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13 

Abstract. In reliability engineering, time on performing preventive maintenance (PM) on a component in 14 

a system may affect system availability if system operation needs stopping for PM. To avoid such an 15 

availability reduction, one may adopt the following method: if a component fails, PM is carried out on a 16 

number of the other components while the failed component is being repaired. This ensures PM does not 17 

take system’s operating time. However, this raises a question: Which components should be selected for 18 

PM? This paper introduces an importance measure, called Component Maintenance Priority (CMP), which 19 

is used to select components for PM. The paper then compares the CMP with other importance measures 20 

and studies the properties of the CMP. Numerical examples are given to show the validity of the CMP.  21 

Keywords: cost-based component importance, preventive maintenance, Birnbaum importance, criticality 22 

importance  23 

1 Introduction 24 

1.1 Motivation 25 

To improve the availability of engineered systems such as production lines and electricity 26 

transmission networks is the common pursuit of many firms. To achieve a high availability level, 27 

preventive maintenance may be used. However, performing preventive maintenance (PM) on a 28 

*Note: this is a preprint of a paper which has now been accepted. It can now be found by the

following reference: 
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component in a system takes time and can therefore reduce the availability of the system if system 29 

operation needs stopping for the PM. To avoid such a dilemma, one may adopt the following method: if a 30 

component in the system fails, PM is carried out on a number of the other components while the failed 31 

component is being repaired. However, this raises another question: Which components should be 32 

selected for PM?  33 

Reliability importance measures are developed to prioritise the components of a system in the light 34 

of a given criterion and can offer guidance to improve system reliability/availability, reduce maintenance 35 

cost, and improve system safety. For example, the Birnbaum importance is the partial derivative of the 36 

system reliability with respect to the reliability of an individual component and measures the effect of the 37 

reliability improvement of individual components on the improvement of the system reliability [1]. In the 38 

reliability literature, many importance measures have been developed for various purposes, see [2] for an 39 

excellent paper that reviews recent advances on importance measures. However, few importance 40 

measures can be used to select such components for the above-mentioned purpose.  41 

This paper extends the Birnbaum importance measure to an importance measure, called CMP 42 

(Component Maintenance Priority), with which components can be selected for PM and the number of 43 

components for PM may further be optimised.   44 

1.2 Related work 45 

Various component importance measures for binary coherent systems and state importance 46 

measures for multi-state systems have been introduced in the literature. For example, the Fussell and 47 

Vesely importance of a component is the probability that at least one minimal cut set containing the 48 

components has failed, given that the system has failed; the criticality importance of a component is the 49 

probability that the component has caused system failure, when the system is failed. The reader is 50 

referred to the monograph by Kuo and Zhu [3] for detailed accounts of the theory and surveys of 51 

commonly used importance measures.  52 

The Birnbaum importance is probably the first importance measure introduced in the literature, for 53 

the purpose of reliability improvement [1]. The Birnbaum importance measures the extent of the change 54 

in the reliability of the system resulted from a change in the reliability of a component. It has been 55 

extended to many variants considering different scenarios and applications, for example, cost-based 56 

importance measures [4] that considers the lifecycle cost of maintaining each component in a system. 57 

Other variants include performance based importance measures [5], joint component importance [6-8], 58 

and joint component importance for multistate systems [9]. 59 

Recent development in importance measures also include: importance measure for systems with 60 

degrading components [10], importance measure that estimates the effect of a component residing at 61 

certain states on the performance of the entire multi-state systems [11], importance measure for 62 

components when the system may be reconfigured [12], among many others ([13-15], for example).  63 
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Importance measures in the literature may be inter-related. Borgonovo shows that the Fussell-64 

Vesely importance, the criticality importance, the Birnbaum importance, the risk achievement worth and 65 

the differential importance measure (DIM) are linked by simple relations [16]. Vaurio shows that DIM 66 

and the criticality- importance yield the same ranking in realistic examples [17,18]. Furthermore, 67 

according to Birnbaum [1], importance measures can be categorised into three classes according to the 68 

knowledge needed for determining them: structural importance measures, reliability importance 69 

measures, and lifetime importance measures. For example, Fig. 1 shows the process of available knowledge 70 

and the corresponding importance measures that can be used. 71 

 72 

 73 

Fig. 1. Available knowledge and importance measures that can be applied. 74 

 75 

A common drawback of the Birnbaum importance measure and its variants is that they rank only 76 

individual components and are not directly applicable to groups of components. The differential 77 

importance measure (DIM), introduced by Borgonovo and Apostolakis in [19], overcomes this drawback 78 

by defining the importance of a group of components using a first-order Taylor expansion, but it does not 79 

account for the effects of interactions among components. Zio and Podofillini then extended the DIM 80 

including both the first order and the second order Taylor expansion, which has a merit that is account of 81 

the interactions of pairs of components [20].  82 

The existing reliability literature, however, lacks an importance measure for solving the following 83 

question: suppose that a component is failed and during the time when the component is being repaired, 84 

other 𝑚 components in the system can be selected for PM. This raises an interesting question: which 𝑚 85 

components should be selected? This paper develops a new importance measure, the CMP, for answering 86 

this question. The CMP can also be applied to schedule PM policy. Conventionally, optimisation of PM has 87 

been centred on seeking the optimal intervals between consecutive PM activities. This paper, however, 88 

optimises the number of maintenance personnel needed to minimise the expected cost in a given time 89 
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horizon. As such, in addition to its novelty of introducing a new importance measure, the paper also 90 

creates the novelty of proposing a new method of optimising PM. 91 

1.3 Summary 92 

This rest of this paper is structured as following. Section 2 lists the notation and assumptions, and 93 

discusses the justification of the assumptions. Section 3 introduces the CMP and discusses its relationship 94 

with some existing importance measures. Section 4 gives upper and lower bounds of the expected 95 

number of PM under two maintenance policies. Section 5 discusses issues relating to the CMP. Section 6 96 

gives numerical examples. Section 7 concludes the findings of this paper.  97 

2 Notation and Assumptions 98 

The following notation and assumptions are used. 99 

2.1 Notation 100 

This paper uses the notation shown in Table 1.  101 

 102 

Table 1. Notation. 103 

1𝑖 (0𝑖) Component 𝑐𝑖 is working (failed) 

