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Abstract 
A common criticism on game theoretic risk analysis of security threats is that it requires quantitative 

parameters of both the defender and the attacker, whereby the parameters of the attackers are 

difficult to estimate. In the present paper, a game theoretic model for chemical plant protection, 

being able to deal with defender’s distribution-free uncertainties on the attacker’s parameters 

(Interval CPP Game), is proposed. The Interval CPP Game only requires the intervals that the 

attacker’s parameters will locate in, instead of the exact number. Two algorithms are developed, 

namely the Interval Bi-Matrix Game Solver (IBGS) and the Interval CPP Game Solver (ICGS), for 

solving general bi-matrix games with interval payoff uncertainties and special for solving interval CPP 

games, respectively. Both two algorithms are based on mixed integer linear programming (MILP). 

Theoretic analysis as well as case study show that the defender’s uncertainties on the attacker’s 

parameters would reduce her equilibrium payoff. 

Highlights 
1) First developed chemical plant protection game which is able to deal with interval inputs; 

2) Algorithms for solving general bi-matrix game with interval payoff uncertainties as well as special 

for solving interval CPP game are proposed. 

Keywords 
Chemical plant protection; game theory; distribution-free uncertainty 
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1. Introduction 
The New York 9/11 attack shift the risk analysis paradigm from non-intentional disasters (i.e. natural 

disasters) to intentionally caused events, and the recently happened terrorism attack at Paris and 

Brussel furthermore stimulated this shift. Chemical industry, which normally associated with extreme 

producing conditions as well as dangerous materials, is listed as one of the 13 critical infrastructures 

by the U.S. government [1] [2]. Though some risk analysis projects concluded that a malicious attack 

on some chemical sites might cause millions of casualties as well as irreversible environmental 

pollution [3], the protection of chemical plants (clusters) has not drawn enough attention yet [4].  

The ANSI/API Standard 780 Security Risk Assessment (SRA) methodology [5], which is currently the 

extensively employed security risk analysis framework in the chemical industries, has its drawbacks 

of not considering the intelligent interactions between the defender and the attacker. Cox [6] 

pointed out numbers of limitations of SRA methodologies which are based on the "𝑟𝑖𝑠𝑘 = 𝑇𝑉𝐶" 

formula, such as being not adequate for resources allocation, being not able to deal with intelligent 

attackers etc. Cox [6, 7] emphasised in his paper that intelligent interactions between the defender 

and attacker are the key properties of security risk assessment procedure, furthermore, game theory 

shows a great potentiality to be used in security risk assessment.  

In chemical security domain, Reniers and co-authors [8-13] systematically studied cooperation on 

safety/security investment within chemical clusters, in a game theoretic approach. In their models, 

different chemical plants in one cluster share similar threats due the existence of domino effects, and 

their games focus on analysing whether the stakeholders of plants should invest on safety/security or 

not. Talarico et al. [14] proposed a game theoretic model named “MISTRAL” for protecting multi-

modal chemical transportation network. Zhang and Reniers [15] developed a simultaneous game-

theoretic model to protect chemical plants from terrorist attacks (CPP game), and later on they 

extended their model to sequential games played by a first moving defender and several types of 

following attackers [16]. Feng et al. [17] employed a simultaneous and complete information game 

theoretic model to study allocation of defensive resources for protecting multiple chemical facilities 



 
 

4 
 

in a city. All these mentioned game theoretic models for protecting chemical plants ask for 

quantitative inputs, such as the probabilities of intrusion, consequences of an attack etc. However, 

these quantitative inputs are practically difficult to obtain, which makes these models difficult to be 

used in realistic cases. 

Though the exact numerical inputs are difficult to obtain, the intervals of them are relatively easier to 

estimate. In this paper, the previously proposed chemical plant protection (CPP) game [15, 16] is 

extended to dealing with distribution-free/interval inputs. In the remainder of this paper, Section 2 

gives a brief introduction of the Chemical Plant Protection (CPP) game. Section 3 is the main body of 

this paper, in which the CPP game is extended to interval CPP game, algorithms for solving general 

interval bi-matrix games as well as special for solving interval CPP game are both proposed. A case 

study is conducted in Section 4 to illustrate how the models and algorithms proposed in these paper 

work. Finally, conclusions are drawn in Section 5.  

2. Baseline models 
This paper is a follow up research of two previous research paper, namely the CPP game paper [15], 

and the Bayesian Stackelberg CPP game paper [16]. In this section, the general intrusion detection 

approach in chemical plants, and the game theoretic model developed based on this intrusion 

detection approach, are briefly introduced. More details can be found in Zhang and Reniers [15, 16] 

and Reniers et al.[18].  

2.1. General Intrusion Detection Approach in Chemical Plants 
Figure 1(a) shows the multi-layer physical intrusion detection approach in the chemical plants. In 

such a system, different layers of perimeter divide the area into different levels of zones, and each 

perimeter is assigned with one or more accesses. A “typical” in this system is defined as a summation 

of technological items constituting a security barrier [18]. Thus in figure 1(a), the accesses assigned 

on each perimeters and the different zones are “typical”, since the defender can implement counter-

terrorism-measures on these parts.  
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Figure 1. General Physical Intrusion Detection system in a chemical plant 

Figure 1(b) shows the intrusion attack procedure, from the attacker’s perspective, and it is based on 

figure 1(a). The attacker would, firstly, decide which target to attack, secondly, decide how to reach 

the target, and thirdly, decide what attack scenario to use. The red (also dash) line in figure 1(b) 

(reflects the p1 in figure 1(a)) represents the attacker’s behaviour as hea will attack a target located in 

zone 2_2 (second subzone in zone level 2), and he will start from zone level 0 (i.e. the outside of the 

plant), pass perimeter 1 from the track entrance, reaching zone level 1, and then pass perimeter 2 

from the entrance 3, reaching zone level 2.  

The intruder is assumed that he would never step into the same level of zone twice. For example, the 

p2 in figure 1(a) is excluded due to this assumption, since if the intruder follows p2, he would step 

into zone level 1 twice. This assumption is reasonable due to the fact that otherwise the intruder will 

pass more “typicals”, increasing the probability of being detected. This assumption is also necessary: 

with this assumption, the analysis of the attacker’s intrusion path becomes easier, since the complex 

paths are excluded (e.g., p2 in figure 1(a)).  

Based on above analysis, the probability of successfully reaching the target can be calculated by 

formula (1). In which 𝐼 denotes the zone level that the target locates in; 𝑃𝑧 denotes the probability of 

successfully passing different levels of zones; 𝑃𝑝 denotes the probability of passing the different 

layers of perimeters. 

                                                           
a In security game, we normally denote the defender as she/her/her, while denote the attacker as he/him/his. 
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𝑃 = ∏ 𝑃𝑖
𝑧𝐼

𝑖=0 ∙ ∏ 𝑃𝑗
𝑝𝐼

𝑗=1 .         (1) 

2.2. Chemical Plant Protection Game (CPP Game) 
The Chemical Plant Protection (CPP) game is played by two players: the industrial defender and the 

potential attacker (whereby different types, e.g., terrorists, activists etc., are possible).  

The defender’s pure strategy is defined as combination of Security Alert Levels (SAL) on each 

“typicals”, as formulated in formula (2). The attacker’s pure strategy is defined as combination of the 

attack target, the intrusion path, and the attack scenario, as formulated in formula (3). Defender’s 

(attacker’s) pure strategy set can be denoted as 𝑆𝑑 (𝑆𝑎), while the mixed strategy set can be defined 

as 𝑌 = {𝑦 ∈ 𝑅|𝑆𝑑|| ∑ 𝑦𝑖 = 1, 𝑦𝑖 ∈ [0,1]} and 𝑋 = {𝑥 ∈ 𝑅|𝑆𝑎|| ∑ 𝑥𝑖 = 1, 𝑥𝑖 ∈ [0,1]}, for the defender 

and the attacker, respectively. 

𝑠𝑑𝑖 = 𝑧0 × ∏ (𝐴1
𝑟 × 𝐴2

𝑟 × … × 𝐴𝑒𝑛𝑡(𝑟)
𝑟 × 𝑧1

𝑟 × 𝑧2
𝑟 × … × 𝑧𝑠𝑢𝑏(𝑟)

𝑟 )𝑄
𝑟=1   (2) 

𝑠𝑎𝑖 = 𝑎 × ∏ 𝑗𝑟
𝐼
𝑟=1 × 𝑒        (3) 

In which 𝑠𝑑𝑖 is a specific defence decision, also called ‘pure strategy’ in game-theoretic terminology, 

of the defender; 𝑧𝑖
𝑟 is the detect level in 𝑖𝑡ℎ sub zone in zone level 𝑟, 𝑧0 denotes the detect level in 

zone level 0; 𝐴𝑖
𝑟 is the detect level at the 𝑖𝑡ℎ access of perimeter 𝑟; 𝑒𝑛𝑡(𝑟) is the number of accesses 

in perimeter 𝑟; 𝑠𝑢𝑏(𝑟) is the number of sub zones in zone level 𝑟; 𝑄 is the total zone levels in the 

plant; × denotes cross product; 𝑠𝑎𝑖 is a specific attack action, also called ‘pure strategy’ in game-

theoretic terminology, of the attacker; 𝑎  is the target asset; 𝑗𝑟  denotes an access on the 𝑟𝑡ℎ 

perimeter, and 𝑗𝑟 = 1,2, … , 𝑒𝑛𝑡(𝑟); 𝑒 denotes the attack scenario, specially, 𝑒 = 𝑁𝑢𝑙𝑙 means no 

attack scenario is implemented, i.e., the attacker is deterred. 

