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Abstract

Coastal flood defense systems can consist of multiple lines of defense. In case of a system with a front and a rear defense (e.g. a
storm surge barrier and levees), the front defense can improve the reliability of the rear defense by reducing the load on this rear
defense. This paper develops a framework in order to assess whether including the influence of such a load reduction influences
the economically optimal safety targets of both defenses. The economic optimization is carried out using two approaches: a
simplified method developed to explore the behavior of the economic optimization with a front and rear defense, and a numerical
framework geared towards practical applications. The numerical framework provides more flexibility in defining risk, cost and
damage functions, and emphasizes on the applicability and tractability of the necessary steps from an engineering perspective. Both
approaches are used in a hypothetical case study in order to quantify the effect of including a load reduction on the economically
optimal safety targets. The results indicate that if a front defense can create a significant risk reduction in a cost efficient manner,

more efficient economically optimal safety targets can be found by including the load reduction.

Keywords: Economic optimization, cost-benefit analysis, system reliability, flood risk, flood defenses

1. Introduction

Coastal areas are often densely populated [24]. In order to pro-
tect the low-lying coastal areas against flooding, flood defenses
can be constructed [14]. These flood defenses can be part of a
flood defense system with multiple lines of defense. A typical
example of a coastal flood defense system with multiple lines
is that of a storm surge barrier closing off a large water body
and levees surrounding the large water body. Such a system is
shown in Figure 1, where the barrier is the front defense and
the levees are the rear defenses. Examples of such coastal flood
defense systems can be found in Lake IJssel and the Eastern
Scheldt in the Netherlands, and in Neva Bay, close to Saint Pe-
tersburg in Russia.
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Figure 1: Simplified cross section of a front defense (B) and rear defense (A).

The front defense in Figure 1 affects the hydrodynamic con-
ditions at the rear defense, for example by reducing surge lev-
els. Reduced surge levels result in a reduced load at the rear
defense, which means the flood risk is reduced as well. A dif-
ferent flood risk implies that an economic optimization will be
affected as well, because in an economic optimization the sum
of investment and risk costs is minimized in order to obtain
economically optimal safety targets for the flood defenses (see
also Sections 3 & 4). As the load reduction influences the risk
cost, including this in an economic optimization can possibly
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lead to a different set of economically optimal safety values for
both the front and rear defenses. On the other hand, not in-
cluding the interaction between the two defenses simplifies the
economic optimization, because the front and rear defense can
then be evaluated independently from each other. For (a) ana-
lyzing the flood risk and (b) establishing economically optimal
safety targets it is, hence, important to model the system appro-
priately, accounting for the load reduction when necessary.

Economic optimization is often done as a part of an economic
cost-benefit analysis, where the risk costs use potential eco-
nomic damages. Aside from economic damages, life safety is
an equally important concept to consider (e.g. see [11] & [12]),
and can also be used as a metric for acceptable safety targets
for flood defenses. The aforementioned load reduction impacts
risk, which means it can also impact a life safety analysis. How-
ever, even though there are some similarities between a life
safety analysis and an economic cost-benefit analysis, a life
safety analysis is a different kind of analysis. For the purpose of
this paper, we therefore only focus on an economic cost-benefit
analysis.

The economic optimization of a single line flood defense sys-
tem has been discussed by a number of authors over the years;
an example of a recent application can be found in [19]. Al-
ready in 1956, Van Dantzig described the economic optimiza-
tion of a homogeneous dike ring [30]. This case and the work
by Van Dantzig has been revisited and extended by a number
of authors, for example in [10] with the addition of economic
growth, or in [32] where the impact of uncertainty is discussed.

The fundamental method behind these economic optimiza-
tions of single line flood defense systems has also been ex-
tended to flood defense systems with multiple lines or elements
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of defense. For example, [33] described optimizing elements
in a dike ring, while a polder terminal case was described in
[18]. Multiple lines of defense are sometimes also referred to
as ‘multi-layer safety’ (e.g. [1, 34, 17, 27]) or as ‘hierarchical
flood protection systems’ [6]. In these descriptions of multiple
lines of defense, the lines of defense can also include measures
such as evacuation or improved spatial planning; for example,
see [20] regarding optimal flood plain planning or [36] regard-
ing optimal levee setback and height. A coastal flood defense
system was analyzed in a case study by [37], but focused on the
results for the Lake IJssel case in The Netherlands.

A generic description of the economically optimal safety tar-
gets of a coastal flood defense system can, for example, provide
the conditions in which a front defense is needed, or how much
the economically optimal safety target of a rear defense is af-
fected by the load reduction of a front defense. To the best of
our knowledge, such a generic description has not been pre-
sented yet. Therefore, the aim of this study is to develop a
framework in order to assess whether including the influence
of such a load reduction influences the economically optimal
safety targets of a coastal flood defense system.

In order to quantify the effect of a load reduction in a coastal
flood defense system (Section 2), two economic optimization
approaches are proposed. The first is a simplified economic op-
timization method which is derived in Section 3 and is partly
based on our earlier work in [8], and is used to describe the
characteristics of the economically optimal safety targets of
a coastal flood defense system. The second approach is a
flexible numerical framework which removes a number of the
limitations of the simplified method, making it more suitable
for real world applications. This numerical framework, de-
scribed in Section 4, combines the existing economic optimiza-
tion method as used in [37], and couples it with a risk frame-
work which is inspired by system flood risk frameworks such
as described in [5]. Emphasis is placed on the applicability and
tractability from an engineering perspective.