𝜙(𝒑(𝑡)) System reliability as a function of 𝒑(𝑡) 

𝑛 Number of components in a system 

𝑚 Number of components that can be preventively maintained simultaneously while a repair is 
being conducted on a failed component 

𝒑(𝑡) (𝑝1(𝑡), … , 𝑝𝑛(t)) 

𝑝𝑖(t) Reliability of component 𝑐𝑖 

𝑥𝑖 Indicator: 𝑥𝑖 = 1 if 𝑐𝑖 is working, 𝑥𝑖 = 0 otherwise 

𝑿𝑖 (𝑥1, 𝑥2, … , 𝑥𝑖−1, .𝑖 , 𝑥𝑖+1 … , 𝑥𝑛) 

(𝑥𝑖 , 𝒑𝑖(𝑡)) (𝑝1(𝑡), 𝑝2(𝑡), … , 𝑝𝑖−1(𝑡), 𝑥𝑖, 𝑝𝑖+1(𝑡), … , 𝑝𝑛(𝑡)) 

[𝑥] nearest integer number smaller than 𝑥 

𝟏𝑖𝑗  (11, 12, … , 1𝑖−1, 0𝑖, 1𝑖+1, … , 1𝑗−1, 0𝑗, 1𝑗+1, … 1𝑛) 

𝐹𝑗
(1)(𝑡) = 𝑃(min{𝑋𝑗1

, 𝑋𝑗2
, … , 𝑋𝑗𝑚

} < 𝑡), 𝑋𝑗𝑘
 is the lifetime of component 𝑗𝑘 before the first PM 

𝑓𝑗
(1)(𝑡) 

=
𝜕𝐹𝑗

(1)(𝑡)

𝜕𝑡
 

𝑇𝑗 A pre-specifed time length that is used in Policy B 

𝐺𝑗
(1)(𝑡) = 𝐺𝑗

(1)(𝑡) = 𝑃(max{min{𝑋𝑗1
, 𝑋𝑗2

, … , 𝑋𝑗𝑚
}, 𝑇𝑗} < 𝑡) 

𝑔𝑗
(1)(𝑡) 

=
𝜕𝐺𝑗

(1)
(𝑡)

𝜕𝑡
  

𝜇𝑗𝑘
(∙) hazard functions of component 𝑗𝑘 before the first PM 

2.2 Assumptions 104 

A1. The system considered in this paper is a coherent system, which implies: each component is relevant, 105 

and the structure function is increasing (non-decreasing) if the number of components increases. 106 
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A2. Once a component is failed, a certain symptom immediately appears and can be noticed. The failed 107 

component can then be located. 108 

A3. There are two types of PM: PM during system’s downtime and PM during system’s uptime, which are 109 

denoted by PMD and PMU, respectively.  110 

A4. Performing a PM (either PMD or PMU) on a component requires that the component stops working. 111 

A5. A PM (either PMD or PMU) on a component can only be triggered when another component has failed.  112 

A6. Component failures can have two different situations.  113 

(A) When a critical component has failed, the system fails. Then the failed component is repaired. In 114 

the meantime, PMD is performed on other 𝑚 selected components. 115 

(B) When a non-critical component has failed, the system does not fail. Then the failed component is 116 

repaired. In the meantime, PMU is performed on other 𝑚 selected components. The repair and the 117 

PMU will not affect the system operating. 118 

A7. All of the components in the system are statistically independent. 119 

Remark 1. From Assumption A3, the PMU policy is: PM is performed when the system is still 120 

working. This implies that a binary system (for example, a parallel system) under the PMU policy may 121 

never fail. Take the system in Fig. 2 as an example, under Assumptions A3, A4, and A5, the subsystem 122 

constituted by components 5, 6, and 7 may never fail. This is because: once one of the three components 123 

fails, the failed component will be immediately repaired while the subsystem is working. This will ensure 124 

that the subsystem will never fail.  125 

However, if we use the PMU policy on multistate systems, performing PMU can improve the 126 

performance of the system. For example, for a water pumping station that is composed of three pumps, if 127 

pump 1 degrades from a higher state to a lower one (or is failed as termed in this paper), its performance, 128 

which is the amount of water a pump can pump, degrades and the pump may need repairing. The PMU 129 

that is performed on pump 2 can improve the performance of the pump, for example.  130 

In essence, a jump from a higher state to a lower one in a multistate system (component) is the same 131 

as the failure of a binary system (component). As such, in what follows, we simply focus our discussion on 132 

binary system (component) cases. 133 

3 A new importance measure: component maintenance priority 134 

The main effort of this paper focuses on the development and analysis of a new importance measure 135 

for binary systems. General cases are also discussed in this section.  136 

3.1 Component maintenance priority 137 

We first recall an importance measure with a similar definition as what we will define. This 138 

importance measure is the conditional marginal reliability importance, defined in [8]. Its definition is 139 

given below. 140 
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Definition 1 (Conditional Marginal Reliability Importance (CMRI)) [8]. The CMRI of component 141 

𝑐𝑗, given that component 𝑐𝑖 is working or failed, is defined by 142 

𝐼𝑗|𝑖
𝐶 (𝑡) =

𝜕𝜙(𝑧𝑖, 𝒑𝑖(𝑡))

𝜕𝑝𝑗(𝑡)
,                                                                         (1) 

where 𝑧𝑖 = 1(or 0) means that the component 𝑐𝑖 is working (or failed).  143 

The authors of [8] claim that the CMRI can be used to decide to which components we should pay 144 

more care in terms of maintenance.  145 

Remark 2. Let’s look at two typical systems: a series system and a parallel system.  146 

 For a series system, we have the following two scenarios. 147 

B1. If component 𝑐𝑖 is working, or 𝑧𝑖 = 1, then the system is working. In this case, no PM can be 148 

performed on any component. This is because: according to Assumptions A3, A4 and A5, 149 

neither PMD nor PMU can be performed. As PMD is only performed when the system is not 150 

working, whereas PMU is performed when component 𝑐𝑖 is failed. Hence, there is no need to 151 

use 𝐼𝑗|𝑖
𝐶 (𝑡) to rank the components. 152 

B2. If 𝑧𝑖 = 0, then 𝜙(𝑧𝑖, 𝒑𝑖(𝑡)) = 0. 𝐼𝑗|𝑖
𝐶 (𝑡) = 0 for any 𝑗 ≠ 𝑖. That is, 𝐼𝑗|𝑖