An example of the attacker’s pure strategy, which is shown as red (dash) line in figure 1(b), is that the 

attacker wants to attack a target (assuming its index is ℒ) in ZONE 2_2, and he intrudes following 

path p1, and further assume that he aims at shutting down a critical machine. The example strategy 

can be formally denotes as 𝑠𝑎𝑖 = ℒ × 𝑇𝑟𝑢𝑐𝑘 𝐸𝑛𝑡 × 𝐸𝑛𝑡3 × 𝑆ℎ𝑢𝑡𝑡𝑖𝑛𝑔 𝑑𝑜𝑤𝑛 𝑎 𝑚𝑎𝑐ℎ𝑖𝑛𝑒. 
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Payoffs are defined in formula (4) and (5), for the defender and the attacker respectively. 𝑃 (𝑃̃) 

denotes the successful probability that the attacker can reach the target, as defined in formula (1); 

𝑃𝐿𝑦 (𝑃𝐿̃𝑦) represents the expected consequence of an attack on the target, which equals the 

product of successful probability that the attack will be executed 𝑃𝑦 (𝑃̃𝑦) and the estimated 

consequence of a successful attack on the target 𝐿𝑦 (𝐿̃𝑦); 𝐶𝑑 (𝐶𝑎) denotes the cost of the defence 

(attack) plan; from the defender’s (attack’s) perspective.  

𝑢𝑑(𝑠𝑎 , 𝑠𝑑) = −(𝑃(𝑠𝑎 , 𝑠𝑑) ∙ 𝑃𝐿𝑦(𝑠𝑎) + 𝐶𝑑(𝑠𝑑))    (4) 

𝑢𝑎(𝑠𝑎, 𝑠𝑑) = 𝑃̃(𝑠𝑎 , 𝑠𝑑) ∙ 𝑃𝐿̃𝑦(𝑠𝑎) − 𝐶𝑎(𝑠𝑎)    (5) 

2.3. Bayesian Stackelberg CPP Game 
In Zhang and Reniers [15], the CPP game is assumed to be played simultaneously, thus the Nash 

Equilibrium is used to predict the outcome of the game. Later on in Zhang and Reniers [16], they 

argue that in most cases, the players in CPP game move sequentially, and in reality, the defender 

always faces multiple types of attackers. Thereby, they extended the CPP game to Bayesian 

Stackelberg CPP game, which is the baseline model of this paper. 

In the Bayesian Stackelberg CPP game, the defender moves first, followed by multiple types of 

possible attackers with full observation of the defender’s implemented action. The defender does 

not know exactly which attacker will execute an attack, but she knows the prior probabilities 𝜌 that 

each type of attacker would occur. 

Knowing the defender’s strategy, each types of attackers would play their best responses to the 

defender’s strategy. Defender knows that rational attackers would play their best responses, and she 

could also work out the attackers’ best responses, thus she plays optimally. A Bayesian Stackelberg 

Equilibrium (BSE) (𝑘̃1, 𝑘̃2, … , 𝑘̃|ℵ|, 𝑦̃) for the Bayesian Stackelberg CPP game is defined by formulas (6) 

and (7). 

𝑦̃ = argmax
𝑦∈𝑌

∑ 𝜌𝑙 ∙ 𝑈𝑑
𝑙 (𝑘̃𝑙 , : ) ∙ 𝑦𝑙∈ℵ        (6) 
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𝑘̃𝑙 = argmax
𝑘∈𝑀𝑙

𝑈𝑎
𝑙 (𝑘, : ) ∙ 𝑦 , 𝑙 ∈ ℵ       (7) 

In which 𝑘̃𝑙 (𝑙 ∈ ℵ) represents the 𝑙𝑡ℎ attacker’s best response; ℵ denotes the set of different types of 

attackers (e.g., ℵ = {𝑡𝑒𝑟𝑟𝑜𝑟𝑖𝑠𝑡, 𝑎𝑐𝑡𝑖𝑣𝑖𝑠𝑡}); 𝜌𝑙 denotes the prior probability that the 𝑙𝑡ℎ attacker 

would occur; 𝑈𝑑
𝑙  and 𝑈𝑎

𝑙  represent the defender and the attacker’s payoff matrix, respectively; 𝑀𝑙 =

{1,2, … , 𝑚𝑙}, and 𝑚𝑙 denotes the number of pure strategies of the 𝑙𝑡ℎ attacker. For the convenience 

of expression, we also define 𝑁 = {1,2, … 𝑛}, in which 𝑛 denotes the number of pure strategies of 

the defender. The players’ payoff matrix can be obtained by calculating the payoff units for each 

strategy tuple, by employing formulas (4) and (5). Notice that since different types of attackers would 

result in different payoff, thus the payoff matrix are all assigned with the type of the attacker. 

Besides, a MaxiMin solution (𝑥, 𝑦) for the Bayesian Stackelberg CPP game can be defined by formulas 

(CMT). 

(𝑥, 𝑦) = 𝑎𝑟𝑔 max
𝑦∈𝑌

[∑ 𝜌𝑙 ∙𝑙∈ℵ min
𝑥𝑙∈𝑋𝑙

(𝑥𝑙′ ∙ 𝑈𝑑
𝑙 ∙ 𝑦)]     (CMT) 

In which 𝑋𝑙  denotes the 𝑙𝑡ℎ attacker’s mixed strategy space. MaxiMin solution is a very conservative 

solution for the Bayesian Stackelberg CPP game, since its definition indicates the attacker aims at 

minimizing the defender’s payoff, instead of maximizing his own payoff. 

It is worth noting that the attacker’s payoff matrix is not involved in the definition of the defender’s 

MaxiMin solution. To this end, the defender could play her BSE strategy only when she knows the 

attacker’s payoff matrix, namely, the 𝑈𝑎
𝑙 . In case that the defender does not know any information of 

the attacker, or all her information about the attacker is not reliable, the MaxiMin solution can be 

employed. 

Observation 1. Defender’s equilibrium payoff from the BSE is higher than or equal to the payoff from 

the MaxiMin solution. 
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Remark: Its proof can be easily shown as 𝑃𝑀𝑀 = max
𝑦∈𝑌

[∑ 𝜌𝑙 ∙𝑙∈ℵ min
𝑥𝑙∈𝑋𝑙

(𝑥𝑙′ ∙ 𝑈𝑑
𝑙 ∙ 𝑦)] ≤

max
𝑦∈𝑌

[∑ 𝜌𝑙 ∙𝑙∈ℵ min
𝑘𝑙∈𝑀𝑙

(𝑈𝑑
𝑙 (𝑘𝑙 , : ) ∙ 𝑦)] ≤ max

𝑦∈𝑌
(∑ 𝜌𝑙 ∙𝑙∈ℵ 𝑈𝑑

𝑙 (𝑘̃𝑙 , : ) ∙ 𝑦) = 𝑃𝐵𝑆𝐸 . This observation reflects 

the value of information of the attackers, as pointed out by the ancient Chinese military 

strategist Sun Tzu: “if you know your enemies and know yourself, you will not be put at risk even in a 

hundred battles.” 

Paruchuri et al. [19] proposed an efficient exact algorithm named “DOBSS” for calculating BSE, while 

algorithms for calculating MaxiMin solution can be found in Pita et al. [20], among others. 

3. Interval CPP GAME 
In this section, firstly, the Bayesian Stackelberg CPP game is extended to interval CPP game, in sub-

section 3.1; then an algorithm for solving general bi-matrix game with interval payoff uncertainties is 

illustrated, in sub-section 3.2; sub-section 3.3 discusses the parameter coupling problem in the 

interval CPP game; a specific algorithm for dis-coupling this parameter coupling problem for interval 

CPP game is proposed, in sub-section 3.4. 

3.1. Definition of Interval CPP Game 
To implement the CPP game for realistic chemical plants protection, two works should be carried out: 

i) transfer the chemical plant protection problem to its formal representation as shown in figure 1; ii) 

get a set of quantitative inputs, such as the values of the targets, the vulnerability of each entrances 

etc. The currently available SRA methodologies (e.g., the API SRA methodology [5]), which were 

extensively implemented in chemical plants, though have been criticized for not being able to model 

the intelligent interactions between the defender and the attacker, is helpful for obtaining the inputs 

for CPP game. However, exact numeral inputs are still difficult to obtain, while an interval estimation 

would be much easier. 

In the current research, the defender is assumed to have exact parameters of herself, but she could 

only know the intervals that the attacker’s parameter will locate in, without knowing neither the 

https://en.wikipedia.org/wiki/Sun_Tzu
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exact numbers nor the distribution. Cases that defender either does not know parameters of herself 

need extra research, thus can be a future research. 

Fed with interval estimation of input parameters, the units of the payoff matrix of the CPP game will 

also associate with interval uncertainties. Assuming that the defender cannot exactly know the 

attacker’s parameter 𝜎 (e.g., 𝑃̃𝑖
𝑧, 𝑃𝐿̃), , but she believes that 𝜎 ∈ [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥], and she does not 

know how 𝜎 is distributed between [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥]. Combining formulas (1) and (5), the attacker’s 

payoff can be written as 𝑢𝑎(𝑠𝑎, 𝑠𝑑) = ∏ 𝑃̃𝑖
𝑧𝐼

𝑖=0 ∙ ∏ 𝑃̃𝑗
𝑝𝐼

𝑗=1 ∙ 𝑃𝐿̃𝑦 − 𝐶𝑎. Since all the parameters (i.e. 𝑃̃𝑖
𝑧, 

𝑃̃𝑗
𝑝

, 𝑃𝐿̃𝑦, and 𝐶𝑎) in this formula are greater than 0, hereby the 𝑢𝑎 can be easily bounded as: 

𝑢𝑎
𝑚𝑖𝑛 = ∏ 𝑃̃𝑖

𝑧𝑚𝑖𝑛𝐼
𝑖=0 ∙ ∏ 𝑃̃𝑗

𝑝𝑚𝑖𝑛𝐼
𝑗=1 ∙ 𝑃𝐿̃𝑦

𝑚𝑖𝑛
− 𝐶𝑎

𝑚𝑎𝑥     (8) 

𝑢𝑎
𝑚𝑎𝑥 = ∏ 𝑃̃𝑖

𝑧𝑚𝑎𝑥𝐼
𝑖=0 ∙ ∏ 𝑃̃𝑗

𝑝𝑚𝑎𝑥𝐼
𝑗=1 ∙ 𝑃𝐿̃𝑦

𝑚𝑎𝑥
− 𝐶𝑎

𝑚𝑖𝑛     (9) 

Therefore, the interval CPP game can be represented as  

ICG = {(𝑈𝑑
𝑙 , 𝑈𝑎

𝑙 , 𝑈𝑎

𝑙
)|𝑙 ∈ ℵ}        (10) 

In which 𝑈𝑎
𝑙  (𝑈𝑎

𝑙
) denotes the defender’s estimation of the 𝑙𝑡ℎ type attacker’s lower (upper) bound of 

payoff matrix. 

