a random fashion, until a feasible combination is found. This combination provides a reduction
of the risk for the overall network, but is not necessarily the best possible reduction, as the
combination is selected randomly.

During the constructive method a tabu list is used in order to exclude the selection of strategies
that have already been explored in previous iterations of the metaheuristic. After the selection
process the current solution, the remaining budget and the RCL are all updated. The selected edge
i is removed from the RCL as well as all the edges for which no strategy is available any longer due
to a lower remaining budget. Then the RCL is reordered based on the new vulnerability values of
the first α critical edges. The GRASP heuristic’s selection mechanism is repeated until either the
remaining budget is depleted or the list of available options is empty.

4.2. Improvement phase

The improvement of the solution, produced by the GRASP heuristic, is performed by a variable
neighbourhood descent (VND) heuristic. VND is a deterministic variant of the well-known vari-
able neighbourhood search (VNS) metaheuristic (Hansen & Mladenović, 2001). In general, VNS
algorithms use a sequence of nested neighbourhood, N 1, . . . ,N kmax

with an increasing size, i.e.,
|N k| < |N k+1| and a perturbation move is used for diversification purposes.

The algorithm uses three neighbourhood structures. The first one, called Internal Swap, at-
tempts to replace a strategy j for a given edge i with another strategy j′, that is not contained in
the tabu list and for which the remaining budget is larger than the difference in cost between j and
j′.

The second neighbourhood structure, called External Swap, attempts to replace one strategy j
for edge i, which will be assigned strategy j = 0, with another strategy j′, which is not in the tabu
list, associated to a different edge i′. In practice part of the security budget is transferred from edge
i to edge i′ with the cost of strategy j′ lower than the remaining budget plus the cost of strategy
j′.

The third neighbourhood structure, called Double Swap, is a variant of the first move where two
Internal Swap moves are executed at the same time. In practice strategies j and j′ associated to
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edges i and i′ respectively are simultaneously swapped with other two strategies j̄ and j̄′ available
for edges i and i′. The new strategies j̄ and j̄′ must not be contained in the tabu list and the cost of
the strategies j̄ and j̄′ must not be greater than the remaining budget plus the cost of the removed
strategies j and j′.

To speed up the improvement stage only a restricted number of edges, α, are considered and
only moves which have a positive contribution to the quality of the current solution are executed.
In particular, the External Swap move attempts to replace a strategy j associated to any edge i
already in the solution with one of the available strategies associated to the first α edges that do
not have a security strategy in the solution, which are ordered by decreasing value of criticality, as
described before.

The size of the neighbourhood that Double Swap has to explore is equal to Ē × (Ē − 1) where
|Ē | is the number of edges that have a security strategy in the current solution. For this reason the
number of evaluations that are performed by the Double Swap is restricted to a maximum value
based on a percentage of set Ē . The candidates for the double swap are selected randomly from all
edges that have a security strategy that is different from strategy 0.

Two different selection mechanisms can be used by the VNS heuristic to improve the current
solution. The first one is based on a first improvement mechanism (see Section 4.1) while the second
one relies on a best improvement mechanism, which are explained in section 4.1. The VND heuristic
ends when no improvement of the current solution can be found.

4.3. Diversification phase

The diversification phase attempts to escape from the local optimum, reached in the improve-
ment phase, by exploring different areas of the search space hopefully not yet explored. Two dif-
ferent diversification mechanism are used in our variable neighborhood tabu search metaheuristic:
(1) If a maximum number of iterations without improvement of the current solution has not been
reached, a perturbation heuristic is used; (2) if the the number of iterations without improvement
becomes larger than a predefined maximum, a new initial solution is generated using the GRASP
constructive heuristic.

The perturbation heuristic partially destroys the current solution by setting the strategies that
have been used for a number of edges to zero. These strategies are inserted in a tabu list in order
to avoid their reuse in other solutions for a given number of iterations. The perturbation heuristic
allows to free some budget resources, making room for new, unused strategies that are not in the
tabu list. These new strategies are selected using either a best improvement or a first improvement
selection mechanisms (see Section 4.1) and added to the current solution as long as budget is
available and at least one strategy, with a cost less than the remaining budget and not contained
in the tabu list, is available. The newly generated solution becomes the input of the VND heuristic
for further improvement.

When the the number of iterations without improvement becomes larger than a predefined
maximum, a new solution is generated using the GRASP constructive heuristic.

5. Computational experiments

In this section, the stages used to execute our computational experiments are described. First,
a set of instances is generated and used later on for tuning and testing the metaheuristic described
before (Section 5.1).
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In the second stage, the parameters of the metaheuristic are tuned in a statistical experiment
in order to achieve the best results (Section 5.2).