𝐶 (𝑡) cannot be used to rank 153 

the components as they all are zeros. 154 

 For a parallel system, similar to the series system, we have the following two scenarios. 155 

B3. If 𝑧𝑖 = 1, then 𝜙(𝑧𝑖, 𝒑𝑖(𝑡)) = 1. 𝐼𝑗|𝑖
𝐶 (𝑡) = 0 for any 𝑗 ≠ 𝑖, that is, 𝐼𝑗|𝑖

𝐶 (𝑡) cannot be used to rank 156 

the components as they all are zeros. 157 

B4. If 𝑧𝑖 = 0, or component 𝑐𝑖 is failed, according to Assumptions A3, A4 and A5, PMU can be 158 

performed on unfailed components only when the number of the components is larger than 2. 159 

This is because PMU is only performed on a component when the component stops working 160 

and the system is working. When a 2-component parallel system includes one failed 161 

component, the unfailed component must be working and cannot be stopped for PMU.  162 

From the above analysis, one can see that the measure 𝐼𝑗|𝑖
𝐶 (𝑡) can only be used for the scenarios when 163 

the number of components in a parallel system is larger than 2.  164 

3.1.1 Component Maintenance Priority 165 

The above analysis shows that the CMRI cannot be used to rank component importance under 166 

Assumptions A3, A4, and A5. This necessitates introducing a new definition, which is given in the 167 

following. 168 

Definition 2 (Component Maintenance Priority (CMP)). If component 𝑖 has failed, then under 169 

Assumptions A1—A5, the CMP of component 𝑗 is defined by 170 

𝐼𝑗|𝑖
𝑀 (𝑡) = 𝐻𝑗|𝑖

𝜕𝜙(𝜆𝑖, 𝒑𝑖(𝑡))

𝜕𝑝𝑗(𝑡)
,                                                                       (2) 

where  171 
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 𝐻𝑗|𝑖 = {
1                   if 𝜙(11, … , 1𝑖−1, 0𝑖, 1𝑖+1, … , 1𝑛) = 0

𝜙(0𝑖, 0𝑗, 𝟏𝑖𝑗) if 𝜙(11, … , 1𝑖−1, 0𝑖, 1𝑖+1, … , 1𝑛) = 1
, (0𝑖, 0𝑗, … , 𝟏𝑖,j) represents that 172 

components 𝑖, 𝑗 stop working and all of the other components are working; and 173 

 𝜆𝑖 = 𝜒{𝜙(11, 12, … , 1𝑖−1, 0𝑖, 1𝑖+1, … , 1𝑛) = 0}, 𝜒{. } is an indicator function. 174 

In Eq. (2), 𝜆𝑖 ensures that 𝜙(𝜆𝑖, 𝒑𝑖(𝑡)) is not constant, no matter whether component 𝑖 is critical or 175 

noncritical. This avoids the problems such as B2 and B3 listed in Remark 2. 𝐻𝑗|𝑖 ensures that critical 176 

components will not be selected for PM, given that component 𝑖 is non-critical. 177 

The CMP 𝐼𝑗|𝑖
𝑀 (𝑡) can be used to suggest which components may be selected for PM so that the 178 

reliability of the system can be maximally improved, given that component 𝑖 has failed and repair needs 179 

performing on it. This is a form of positive dependence that gives a downtime opportunity: component 180 

failures can often be regarded as opportunities for PM of non-failed components. The positive 181 

dependence has been discussed in maintenance optimisation for multi-component systems, see [21,22] 182 

for example. 183 

Below we give an example to show how the CMP works. 184 

Example 1. Assume a system is structured as Fig. 2 and the components in the system have equal 185 

reliability. That is, 𝑝1(𝑡) = 𝑝2(𝑡) = ⋯ = 𝑝8(𝑡) = 𝑅(t). Then the reliability of the system is  186 

𝜙(𝒑(𝑡)) = 𝑝1(𝑡)𝑝4(𝑡)(1 − ∏ (1 − 𝑝𝑖(𝑡))3
𝑖=2 )(1 − ∏ (1 − 𝑝𝑖(𝑡))8

𝑖=5 ). 187 

 188 

 189 

Fig. 2. An example. 190 

 191 

Assume that a two-member maintenance team takes care of the system. This implies that the team 192 

can repair a failed component, meanwhile carry out PM on another component while the failed 193 

component is being repaired. We have the following straightforward analyses. 194 

(a) if component 1 is failed, the system stops working. Then, based on the Birnbaum importance, PM 195 

may be conducted on component 4.  196 

(b) if component 2 fails while the system is working, then one of components 5, 6, 7, and 8 can be 197 

selected for PM. 198 

Based on Definition 2, we have 𝐻𝑗1|1 = 1 and 𝐻𝑗2|2 = 𝜙(02, 0j2
, 𝟏2j2

), where 𝑖, 𝑗 ∈ {1,2, … ,8}, 199 

𝑗1 ∈ {2,3, … ,8}, and 𝑗2 ∈ {1,3,4, … ,8}. 200 
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(A) According to Definition 2, 𝐼𝑗1|1
𝑀 (𝑡) =

𝜕𝜙(1,𝑝2(𝑡),…,𝑝8(𝑡))

𝜕𝑝𝑗1(𝑡)
 . Then we have 𝐼2|1

𝑀 (𝑡) = 𝐼3|1
𝑀 (𝑡) = 𝑅(𝑡)(1 −201 

𝑅(𝑡))(1 − (1 − 𝑅(𝑡))4), 𝐼4|1
𝑀 (𝑡) = (1 − (1 − 𝑅(𝑡))2)(1 − (1 − 𝑅(𝑡))4), and 𝐼5|1