Finally, the Galveston Bay near Houston is considered as a
hypothetical case study in Section 5. The Galveston Bay area
has millions of inhabitants and represents a large economic
value. It does not yet have an integral flood defense system,
but the feasibility of such a system is being investigated be-
cause it is situated in a hurricane prone area (e.g. see [2]).
Even though this study describes an economic optimization of a
coastal flood defense system with a front and rear defense, the
numerical framework is flexible enough to be generically ap-
plied to flood defense systems with two lines of defense. With
modifications to the used risk method and optimization algo-
rithm, the numerical framework can also be used for more than
two lines of defense.

2. Flood Risk of Coastal Systems

In coastal systems, as shown in Figure 1 a front defense will
reduce the load on a rear defense; thereby improving the re-
liability of the rear defense. In the following, this reliability
improvement is first described from a physical point of view
(Section 2.1). This explanation is then used to incorporate the

reliability improvement in a set of risk equations (Section 2.2).
Furthermore, in the remainder of this paper the term ‘coastal
systems’ is used for coastal flood protection systems with a
front and rear defense.

2.1. Load reduction by a front defense

A functioning front defense blocks partly, or even completely,
the inflow into the large body of water behind the front defense.
Examples of such front defenses are dams or storm surge barri-
ers (see also Section 1). In this study, we see this inflow block-
age as the primary source of load reduction. However, the ef-
fects of this load reduction depend on the properties of the basin
containing the large body of water. In the following, this reduc-
tion is described from a physical stance for a subset of coastal
flood defense systems that fit the description of a short basin
where the ‘pumping mode’ assumption is valid (Iength of the
basin « tidal wave length).

A front defense is typically built near the inlet of a basin, de-
noted by width W in Figure 2. The extra inflow entering the
basin during a storm event depends on the amount of block-
age by the front defense. Typically, less inflow will be able to
enter the basin as the front defense height increases. This is
illustrated in Figure 3.

The inflow due to the storm event will result in increased
basin water levels inside the basin, where the amount of basin
water level increase depends on the basin surface area (S in
Figure 2). However, as strong winds usually occur during
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Figure 2: Top view of a typical basin, with inlet width W and surface area S .
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Figure 3: A front defense can block surge from flowing into a basin; however,
any overflow will still enter the basin.



storm events, wind setup will at least partially negate the re-
duction of basin water levels, as wind setup is inversely related
to basin water level (e.g. see [4]); this is particularly noticeable
in shallow basins. At some point, any further increase of the
front defense height will no longer result in a (significant) de-
crease of the basin water level. Either the front defense already
completely blocks the surge inflow, or the inflow reduction is
negated by an increased wind setup. In other words, at some
point the load reduction by the front defense will be constant,
which in the remainder of this paper will be referred to as the
‘maximum load reduction’.

2.2. Annual system risk

Based on [35], we define system failure as the situation where
at least one of the flood defenses has failed. Furthermore, risk
is defined as the probability of failure times the damage due to
failure. The annual system risk (Cg, $/year) of a coastal flood
defense system can then be described as a summation of the
annual risk per flood defense:

Cr = PaD4 + PpDp (H
PA = PBPAlB + PEPA\E (2)

where Pp is the failure probability of the front defense, and P5
is the complement of Pg. The failure probability of the rear
defense, Py, is found using the chain rule for probability and
the law of total probability. Furthermore, the conditional fail-
ure probabilities of the rear defense, dependent on the failure
(Pp) or functioning of the front defense (Pg), are P4z and P AR
respectively. Finally, D4 and Dg (both in $) are the damages
that belong to the failure of the rear and front defense, respec-
tively, and are assumed to be otherwise independent of the per-
formance of the defenses (i.e. the expected damage if both A
and B fail is D4 + Dgp).

3. Simplified Economic Optimization

3.1. General

The purpose of a simplified economic optimization is to ex-
plore the behavior of the economically optimal safety levels of
a coastal flood defense system with a front and rear defense.
The simplifications are made both in the system description (i.e.
Figure 1), and in the economic optimization assumptions (Sec-
tion 3.1). The economic optimum is defined as the minimum of
the total costs, similar to, for example, [30, 10]:

min {TC = " PV (Cx)+ Y PV (Cp)} 3)

where T'C is the total cost, ), PV (Cg) is the summed present
value of the risk costs and ), PV (C;) is the summed present
value of the investment costs; both the risk and investment costs
are defined in Section 3.2. Using the total cost equation, further
equations for the economically optimal safety targets for both
the front and rear defense are found in Section 3.3. Finally,
the effect of including the load reduction by a front defense is
discussed in Section 3.4.

For this section, the flood damages in Eq. 1 are solely based
on economic valuations of damages. In a complete risk evalua-
tion, concepts such as individual risk and societal risk should be
included (e.g. see [13]). An overview of risk acceptance mea-
sures can be found in, for example, [14]. Furthermore, time de-
pendent processes such as sea level rise or economic growth are
ignored in this section. Ignoring these processes means, for the
economic optimization, that only a single investment needs to
be calculated. This investment is assumed to be done immedi-
ately at the start of the strengthening project; these assumptions
reduce the investment term of Eq. 3 to C;, because there is only
a single term which does not need to be discounted. Including
time dependent processes (e.g. see [10]) necessitates repeated
investments over time, and are an integral part of the numerical
economic optimization in Section 4.

3.2. Risk and investment costs

Discounting the annual risk of Eq. 1 with a real interest rate (r,
> () over an infinite time horizon is a geometric sequence (e.g.
[30]), which converges as follows:

= D D
Z PV (Cg) =Py =2 + Py =2 )
=0 r r

where PV (Cp) is the present value of the risk cost of a system
with a front and rear defense.

The investment cost relations are chosen similarly to for ex-
ample [30] & [34], assuming linear functions dependent on the
crest level of the defense. Because the investment is chosen to
be done immediately at the start of the strengthening project,
the related costs do not need to be discounted:

Cri=Cysi +C, by ©)

where Cy; is the investment cost for flood defense i (which is
either A or B). Furthermore, Cy; and C,; (both > 0) are respec-
tively the fixed and variable cost to strengthen flood defense i
to height h;. Linear investment functions are a simple way of
depicting the investment costs; other types of investment func-
tions are treated in Section 4.