3.2. Interval Bi-Matrix Game Solver 
In interval CPP game as shown in formula (10), if the defender commits a mixed strategy, then she 

could not work out the attacker’s best response to her strategy, since she does not know the exact 

𝑈𝑎
𝑙  (see formula (7)). Being not able to calculate the attacker’s best response, the defender could not 

be able to calculate her optimal strategy 𝑦 either.  

Fortunately, the development of robust linear programming[21, 22] and robust game theory[23] 

enables us to deal with games with distribution-free (interval) uncertainties. More specific in security 

game domain, Nikoofal and Zhuang [24] employed robust game theory for solving critical 

infrastructure protection games considering attacker’s distribution-free private information. They 

studied how the budget of uncertainties can influence the allocation of resources in a real data case. 
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Kiekintveld et al. [25] developed a polynomial time binary search algorithm (named as “ISG Solver”) 

to solve interval security games (ISG). “ISG Solver” is developed for security games which can be 

descript in a compact way as defined in Kiekintveld et al [26]. However, games in this paper could not 

be descript in the compact way. Pita et al. [20, 27] proposed a mixed integer linear programming 

(MILP) algorithm (named as “BRASS”) which is able to deal with 𝜀 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 adversaries. Though 

BRASS was developed for solving games played by bounded rational adversaries, its idea of 

separating the attacker’s theoretic best response and the realistic possible responses makes it easily 

to be extended to solve the games with interval uncertainties, as also pointed out in Kiekintveld et al. 

[25]. Following Pita el al.’s work, an MILP algorithm based Interval Bi-Matrix Game Solver (IBGS) was 

proposed, as shown in the following formulas. 

The basic idea in IBGS is that, though the defender could not work out the attacker’s best response, 

she could judge that some attacker strategies is definitely worse than others. And the rule for this 

judgement is that, knowing the defender’s strategy 𝑦, if the attacker upper bound payoff by playing 

strategy 𝑖 is lower than the attacker lower bound payoff by playing some strategies, then strategy 𝑖 

can be excluded from the attacker’s possible choices. 

max

1. 0 ( ,:) (1 ) ,

c2. ( 1) ( ,:) ,

3. (1 ) ( ,:) ,

4. ,
. .

5. , {0,1}

6. 1

7. 1, [0,1]

8. ,

l l

l

ll l l

a i

l
l l l l

ai i

l l l l

i d

l l l

i i

l l

i i

l

i

l l

c R U i y h i M

q U i y R q i M

c q U i y i M

c q h i M
s t

c q h

c h

c y y

c R R

 







        

         


       


  






  

 







    (11) 

In IBGS, ( ,:)l

dU i  denotes the 𝑖𝑡ℎ row of the defender’s payoff matrix; ( ,:)
l

aU i  and ( ,:)
l

aU i  denotes 

the 𝑖𝑡ℎ row of the attacker’s upper and lower bound payoff matrix respectively; lM  represents the 
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attacker’s pure strategy index set;   is a constant big real number, e.g., 106. The cost function 

represents that the defender aims at maximizing expected payoff, w.r.t. different types of 

adversaries. Constraint c1, c5, and c6 calculate the attacker’s maximal value of the lower bound 

payoff, i.e., lR , and the maximal value reaches if and only if ℎ𝑖 = 1. Notice that in c1, ℎ𝑖 = 1 

indicates that ( ,:)
ll

aR U i y  , while ℎ𝑖 = 0 indicates that ( ,:)
ll

aR U i y  . Constraint c2 picks out 

all the strategies which have upper bound payoffs greater than the lR . Notice that in c2, if 

( ,:)
l

l
aU i y R  , then 1l

iq  , if ( ,:)
l

l
aU i y R  , then 0l

iq  , while if ( ,:)
l

l
aU i y R  , then l

iq  can 

be either 0 or 1. Constraint c3 represents the idea that, among all the possible strategies of the 

attacker (i.e., strategies picked out by c6, or 1l

iq  ), the defender conservatively thinks that the 

worst strategy to herself is the attacker’s best response, and thus she can ensure a payoff of l . 

Constraint c4 enforces the strategy which has the maximal lower bound payoff to be a possible 

strategy. 

IBGS does not depend on any specific property of the CPP game, thus it can be used for any security 

games which can be expressed in bi-matrix form. 

3.3. Parameters Coupling in Interval CPP Game 
The IBGS, though general enough, could be too conservative for interval CPP game. Look back on 

formulas (8) and (9) , the uncertainties on parameters lead to uncertainties on the attacker’s payoffs, 

and notice that some attack strategies share the same parameters. To this end, the interval 

uncertainties on the attacker’s payoffs are coupled, instead of independent. 

For example, if strategy 𝑠𝑎1, 𝑠𝑎2 ∈ 𝑆𝑎, and the only difference is that they have different attack target. 

Without loss of generality, assume that 𝑠𝑎1 represents the strategy of attacking target 1 in ZONE 0 

with a specific scenario, while 𝑠𝑎2 represents attacking target 2 also in ZONE 0 with the same attack 

scenario. Further assume that defender plays a pure strategy 𝑦̇ (pure strategy set belongs to mixed 

strategy set) which makes the game having the parameters as shown in table I.  
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Feeding formulas (8) and (9) with parameters in table I, we have: 𝑢𝑎
𝑚𝑖𝑛(𝑠𝑎1) = 60, 𝑢𝑎

𝑚𝑎𝑥(𝑠𝑎1) =

74.456, 𝑢𝑎
𝑚𝑖𝑛(𝑠𝑎2) = 71.2, 𝑢𝑎

𝑚𝑎𝑥(𝑠𝑎2) = 95.84. Ignoring other possible strategies, then we would 

have 𝑅𝑙 = 𝑢𝑎
𝑚𝑖𝑛(𝑠𝑎2) > 𝑢𝑎

𝑚𝑖𝑛(𝑠𝑎1). Since 𝑢𝑎
𝑚𝑎𝑥(𝑠𝑎1) > 𝑅𝑙, according to the IBGS algorithm, both 

𝑠𝑎1, 𝑠𝑎2 are the attacker’s possible best responses to 𝑦̇. 

Table I. illustrative parameters 

Strategy 𝑠𝑎1 Strategy 𝑠𝑎2 

Para min max Para min min 

𝑃̃0
𝑧 0.8 0.9 𝑃̃0

𝑧 0.8 0.9 

𝐶𝑎 10 12 𝐶𝑎 10 12 

𝑃̃𝑦 0.9 0.92 𝑃̃𝑦 0.8 0.84 

𝐿̃ 100 102 𝐿̃ 130 140 

 

However, 𝑠𝑎1, 𝑠𝑎2 share the same parameters 𝑃̃0
𝑧 and 𝐶𝑎. Substituting the independent parameters 

to the payoffs and keep the coupled parameters remain, we would have: 

𝑢𝑎(𝑠𝑎1) = 𝑃̃0
𝑧 ∙ 𝑃𝐿1 − 𝐶𝑎, and 𝑢𝑎(𝑠𝑎2) = 𝑃̃0

𝑧 ∙ 𝑃𝐿2 − 𝐶𝑎  

In which 𝑃𝐿1 ∈ [90,93.84], 𝑃𝐿2 ∈ [104,117.6]. Although the defender has uncertainties on 𝑃̃0
𝑧 and 

𝐶𝑎, but no matter what values they are, as long as that 𝑃̃0
𝑧 > 0, the defender can predict that 

𝑢𝑎(𝑠𝑎1) ≤ 93.84 ∙ 𝑃̃0
𝑧 − 𝐶𝑎 < 104 ∙ 𝑃̃0

𝑧 − 𝐶𝑎 ≤ 𝑢𝑎(𝑠𝑎2). To this end, the defender can judge that, for 

the attacker, 𝑠𝑎2 is a better response than 𝑠𝑎1. Therefore, a strategic attacker would not play 𝑠𝑎1. 

This example implies that the IBGS is over-conservative for interval CPP game, making the prediction 

of the attacker’s behaviour more difficult. Following text formulates the idea used in above example, 

preparing for the algorithm specific to solve interval CPP game. 