Finally, the metaheuristic with its best parameter setting is used to solve the test instances and
computational results are shown in Section 5.3.

5.1. Instance generation

To test the algorithm developed in this paper a library of test instances has been created. All
instances can be found on http://antor.uantwerpen.be/downloads/NS. The software that was
developed to generate the instances, takes several parameters as input, necessary to specify the
properties of the instances. These parameters are: (1) the maximum budget that can be spent on
strategies; (2) the number of nodes in the network; (3) the maximum number of strategies for each
edge that connects two nodes; (4) the percentage of edges of the Delaunay triangulation (Delaunay,
1934) that should be added to the minimum spanning tree, to add some redundancy as explained
below; (5) the number of instances to be generated for each set of parameters.

The number of scenarios contained in C, the set of all critical scenarios, is dependent on the
number of edges in and the topology of the network. In the worst case, the cardinality of this set
is equal to 2|E|. This implies, e.g., that adding an edge to a network containing 20 edges, requires
1048576 (221− 220) more scenarios to be analysed and stored in memory. Due to the limitations in
memory of the computer on which the algorithm is executed, instances with 20 edges are considered
to be large.

A first step in the instance generation process is the generation of nodes. Each node’s coordinates
are randomly selected from a uniform distribution between 0 and 100. This range can be adjusted
by the decision maker. When the nodes have been generated, a Delaunay triangulation of this set
is created. The Delaunay triangulation is used to identify the “neighbours” of each node, which
will be used to create the final network. When the neighbours of all nodes are identified, Kruskal’s
algorithm (Kruskal, 1956) is used to generate a minimum spanning tree. The motivation for starting
from a minimum spanning tree is that this is the most cost-effective way to connect all nodes in
the network.

In real life cases, service providers often add redundancy to increase operational security. If
one edge gets disabled, customers are serviced through the redundant edge. For this reason, the
minimum spanning tree is extended with edges to mimic the redundancy that is present in real life
networks. This is done by selecting a number of edges from the Delaunay triangulation which are
not used in the minimal spanning tree. The edges selection is based on their length, shortest first,
and on a parameter that is defined by the decision maker.

When the edges of the network have been generated, each edge is assigned a random probability
of attack. The probability of failure for the edges are different for each edge. This is done to make
the model more general. From a security related perspective, this can be justified by the difference
in risks based on geographical location, length and criticality of that edge in the network. From
the perspective of safety, it could be that certain sections in the network are added on a later point
in time, which would yield a lower risk for failure due to the newer pieces that were used, and the
lower amount of normal wear and tear.

When each edge has been assigned a probability, the algorithm generates a random number of
strategies with a minimum of one, and a maximum number as defined in the parameters. Each
strategy is assigned a random reduction in probability of failure between 1 and 20 percent, and a
random cost based on this percentage reduction. To obtain this cost, this reduction is multiplied
with a random number between 0.5 and 1.5 and the maximum budget, to get realistic values. The
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reduction is selected on practical grounds. An improvement larger than 20 percent will in practice
not be possible given the budget constraint.

The generated test instances’ names are encoded as follows:
NS-n8-c5-C3-a30-x0, where NS is referring to the network security problem, n represents the

number of nodes in the instance, c gives the maximum number of counter measures generated for
each edge, C is the maximum number of connections from and to a node (This is currently not used
in the instance generator, but the option is foreseen in the encoding), a represents the percentage of
extra arcs from the Delaunay triangulation added to the minimal spanning tree, and x represents
the number of the instance when multiple instances are generated at once, with the same settings.

5.2. Parameter tuning

The metaheusritic described before uses some internal parameters that need to be tuned in order
to have a good compromise between speed of the heuristic and quality of the solutions. The internal
parameters have been described before in Section 4 and are summarized in Table 4 together with
the tested values.

Table 4: Heuristic parameters

Parameter Description Values #

max-iter Number of restarts 50 1
perturb-percent Percent of edges removed during the

perturbation phase
10%, 30%, 50%, 70% 4

alpha Size of the restricted candidate list 1, 2, 3, 4 4
tabu-tenure Number of iterations that a strategy

is kept in the tabu list
10, 30, 50 3

max-iter-no-improvement Number of iterations without im-
provements

5, 10, 20 3

double-swap-percentage Percentage value used to find the
amount of evaluations to be per-
formed by the Double swap move

20%, 50%, 80% 3

selection mechanism Strategy to select edges first, best 2

The parameter tuning experiment is conducted on a set of instances consisting of smaller net-
works of 10 nodes (10 - 12 edges) and larger networks of 18 nodes and 20 edges.