3.3. Economically optimal failure probabilities

The economic optimum was defined earlier as the minimum of
the total costs. The optimal values, corresponding to the loca-
tion of the minimum of the total costs, can be found with the
partial derivatives of the total cost equation. However, the fail-
ure probabilities have not been defined yet. We assume that a
failure probability is dependent on the height 4 of a flood de-
fense, and use a probability distribution dependent on this flood
defense height to get to the associated annual failure proba-
bility P. For this simplified economic optimization, the an-
nual failure probabilities of the flood defenses are simplified
from annual probability of exceedance of safety level to annual
exceedance of crest level i, making the assumption that over-
flow/overtopping is the dominant failure mechanism (analogue
to [30, 10, 34]). Furthermore, we assume the annual extreme



water level to follow an exponential distribution with parame-
ters @ > 0 and B > 0; other failure mechanisms besides over-
flow/overtopping and other distribution types are discussed in
Section 4:

P=1 —F(h):exp(—}%) 6)
where £ is the height of either the front defense (/) or the rear
defense (h4). The parameters @ and S differ between the front
and rear defense. For the rear defense, as the load on the rear de-
fense is influenced by the front defense, the parameters for the
rear defense can also differ depending on the state (failure/non-
failure) and safety level of the front defense. The optimal values
of the front and rear defense height can now be found by taking
the partial derivatives of the total cost with respect to i4 and hp,
and equating these to zero (i.e. % =0in Eq 7 and % =0in
Eq 8):

D aFA\B D ‘9FA\E
,BBCV’BV +,BBDA (PB s + PE g

Dg+ Dy (ﬁAlB - FA|§)

~Pus - Pug) G,
Py pgﬂ — val 8)
Bais Bus Dy

=Ps 7

where the circonflexe above a variable indicates the economi-
cally optimal value of that variable. Furthermore, Eq. 7 contains
the derivatives of the conditional failure probabilities of the rear
defense with respect to the height of the front defense. The ex-
pected behavior of the failure probability of the rear defense as
a function of the height of the front defense can be explained
using the load reduction description of Section 2.1. This load
reduction indicates that a higher front defense results in lower
failure probabilities of the rear defense. Sketches of the con-
ditional failure probabilities of the rear defense are shown in
Figure 4 & 5.

The derivatives of the functions in Figure 4 & 5 start out
negative, but both derivatives are assumed to converge to zero as
the front defense becomes higher and the point of the maximum
load reduction (see Section 2.1) is achieved. If these derivatives
are indeed zero, Eq. 7 can be simplified to Eq. 9:

Py [-]
|

hp [m]

Figure 4: Even if the front defense has failed, a higher/stronger front defense
(hp) might still reduce the inflow, resulting in a lower Pyp.

BsCy pr _ P, ©)
Dg+ Dy (PAlB - PA|§)

Wrongfully using the simplified Eq. 9 instead of Eq. 7 will
lead to an incorrect, larger economically optimal failure prob-
ability of the front defense. This also follows from the under-
lying assumption of Eq. 9, which assumes that the maximum
constant load reduction is valid for the entire range of safety
values for the front defense; this assumption overestimates the
load reduction effect of a low front defense on a rear defense.

3.4. Impact of a load reduction on the optimal safety targets

If no load reduction by the front defense on the rear defense
is assumed, the two defenses can be evaluated independent of
each other. In for example [34], an economically optimal so-
lution for a single flood defense was derived. This single flood
defense was characterized similarly as in Section 3.3, with a
linear investment relation and exponential failure probabilities.
The solution as found in [34] is shown in Eq. 10, although in a
different notation:

= BiCyir
Pi,single = D. (10)

where i can either be B for the front defense, or A for the rear
defense. Eqs. 7 & 8 reduce to Eq. 10 when no load reduction is

used (FA|B = FA\E’ ‘ZJTA}‘?” = a(;;:‘f = 0). The following can be said
regarding the influence of a load reduction, when comparing

the solutions with and without load reduction:

Front defense safety level: The front defense safety level with
load reduction will be equal to, or smaller than, the safety
level without load reduction, because it not only needs to
cover the risk of the front defense, but also a part of the
risk of the rear defense. The equation with load reduction
(FB, Eq. 7) has an extra risk term in the denominator when
compared to the solution without load reduction (FB,smgze,
Eq. 10). Because all elements in this extra term are posi-
tive, and because FA|B > FAlE’ the optimal failure proba-
bility with load reduction is equal to, or smaller than, the
optimal failure probability of a single flood defense.

N

Mazimum load reduction

Pys -]
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Figure 5: A higher, functioning front defense () should result in a smaller
P, 5> but is limited by the maximum load reduction (Section 2.1).



Front defense height: Because the height and the probability
of a front defense are linked via the exponential distribu-
tion of Eq. 6, this means the optimal height of the front
defense with load reduction is higher than, or equal to, the
height of the front defense without load reduction.