Given a defender’s committed strategy 𝑦, ∀𝑘, 𝑡 ∈ 𝑀, define ∆𝑘𝑡= 𝑈𝑎(𝑘, : ) ∙ 𝑦 − 𝑈𝑎(𝑡, : ) ∙ 𝑦, which 

denotes the differences of the attacker’s payoff when responding 𝑘 or 𝑡 to 𝑦. Furthermore, define 

𝑇𝑝𝑘 as the set of typicals that attack strategy 𝑘 has to pass, and 𝑇𝑝𝑡 analogously. Substituting 

formulas (1) and (5) into ∆𝑘𝑡, resulting that: 
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∆𝑘𝑡= ∑ (∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑘
∙ 𝑃𝐿̃𝑘 − 𝐶𝑘) ∙ 𝑦𝑗𝑗∈𝑁 − ∑ (∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑡

∙ 𝑃𝐿̃𝑡 − 𝐶𝑡) ∙ 𝑦𝑗𝑗∈𝑁   (12) 

Defining 𝑇𝑝𝑘𝑡 = 𝑇𝑝𝑘 ∩ 𝑇𝑝𝑡, in order to dis-coupling the parameters, formula (12) can be re-

organized as: 

∆𝑘𝑡= ∑ [(∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑘𝑡
) ∙ (∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑘 − ∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡
∙ 𝑃𝐿̃𝑡)] ∙ 𝑦𝑗𝑗∈𝑁 + 𝐶𝑡 − 𝐶𝑘 (13) 

Following texts demonstrate how to bound ∆𝑘𝑡 according to defender’s interval uncertain knowledge 

on the attacker’s parameters. The demonstration will be explained from 4 different cases, namely, 

whether strategy 𝑘 and 𝑡 use the same attack scenario (𝑒𝑘 = 𝑒𝑡), whether they attack the same 

target (𝑎𝑘 = 𝑎𝑡). 

Case 1: 𝒆𝒌 = 𝒆𝒕, 𝒂𝒌 = 𝒂𝒕, thus 𝑪𝒕 = 𝑪𝒌, 𝑷𝑳̃𝒌 = 𝑷𝑳̃𝒕. 

In this case, ∆𝑘𝑡 can be simplified as: 

∆𝑘𝑡= ∑ [(∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑘𝑡
) ∙ 𝑃𝐿̃𝑘 ∙ (∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

− ∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡
)] ∙ 𝑦𝑗𝑗∈𝑁   (14) 

In formula (14), for the two different strategies, only the 𝑝̃𝑖𝑗  (𝑖 ∈ 𝑇𝑝𝑘 − 𝑇𝑝𝑘𝑡 𝑜𝑟 𝑖 ∈ 𝑇𝑝𝑡 − 𝑇𝑝𝑘𝑡) are 

independent, thus their values are not coupled. Considering again that all parameters are greater 

than 0, we have: 

∆𝑘𝑡≥ ∑ [(∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑘𝑡
) ∙ 𝑃𝐿̃𝑘 ∙ (∏ 𝑝̃𝑖𝑗

𝑚𝑖𝑛
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

− ∏ 𝑝̃𝑖𝑗
𝑚𝑎𝑥

𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡
)] ∙ 𝑦𝑗𝑗∈𝑁   (15)  

Define 𝜉𝑘𝑡𝑗
𝑚𝑖𝑛 = (∏ 𝑝̃𝑖𝑗

𝑚𝑖𝑛
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

− ∏ 𝑝̃𝑖𝑗
𝑚𝑎𝑥

𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡
). For each 𝑗 ∈ 𝑁 in formula (15), if 𝜉𝑘𝑡𝑗

𝑚𝑖𝑛 ≤

0, then inequality (16) holds, and vice versa. 

[(∏ 𝑝̃𝑖𝑗𝑖∈𝑇𝑝𝑘𝑡
) ∙ 𝑃𝐿̃𝑘 ∙ 𝜉𝑘𝑡𝑗

𝑚𝑖𝑛] ∙ 𝑦𝑗 ≥ [(∏ 𝑝̃𝑖𝑗
𝑚𝑎𝑥

𝑖∈𝑇𝑝𝑘𝑡
) ∙ 𝑃𝐿̃𝑘

𝑚𝑎𝑥 ∙ 𝜉𝑘𝑡𝑗
𝑚𝑖𝑛] ∙ 𝑦𝑗  (16) 

To this end, we have: 

∆𝑘𝑡≥ ∑ [(∏ 𝑝̃𝑖𝑗
𝜑

𝑖∈𝑇𝑝𝑘𝑡
) ∙ 𝑃𝐿̃𝑘

𝜑
∙ 𝜉𝑘𝑡𝑗

𝑚𝑖𝑛] ∙ 𝑦𝑗𝑗∈𝑁 = ∆𝑘𝑡
𝑚𝑖𝑛 (17) 

In which: 

𝜑 = {
𝑚𝑎𝑥,        𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑖𝑛 ≤ 0

𝑚𝑖𝑛,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Analogously, we have: 

∆𝑘𝑡
𝑚𝑎𝑥= ∑ [(∏ 𝑝̃𝑖𝑗

𝜑
𝑖∈𝑇𝑝𝑘𝑡

) ∙ 𝑃𝐿̃𝑘
𝜑

∙ 𝜉𝑘𝑡𝑗
𝑚𝑎𝑥] ∙ 𝑦𝑗𝑗∈𝑁  (18) 
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In which: 

𝜉𝑘𝑡𝑗
𝑚𝑎𝑥 = (∏ 𝑝̃𝑖𝑗

𝑚𝑎𝑥
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑡𝑘

− ∏ 𝑝̃𝑖𝑗
𝑚𝑖𝑛

𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑡𝑘
)  

𝜑 = {
𝑚𝑎𝑥,        𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑎𝑥 ≥ 0

𝑚𝑖𝑛,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

For the following 3 cases, we give the result of ∆𝑘𝑡
𝑚𝑖𝑛 and ∆𝑘𝑡

𝑚𝑎𝑥 directly, since they are obtained 

analogously as in case 1. [CMT the following 3 cases are quite similar to the case 1, and we give the 

result directly. It is a little bit like repeat work, shall we move the following 3 cases to the appendix?] 

Case 2: 𝒆𝒌 = 𝒆𝒕, 𝒂𝒌 ≠ 𝒂𝒕, thus 𝑪𝒕 = 𝑪𝒌. 

∆𝑘𝑡
𝑚𝑖𝑛= ∑ [(∏ 𝑝̃𝑖𝑗

𝜑
𝑖∈𝑇𝑝𝑘𝑡

) ∙ 𝜉𝑘𝑡𝑗
𝑚𝑖𝑛] ∙ 𝑦𝑗𝑗∈𝑁   

In which: 

𝜉𝑘𝑡𝑗
𝑚𝑖𝑛 = (∏ 𝑝̃𝑖𝑗

𝑚𝑖𝑛
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑘
𝑚𝑖𝑛 − ∏ 𝑝̃𝑖𝑗

𝑚𝑎𝑥
𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑡
𝑚𝑎𝑥)  

𝜑 = {
𝑚𝑎𝑥, 𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑖𝑛 ≤ 0

𝑚𝑖𝑛,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

And, 

∆𝑘𝑡
𝑚𝑎𝑥= ∑ [(∏ 𝑝̃𝑖𝑗

𝜑
𝑖∈𝑇𝑝𝑘𝑡

) ∙ 𝜉𝑘𝑡𝑗
𝑚𝑎𝑥] ∙ 𝑦𝑗𝑗∈𝑁   

In which: 

𝜉𝑘𝑡𝑗
𝑚𝑎𝑥 = (∏ 𝑝̃𝑖𝑗

𝑚𝑎𝑥
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑘
𝑚𝑎𝑥 − ∏ 𝑝̃𝑖𝑗

𝑚𝑖𝑛
𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑡
𝑚𝑖𝑛)  

𝜑 = {
𝑚𝑎𝑥, 𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑎𝑥 ≥ 0

𝑚𝑖𝑛,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Case 3: 𝒆𝒌 ≠ 𝒆𝒕, 𝒂𝒌 = 𝒂𝒕, thus 𝑷𝑳̃𝒌 = 𝑷𝑳̃𝒕. 

∆𝑘𝑡
𝑚𝑖𝑛= ∑ [(∏ 𝑝̃𝑖𝑗

𝜑
𝑖∈𝑇𝑝𝑘𝑡

) ∙ 𝑃𝐿̃𝑘
𝜑

∙ 𝜉𝑘𝑡𝑗
𝑚𝑖𝑛] ∙ 𝑦𝑗𝑗∈𝑁 + 𝐶𝑡

𝑚𝑖𝑛 − 𝐶𝑘
𝑚𝑎𝑥  

In which: 

𝜉𝑘𝑡𝑗
𝑚𝑖𝑛 = (∏ 𝑝̃𝑖𝑗

𝑚𝑖𝑛
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

− ∏ 𝑝̃𝑖𝑗
𝑚𝑎𝑥

𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡
)  

𝜑 = {
𝑚𝑎𝑥, 𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑖𝑛 ≤ 0

𝑚𝑖𝑛,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

And, 

∆𝑘𝑡
𝑚𝑎𝑥= ∑ [(∏ 𝑝̃𝑖𝑗

𝜑
𝑖∈𝑇𝑝𝑘𝑡

) ∙ 𝑃𝐿̃𝑘
𝜑

∙ 𝜉𝑘𝑡𝑗
𝑚𝑎𝑥] ∙ 𝑦𝑗𝑗∈𝑁 +𝐶𝑡

𝑚𝑎𝑥 − 𝐶𝑘
𝑚𝑖𝑛  
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In which: 

𝜉𝑘𝑡𝑗
𝑚𝑎𝑥 = (∏ 𝑝̃𝑖𝑗

𝑚𝑎𝑥
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

− ∏ 𝑝̃𝑖𝑗
𝑚𝑖𝑛

𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡
)  

𝜑 = {
𝑚𝑎𝑥, 𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑎𝑥 ≥ 0

𝑚𝑖𝑛,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Case 4: 𝒆𝒌 ≠ 𝒆𝒕, 𝒂𝒌 ≠ 𝒂𝒕. 