𝑀 (𝑡) = 𝐼6|1
𝑀 (𝑡) =202 

𝐼7|1
𝑀 (𝑡) = 𝐼8|1

𝑀 (𝑡) = 𝑅(𝑡)(1 − (1 − 𝑅(𝑡))3)(1 − 𝑅(𝑡))2. It can easily be proved that 𝐼4|1
𝑀 (𝑡) ≥ 𝐼𝑗|1

𝑀 (𝑡) for 203 

𝑗 = 2,3,5,6,7,8. That is, based from Definition 2, if component 1 is failed, component 4 may be 204 

selected for PM. 205 

(B) According to Definition 2, 𝐼𝑗2|2
𝑀 (𝑡) =  𝐻𝑗2|2

𝜕ℎ(𝑝1(𝑡),𝜆2,𝑝3(𝑡),…,𝑝8(𝑡))

𝜕𝑝𝑗(𝑡)
. Then we have 𝐼1|2

𝑀 (𝑡) = 𝐼3|2
𝑀 (𝑡) =206 

 𝐼4|2
𝑀 (𝑡) = 0, 𝐼5|2

𝑀 (𝑡) = 𝐼6|2
𝑀 (𝑡) =  𝐼7|2

𝑀 (𝑡) =  𝐼8|2
𝑀 (𝑡) = (𝑅(𝑡))3(1 − 𝑅(𝑡))3 > 0. That is, if component 2 207 

fails, the system is working. Then one of components 5, 6, 7 and 8 can be selected for PM.  208 

The derived results (A) and (B) using Definition 2 agree with the analysed results (a) and (b). 209 

 210 

 211 

Fig. 3. A four-component series system.  212 

 213 

From the above example, it can also be found that 𝐼𝑗|𝑖
𝑀  may be zero, which differs from most existing 214 

importance measures such as the Birnbaum importance measure, the joint importance measure, the 215 

conditional importance measures, etc, which are always positive.  216 

It can be found that 𝐼𝑗|𝑖
𝑀 (𝑡) ≠ 𝐼𝑖|𝑗

𝑀 (𝑡). The ordering ranked by 𝐼𝑗|𝑖
𝑀(𝑡) is apparently different from that 217 

by 𝐼𝑖|𝑗
𝑀 (𝑡). For example, assume a system is consisted of four components shown in Fig. 3 and their 218 

reliabilities are 𝑝1(𝑡), 𝑝2(𝑡), 𝑝3(𝑡), 𝑝4(𝑡) with 𝑝1(𝑡) ≥ 𝑝2(𝑡) ≥ 𝑝3(𝑡) ≥ 𝑝4(𝑡). Then, 𝐼4|1
𝑀 (𝑡) = 𝑝2(𝑡)𝑝3(𝑡) 219 

𝐼4|1
𝑀 (𝑡) ≥ 𝐼3|1

𝑀 (𝑡) ≥ 𝐼2|1
𝑀 (𝑡) and 𝐼3|4

𝑀 (𝑡) ≥ 𝐼2|4
𝑀 (𝑡) ≥ 𝐼1|4

𝑀 (𝑡).  220 

The relationships with other importance measures are discussed below. 221 

 Relationship with the Birnbaum importance. The Birnbaum importance of a component is always 222 

positive. Since 𝐼𝑗|𝑖
𝑀  , which is the CMP of component 𝑗 given that component 𝑖 has failed, may be zero, 223 

𝐼𝑗|𝑖
𝑀  may be smaller than the Birnbaum importance of component j. 224 

 Relationship with the joint component importance. The joint reliability importance, which is defined 225 

as the joint reliability importance as 𝐼𝑖,𝑗(𝑡) =
𝜕2𝜙(𝒑(𝑡))

𝜕𝑝𝑖(𝑡)𝜕𝑝𝑗(𝑡)
 and is a measure of how 2 components in a 226 

system interact in contributing to the system reliability, as 𝐼𝑖,𝑗(𝑡) = 𝐼𝑗,𝑖(𝑡). For special systems, we 227 

have the following results. 228 

(a) For series systems, we have 𝐼𝑗,𝑖(𝑡) = 𝐼𝑗|𝑖
𝑀(𝑡). 229 

(b) For parallel systems, If 𝑛 > 2, we have 𝐼𝑗,𝑖(𝑡) = −𝐼𝑗|𝑖
𝑀(𝑡); if 𝑛 = 2, then 𝐼𝑗,𝑖(𝑡) ≠ 𝐼𝑗|𝑖

𝑀(𝑡). This is 230 

because 𝐼𝑗|𝑖
𝑀 (𝑡) = 0 if 𝑛 = 2. 231 
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 Relationship with the conditional component importance. For both series and parallel systems, we 232 

have the relationship: 𝐼𝑗|𝑖
𝑀(𝑡) = 𝐻𝑗|𝑖(𝐼𝑗|𝑖

𝐶 (𝑡) + 𝐼𝑗|𝑖
𝐶 (𝑡)) for 𝑛 > 2. If 𝑛 = 2, 𝐼𝑗|𝑖

𝑀(𝑡) ≠ 𝐼𝑗|𝑖
𝐶 (𝑡), and 233 

𝐼𝑗|𝑖
𝑀(𝑡) ≠ 𝐼𝑗|𝑖

𝐶 (𝑡). 234 

3.1.2 The expected number of PM and the number of components for PM 235 

From Definition 2, an interesting concern is the expected number of PM of each component, based on 236 

which one may design the system. For example, one may assume that the reliabilities of the components 237 

in a system are equal, then calculate component’s CMP. He can then allocate the real components with the 238 

following rule: the component with the lowest reliability will be placed in the position with the largest 239 

number of PM. Then the component will be preventively maintained more often than others.  240 

𝐼𝑗|𝑖
𝑀 (𝑡)=0 implies that component j is not selected for PM if component i fails. Hence, in a system, the 241 

maximum number 𝑁𝑗  of PM conducted on component 𝑗 is given by 242 

𝑁𝑗 = ∑ 𝜒{𝐼𝑗|𝑖
𝑀(𝑡) > 0}

𝑛

𝑖=1

                                                                        (3) 

where we mean by the maximum number 𝑁𝑗 , we have considered the fact that even if a PM is allowed, it is 243 

not necessarily always done because of economic or manpower constraints. 244 

Another interesting question is the number of components that can be preventively maintained 245 

while a failed component is being repaired. There are two situations as following. 246 

