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Abstract: This paper aims to analyze the different concepts of “vulnerability” used in maritime supply 

chains, and to develop a novel framework with supporting models to identify and analyze the relevant 

vulnerabilities in the chains. A real case of the Maersk shipping line in its Asia-Europe route is studied to 

demonstrate the applicability of the proposed framework. We find that the investigated network has stronger 

robustness against random failures than that when facing deliberate attacks. Furthermore, to identify 

vulnerable nodes (i.e. ports) of the network, two different types of analysis are undertaken through a multi-

centrality model and a robustness analysis model, respectively. Consequently, the vulnerabilities estimated 

through robustness analysis can ascertain those by the classical centrality methods when they appear on 

both analysis results. More importantly, the similarity between the two outcomes can help gain more 

confidence on the accuracy in terms of the identification of the vulnerabilities in the system, while the 

difference (if any) such as those identified by the robustness analysis but not by the centrality analysis (or 

vice versa) can trigger a further investigation to find the comprehensive vulnerable nodes against different 

threats/hazards. It will aid rational decision on design and operation of resilient and robust maritime supply 

chains.    

 

Keyword: vulnerability; maritime transport; complex network; network topology; network robustness, 

resilience, maritime risk 

1 Introduction 

With the fast development of container transportation, maritime supply chains become one of the largest 

complex networks in the world. Random failures and deliberate attacks1 on a single element (node or edge) 

in the network may cause a cascading breakdown of the whole system. Foci of investigating the risks 

associated with the chains are moving from classical cause-consequence analysis at a local component level 

to a network vulnerability study from a global system perspective. Complex network theories and methods, 

                                                             
 The first two authors contribute equally to this work as the co-first authors. 
* Corresponding authors: tianzhihong@bigc.edu.cn; z.yang@ljmu.ac.uk.  
1 Random failures refer to the random removals of the nodes/edges in a network to see their impact to the 

global network efficiency, while deliberate attacks mean the selected removals of the nodes/edges based on 

their topological importance from high to low in a network structure.   



 

2 
 

including Social Network Analysis (SNA) and system simulation, are therefore playing increasingly 

important roles in the vulnerability anlysis of maritime supply chains (González et al. 2012; Berle et al. 

2011; Lhomme et al. 2015).  

A careful literature review on maritime and supply chain vulnerabilities reveals three main research 

challenges in previous studies. First, the maritime sector received little attention in terms of both complex 

networks and resilience and vulnerability research, compared to other transportation networks (Kaluza et 

al. 2010). Most of existing risk studies in maritime transport networks are from safety and security 

perspectives (e.g. Yang et al., 2010; 2013; 2014; 2016). Secondly, the concept of the term “vulnerability” 

used in this field significantly varies with regards to different research contexts, requiring the new 

development of a consolidated definition and a systematic research framework. Thirdly, from a theoretical 

perspective, vulnerability of complex networks were analyzed by using either centrality measures in SNA 

or robustness analysis approaches, but not in a combined way yet. Comparative analysis using both methods 

are scanty, requiring investigation to explore the associated potential benefits. To fill such research gaps, 

this paper aims to analyze the different concepts of “vulnerability” used in maritime supply chains, and to 

develop a novel framework with supporting models to identify and analyze the relevant vulnerabilities in 

maritime supply chains. The research findings from both SNA and robustness analysis approaches will be 

compared to provide useful insights for ship lines to identify the vulnerable nodes in their network for 

accident prevention. 

The remaining part of this paper is organized as follows. In Section 2, the relevant literature on 

“vulnerability” is reviewed. In Section 3, a new methodology for the vulnerability analysis of maritime 

supply chains is developed while maritime network modeling, and its basic topology features are analyzed 

in Section 4. In Section 5, a model of two indexes, global and local network efficiency, is built to evaluate 

the network robustness. In Section 6, multi-centrality models based on the Borda Count method and 

robustness analysis approaches are developed to identify vulnerable ports in maritime networks through the 

evaluation of the relative drop of the network efficiency. Finally, Section 7 describes the research 

implications and discusses, while Section 8 concludes the paper by highlighting its contributions and limits. 

2 Literature review 

According to the literature study, the concepts of the term “vulnerability” vary within different research 

contexts. There are three main kinds of relevant definitions. 

(1) First, the network vulnerability is the opposite perspective of the concept “network robustness”, 

which denotes how the network topology (or further one, e.g., the network performance, usually including 

global and local connection properties) is affected by the elimination of a finite number of links and/or 

nodes. In other words, the “vulnerability” denotes the decrease of network performance due to a random or 

selected removal of nodes or edges (Holme et al. 2002). 