∆𝑘𝑡
𝑚𝑖𝑛= ∑ [(∏ 𝑝̃𝑖𝑗

𝜑
𝑖∈𝑇𝑝𝑘𝑡

) ∙ 𝜉𝑘𝑡𝑗
𝑚𝑖𝑛] ∙ 𝑦𝑗𝑗∈𝑁 + 𝐶𝑡

𝑚𝑖𝑛 − 𝐶𝑘
𝑚𝑎𝑥  

In which: 

𝜉𝑘𝑡𝑗
𝑚𝑖𝑛 = (∏ 𝑝̃𝑖𝑗

𝑚𝑖𝑛
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑘
𝑚𝑖𝑛 − ∏ 𝑝̃𝑖𝑗

𝑚𝑎𝑥
𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑡
𝑚𝑎𝑥)  

𝜑 = {
𝑚𝑎𝑥, 𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑖𝑛 ≤ 0

𝑚𝑖𝑛,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

And, 

∆𝑘𝑡
𝑚𝑎𝑥= ∑ [(∏ 𝑝̃𝑖𝑗

𝜑
𝑖∈𝑇𝑝𝑘𝑡

) ∙ 𝜉𝑘𝑡𝑗
𝑚𝑎𝑥] ∙ 𝑦𝑗𝑗∈𝑁 +𝐶𝑡

𝑚𝑎𝑥 − 𝐶𝑘
𝑚𝑖𝑛  

In which: 

𝜉𝑘𝑡𝑗
𝑚𝑎𝑥 = (∏ 𝑝̃𝑖𝑗

𝑚𝑎𝑥
𝑖∈𝑇𝑝𝑘−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑘
𝑚𝑎𝑥 − ∏ 𝑝̃𝑖𝑗

𝑚𝑖𝑛
𝑖∈𝑇𝑝𝑡−𝑇𝑝𝑘𝑡

∙ 𝑃𝐿̃𝑡
𝑚𝑖𝑛)  

𝜑 = {
𝑚𝑎𝑥, 𝑖𝑓 𝜉𝑘𝑡𝑗

𝑚𝑎𝑥 ≥ 0

𝑚𝑖𝑛,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Proposition 1. ∆𝑘𝑡
𝑚𝑖𝑛 and ∆𝑘𝑡

𝑚𝑎𝑥 are the lower and upper bound of ∆𝑘𝑡, and they can be reached. 

Remark: It is straightforward according to the definition of ∆𝑘𝑡. ∆𝑘𝑡
𝑚𝑖𝑛 and ∆𝑘𝑡

𝑚𝑎𝑥 can be reached when 

all the parameters are valued as the value in the definition of ∆𝑘𝑡
𝑚𝑖𝑛 and ∆𝑘𝑡

𝑚𝑎𝑥, since all these 

parameters are dis-coupled in the definition. 

Proposition 2. ∆𝑘𝑡
𝑚𝑖𝑛= −∆𝑡𝑘

𝑚𝑎𝑥. 

Remark: Proof of this proposition is due to the fact that for each cases of the above mentioned 4 

cases, we have 𝜉𝑘𝑡𝑗
𝑚𝑖𝑛 = −𝜉𝑡𝑘𝑗

𝑚𝑎𝑥. According to this proposition, in the remainder of this paper, we 

focus on the ∆𝑘𝑡
𝑚𝑖𝑛 for each attacker strategy pairs. 

Proposition 3. If ∆𝑘𝑡
𝑚𝑖𝑛> 0, then strategy 𝑘 is always a better response than 𝑡, to the defender’s 

committed strategy 𝑦.  
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Remark: Its proof is straightforward since 0 < ∆𝑘𝑡
𝑚𝑖𝑛≤ ∆𝑘𝑡= 𝑈𝑎(𝑘, : ) ∙ 𝑦 − 𝑈𝑎(𝑡, : ) ∙ 𝑦. Proposition 3 

illustrates a new approach for the defender to calculate the attacker’s possible best responses, 

comparing to the c6 in IBGS.  

Another interesting property of the ∆𝑘𝑡
𝑚𝑖𝑛 is that, it is a linear polynomial of 𝑦. Define a 3-dimension 

coefficient matrix Ω𝑙(𝑀𝑙 , 𝑀𝑙 , 𝑁), and the coefficient of 𝑦𝑗  in ∆𝑘𝑡
𝑚𝑖𝑛 as its unit Ω𝑙(𝑘, 𝑡, 𝑗). 

3.5. Interval CPP Game Solver 
Combining the idea of IBGS and the proposition 3, an algorithm named Interval CPP Game Solver 

(ICGS) is proposed. 

For each 𝑘𝑙 ∈ 𝑀𝑙, solve the following MILP problem, obtaining the optimal payoff for the defender 

ℋ(𝑘1, 𝑘2, … , 𝑘|ℵ|). Finally the maximal value of the ℋ and its corresponding strategies are the 

optimal solution of the interval CPP game. 

max

c9. ( ,:) ( ,:) ,

c10. ( , ,:) (1 ) ,

. . 11. (1 ) ( ,:) ,

12. {0,1}, 1

13. 1, [0,1]

l

l l

l

l l l l

a a

l l l l l

t t

l l l l

i d

l l

i k

i

U i y U k y i M

q k t y q t M

s t c q U i y i M

c q q

c y y

 





     


         


       


 
  





   (20) 

In ICGS, 
l

aU  and l

dU  represent the lower bound of the attacker’s payoff and the defender’s payoff, 

respectively. ( , ,:)l lk t  denotes the vector in lk  row, t  column of matrix Ω𝑙. Constraint c9 makes 

sure that the 𝑘𝑙 strategy has the highest lower bound payoff, which is similar to the c1 in IBGS. 

Constraint c10 can be explained as: giving the condition that 𝑘𝑙 strategy has the highest lower bound 

payoff, if strategy 𝑡, satisfying ( , ,:) 0l lk t y   , then 0l

tq  ; if satisfying ( , ,:) 0l lk t y   , then 

1l

tq  ; otherwise, l

tq  can be either 0 or 1. Constraint c10 picks out attacker’s possible best 

responses based on the idea in proposition 3, instead of using the c2 in IBGS, which is the key 

innovation of ICGS. Constraint 11 represents the idea that, among all the possible strategies of the 



 
 

18 
 

attacker (i.e., strategies picked out by c13, or 1l

iq  ), the defender conservatively thinks that the 

worst strategy to herself is the attacker’s best response, as the same in c3 in IBGS. c12 enforces that 

the lk  strategy is a possible strategy, the same as in c4 in IBGS. 

Proposition 4. Defender’s equilibrium payoff from ICGS is higher than or equal to her equilibrium 

payoff from IBGS. 

Proof: ∀𝑦 ∈ 𝑌, without loss of generality, assume that 𝐴
𝜋𝑙
𝑙 ∙ 𝑦 ≥ 𝐴𝑖

𝑙 ∙ 𝑦, for all 𝑖 ∈ 𝑀𝑙. 

In IBGS, from c1 we have 𝑅𝑙 = 𝐴
𝜋𝑙
𝑙 ∙ 𝑦. From c2 we know that ∀𝑡 ∈ 𝑀𝑙, if 𝐴𝑡

𝑙
∙ 𝑦 < 𝑅𝑙, then 𝑞𝑡

𝑙 = 0, 

which means that the strategy 𝑡 will definitely not be the attacker’s best response. Define 𝐸𝐵
𝑙 =

{𝑡 ∈ 𝑀𝑙 − {𝜋𝑙}|𝐴𝑡

𝑙
∙ 𝑦 < 𝑅𝑙}. According to c3, we have 𝛾𝐵

𝑙 = min
𝑖∈𝑀𝑙−𝐸𝐵

𝑙
{𝑈𝑑

𝑙 (𝑖, : ) ∙ 𝑦}. 

In ICGS, from c9 we have 𝑘𝑙 = 𝜋𝑙. From c10 we know that ∀𝑡 ∈ 𝑀𝑙, if Ω𝑙(𝑘𝑙 , 𝑡, : ) ∙ 𝑦 > 0, then 𝑞𝑡
𝑙 =

0, which means that strategy 𝑘𝑙 is always a better response than strategy 𝑡, or, strategy 𝑡 will 

definitely not be the attacker’s best response. Define 𝐸𝐶
𝑙 = {𝑡 ∈ 𝑀𝑙 − {𝜋𝑙}|Ω𝑙(𝑘𝑙, 𝑡, : ) ∙ 𝑦 > 0}. 

According to c11, we have 𝛾𝐶
𝑙 = min

𝑖∈𝑀𝑙−𝐸𝐶
𝑙
{𝑈𝑑

𝑙 (𝑖, : ) ∙ 𝑦}. 

We prove that 𝐸𝐵
𝑙 ⊆ 𝐸𝐶

𝑙 . ∀𝑡 ∈ 𝐸𝐵
𝑙 , we have 0 < 𝐴

𝜋𝑙
𝑙 ∙ 𝑦 − 𝐴𝑡

𝑙
∙ 𝑦 ≤ min (𝐴

𝜋𝑙
𝑙 ∙ 𝑦 − 𝐴𝑡

𝑙 ∙ 𝑦) =

Ω𝑙(𝑘𝑙 , 𝑡, : ) ∙ 𝑦, thereby 𝑡 ∈ 𝐸𝐶
𝑙 . 

Since 𝐸𝐵
𝑙 ⊆ 𝐸𝐶

𝑙 , thus we have 𝛾𝐵
𝑙 ≤ 𝛾𝐶

𝑙 , thus ∑ 𝜌𝑙
𝑙∈ℵ 𝛾𝐵

𝑙 ≤ ∑ 𝜌𝑙
𝑙∈ℵ 𝛾𝐶

𝑙 .□ 

4. Case study 
In this section, a case study is conducted to show how models and algorithms proposed in this article 

work. Sub-section 4.1 gives some basic information of the case study, while sub-section 4.2 

demonstrates the results by implementing different models and algorithms. 
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4.1. Definition of the Case Study 

Production 
Facility

Gate

PF1
PF2

PF3

 

Figure 2. Layout of the case study (PF=Production Facility) 

Figure 2 shows an refinery which is also an case study used in Zhang and Reniers [15, 16], Lee et al. 