A full factorial statistical experiment is conducted using the values reported in Table 4. The
objective values and times are averaged, and shown in Figure 4. The parameters with an aster-
isk had a significant effect on both the objective value and time, while parameter tabu-tenure

was significant only in regard to the time. Parameter max-iter-no-improvement did not have a
significant effect. A parameter setting equal to 10 was selected.

Only taking into account at the objective function, the chosen settings for the metaheuristic
parameters are shown in Table 5.

5.3. Computational results

After having selected the best parameters settings for the solution approach, the influence of
each metaheuristic component on both the quality of the solutions and the running time is analysed.
A set of instances ranging from 9 up to 20 edges and 5 up to 20 security strategies per edge is used
for this purpose.
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Figure 4: Plot of average objective values and times for given parameter setting

Table 5: Selected heuristic parameters

Parameter Setting

max-iter 50
perturb-percent 10%
alpha 4
tabu-tenure 30
max-iter-no-improvement 10
Double-swap-percentage 80%
selection mechanism first

In order to analyse the quality of the solutions, the results found by the proposed metaheuristic
are compared with the optimal solutions obtained by a naive exact approach. The exact approach
is based on an exhaustive exploration of the search space where the budget constraint is used as a
cutting plane to speed up the running time. In Table 6 the comparison between the metaheuristic
and the exact approach is reported. The metaheuristic was run 25 times on each instance to compute
the average running time and objective value that are reported in Table 6 together with the best
solution found over these runs. The metaheuristic obtained 9 optimal solutions (highlighted in bold
in column Best Gap in Table 6) out of 16 test instances. The percentage optimality gap, used as
an indicator of the quality of the obtained solutions, is around 0.51%. Considering all the solutions
averaged over 25 runs the gaps from the optimal solutions is only 1.62%.

The run times needed by the exact approach, increase exponentially with the number of edges in
the network, while the run time required by the metaheuristic remains stable. Analysing both the
exact approach and the metaheuristic, it becomes clear that the proposed metaheuristic achieves
good results in a short amount of time.
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Exact Approach Metaheuristic
Instance Optimal Solution Time(s.) Best Solution Average Solution Average Time (s.) Best Gap Average Gap
NS-n8-c5-C3-a30-x0 0.64813 636.910 0.65185 0.65468 0.147 0.57% 1.01%
NS-n8-c5-C3-a30-x1 0.81428 37.275 0.81428 0.84409 0.614 0.00% 3.66%
NS-n8-c5-C3-a30-x2 0.18171 104.381 0.18483 0.18549 0.642 1.71% 2.08%
NS-n8-c5-C3-a30-x3 0.13410 57.631 0.13711 0.14310 0.573 2.24% 6.71%
NS-n8-c5-C3-a30-x4 0.64803 54.456 0.65369 0.66393 0.439 0.87% 2.45%
NS-n8-c5-C3-a30-x5 0.34060 13.512 0.34060 0.34333 0.504 0.00% 0.80%
NS-n8-c5-C3-a30-x6 0.25193 3.372 0.25833 0.26179 0.697 2.54% 3.91%
NS-n8-c5-C3-a30-x7 0.07905 65.642 0.07905 0.07947 0.549 0.00% 0.54%
NS-n9-c5-C3-a30-x0 0.89334 1356.729 0.89442 0.89842 0.527 0.57% 0.12%
NS-n9-c5-C3-a30-x1 0.82052 5744.238 0.82052 0.82149 0.702 0.00% 0.12%
NS-n9-c5-C3-a30-x10 0.41173 222.962 0.41173 0.42319 0.218 0.00% 2.78%
NS-n9-c5-C3-a30-x11 0.07290 588.678 0.07290 0.07290 0.254 0.00% 0.00%
NS-n9-c5-C3-a30-x12 0.79698 1160.176 0.79700 0.79754 0.414 0.00% 0.07%
NS-n9-c5-C3-a30-x14 0.11105 7825.799 0.11105 0.11123 0.503 0.00% 0.16%
NS-n9-c5-C3-a30-x4 0.40821 3178.317 0.40821 0.40962 0.304 0.00% 0.34%
NS-n9-c5-C3-a30-x8 0.43050 8751.806 0.43067 0.43340 0.594 0.04% 0.67%

Table 6: Exact approach in comparison with the metaheuristic for instances with 8 nodes and 9 edges (instances
name with the code n8) and with 9 nodes and 11 edges (instances name with the code n9) and 5 security strategies
per edge

For larger instances, computing times of the exact approach quickly become intractable. For an
instance with 13 edges, the exact approach took around 3 days to find the optimal solution. The
heuristic solution was only 1.77% from this optimal value, and was found in 0.475 seconds. A time
limit of 5 hours was imposed on the exact solution method to find a good upper-bound. This value
is used in Table 7 to evaluate the quality of the results provided by the metaheuristic.