(A) If a critical component fails, then the system stops working. While the component is being repaired, 247 

the rest 𝑛 − 1 components can be maintained simultaneously.  248 

(B) However, if a non-critical component fails, the system is still working. To keep the system working, 249 

the number of other components that can be maintained is limited. The minimum number of 250 

components to ensure the system working is 𝑛𝑐 (where 𝑛𝑐 is the number of components in the 251 

shortest path set in the system), which implies that the rest 𝑛 − 𝑛𝑐 − 1 components can be 252 

maintained simultaneously. 253 

Hence, we may use the following remark, Remark 3, to summarise the above discussion.  254 

Remark 3. For a 𝑛-component system, while the failed component is being repaired, the maximum 255 

number 𝑚 of components that can be preventively maintained simultaneously equals 𝑛 − 1 or 𝑛 − 𝑛𝑐 − 1. 256 

Example 2. In the system shown in Fig. 2, the shortest path set includes at least 4 components, i.e., 257 

component 1, component 4, one from components 2 and 3, and one from components 5, 6, 7, and 8. That 258 

is, 𝑛 = 8, and 𝑛𝑐 = 4. Hence, the maximum number of components that can be maintained simultaneously 259 

is 𝑛 − 𝑛𝑐 − 1 = 3 while a failed component is being repaired. 260 
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3.1.3 Importance for a group of components 261 

Recall we mentioned that “A drawback of the Birnbaum importance measure and its variants is that 262 

it ranks only individual components but they are not directly applicable to groups of components” in 263 

Section 1.2. The differential importance measure (DIM), introduced by Borgonovo and Apostolakis in 264 

[19], overcome this drawback [19]. Below is the definition of the differential importance measure (DIM) 265 

of a given set of parameters, introduced in [19].  266 

𝐷𝐼𝑀(𝑝𝑗1
(𝑡), ⋯ , 𝑝𝑗𝑚

(𝑡)) =

∑
𝜕𝜙(𝒑(𝑡))
𝜕𝑝𝑗𝑘

(𝑡)
𝑑𝑝𝑗𝑘

(𝑡)𝑚
𝑘=1

𝑑𝜙(𝒑(𝑡))
.                                                  (4) 

The DIM can be regarded as the fraction of the total change in system reliability that is due to a 267 

change in parameter components’ reliabilities.  268 

Similar to the other variants of the Birnbaum importance measure, the CMP ranks only individual 269 

components. The following quantity 𝐼𝑗1,𝑗2,⋯,𝑗𝑚|𝑖
𝑀 (𝑡) defines the improvement on the system if one improves 270 

the reliabilities of components 𝑗1, 𝑗2, ⋯ , 𝑗𝑚 with amount Δ𝑗1
, ⋯ , Δ𝑗𝑚

, respectively. As the denominator in 271 

the right hand side of Eq (4) is constant, one can simply compare the enumerators of the DIM. As such, we 272 

can derive a similar result the following. 273 

If component 𝑖 is failed, then the component maintenance priority of a given set of reliability 274 

improvements (Δ𝑗1
, ⋯ , Δ𝑗𝑚

) on 𝑚 components 𝑗1, 𝑗2, ⋯ , 𝑗𝑚 is given by 275 

𝐼𝑗1,𝑗2,⋯,𝑗𝑚|𝑖
𝑀 (𝑡) = 𝐻𝑗1|𝑖

𝜕𝜙(𝜆𝑖, 𝒑𝑖(𝑡))

𝜕𝑝𝑗1
(𝑡)

Δ𝑗1
+ ∑ 𝐻𝑗𝑘|𝑖,𝑗1,𝑗2,⋯,𝑗𝑘−1

𝜕𝜙(𝜆𝑖, 𝒑𝑖(𝑡))

𝜕𝑝𝑗𝑘
(𝑡)

Δ𝑗𝑘
,                (5)

𝑚

𝑘=2

 

where 𝐻𝑗𝑘|𝑖,𝑗1,𝑗2,⋯,𝑗𝑘−1
= {

1                                                        if 𝜙(0𝑖, 𝟏𝑖) = 0

𝜙(0𝑖, 0𝑗1, … , 0𝑗𝑘−1
, 𝟏𝑖,𝑗1,𝑗2,⋯,𝑗𝑘−1

) if 𝜙(0𝑖, 𝟏𝑖) = 1
, and 276 

(0𝑖, 0𝑗1, … , 0𝑗𝑘−1
, 𝟏𝑖,𝑗1,𝑗2,⋯,𝑗𝑘−1

) represents that components 𝑖, 𝑗1, 𝑗2, ⋯ , 𝑗𝑘−1 stop working and all of the 277 

other components are working. 278 

3.2 Dynamic scenarios 279 

The content in the preceding section, Section 3.1, does not consider the fact that reliability is a 280 

function of time. 281 

The CMP is introduced for ranking maintenance priorities of the components of a system at a time 282 

when a component is failed. At a given time point, component reliabilities can be obviously regarded as 283 

constant. From a lifecycle perspective, however, as the components in the system can age and deteriorate, 284 

component reliabilities are time-dependent. From this regard, the rankings resulted from the CMP change 285 

over time. For example, in the system in Fig 2, at a time point, the reliability of component 5 may become 286 

larger than that of component 6, and consequently, their rankings by the CMP can change. This time-287 

dependence property can cause a difficulty in estimating the expected number of PM needed in a period 288 

and further cause a difficulty in estimating the expected lifetime cost. However, estimating the upper and 289 
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lower bounds of the expected number of failures can be done, but it depends on maintenance policies 290 

taken, as shown in Eqs (6) and (7) in Section 4. 291 

4 Linking with maintenance policies 292 

Once a component is failed, it is repaired. In the meantime, a given number of components are 293 

selected for PM. A natural question posed here is: in case two components are failed within a short period 294 

and both failures trigger PM on a component, will two PM be performed on the same component within a 295 

short period? Such a scenario should be avoided because it is unnecessary to perform two PM within a 296 

short period from a cost-effectiveness perspective. This leads to the following two possible maintenance 297 

policies: one considers time since last PM and one does not. 298 

Eq. (3) gives the expected number of PM for a given component at a time point. Below, we consider 299 

the expected number of PM with a given time period (0,T). 300 

In this section, we make the following two assumptions. 301 

A8. Repair on failed components are minimal repair, that is, the repair will bring the component back to 302 

the status just before it failed. PM effect is imperfect, that is, a PM activity will bring the maintained 303 

component to a status between as good as new and the time before the component was maintained. 304 