[28], and API SRA report [5]. 

(a) Abstract Description of the Plant

ZONE 0 ZONE 1_1 ZONE 2_1

MG

Dock

Gate

T3/T4/T5 T6

PERIMETER 1

PERIMETER 2

Attack

Intrusion

T1/T2

(b) Intrusion and Attack Procedure  

Figure 3. Formalized representation of the plant as figure 1 

Figure 3 illustrates the formalized representation of the plant, from the CPP game perspective. 

Appendix A gives the map of the notations used in figure 3 (a) and figure 2. In this case study, the 

defender has 6 “typicals” to implement counter-measures, namely: i) ZONE 0; ii) the Main Gate (MG); 

iii) the Dock #1 (Dock); iv) ZONE 1; v) the Gate; vi) ZONE 2. Further assume that the defender can 

have 3 different security alert levels at each typical. Recalling formula (2), in this case study, the 

defender’s strategy can be denote as a cross product of 6 digital numbers which denotes the security 

alert levels at these 6 typicals. For instance, 𝑠𝑑 = 2 × 1 × 3 × 2 × 3 × 1 denotes that the security 

alert levels at ZONE 0 (Main Gate, Dock #1, ZONE 1, Gate, ZONE2) are 2 (1,3,2,3,1) respectively. 



 
 

20 
 

Figure 3(b) shows that for each given attack scenario, the attackers could have 10 pure strategies, 

they are: (1 and 2) attack T1 or T2 in ZONE 0; (3-8) attack T3 or T4 or T5 in ZONE 1, passing perimeter 

1 through MG or Dock; (9 and 10) attack T6 in ZONE 2, pass perimeter 1 through MG or Dock. Two 

types of adversaries (together with scenario) are considered: a) terrorist with vehicle-borne 

improvised explosive device (VBIED T); b) environmental activist (EA). Different to previous two 

researches [15, 16], the adversary passing perimeters by stepping over the perimeters are not 

considered in this case study, for the sake of simplicity. Also, as the VBIED T could not be able to 

intrude from the Dock, thus the strategies contain Dock in the intrusion path are all ignored for the 

terrorist, that is to say, the VBIED T would have only 6 strategies. Furthermore, the EA is assumed to 

aim at shutting down the plant, thus the office building (T1) and the tank farm (T5) would not be his 

target, since attack on these two targets might cause casualties. Table II and III list all the attackers’ 

pure strategies for this case study, expressed as defined in formula (3). 

Table II. VBIED T’s pure strategy list 

Index Strategy 

𝑠𝑣1 𝑇1 × 𝑉𝐵𝐼𝐸𝐷 
𝑠𝑣2 𝑇2 × 𝑉𝐵𝐼𝐸𝐷 
𝑠𝑣3 𝑇3 × 𝑀𝐺 × 𝑉𝐵𝐼𝐸𝐷 
𝑠𝑣4 𝑇4 × 𝑀𝐺 × 𝑉𝐵𝐼𝐸𝐷 
𝑠𝑣5 𝑇5 × 𝑀𝐺 × 𝑉𝐵𝐼𝐸𝐷 
𝑠𝑣6 𝑇5 × 𝑀𝐺 × 𝐺𝑎𝑡𝑒 × 𝑉𝐵𝐼𝐸𝐷 

 

Table III. EA’s pure strategy list 

Index Strategy 

𝑠𝑒1 𝑇2 × 𝐸𝐴 

𝑠𝑒2 𝑇3 × 𝑀𝐺 × 𝐸𝐴 

𝑠𝑒3 𝑇3 × 𝐷𝑜𝑐𝑘 × 𝐸𝐴 
𝑠𝑒4 𝑇4 × 𝑀𝐺 × 𝐸𝐴 
𝑠𝑒5 𝑇4 × 𝐷𝑜𝑐𝑘 × 𝐸𝐴 

𝑠𝑒6 𝑇6 × 𝑀𝐺 × 𝐺𝑎𝑡𝑒 × 𝐸𝐴 
𝑠𝑒7 𝑇6 × 𝐷𝑜𝑐𝑘 × 𝐺𝑎𝑡𝑒 × 𝐸𝐴 
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According to the data from API Standard 780[5], the threat of a VBIED T and a EA is 3 and 4 

respectively, thus the prior probabilities of these two types of adversaries can be calculated as 𝜌 =

(3 7⁄ , 4 7⁄ ). 

Series parameters are given in table IV through table IX, for illustrative purpose. It is worth noting 

that if the models are implemented on industrial practice, all these parameters should be given by 

security experts (e.g., the API SRA team[5]). It is also worth noting that all these information are 

estimations from the defender’s point of view. 

Table IV. Basic probabilities of successful intrusion for the VBIED T 

Typical From To 𝒑𝒅 𝒑̃𝒂
𝒎𝒊𝒏 𝒑̃𝒂

𝒎𝒂𝒙 𝒑̃𝒂
𝒏𝒐𝒎𝒊𝒏𝒂𝒍 𝑪𝒐𝒆𝟐 𝑪𝒐𝒆𝟑 

zone0  T1 or T2 0.95 0.95 0.99 0.95 0.68 0.45 
MG   0.3 0.3 0.5 0.3 0.65 0.38 

zone1 MG Gate 0.78 0.78 0.85 0.78 0.68 0.46 
zone1 MG T3 0.8 0.8 0.9 0.8 0.68 0.46 
zone1 MG T4 0.8 0.8 0.9 0.8 0.68 0.46 
zone1 MG T5 0.7 0.7 0.85 0.7 0.68 0.46 
Gate   0.2 0.2 0.3 0.2 0.61 0.32 

Zone2 Gate T6 0.9 0.9 0.99 0.9 0.66 0.39 

 

Table V. Basic probabilities of successful intrusion for the EA 

Typical From To 𝒑𝒅 𝒑̃𝒂
𝒎𝒊𝒏 𝒑̃𝒂

𝒎𝒂𝒙 𝒑̃𝒂
𝒏𝒐𝒎𝒊𝒏𝒂𝒍 𝑪𝒐𝒆𝟐 𝑪𝒐𝒆𝟑 

zone0  T1 or T2 0.95 0.9 0.97 0.95 0.68 0.45 

MG   0.3 0.2 0.32 0.3 0.65 0.38 

Dock   0.2 0.16 0.23 0.2 0.53 0.30 

zone1 MG Gate 0.78 0.7 0.8 0.78 0.68 0.46 

zone1 MG T3 0.8 0.72 0.8 0.8 0.68 0.46 

zone1 MG T4 0.8 0.72 0.8 0.8 0.68 0.46 

zone1 Dock Gate 0.78 0.7 0.78 0.78 0.68 0.46 

zone1 Dock T3 0.8 0.74 0.8 0.8 0.68 0.46 

zone1 Dock T4 0.8 0.74 0.8 0.8 0.68 0.46 

Gate   0.2 0.15 0.21 0.2 0.61 0.32 

Zone2 Gate T6 0.9 0.8 0.9 0.9 0.66 0.39 

Table IV and V give the probabilities of successfully passing typical or from some typical/asset to 

another typical/asset. 𝑝𝑑 represents defender’s estimation of the probabilities, 𝑝̃𝑎
𝑚𝑖𝑛 (𝑝̃𝑎

𝑚𝑎𝑥, 𝑝̃𝑎
𝑛𝑜𝑚𝑖𝑛𝑎𝑙) 

represents the defender’s estimation of the attacker’s minimal (maximal, nominal) estimation of the 

probabilities. These four columns are the probabilities when the security alert levels are all set to be 
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lowest level (i.e., level 1). Considering that terrorists are normally risk-seeking, and activists are 

normally risk-aversion, thus in table IV and V, we intentionally set that for terrorists, 𝑝𝑑 is very close 

to 𝑝̃𝑎
𝑚𝑖𝑛, while for activists, 𝑝𝑑 is very close to 𝑝̃𝑎

𝑚𝑎𝑥. 

When security alert levels are not the lowest level , for the sake of simplicity, instead of giving extra 2 

tables of assumed data, we assume that the intrusion probabilities will decrease concavely[29]. The 

𝐶𝑜𝑒2 and 𝐶𝑜𝑒3 columns shows the coefficients, which is randomly produced according to the 

concave rule, as shown in figure 4. For example, in table IV, the defender’s estimation of 𝑝𝑑 is 0.3 

when the security alert level on the main entrance is level 1, and this probability would be 𝑝𝑑 ∙ 𝐶𝑜𝑒2 

(i.e., 0.3 × 0.65 = 0.195) when the SAL is level 2 while when the SAL is level 3, the probability would 

be 𝑝𝑑 ∙ 𝐶𝑜𝑒3. 𝑝̃𝑎
𝑚𝑖𝑛 (𝑝̃𝑎

𝑚𝑎𝑥, 𝑝̃𝑎
𝑛𝑜𝑚𝑖𝑛𝑎𝑙) are all calculated analogously. 