Rear defense safety level: Because of the beneficial influence
of the front defense, the optimal rear defense safety level
with load reduction will be equal to, or smaller than the
value without load reduction. The optimal solution for the
rear defense (Eq. 8) is bound between FA|B and FAlE’ de-
pending on the value of the optimal front defense safety
level Pp. Assuming that Pyp =~ Py ingl, this means that
the optimal rear defense safety level with load reduction
(FA) is equal to, or smaller than the value without load
reduction (FA,single)

Rear defense height: The optimal height of the rear defense
with load reduction is difficult to predict a priori: accord-
ing to the exponential distribution, a smaller optimal fail-
ure probability should lead to a higher optimal height of
the rear defense with load reduction. However, two dif-
ferent exponential distributions have been assumed for the
rear defense, conditional on whether or not the front de-
fense has failed. As the conditional failure probability with
a functioning front defense (FA\E) becomes more domi-
nant (which occurs when the front defense safety level in-
creases), the optimal height could also go down, because
the exponential distribution for a rear defense conditional
on a functioning front defense leads to lower heights (since

Bais = Byp)-

In order to provide a more explicit description of the behav-
ior of the height of the rear defense, the expression for the rear
defense failure probability (Eq. 2) is approximated with a sin-
gle exponential distribution, which consequently also leads to a
simpler expression of the optimal rear defense safety level:

_hp-ay

Py~e & (11
= CyarBx

Py~ ——— 12
A D, (12)

where By decreases for smaller values of the front defense fail-
ure probability (Pp), and is bounded between f3 Al and Bap
(with Bap > B,p). Combining Egs. 11 & 12 leads to an ap-

proximate expression for hy. If the derivative with respect to the
front defense safety level (Pp) of this approximation is greater
than zero, the optimal height of the rear defense (%4) is expected
to decrease for higher safety levels of the front defense (Pp):

_ .
g—?; S0 - By < exp(—l —ln( D’:‘r)) (13)

Because the upper limit of By is Bap, it follows that the
derivative will be positive, as long as the right-hand side of
Eq. 13 is larger than B45. In practice, the term C[‘;’:r is expected
to often be (much) smaller than one, which in turn leads to the

right-hand side of Eq. 13 being (much) larger than one. This
indicates that, in practice, a positive derivative can be expected,
which means that the optimal height of the rear defenses is ex-
pected to be smaller than or equal to the optimal height without
load reduction.

In conclusion, this section shows a formal reasoning why in
the past flood defense systems with multiple lines of defense
were built. Intuitively, building a front defense reduces the load
on a rear defense, which should also reduce the required (opti-
mal) height of a rear flood defense. The benefit of the formal
treatment in this section is that, from an economic perspective,
some key factors in the optimal safety targets of a coastal sys-
tem were identified. Even considering the limitations imposed
in this section in order to get to an analytical answer, these key
factors can be used to indicate when the impact of a load re-
duction on the optimal safety targets is significant or not. The
insight gained in this section will be applied in a (hypothetical)
case study in Section 5.

4. Numerical Economic Optimization

In order to cope with more complex conditions than described
hitherto, a numeric framework is proposed, shown in Figure 6.
This framework describes the necessary steps to go from a sys-
tem description of a coastal flood defense system, to the eco-
nomic optimal safety targets of the flood defenses. The descrip-
tion of the framework focuses on the practical applicability and
tractability of the framework and its parts from an engineering
perspective. Note that the framework assumes that a flood de-
fense type and cost function does not change over time. If, for
example, an earthen levee needs to be compared with a concrete
wall, multiple runs of the framework are needed. The steps in a
single framework run are:

o Starting from the system description, with a predetermined
system configuration of flood defenses, a system risk esti-
mate is produced. This risk estimate is used to prescribe
per flood defense the hydraulic loads, fragility functions
and damage models. See also Section 4.1.

e The numerical economic optimization finds the optimal
system configuration from a set of discrete safety levels
for the flood defenses. Each combination of safety levels
needs to have accompanying (investment) cost and flood
risk values, see also Section 4.3.

e The (investment) costs are usually found using the system
description and the type of flood defense, and need to be
able to produce cost figures for the discrete set of safety
levels. See also Section 4.2.

e Finally, the flood risk and (investment) cost values are used
in a numerical economical optimization, which also uses
a number of system specific input parameters such as the
rate of economic growth. See also Section 4.3.
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Figure 6: Overview of necessary steps in the numeric framework used to obtain economic optimal values for a coastal flood defense system.

4.1. Risk characterization

Risk is defined as probability of failure times the damage due
to failure. Conceptually, the reliability of a flood defense is
expressed by means of a reliability equation Z:

Z = Strength — Load (14)

where failure is defined as Z < 0. Both the strength and (hy-
draulic) loads are usually considered as uncertain.

4.1.1. Hydraulic loads

Load distributions for the front defenses can be found by an-
alyzing historical datasets, running hydrodynamic models, or
a combination of the two. However, load distributions for the
rear defenses can often only be found by means of hydrody-
namic models, assuming the system with both a front and rear
defense does not exist yet.

A common technique to acquire a distribution from an hy-
draulic model is Monte Carlo sampling, where a large num-
ber of model runs are made in order to approximate the load
distribution. Usually a large number of samples are required,
specifically for reasonable estimates of the tails. The number
of required samples can be reduced by using techniques such as
Importance Sampling (as applied in for example [7]).

Depending on the complexity of the hydrodynamic model
and the number of required samples, approximating these load
distributions can be computationally intensive. Because of this,
it is recommendable to do these computations asynchronous of
the economic optimization model. These computations could,
for example, be stored in a table, which allows the economic
optimization model to quickly look up the required values dur-
ing its run; this approach is similar to what is proposed in for
example [5].

4.1.2. Fragility curves
Fragility curves are a way to represent the strength term in
Eq. 14 and are governed by the failure modes and type of flood

defense. In the case of flood defenses, fragility curves often
show the probability of failure as a function of the water level.
There are multiple, possibly correlated, ways a flood defense
can fail (failure mechanisms), and the water level does not nec-
essarily need to exceed the crest height to induce failure (e.g.
due to piping). In an economic optimization, typically a large
number of possible flood defense designs are compared. These
designs can, for example, vary the height of a flood defense.
This also means that each flood defense alternative needs a
fragility curve. An application of height-based fragility curves
can be found in Section 5.1. For a more in-depth description on
constructing fragility curves, see for example [31] or [23].