A9. Time on PMU or PMU is negligible. 305 

If a component, say, component 𝑖, fails, it will be repaired immediately. In the meantime, other 𝑚 306 

components are selected for PM. The selection criterion differs between maintenance policies A and B.  307 

Maintenance Policy A. The selection criterion is based on the component maintenance priority 308 

𝐼𝑗|𝑖
𝑀(𝑡), as defined in Definition 2. That is, 𝑚 components, 𝑗1, … , 𝑗𝑚, with larger 𝐼𝑗|𝑖

𝑀(𝑡) are selected. 309 

Maintenance Policy B. Components are selected with two steps: all components in the system are 310 

ranked according to 𝐼𝑗|𝑖
𝑀(𝑡) (with 𝑗 = 1, … , 𝑖 − 1, 𝑖 + 1, … , 𝑛); then 𝑚 components, 𝑗1, … , 𝑗𝑚, with the largest 311 

𝐼𝑗|𝑖
𝑀(𝑡) values are selected. If the calendar age of a selected component since its last PM is older than a pre-312 

specified value, 𝑇𝑗𝑘
 say (for 𝑘 = 1, … , 𝑚), then a PM will be conducted on it. Otherwise, no PM will be 313 

conducted on those with ages younger than the pre-specified values.  314 

For a given period (0, 𝑇), the lower and upper bounds of the expected number of PM on a set of 315 

components {𝑗1, … , 𝑗𝑚} under Policy A and Policy B are given in Eqs. (6) and (7). The set can be all of the 316 

components in a system or a subset of components in a system. 317 

In the following, we give the expected number of PM within (0,T) under the above two maintenance 318 

policies. 319 

4.1 Bounds of the expected number of PM under maintenance policy A 320 

Denote 𝑁𝑗
𝐴 by the total expected number of PM on components {𝑗1, … , 𝑗𝑚} under maintenance policy 321 

A  within time period (0,T). Suppose the failure of a component among a set of components {𝐽1, 𝐽2, … , 𝐽𝑀} 322 
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may trigger PM on a subset components in components {𝑗1, … , 𝑗𝑚}. Let 𝜇𝐽𝑘
(∙) be the hazard functions of 323 

component 𝐽𝑘 before the first PM is conducted on the component. 324 

For two identical items in which one is preventively maintained and one is not, the item with PM 325 

should have fewer failures than the one without PM. The expected number of failures of component 𝐽𝑘 is 326 

∫ 𝜇𝐽𝑘
(𝜏)𝑑𝜏

𝑇

0
 if it is not preventively maintained and minimal repair is conducted upon failures during the 327 

time interval (0, 𝑇). If the failure of a component among components {𝐽1, 𝐽2, … , 𝐽𝑀} triggers PM on a subset 328 

components of the 𝑚 components {𝑗1, … , 𝑗𝑚}, the maximum total expected number of PM is 329 

𝑚 ∑ ∫ 𝜇𝐽𝑘
(𝜏)𝑑𝜏

𝑇

0
𝑀
𝑘=1 . Hence, we have 𝑁𝐽

𝐴 ≤ 𝑚 ∑ ∫ 𝜇𝐽𝑘
(𝜏)𝑑𝜏

𝑇

0
𝑀
𝑘=1 .  330 

The time to the first failure among the set of components 𝐽1, 𝐽2, ⋯ , 𝐽𝑚 is min{𝑋𝐽1
, 𝑋𝐽2

, … , 𝑋𝐽𝑚
}. Let 331 

𝑓𝐽
(1)

(𝑡) =
𝜕𝐹𝐽

(1)
(𝑡)

𝜕𝑡
, 𝐹𝐽

(1)
(𝑡) = 𝑃(min{𝑋𝐽1

, 𝑋𝐽2
, … , 𝑋𝐽𝑀

} < 𝑡), where 𝑋𝐽𝑘
 is the time-to-first-failure of 332 

component 𝐽𝑘. Since PM on components {𝑗1, … , 𝑗𝑚} are conducted only if one of the components in 333 

{𝑋𝐽1
, 𝑋𝐽2

, … , 𝑋𝐽𝑚
} fails and the probability that the first failure occurs is 𝐹𝐽

(1)
(𝑡), the lower boundary of 𝑁𝐽

𝐴 334 

will be 𝑚𝑗𝐹𝐽
(1)(𝑡). Hence, 𝑚𝑗𝐹𝐽

(1)(𝑡) ≤ 𝑁𝑗
𝐴, where 𝑚𝑗 (< 𝑚) is the minimum number of components that 335 

can be simultaneously maintained.  336 

Hence, if maintenance policy A is applied and PM takes effect, then the expected number 𝑁𝑗
𝐴 of PM of 337 

a set of components {𝑗1, … , 𝑗𝑚} within time interval (0, T), has bounds given in the following. 338 

𝑚𝑗𝐹𝐽
(1)(𝑡) ≤ 𝑁𝑗

𝐴 ≤ 𝑚 ∑ ∫ 𝜇𝐽𝑘
(𝑡)𝑑𝑡.