 

Figure 4. The coefficients in table IV and V 

Table VI. In condition of successfully arriving the target, probabilities of damage and consequences (k€), for VBIED T 

Target 𝒑𝒚 𝒑̃𝒚
𝒎𝒊𝒏 𝒑̃𝒚

𝒎𝒂𝒙 𝒑̃𝒚
𝒏𝒐𝒎𝒊𝒏𝒂𝒍 𝑳 𝑳̃𝒎𝒊𝒏 𝑳̃𝒎𝒂𝒙 𝑳̃𝒏𝒐𝒎𝒊𝒏𝒂𝒍 

T1 0.1 0.1 0.2 0.1 1000 1900 2100 2000 
T2 0.9 0.9 0.95 0.9 100 140 160 150 

T3 0.7 0.7 0.8 0.7 300 240 260 250 
T4 0.6 0.6 0.8 0.6 800 880 920 900 
T5 0.9 0.9 1 0.9 2000 3000 3600 3000 
T6 0.99 0.99 1 0.99 10000 4000 5200 5000 

 

Table VII. In condition of successfully arriving the target, probabilities of damage and consequences (k€), for EA 

Target 𝒑𝒚 𝒑̃𝒚
𝒎𝒊𝒏 𝒑̃𝒚

𝒎𝒂𝒙 𝒑̃𝒚
𝒏𝒐𝒎𝒊𝒏𝒂𝒍 𝑳 𝑳̃𝒎𝒊𝒏 𝑳̃𝒎𝒂𝒙 𝑳̃𝒏𝒐𝒎𝒊𝒏𝒂𝒍 

T2 0.7 0.5 0.74 0.7 100 200 220 200 
T3 0.7 0.4 0.6 0.5 300 280 310 300 
T4 0.7 0.4 0.6 0.5 800 880 940 900 
T6 0.9 0.85 0.95 0.9 1000 1800 2200 2000 
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Table VI and VII give the estimation of conditional probabilities that an attack would be successfully 

executed and the estimated consequences/gains. Table VIII and IX give the materialized defensive 

and attack costs respectively. 

Table VIII. Materialized costs (k€) for defender 

 Zone0 MG Dock Zone1 Gate Zone2 

SAL:1 40 20 20 20 20 20 

SAL:2 60 30 25 30 25 30 

SAL:3 100 50 40 50 40 50 

 

Table IX. Materialized costs (k€) for attackers 

VBIED T EA 

𝐶𝑎
𝑚𝑖𝑛 𝐶𝑎

𝑚𝑎𝑥 𝐶𝑎
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝐶𝑎

𝑚𝑖𝑛 𝐶𝑎
𝑚𝑎𝑥 𝐶𝑎

𝑛𝑜𝑚𝑖𝑛𝑎𝑙 

5 15 10 0.2 2 1 

 

4.2. Results and Discussion 
Fed formulas (4) and (5) with the defender’s data and the attacker’s nominal data given in table IV 

through table IX, we get the Bayesian Stackelberg CPP game {(𝑈𝑑
𝑉𝐵𝐼𝐸𝐷 , 𝑈𝑎

𝑉𝐵𝐼𝐸𝐷), (𝑈𝑑
𝐸𝐴, 𝑈𝑎

𝐸𝐴)}. Fed 

formulas (8) and (9) with the attacker’s minimal and maximal parameters, we get the bi-matrix form 

interval CPP game {(𝑈𝑑
𝑉𝐵𝐼𝐸𝐷, 𝑈𝑎

𝑉𝐵𝐼𝐸𝐷, 𝑈𝑎

𝑉𝐵𝐼𝐸𝐷
) , (𝑈𝑑

𝐸𝐴, 𝑈𝑎
𝐸𝐴, 𝑈𝑎

𝐸𝐴
)}. Fed formulas (17) etc., we get the 

(Ω𝑉𝐵𝐼𝐸𝐷 , Ω𝐸𝐴). 

In case that the defender does not have any information about the attackers, thus she could protect 

the plant using the “balanced protection” principle, or, in game theoretic terminology, the MaxiMin 

strategy. Using 𝑈𝑑
𝑉𝐵𝐼𝐸𝐷 and 𝑈𝑑

𝐸𝐴 as inputs for the algorithm for calculating MaxiMin[20], we get the 

defender’s MaxiMin strategy as shown in table X, and the corresponding payoff, which is €-256,832.1. 

Table X Defender’s MaxiMin Strategy 

𝑠𝑑 Probability 

2 × 2 × 1 × 2 × 2 × 1 0.4850 

2 × 2 × 1 × 2 × 2 × 2 0.1334 

2 × 2 × 2 × 2 × 2 × 1 0.0714 

2 × 2 × 2 × 2 × 2 × 2 0.3102 
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The probabilities means that the defender plays strategy 2 × 2 × 1 × 2 × 2 × 1 at probability 0.4850, 

plays strategy 2 × 2 × 1 × 2 × 2 × 2 at probability 0.1334, and so forth.  

Table XI Defender’s Payoff w.r.t. different attacker strategies (k€) 

VBIED T 

𝑠𝑎 Def Payoff 

𝑠𝑣1 -255.9439 
𝑠𝑣2 -249.4839 
𝑠𝑣3 -205.7347 
𝑠𝑣4 -224.2372 
𝒔𝒗𝟓 -283.8563 
𝑠𝑣6 -283.8563 

EA 

𝑠𝑎 Def Payoff 

𝒔𝒆𝟏 -236.5639 
𝑠𝑒2 -205.7347 
𝑠𝑒3 -229.7194 
𝑠𝑒4 -208.3014 
𝑠𝑒5 -236.5639 
𝑠𝑒6 -196.9507 
𝑠𝑒7 -198.1642 

 

Table XI shows the defender’s payoff when the attackers play different strategies. It is shown that 

though the defender does not have any information of the attackers, by playing the MaxiMin 

strategy, she could guarantee a minimal payoff at −283.8563 ×
3

7
− 236.5639 ×

4

7
= −256,832.1 

euro. 

In case that the defender believes that her estimations of the attacker’s parameters (i.e., the nominal 

values) are exact, thus she could protect the plant by using the BSE. Using (𝑈𝑑
𝑉𝐵𝐼𝐸𝐷, 𝑈𝑎

𝑉𝐵𝐼𝐸𝐷) and 

(𝑈𝑑
𝐸𝐴, 𝑈𝑎

𝐸𝐴) as inputs for the DOBSS algorithm[19], we get the BSE, as shown in table XII, XIII, and XIV, 

and the corresponding payoffs, which is €-246,167.5. 

Table XII. Defender’s BSE strategy 

𝑠𝑑 Probability 

2 × 2 × 1 × 2 × 1 × 1 0.8641 

2 × 2 × 2 × 2 × 1 × 1 0.1359 
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Table XIII. Players’ payoff w.r.t. different VBIED T strategy (k€) (attacker’s best response is bold) 

𝑠𝑎 Atk Payoff Def Payoff 

𝑠𝑣1 67.5200  -245.2794 
𝑠𝑣2 65.5820  -238.8194 
𝑠𝑣3 1.9923  -195.0702 
𝑠𝑣4 27.0049  -213.5727 
𝒔𝒗𝟓 128.7686  -273.1917 
𝑠𝑣6 79.2976  -359.2745 

 

Table XIV. Players’ payoff w.r.t. different EA strategy (k€) (attacker’s best response is bold) 

𝑠𝑎 Atk Payoff Def Payoff 

𝒔𝒆𝟏 48.7420  -225.8994 
𝑠𝑒2 9.2792  -195.0702 
𝑠𝑒3 36.0049  -219.0549 
𝑠𝑒4 12.8172  -200.0235 
𝑠𝑒5 48.7420  -232.2637 
𝑠𝑒6 20.6479  -191.5033 
𝑠𝑒7 28.0991  -195.2289 

 

As shown in table XIII and XIV, the defender knows the attacker’s information, thus she could predict 

the attackers’ best responses to her strategy, and play accordingly. It is worth noting that if the 

VBIED T plays 𝑠𝑣6 and the EA plays 𝑠𝑒5, the defender would have a low payoff as −359.2745 ×
3

7
−

232.2637 ×
4

7
= −286.6969 euro. However, the defender believes that both the two types of 

attackers are rational, and they would not play other strategies but their best response strategies. As 

shown in table XIV, it is also worth noting that for the EA, playing strategies 𝑠𝑒1 and 𝑠𝑒5 are 

indifferent, from which the EA can have a payoff at 48.7420. In this cases, the strategy which brings 

the defender higher payoff is assumed to be the attacker’s best response, for more discussion of this 

assumption, interested readers are referred to von Stengel and Zamir [30], Pita et al. [20]. 

In case that the defender does not know the attacker’s exact parameters, but she believes that these 

parameters locate between the minimal and maximal values as given in previous section, thus she 

could protect the plant by using the conservative results from the interval CPP game. Using 

(𝑈𝑑
𝑉𝐵𝐼𝐸𝐷, 𝑈𝑎

𝑉𝐵𝐼𝐸𝐷, 𝑈𝑎

𝑉𝐵𝐼𝐸𝐷
) and (𝑈𝑑

𝐸𝐴, 𝑈𝑎
𝐸𝐴, 𝑈𝑎

𝐸𝐴
) as inputs for IBGS, we get the optimal strategy and 

the corresponding payoffs, which is €-253,424.4. Using 𝑈𝑑
𝑉𝐵𝐼𝐸𝐷, 𝑈𝑑

𝐸𝐴, 𝑈𝑎
𝑉𝐵𝐼𝐸𝐷, 𝑈𝑎

𝐸𝐴, and 
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(∆𝑉𝐵𝐼𝐸𝐷, ∆𝐸𝐴) as inputs for ICGS, we get the optimal strategy and the corresponding payoffs, which is 

€-247,396.2. 