4.1.3. Damage models

Damage modelling entails combining flooding scenarios with
the expected economic damage and fatalities per flooding sce-
nario [13]. A flooding scenario is defined in [13] as “a unique
sequence of events following the failure of a flood defence at
one or more locations under specific high water conditions”.
Recognizing that in reality a large number of flooding scenarios
are possible, and that these scenarios commonly use computa-
tionally intensive 2D models, two proposals were made in [13]
for keeping the damage modelling tractable:

1. Define stretches of flood defenses which approximately
show the same flooding pattern, independent of where the
actual breach occurs in that particular stretch.

2. Find a limited set of flooding scenarios which represent
the most likely scenarios.

However, the state of a flood defense will influence the most
likely scenario. As an example, the most likely flooding sce-
nario without a flood defense compared with the failure of a
five meter high flood defense will likely be significantly differ-
ent. A possible way of including this effect is shown in [10],
where a constant £ was introduced which depicts the “increase



of loss per cm dike heightening”. A more generally applica-
ble approach, especially for potentially widely varying safety
levels, would be re-running the damage modelling for a set of
representative safety levels.

4.2. Investment costs

The linear investment function of Eq. 5 in Section 3.2 is ap-
proximately valid for small increments of the height of a flood
defense; this limitation was already mentioned in [30]. For
earthen levees a convex function might be more suitable. This
can be explained when comparing the increase of height versus
the increase of the associated cross-sectional area: the relative
increase in cross-sectional area will be more than the relative
height increase (see also for example page 145 in [33]). A con-
vex function is used in for example [10] or [16]. Specifically, in
[16] an exponential function is used. This function is repeated
here with a slightly different notation for consistency with the
earlier used symbols:

Cri = (Cpi+ Coug) W) | (15)

where u; is the height increase of the flood defense, W is the
sum of all the previous height increases, and A is a scale pa-
rameter [16]. A similar equation and estimattes for Cy;, C,;
and A are shown in [9], specifically Appendix C.4. The data in
[9] also showed that the estimates for Cy;, C,; and A can differ
significantly per case study. Preliminary estimates for a wider
range range of flood defenses in an international context can be
found in for example [15]. If A is equal to zero, the exponential
relation in Eq. 15 reduces to a linear investment relation.

4.3. Economic optimization

In a general sense, an economic optimization model indicates
when to (repeatedly) invest where, and how much, by minimiz-
ing of the total costs (Eq. 3). Examples of recent numerical
economic optimization methods can be found in [3] or [38].
The methods by [3, 37, 38] use similar techniques in order to
quickly get from a large set of potential combinations of risk
and investment costs to an optimal investment path with mini-
mal total costs. A conceptual visualization of the set of poten-
tial combinations for the risk costs is shown in Figure 7. These
techniques involve linear or nonlinear programming. A method
sharing the same fundamental approach from [38] was used in
[37] to find the economic optimal safety levels for the Lake 1Js-
sel case; Section 5 uses this method as well.

5. Application

This section presents an application of both the economic opti-
mization approaches in Section 3 & 4 in order to quantify the
difference of including the load reduction effect of a front de-
fense. The application is based on the work from a real, ongo-
ing case study in the Galveston Bay area near Houston, Texas,
which has been significantly reduced in complexity. Therefore,
the results should not be considered directly for decision mak-
ing for the Galveston Bay area. The Galveston Bay consists of
a large bay with barrier islands (Figure 8), and hosts millions
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Figure 7: Conceptual illustration of the solution space of risk costs for a front
(hp) and rear defense (h4). Each dot represents a unique combination of time
T and heights, and each unique combination is coupled to a risk estimate. This
risk estimate is calculated for the period which starts at the current time 7" and
ends at the next point in time.

—

Figure 8: Galveston Bay area with contours indicating the defense types
for the hypothetical application. Three types of defenses exist: A defense
with a fixed safety level (F1, F2 and F3), a front defense (Bl) and a
rear defense (A1 and A2). Note that the contours are indicative only and
do not necessarily correspond with the position of existing flood defenses.
Map data is modified from OpenStreetMap (© OpenStreetMap contributors,
http://www.openstreetmap.org/copyright).

of people and a large economic value. It does not yet have an
integral flood defense system, but the feasibility is being inves-
tigated because the area is hurricane prone (e.g. see [2]).

For this hypothetical case study, a number of defenses has
been set to a fixed level: defenses F1, F2 and F3 in Fig-
ure 8. Moreover, only a single system configuration will be
considered: the number, type and location of all the considered
flood defenses is predetermined and shown in Figure 8. Conse-
quently, this leaves Figure 8 with only three defenses which will
be part of the economic optimization: a single front defense in
the form of a storm surge barrier (B1), and two rear defenses
(Al and A2).

5.1. Risk characterization

Four separate flood prone areas can be identified: the island pro-
tected by F1, the island protected by F2 and A1, and two main



land areas protected by F3 and A2. This leads to the following
annual risk for the system (Cg pqy):

Crpay = PriDp1 + (Pr2 + Py1) Dy + Pp3Dps
+PpoDy  (16)

where the defenses F2 and A1 are assumed to protect the same
area (Dp»), and are assumed to be independent with a negligi-
ble probability that F2 and Al fail simultaneously. Eq. 16 is
simplified further by assuming that the defenses B1 and F'1 do
not protect any value of their own (Dg; = 0, Dp; = 0):

Croay = (Pr2+ Pa1) Dpy + Pp3Dp3 + PiaDpr - (17)

where the flood damage estimates Dy, Dp3 and Dy will be
loosely based on the residential and industrial flood damage es-
timates found in [25, Section 6]. Finally, the annual failure
probabilities of the flood defenses behind the front defense Bl
(i.e. Al, A2 and F3) can be elaborated in a similar way as in
Section 2.2 to incorporate the possible load reduction of the
front defense:

PAl = PBIPAllBl + PEPAI\E (18)
PA2 = P31PA2|31 + PEPAZ\E (19)
PF3 = PBIPF3|BI + PEPF3|E (20)

5.1.1. Loads and resistance
The hydraulic loads used in this illustration are based on the
following assumptions:

e The load distributions for defenses A1, A2 and F3, under
influence of either a functioning or failed front defense B1,
are modelled using a hydraulic model as proposed in [26].
This 1D hydraulic model simulates the hurricane surge and
wind setup inside the bay; where a front defense can influ-
ence the surge by reducing the inflow into the bay. In case
of a failed front defense, the water is assumed to flow un-
restricted into the bay (i.e. as if the front defense was never
built); this is a conservative assumption as in reality even
a failed front defense will still restrict flow into the bay.

o All flood defenses are assumed to have a ground level of
two meters above Mean Sea Level (MSL). In other words,
even without any flood defense this means that flooding
can only occur if the water levels exceed two meters above
MSL. The only exception is the front defense B1, which is
assumed to have a ground level at MSL. Because of limita-
tions in the hydraulic model, a front defense height below
MSL is not considered.

e The maximum, constant load reduction effect by a front
defense on the water levels behind the front defense is ap-
plied for every front defense height. This reduces the num-
ber of hydraulic load computations, but overestimates the
impact of a front defense, especially at small heights (see
also Section 2.1);

e The defenses F'1 and F2 are assumed to be high enough
so that overtopping and/or overflow of these defenses has
no contribution to the bay inflow.

e The surge levels inside and outside the bay are transformed
into annual water level exceedance probabilities by means
of crude Monte Carlo simulations using 5 - 10* samples.
These extreme water level distributions are used as the
‘Load’ part of the reliability equation Z in Eq. 14.

The ‘Strength’ part of the reliability equation Z (Eq. 14) is
chosen to be a lognormal distribution, where the height of the
flood defense functions as the mean, with a Coefficient of Vari-
ation (COV) estimated at twenty percent. The height of the
defense is assumed to be equal to the critical water level (at
which the defense breaks). The choice for the lognormal dis-
tribution is of a practical nature, because it produces strictly
positive real values. Using a strength distribution based on the
height of a flood defense, instead of a deterministic height, rep-
resents that additional failure mechanisms can occur besides
overflow/overtopping. For example, piping can lead to failure
for surge levels below the crest level (e.g. see [22]).

5.1.2. Estimation of failure probabilities

The raw Monte Carlo results of the surge simulations in Sec-
tion 5.1.1 are approximated with generalized Pareto distribu-
tions (GP, threshold parameter fixed at 0) using maximum like-
lihood estimation in Matlab. Using probability distributions al-
lows a straightforward application of, for example, a First Order
Reliability Method (FORM) or a numerical integration routine.
An overview of the used heights, flood damages, and load dis-
tributions can be found in Table 1.

Finally, because the loads and strength are now defined, each
(conditional) failure probability of Eqgs. 17 - 20 can be found.
This involves solving the reliability equation Z (Eq. 14) where
Z < 0, and is done using numerical integration. Assuming in-
dependence between the load S and strength R, the reliability
equation where Z < 0 can be rewritten into a failure probability
P (Z < 0) as is done in, for example, [31]:

P(Z<O)=fmFR(h)fs (h)dh 21

where Fr (h) is the cumulative distribution function of the resis-
tance, and fs (h) is the probability density function of the load.
The computed (conditional) failure probabilities will be used in
Eq. 17 to calculate annual system risks.

5.2. Investment costs

The investment costs will be crude estimates based on [25] and
[15]. In the case of [25], single value estimates are given for
constructing defenses, while in [15] unit costs (per kilometer)
are given. Without making an actual design, it will be difficult
to obtain accurate investment costs, especially in the form of
Eq. 15 where estimates of both fixed and variable costs are re-
quired. Therefore, the investment costs (Table 2) are loosely
based on numbers found in [15] & [25], using an exponential
investment relation (Eq. 15). The exponential scale parameter A



Table 1: Reference level (h; .y, relative to MS L), height (h;, relative to h;.r), potential flood damage (D;) and annual Generalized Pareto (GP) water level

distribution parameters for all the flood defenses.

Defense i ‘ hiper [m] ‘ hi [m]

| Di[10°8] | Py (¢, @) | Pugi (€, o)

Bl 0.0 0.0-20.0 | 0.0 -0.30,2.2 -0.30,2.2
F2 2.0 3.0 24 -0.30,2.2 -0.30,2.2
F3 2.0 3.0 -0.14, 0.56 | -0.082, 0.89
Al 2.0 0.0-20.0 | see F2 -0.14, 0.56 | -0.082, 0.89
A2 2.0 0.0-20.0 | 38.5 -0.15,0.77 | -0.14, 1.3

Table 2: Investment costs for the to-be optimized flood defenses.

Defense i Cri[$8]1 C,;[$/m] Comments

B1 3-10° 1-10° Storm surge barrier: Based on an estimated cost range of four to ten billions dollars [25].

Al 300-10°  150-10° Levee: Estimated at ten million dollar per kilometer length, per meter defense heighten-
ing, which is on the high end of the range for the United States according to [15]. The
length is estimated at 15 kilometers.

A2 1-10°  300-10° Levee: Uses the same base estimate as defense A1. An additional 400 million dollars is

added to the fixed costs to account for a gate solution at the north side of the bay [25].
The length is estimated at 30 kilometers.

for the investment relation of Eq. 15 is estimated at 0.02/m. An
exponential relation is chosen because it allows to incorporate
the assumed notion that costs increase exponentially for higher
flood defenses. For example, with A set at 0.02, an increase of
defense Bl from zero to five meters would result in 8 billion
dollars and 8.8 billion dollars for a linear and an exponential
relation, respectively.