It is worth noticing that the solution obtained by using a time limit for the instance NS-n10-
c5-C3-a30-x2 (shown in Table 7) resulted in a good upper bound, presenting only a difference of
0.11% from the optimal known solution. This means that the selected time limit is adequate, for
that instance, to achieve a good upper-bound to be used to analyse the quality of the solutions
obtained by the metaheuristic.

Some results are shown in Table 7, where on average the metaheuristic improved the level of
security of the initial network by 32%. In eight cases, the metaheuristic outperformed the exact
approach with the time limit, finding better results in a short computation time.

Exact Approach Metaheuristic
Instance Original risk Upper-bound Time(s.) Best Solution Average Solution Time(s.) Best Gap Average Gap
NS-n10-c5-C3-a30-x0 0.99998 0.91833 18000 0.91276 0.91320 0.614 -0.61% -0.56%
NS-n10-c5-C3-a30-x1 0.99996 0.20114 18000 0.16652 0.16743 0.374 -17.21% -16.76%
NS-n10-c5-C3-a30-x2* ≈1 0.86129 18000 0.87553 0.88744 0.475 1.65% 3.04%
NS-n10-c5-C3-a30-x3 ≈1 0.58132 18000 0.55206 0.55669 0.453 -5.03% -4.24%
NS-n10-c5-C3-a30-x4 ≈1 0.64521 18000 0.64708 0.67119 0.353 0.29% 4.03%
NS-n18-c10-C3-a30-x0 ≈1 0.99675 18000 0.98455 0.98461 438.199 -1.22% -1.22%
NS-n18-c10-C3-a30-x1 ≈1 0.61578 18000 0.55764 0.55771 207.571 -9.44% -9.43%
NS-n18-c10-C3-a30-x2 ≈1 0.94620 18000 0.90084 0.90093 363.550 -4.79% -4.78%
NS-n18-c10-C3-a30-x3 ≈1 0.40736 18000 0.31192 0.31198 343.673 -23.43% -23.41%
NS-n18-c10-C3-a30-x4 ≈1 0.93503 18000 0.84476 0.84497 255.071 -9.65% -9.63%

Table 7: Results for instances in the range 10-20 edges and 5-20 security strategies per edge

Figure 5 reports the evolution of the objective function associated with both the best and the
current solutions over time. It can be noticed that our solution approach is able to converge towards
good results in a short CPU time also in case of large instances. The marginal improvement of the
best solution found so far significantly decreases when the running time is increased.
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Analysing the plot associated with the current solution in Figure 5 clarifies the behaviour of
the solution approach. After the perturbation, that destroys the quality of the solution, small
improvements obtained during the VND heuristic can lead to better solutions. One can clearly
distinguish the perturbation strategy that allows the algorithm to efficiently escape from local
optima. Starting from the perturbed solution, denoted with a peak in the graph in Figure 5,
the VND heuristic guides the current solution through small improvements towards a new local
optimum and hopefully a new and better solution. The fact that the VND heuristic is able to
decrease the value of the perturbed solution and detect new local optima proves the efficiency of
the VND.
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Figure 5: Plot of the objective value over time.

The effect of each metaheuristic component on the objective value is also analysed. The VND
heuristic on average can improve the initial solutions generated by the GRASP constructive heuristic
by 1%.

6. Conclusion

In this paper, a model for the selection of the appropriate security strategies, given a limited bud-
get, is proposed to increase the security of a network infrastructure such as pipelines transportation
systems, telecommunication networks and smart grids.

By selecting one origin node and one destination node, it is possible to define the risk of an
interruption of service (or material flow) due to external malicious attacks.

An exact evaluation of the risk of the whole network being unavailable might be a difficult task,
especially when several loops are present inside the network. In order to reduce the complexity of
computations, a heuristic approach to have an accurate estimate of the risk of the network being
down is defined.

The variable neighborhood tabu search heuristic has been tuned in order to find its best config-
uration when minimising the objective value. In a second stage of the computational experiments,
the tuned metaheuristic has been employed to solve a set of test instances that mimic possible
realistic scenarios and the performance of the algorithm is evaluated.

The variable neighborhood tabu search heuristic can find very good results in a really short
amount of time. It is performing extremely well in comparison to the naive exact approach. How-
ever, due to the fact that we need to generate and evaluate all scenarios to find the critical scenarios
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and the sheer number of critical scenarios, to tackle larger instances, a different approach could be
investigated.

Future research could be aimed at extending the model to support more realistic scenarios where
e.g., the nodes are vulnerable and the connection of all nodes in the network should be ensured. In
addition supplier capacity, customer demand and importance of either of them might be considered.
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