Table XV. Defender’s optimal solution from IBGS 

𝑠𝑑 Probability 

2 × 2 × 1 × 2 × 2 × 1 0.6184 

2 × 2 × 2 × 2 × 2 × 1 0.2788 

2 × 2 × 2 × 2 × 2 × 2 0.1028 

 

Table XVI. Defender’s optimal solution from ICGS 

Index 𝑠𝑑 Probability 

𝑠𝑑−𝐼𝐶𝐺𝑆−1 2 × 2 × 1 × 2 × 1 × 1 0.6184 

𝑠𝑑−𝐼𝐶𝐺𝑆−2 2 × 2 × 2 × 2 × 1 × 1 0.3816 

 

 

Figure 5. Attackers’ payoff range (the Left sub-figure (L): VBIED T’s payoff range corresponding to defender’s IBGS 
strategy; the Middle sub-figure (M): EA’s payoff range corresponding to defender’s IBGS strategy; the Right sub-figure (R): 

EA’s payoff range corresponding to defender’s ICGS strategy) 

Figure 5 (L) and (M) illustrate the attackers’ payoff range, corresponding to the defender’s IBGS 

strategy as given in table XV. Different to the analytics of table XIII and XIV, in IBGS, the defender has 

interval uncertainties on the attackers’ payoffs, thus she could not work out the attackers’ best 

responses. However, based on her knowledge of the interval uncertainties, she could know that the 

upper bound payoffs of some attacker’s strategies (i.e., the 𝑠𝑣1, 𝑠𝑣2,  𝑠𝑣3,  𝑠𝑣4, and 𝑠𝑣6 in (L), the 

𝑠𝑒2, 𝑠𝑒4, 𝑠𝑒6, and 𝑠𝑒7 in (M)) are lower than the lower bound payoffs of some others (i.e., the 𝑠𝑣5 in (L), 

the 𝑠𝑒1 in (M)), hereby, the fore strategies would not be the attackers’ possible best responses. To 

keep consistency with IBGS, we have that 𝑅𝑉𝐵𝐼𝐸𝐷 𝑇 = 123.7686, 𝑅𝐸𝐴 = 41.6968, ℎ5
𝑉𝐵𝐼𝐸𝐷 𝑇 =

1, ℎ1
𝐸𝐴 = 1, 𝑞5

𝑉𝐵𝐼𝐸𝐷 𝑇 = 1, 𝑞1,3,5
𝐸𝐴 = 1. 
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 Figure 5 (R) illustrates the attackers’ payoff range, corresponding to the defender’s ICGS strategy as 

given in table XVI. It shows that EA’s strategy 𝑠𝑒3 has a upper bound payoff higher than the lower 

bound payoff of strategy 1, thereby, the defender can judge that strategy 𝑠𝑒3 could also be a possible 

best response of the EA, from the IBGS idea. However, noting that EA’s strategy 𝑠𝑒1 and 𝑠𝑒3 share the 

some parameters, they are, the intrusion probability 𝑃0
𝑍 in ZONE 0 and the attack cost 𝐶𝑎. 

Substituting the interval estimations of all the parameters, except the 𝑃0
𝑍 and the 𝐶𝑎, into formulas 

(8) and (9), we have: 

𝑢𝑎
𝑚𝑖𝑛(𝑠𝑑−𝐼𝐶𝐺𝑆−1, 𝑠𝑒1) = 𝑃0

𝑍 ∙ 0.68 ∙ 105 − 𝐶𝑎 = 𝑃0
𝑍 ∙ 71.4 − 𝐶𝑎  

𝑢𝑎
𝑚𝑎𝑥(𝑠𝑑−𝐼𝐶𝐺𝑆−1, 𝑠𝑒3) = 𝑃0

𝑍 ∙ 0.32 ∙ 0.65 ∙ 0.8 ∙ 0.68 ∙ 0.64 ∙ 910 − 𝐶𝑎 = 𝑃0
𝑍 ∙ 65.8997 − 𝐶𝑎  

𝑢𝑎
𝑚𝑖𝑛(𝑠𝑑−𝐼𝐶𝐺𝑆−2, 𝑠𝑒1) = 𝑃0

𝑍 ∙ 0.68 ∙ 105 − 𝐶𝑎 = 𝑃0
𝑍 ∙ 71.4 − 𝐶𝑎  

𝑢𝑎
𝑚𝑎𝑥(𝑠𝑑−𝐼𝐶𝐺𝑆−2, 𝑠𝑒3) = 𝑃0

𝑍 ∙ 0.32 ∙ 0.65 ∙ 0.8 ∙ 0.68 ∙ 0.64 ∙ 910 − 𝐶𝑎 = 𝑃0
𝑍 ∙ 65.8997 − 𝐶𝑎  

Thus we have: 

 ∆13= 0.6184 ∙ [𝑢𝑎
𝑚𝑖𝑛(𝑠𝑑−𝐼𝐶𝐺𝑆−1, 𝑠𝑒1 ) − 𝑢𝑎

𝑚𝑎𝑥(𝑠𝑑−𝐼𝐶𝐺𝑆−1, 𝑠𝑒3 )] + 0.3816 ∙ [𝑢𝑎
𝑚𝑖𝑛(𝑠𝑑−𝐼𝐶𝐺𝑆−2, 𝑠𝑒1 ) −

𝑢𝑎
𝑚𝑎𝑥(𝑠𝑑−𝐼𝐶𝐺𝑆−2, 𝑠𝑒3 )] = 𝑃0

𝑍 ∙ 5.5003 > 0 

This result means that with these interval uncertainties, the defender could be able to judge that 

strategy 𝑠𝑒1 is always a better response than strategy 𝑠𝑒3 for the EA. IBGS is not able to assist the 

defender to make this judgement, as shown in figure 5 (R), but the ICGS could, and this is the reason 

that ICGS could bring the defender higher equilibrium payoff. 

 

Figure 6. Defender’s optimal payoff from different methods  

Figure 6 illustrates the defender’s optimal payoffs from the above mentioned 4 methods. The results 

show that knowing more about the attacker (from MaxiMin to IBGS (ICGS), to BSE), the defender 
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could have a higher optimal payoff (from -256.8k€ to -253.4k€ (-247.4k€), to -246.1k€). The results 

also show that with the same information of the attacker, the ICGS solution could bring the defender 

higher payoff than the IBGS solution, which is theoretically analysed in proposition 4.  

4.3. Sensitivity Analysis 
In this section, we study how the interval uncertainties on the attackers would affect the defender’s 

optimal payoffs. Two experiments are defined, namely, the s1, in which the defender has interval 

uncertainties on all the attackers’ parameters, and s2, in which the defender only has interval 

uncertainties on the attackers’ monetary parameters. In both experiments, the defender’s 

parameters are the same as given in table IV through table IX, while the attacker’s parameters are 

defined by following rules: 1) an interval radius 𝜇 ≥ 0 is used; 2) all the monetary parameters (i.e., 

𝐿̃𝑦, 𝐶𝑎) are bounded in the interval [𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ (1 − 𝜇), 𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ (1 + 𝜇)], and the 𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 are the 

nominal values of the attackers’ parameters as given in table IV through table IX. In experiment s1, all 

the probabilistic parameters (i.e., 𝑃̃𝑖
𝑍, 𝑃̃𝑖

𝑝
, 𝑝̃𝑦) are bounded in the interval [𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ (1 −

𝜇), 𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ∙ (1 + 𝜇)] ∩ [0,1], and the 𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙 are the nominal values of the attackers’ parameters 

as given in table IV through table IX. In experiment s2, all the probabilistic parameters (i.e., 𝑃̃𝑖
𝑍, 𝑃̃𝑖

𝑝
, 𝑝̃𝑦) 

are the same as the nominal values as given in table IV through table IX. 

 
Figure 7. Defender’s optimal payoff corresponding to the interval radius 
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Results shown in figure 7 demonstrates that the increase of interval radius 𝜇 would result in decrease 

on the defender’s optimal payoff. When 𝜇 = 0.0, which means no interval uncertainty exists, the 

defender could have a payoff equal to the payoff from the BSE. When 𝜇 ≥ 𝜇∗ (in experiment s1, 𝜇∗ =

0.11 for IBGS and 𝜇∗ = 0.21 for ICGS, while in s2, 𝜇∗ = 0.50 for IBGS and 𝜇∗ = 0.70 for ICGS), the 

defender’s payoff could be as low as her MaxiMin payoff. This means that, in Bayesian Stackelberg 

CPP game, if the defender could not effectively bound the attacker’s parameters into a relatively 

narrow interval, then her information of the attacker is useless. 

Figure 7 also shows that with the same interval radius, the ICGS solution could always bring the 

defender higher payoff than the IBGS solution. 

5. Conclusion 
Security risk analysis is difficult because of the lack of historical data as well as the adaptive attackers. 

Game theory, being able to model intelligent interactions between defenders and adaptive attackers, 

has been introduced as a promising way, for improving security in many domains. Current game 

theoretic studies on security domain, however, are criticized for its requirement of lots of 

quantitative inputs, which is quite difficult to obtain.  

In this paper, for the purpose of protecting chemical plants from intentional attacks, the interval 

Chemical Plant Protection (CPP) game is proposed. The interval CPP game considers the fact that the 

defender always have distribution-free uncertainties on her opponents’ parameters, thereby the 

interval CPP game could assist the defender to make defence decisions accordingly. Two Mixed-

Integer Linear Programming based algorithms are proposed, namely, the IBGS and the ICGS, for 

solving general interval bi-matrix games and interval CPP game respectively. Based on the work in 

this paper, some existed security risk assessment methods (e.g., the API SRA framework) could 

transfer their qualitative (or semi-quantitative) results to the CPP game model, as inputs for the 

latter. 
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This article can be extended by also considering bounded rational attackers. Although attackers are 

believed to be strategic in some academia studies and government reports, they could have some 

emotional factors when making decisions. There are some studies on bounded rational attackers in 

the security game domain, but no available models or algorithms existed in the chemical plant 

protection domain. 

Appendix A. Symbols in Figure 2 and 3 (a) 

Table A. Symbols map between Figure 2 and Figure 3 (a) 

Symbol in Fig 3 (a) Symbol in Fig 2 

ZONE0 Outdoor Area 

ZONE1_1 Area within Enclosure 

ZONE2_1 Production Facility 

PERIMETER 1 the boundary of the plant 

PERIMETER 2 The boundary of the production facility 

Main Gate Main gate 

Dock #1 Dock #1 

Gate The entrance of the production facility 

T1 Administration Building 

T2 Electrical Supply from Utility 

T3 Cogen Unit/ Cogen Control/Cat Feed Hydrotreater 

T4 Central control 

T5 Tank Farm 

T6 Production facilities in production facility area 
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