𝑇

0

𝑀

𝑘=1

                                                (6) 

4.2 Bounds of the number of PM under maintenance policy B 339 

Denote 𝑁𝑗
𝐵 as the expected number of PM on components {𝑗1, … , 𝑗𝑚} under maintenance policy B 340 

within time period (0, 𝑇). 341 

If maintenance policy B is applied, then the maximum expected number of PM on component 𝑗𝑘 is 342 

[
𝑇

𝑇𝑗𝑘

], where 𝑇𝑗𝑘
 is the pre-specified age for PM and [𝑡] as the nearest integer number larger than 𝑡. The 343 

maximum expected number of PM on the set of components {𝑗1, … , 𝑗𝑚} is not greater than ∑ [
𝑇

𝑇𝑗𝑘

]𝑚
𝑘=1 . 344 

Following the discussion in Section 4.1, we denote 𝑇𝐽 = min {𝑇𝐽1
, 𝑇𝐽2

, … , 𝑇𝐽𝑚
}. If min{𝑋𝐽1

, 𝑋𝐽2
, … , 𝑋𝐽𝑀

} <345 

𝑇𝐽 , no PM will be conducted. Hence, the probability that the first PM will be conducted within time period 346 

(0, 𝑇) is  𝑃(𝑇𝑗 < min{𝑋𝑗1
, 𝑋𝑗2

, … , 𝑋𝑗𝑚
} < 𝑇) = 𝑃(min{𝑋𝑗1

, 𝑋𝑗2
, … , 𝑋𝑗𝑚

} < 𝑇) − 𝑃(min{𝑋𝑗1
, 𝑋𝑗2

, … , 𝑋𝑗𝑚
} <347 

𝑇𝑗) = 𝐹𝑗
(1)(𝑇) − 𝐹𝑗

(1)
(𝑇𝑗). The optimum scenario is that no failure to occur since the first PM. (𝐹𝑗

(1)(𝑇) −348 

𝐹𝑗
(1)

(𝑇𝑗)) 𝑚𝑗 ≤ 𝑁𝑗
𝐵, where 𝑚𝑗(< 𝑚) is the minimum number of the components that can be conducted on 349 

the set of components {𝑗1, … , 𝑗𝑚}. 350 
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Based on the above discussion, if maintenance policy B is applied, then, 𝑁𝑗
𝐵, the expected number of 351 

PM of a set of components {𝑗1, … , 𝑗𝑚} within time interval (0, T), has bounds given in the following. 352 

(𝐹𝑗
(1)

(𝑇) − 𝐹𝑗
(1)

(𝑇𝑗)) 𝑚𝑗 ≤ 𝑁𝑗
𝐵 ≤ ∑ [

𝑇

𝑇𝑗𝑘

]

𝑚

𝑘=1

.                                                   (7) 

5 Discussion 353 

Optimisation of maintenance policies. Conventionally, optimisation of PM has been centred on 354 

seeking the optimal intervals between consecutive PM activities. From the above discussion, however, it 355 

can be seen that the optimal number of components that may be preventively maintained can be sought 356 

to minimise the expected cost in a given time horizon. 357 

Maintenance time. If time of maintenance is considered, then 𝐼𝑗|𝑖
𝑚(𝑡) = 𝜒{𝑇𝑖

𝐶 ≥ 𝑇𝑗
𝑃}𝐻𝑗|𝑖

𝜕𝜙(𝜆𝑖,𝒑𝑖(𝑡))

𝜕𝑝𝑗(𝑡)
 358 

may be used, where 𝑇𝑖
𝐶  is the repair time on the failed component 𝑖 and 𝑇𝑗

𝑃is the time of PM on 359 

component 𝑗. As 𝑇𝑖
𝐶 ≥ 𝑇𝑗

𝑃 means that the time of PM is shorter than that of repairing the failed component 360 

𝑖, 𝜒{𝑇𝑖
𝐶 ≥ 𝑇𝑗

𝑃} ensures that only those components with shorter PM time will be selected. Normally, the 361 

condition 𝑇𝑖
𝐶 ≥ 𝑇𝑗

𝑃 can be easily satisfied as repair (or corrective maintenance) involves more tasks such 362 

as fault diagnosis, fault location and fault removal, whereas PM is pre-scheduled and it is conducted by 363 

following a pre-specified procedures. Of course, in case other scenarios on repair time are considered, 364 

one can easily amend 𝜒{𝑇𝑖
𝐶 ≥ 𝑇𝑗

𝑃} to fit for purpose. 365 

Reliability-based, cost-based, or geography-based importance measures. This paper extends 366 

the Birnbaum importance measure to a measure, maintenance priority measure, which is based on 367 

system reliability. It is obvious that other criteria can also be applied, for example, system reliability may 368 

be replaced with the lifecycle cost or a function associating with geography convenience. For geography-369 

based importance measures, if a component fails, one may choose some other components that are 370 

geographically easy to approach to be maintained. For example, in case of the offshore wind mills, if a 371 

component fails, then other components close to the failed one may also inspected and maintained. 372 

No symptom appears upon failures. If no symptom appears upon failure, failure can be detected 373 

only when a critical component has failed or a cut set has failed. In this case, maintenance including repair 374 

and PM are conducted while the system is not being operated. As such, In this case, 𝐻𝑗|𝑖 in Definition 2 can 375 

be ignored as it is used to ensure that PM does not stop system working. One may therefore consider 376 

using the following measure 377 

𝐼𝑗|𝑖
𝑀′(𝑡) =

𝜕𝜙(𝜆𝑖, 𝒑𝑖(𝑡))

𝜕𝑝𝑗(𝑡)
,                                                                       (8) 

to rank the importance.  378 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



14 

 

6 A numerical example 379 

The above sections discuss maintenance policies A and B. In the following, for the sake of simplicity, 380 

we use maintenance policy A as an example. 381 

We consider the system shown in Fig. 2. Assume 𝑝𝑘(𝑡) = exp {− (
𝑡

𝛼𝑘
)

𝛽𝑘

}, where 𝛼𝑘 = 18 − 𝑘, 382 

𝛽𝑘 = 1 + 0.03𝑘, and 𝑘 = 1,2, … ,8. Suppose that a failed component is replaced with a new identical one. 383 

Suppose that the PM effect on component 𝑘 follows a linear PM model [23], i.e., the failure rate of 384 

component 𝑘 after the 𝑗-th PM is given by 385 

ℎ𝑘,𝑗(𝑡) = ℎ𝑘,𝑗−1(𝑡 − 𝑎𝑘𝑡𝑗),                                                     (9) 

where ℎ𝑘,0(𝑡) =
𝛽𝑘

𝛼𝑘
(

𝑡

𝛼𝑘
)