5.3. Economic optimization and time dependent parameters

As mentioned in Section 4.3, the economic optimization model
uses the same model as used in [37]. For all flood defenses,
a potential height range between zero and twenty meters was
evaluated, with steps of one meter. The evaluated time period is
300 years, with steps of one year for the first twenty years, steps
of five years between 20 and 100 years, and steps of ten years
between 100 and 300 years. This time discretization is based
on [38]. Because the time periods have a variable length, the
risk for a period is calculated by finding the integral over that
period for the (discounted and adjusted for economic growth)
risk. Furthermore, a minimum timespan between investments
of five and ten years was imposed for consecutively the rear
and front defenses.

The time dependent parameters economic growth, interest
rate and sea level rise are assumed to be constant in time for all
flood defenses. First, the economic growth is estimated at six
percent, which is at the low end of the average economic growth
in a recent period of twelve years according to [28]. Secondly,
the real interest rate in recent years varied between zero and
four percent [29], and is estimated at two percent. Lastly, the

sea level rise is determined using [21], and is estimated at 6.9
millimeters per year.

5.4. Results

Both the simplified method of Section 3 and the numerical
framework of Section 4 are applied to the case study using the
gathered input of the previous sections. The results are used to
assess the load reduction effect of a front defense in this case
study.

5.4.1. Load reduction effect: simplified method

Before the simplified method of Section 3 can be applied, a
number of simplifications need to be made: the rear defenses
Al and A2 are summed into a single flood defense which uses
the water level distribution of A1, flood defenses F1, F2 and F3
are ignored, economic growth and sea level rise are ignored,
and the reliability of each flood defense is converted into an
exponential function as used in Section 3.3. The results of these
simplifications can be found in Table 3 and Figure 9.

The exponential functions in Figure 9 had to be manually
fitted in order to get a reasonable approximation of the results
found in Section 5.1.1. This figure shows that for annual ex-
ceedance probabilities larger than approximately 5 - 1072, the
exponential fit significantly overestimates the associated water
levels. However, the simplified method is meant to give insight
into the behavior of the load reduction effect in a coastal system
and not an accurate answer of the economically optimal safety
targets. For the purpose of the simplified method, the exponen-
tial fits are considered acceptable.
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Figure 9: Exponential annual water level exceedance probabilities (solid lines,
see also Table 3) which are used for the front defense B (line B) and the rear
defense A (line A|B if the front defense failed, otherwise line A|B). The dotted
lines are the Monte Carlo results.

Table 3: Input values for the application of the simplified economic optimiza-
tion in the Galveston Bay area.

Parameter Value Unit
B 0.0 m
,BAIB 0.7 m
@y5 0.0 m
ﬁAlE 0.3 m
ap 3.0 m
Bz 0.4 m
Cya 450-10°  $/m
Cyp 1.0-10° $/m
Dy 409-10° $
Dp 0.0 $
r 0.02 -

The results of the simplified economic optimization are
shown in Figure 10. First of all, the graph in this figure in-
dicates that there is no difference regarding the optimal safety
targets with or without a load reduction. Secondly, not building
a front defense (P = 1) should be economically optimal. And
thirdly, although arguably less relevant given the manually fit-
ted exponential distributions, the economically optimal failure
probability of the rear defenses should be in the order of 2- 107,
which coincides with a levee height of approximately six meter.

The added value of the simplified model is that it can explain
why there is no difference between including the load reduction
and not including the load reduction. First of all, because the
flood damage associated with a failed front defense (Dp) is set
to zero, the logical consequence is that, if a load reduction is
not included, not building a front defense is the economically
optimal choice (see also Eq. 10). When the load reduction is
included, Eq. 10 changes into Eq. 9, where only the denomina-
tor is different. In order for a front defense to be economically
efficient and thus have a failure probability smaller than one,
the denominator should be larger than the numerator:
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Figure 10: Result of the simplified economic optimization for the Galveston
Bay area, using the input values of Table 3.

Dy (FAlB - FAIE) > ,BBCV,Br

If Eq. 22 is used with the input of Table 3, together with a height
of six meters for the rear defense, the result is 7.75 - 10° >
8.00 - 10°. This means that the risk reduction for the rear de-
fense by the front defense (left hand side of Eq. 22) is not ef-
ficient when compared to the required investment of the front
defense (right hand side of Eq. 22). However, the difference be-
tween the two numbers is relatively small, which means that if
any of the relevant parameters change, a front defense might be-
come an economically efficient choice after all. These parame-
ters can change for example by including economic growth, sea
level rise, or better approximations of the reliability of the de-
fenses. In order to assess the effect of these potential changes,
a numerical economic optimization is needed.

(22)

5.4.2. Load reduction effect: numerical method

In contrast to the application of the simplified method, the nu-
merical framework is not limited to exponential water level dis-
tributions and can therefore use the better fitting generalized
Pareto distributions of Table 1. The used water level distribu-
tions are shown in Figure 11 & 12.

The numerical framework was applied to the case study with
and without the load reduction effect of the Bl front defense.
Because the flood damage associated with a front defense fail-
ure (Dp) is set to zero, this implies that when the load reduction
effect is not included, a front defense will never be economi-
cally optimal. The results of applying the numerical framework
described in Section 4, using the input of Sections 5.1 - 5.3, are
shown in Table 4 and Figure 13 (with load reduction) and in
Table 5 and Figure 14 (without load reduction).

The load reduction effect can be observed when comparing
the results of the numerical economic optimization in Table 4
and Figure 13. The rear defenses, after their initial upgrade in
year 0, do not get upgraded until year 150. However, because
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Figure 11: Annual water level exceedance probabilities which are used for flood
defenses Bl & F2 (line B), and Al & F3 (line A|B if the front defense failed,
otherwise line A[B). The Generalized Pareto distributions (solid lines) are fitted
to the Monte Carlo results (dotted lines).

of the load reduction effect of the front defense, upgrading the
front defense Bl at T = 30 and T = 100 decreases the failure
probabilities of the rear defenses as well. Additionally, the op-
timal heights of the rear defenses with the load reduction effect
in Table 4 are also lower than the optimal heights without a load
reduction effect in Table 5. Not only does the optimal system
configuration change significantly from Table 5 to Table 4, the
total cost estimate changes as well. For the first 50 years, the
total cost decreases from 245.5 - 10° for the optimal investment
scheme of Table 5 to $220.3 - 10° for the optimal investment
scheme of Table 4.

The insight of the simplified method can be used to fur-
ther explain some of these findings provided by the numerical
method. First of all, the height reduction of the rear defenses
when a load reduction is taken into account was already pre-
dicted in Section 3.4, and can be observed in Table 4 & 5.
Secondly, Section 5.4.1 predicted that building no front de-
fense was economically optimal, however the distance to the
tipping point (where a front defense is economically viable) was
found to be relatively small. This meant that the point where a
front defense becomes economically viable could be reached in
time when the time dependent parameters of Section 5.3 are in-
cluded. The numerical framework predicts in Table 4 that this
tipping point is reached after thirty years.

Finally, the optimal values of the simplified method for the
rear defense in Figure 10 match the optimal values of the nu-
merical framework for the first thirty years in Table 4 and Fig-
ure 13, despite the simplifications and exponential distributions
used in the simplified method. This can possibly be explained
by the fact that the exponential distributions fit reasonably well
in the region of the found optimal failure probability (=~ 107%).
Nevertheless, this does not change the fact that the simplified
method of Section 3 still has too many simplifications for accu-
rately quantifying economically optimal targets in practice; the
simplified method should only be used to gain additional insight
in parallel to a numerical economic optimization as described
in Section 4.
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Figure 12: Annual water level exceedance probabilities which are used for flood
defenses Bl & F2 (line B), and A2 (line A|B if the front defense failed, otherwise
line A[B). The Generalized Pareto distributions (solid lines) are fitted to the
Monte Carlo results (dotted lines).
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Figure 13: Safety values in time for flood defenses Bl, Al and A2 of Table 4,
with the influence of a front defense. The corresponding timing of the invest-
ments per defense is shown as well.

Table 4: Optimal investment scheme for the Galveston Bay example using the
numerical framework of Section 4, with the influence of a front defense.

Year Defense Height increase

0 Al from O to 5 meter
160 Al from 5 to 7 meter

0 A2 from O to 7 meter
150 A2 from 7 to 10 meter
30 B1 from O to 7 meter
100 Bl from 7 to 11 meter
170 Bl from 11 to 15 meter
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Figure 14: Safety values in time for flood defenses A1 and A2 of Table 5, with-
out the influence a front defense. The corresponding timing of the investments
per defense is shown as well.

Table 5: Optimal investment scheme for the Galveston Bay example using the
numerical framework of Section 4, without the influence of a front defense.

Year Defense Height increase

0 Al from O to 6 meter
70 Al from 6 to 9 meter
130 Al from 9 to 12 meter
190 Al from 12 to 15 meter
0 A2 from 0 to 9 meter
80 A2 from 9 to 13 meter
160 A2 from 13 to 17 meter

6. Conclusions

The aim of this study was to develop a framework in order to
assess whether including the influence of such a load reduction
influences the economically optimal safety targets of a coastal
flood defense system. This was done with the development of
a simplified method, a flexible numerical framework and a case
study.

The simplified method has a number of assumptions which
make it not suitable for an actual quantification of the econom-
ically optimal safety targets, but it does provide additional in-
sight into the influence of a load reduction on the economically
optimal safety targets of a coastal flood defense system with a
front and rear defense. This additional insight is provided in the
form of analytical predictions regarding the expected effects of
including a load reduction by a front defense. First of all, it
showed that, in practice, the optimal height of rear defenses
decreases when the load reduction effect is included. Secondly,
the simplified method showed that the influence of a load reduc-
tion on the optimal safety target of a front defense is determined
by the relative impact this front defense has on the flood risk of
the rear defenses.

The answer of the simplified method does not account for
a changing flood risk over time due to time dependent param-
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eters such as economic growth or sea level rise. A changing
flood risk over time opens up the possibility that even though a
front defense is not the optimal choice right now, it might be-
come economically optimal in the future. In order to be capable
of providing practically applicable answers which include time
dependency, a numerical framework is proposed.

The proposed numerical framework is capable of incorporat-
ing these time dependent parameters and can produce optimal
safety targets over time. Furthermore, the numerical framework
lifts a number of the restrictions set in the simplified method,
therefore making it more practically applicable. It does this by
integrating practically applicable hydraulic models, probabilis-
tic methods and economic optimization methods.

Whether or not a load reduction has a significant effect on
the economically optimal safety targets depends strongly on the
particular characteristics of a flood defense system. To that end,
a hypothetical case study (based on an actual case study) was
contemplated in order to quantify the effects of a load reduction
in this case study. This particular case study showed a signif-
icant effect by the load reduction on the economically optimal
safety targets over time. Moreover, the load reduction effect sig-
nificantly reduced the estimate of the total costs as well. Given
the potentially large efficiency improvements regarding both the
economically optimal safety targets and total cost estimate, not
including the load reduction effect by a front defense on the
economically optimal safety targets in coastal systems should
be the exception to the rule.
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