𝛽𝑘−1
, 𝑡 ∈ (𝑡𝑗, +∞), 𝑡𝑗 is the calendar age of the system after the 𝑗-th PM is 386 

conducted on component 𝑘, 0 < 𝑎𝑘 < 1, 𝑘 = 1,2, … ,8, and 𝑗 = 1,2, ⋯. 387 

It can be seen that the shortest path sets should include components 1 and 4, one of components 2 388 

and 3, and one of components 5, 6, 7, and 8. That is, the number of components in the shortest path set is 389 

𝑛𝑐 = 4.  390 

We use Monte Carlo simulation to estimate the average numbers of component failures and the 391 

average number of system failures. Suppose that the total life is 5 years (or 60 months), which can be 392 

seen as a PM contract (see [24], for example). We repeat the simulation for 3,000 times. Column 1 393 

includes the number, 𝑚, of components that are selected for PM and row 1 includes the settings of 394 

parameters 𝑎𝑘, where 𝑎𝑘 = 𝑘𝜂. 𝑁𝑐and 𝑁𝑠 in column 2 are the average number of component failures and 395 

system failures, respectively.  The results are shown in Table 2. When no PM is performed, the average 396 

number of component failures is 𝑁𝑐 =48.633 and the average number of system failures is 𝑁𝑠 =9.022, 397 

which are not shown in the Table. Values 46.521 and 8.958 in cells (2,3) and cell (3,3) in the table are the 398 

total numbers of component failures and system failures within 6 years if 𝑚 = 1 (i.e., 1 component can be 399 

preventively maintained) and 𝑎𝑘 = 0.01𝑘 (for 𝑘 = 1,2, … ,8). It can be observed from the table that  400 

 If m increases and η keeps constant, both Ncand Ns show decreasing trends; and 401 

 If η increases and m keeps constant, 𝑁𝑐and 𝑁𝑠 show decreasing trends. 402 

 All 𝑁𝑐  in the table are smaller than 48.633 (i.e., the number of component failures when no PM is 403 

conducted) and all 𝑁𝑠 are smaller than 9.022 (i.e., the number of system failures when no PM is 404 

conducted). 405 

 One can also observe that 𝑁𝑐  changes more drastically than 𝑁𝑠. This is because of the following 406 

reasons. 407 

o the system only fails if component 1 or component 4 fails; 408 

o both component 1 and component 4 are only preventively maintained when one of them 409 

fails; and 410 

o if component 1 (or component 4) fails, then component 4 (or component 1) usually has 411 

the top priority of being selected for PM. 412 
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Table 2 also indirectly illustrates the use of the importance for a group of components defined in Eq. 413 

(5), as the effect of both reliability improvement (i.e., 𝑎𝑘 = 𝑘𝜂 in the table) and a group of components for 414 

Pm (i.e., 𝑚 > 1) on the system reliability is illustrated in the table. 415 

One may also optimise the number of components on which PM can be conducted. For example, 416 

suppose that conducting a PM costs £30, a system failure can incur £40, a component failure can incur 417 

£10, and. Then on the maintenance effect in column 2 (i.e., 𝜂 = 0.01) in Table 2, the cost analysis is shown 418 

in Table 3. The total costs for 𝑚 = 1, 2, 3 and 4 are shown in the last column in Table 3. For example, if 419 

𝑚 = 1, then £30 × 1 + £10 × 46.521 + £40 × 8.958 = 853.53. The costs are 853.53, 840.70, 842.97, and 420 

859.13 for 𝑚 = 1, 2, 3, and 4, respectively. As a result, one may select 𝑚 = 2 as its corresponding cost 421 

840.70 is the minimum. 422 

 423 

Table 2. Comparison of the number of failure within 5 years over the number of components for PM. 424 

  𝜼 =0.01 𝜼 =0.015 𝜼 =0.02 𝜼 =0.025 𝜼 =0.03 

𝒎 = 𝟏 
𝑁𝑐 46.521 45.627 44.922 43.920 43.186 

𝑁𝑠 8.958 8.827 8.855 8.674 8.558 

𝒎 = 𝟐 
𝑁𝑐 42.334 40.518 39.389 38.651 37.817 

𝑁𝑠 8.934 8.832 8.735 8.666 8.396 

𝒎 = 𝟑 
𝑁𝑐 39.693 36.568 34.208 32.536 31.463 

𝑁𝑠 8.901 8.823 8.724 8.514 8.453 

𝒎 = 𝟒 
𝑁𝑐 38.629 35.117 32.934 31.307 30.271 

𝑁𝑠 8.821 8.570 8.328 8.010 7.574 

 425 

Table 3. Cost analysis over the number of components for PM 426 

𝑚 𝑁𝑐 for 
𝜂 =0.01 

 𝑁𝑠 for 
𝜂 =0.01 

Cost on PM 
(= £30 × 𝑚) 

Cost on component 
Failure  (= £10 × 𝑁𝑐) 

Cost on system 
Failure (= £40 × 𝑁𝑠) 

Total cost 

1 46.521  8.958 30 465.21 358.32 853.53 

2 42.334  8.934 60 423.34 357.36 840.70 

3 39.693  8.901 90 396.93 356.04 842.97 

4 38.629  8.821 120 386.29 352.84 859.13 

7 Conclusions 427 

Based on the analysis of the conditional component importance proposed in [8], this paper extends 428 

the Birnbaum importance measure to a measure called the component maintenance priority (CMP), with 429 

which a pre-specified number of components may be selected for preventive maintenance (PM) while a 430 

failed component is being repaired. The CMP differs from most of the existing component importance 431 

measures as the CMP may be zero and the latter are usually positive. Here, a component with a zero CMP 432 

implies that PM should not be conducted on it.  433 

The CMP can be used to schedule PM policy, as illustrated in the example in Section 6. Different from 434 

conventional PM optimisation methods that optimise the interval between PM activities, this paper 435 
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optimises the number of components on which PM can be conducted while a failed component is being 436 

repaired.  437 

Our future research is to investigate component maintenance priority when maintenance cost and 438 

reliability improvement cost are considered. That is, the ideas of this paper and that from reference [3] 439 

will be extended. 440 
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