Measures used to evaluate the network performance are found in different research areas, such as the 

degradation of the global safety efficiency of power grids (Eusgeld et al. 2009), the net-ability of power 

grids (Bompard et al. 2009), network connectivity of transport flows (Ducruet et al. 2012). It is observed 

that the more heterogeneous a network is, in term of, e.g., degree distribution, the more robust it is, to 

random failures, while, at the same time, it appears more vulnerable to deliberate attacks on highly 

connected nodes (Barabási et al. 1999, Albert et al. 2000). This kind of vulnerability reflects the integral 

property of the whole network.  
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In order to avoid unnecessary confusion, in our research, the term “network vulnerability” is replaced by 

“network robustness”. After building a maritime network, the drop of global and local network efficiency2 

which is generally defined as a function of the fraction of the removed nodes, will be investigated. 

(2) Secondly, vulnerability is related to the importance of elements (links or nodes). The term 

“importance” is intended to qualify the role that the presence and location of a specific element play with 

respect to the average global and local connection properties of the whole network. In this kind of context, 

researchers deem that the most important elements are the most vulnerable ones in the whole network, and 

identification of the important elements becomes their key research goals. There are two ways to identify 

the most important elements, a direct way and an indirect way. The direct one is to design and calculate the 

direct measurements to identify the most important elements. For example, there are various kinds of 

centralities in the relevant literature (Sabidussi 1966, Xu et al. 2007, Hu et al. 2009, Laxeet al. 2012, 

Ducruet et al. 2012). In addition, the indirect way is to measure the drop of network performance when 

given elements are removed (Latora et al. 2005, Zio et al. 2008). In this research, both methods are 

investigated in order to get a comprehensive solution. 

(3) Thirdly, some researchers define the term “node vulnerability” by the node dependence which is a 

local property. In a weighted maritime network, node dependence can be defined as the share of the 

dominant flow connection within total transport traffic which is an inversely proportionate relation between 

the number of connections and the distribution of traffic among those connections (Ducruet et al. 2010, 

Laxe et al. 2012). Hence, nodes (i.e. ports) with lower vulnerability are those which are less dependent with 

respect to others located in their foreland. 

In this research, the first two concepts are investigated in a combined manner in the maritime transport 

context, one is “network robustness” analyzed in Section 5, and the other one is “important node” related 

to the whole network vulnerability, which is investigated in Section 6. By investigating the similarity 

between them, the vulnerability in maritime supply chains is defined as “the measure of the impact of the 

nodes and links to the network robustness” in this paper.  

3 Methodology 

According to the above definition of vulnerability, the methodology proposed in this work is developed 

based on the measurement instruments in the complex network theory. The first step is to use data sources 

to build the maritime supply network under investigation. Next, the measures using centrality and 

robustness analysis are carried out to analyze vulnerability in the network. Last, when more information 

about the network is acquired, an in-depth (focused) analysis will be conducted. The framework, visually 

presented in Figure 1 is explained in Section 3.1, providing a foundation for more research on the 

vulnerability analysis of maritime transport networks in future. 

3.1 Research framework 

Eusgeld et al. (2009) proposed a framework for the vulnerability analysis of critical infrastructures, which 

based on a problem-driven iterative approach, includes five main steps, several decision points and 

                                                             
2 The detailed definitions and algorithms relating to the drop of network efficiency are provided in Section 5.  
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feedback loops. By simplifying the framework and also incorporating the complex network theory and the 

characteristics of maritime transport networks, we propose a four-step framework for maritime vulnerability 

analysis in this paper. 

 

    Step 1: Preparatory phase

    Task framing & definitions

    Network modeling

    Data

    Step 2: Basic statistical analysis

    Visualization of network

    Evaluation of topological metric 

    Analysis of network robustness

    Step 3: Topology-driven analysis of vulnerabilities

    Identification by single centrality

    Identification by multi-centralities

    Identification by relative drop of network efficiency

    Step 4: Implications and discussions

 

Figure 1. Research framework for vulnerability analysis of maritime supply chains 

 

In Figure 1, the preparatory phase aims at reaching a clear definition of the terms and mutual 

understanding of the objectives between all parties which have a stake in the analysis of the network and 

its operation. The next step ‘‘Basic statistical analysis’’ focuses on the development of systematic 

understanding for the robustness analysis of the network. Step 3 is to identify important nodes/links by 

topology-driven analysis of vulnerabilities. Step 4 is to describe the implications from and discussions on 

the findings by incorporating the other information about the network and the associated environments in 

which it operates for meaningful conclusions. 

3.2 Maritime network modeling 

The typical definition of a maritime transport network is a graph where nodes are ports and links are inter-

port connections realized by the circulation of vessels. In other words, the network is built based on vessel 

characteristics, ports of call and vessel movements. The links could be directed or non-directed links, 

weighted or non-weighted links, depending on the demand of research.  

In 2007, Xu et al. (2007) introduced the idea of space L and P into maritime networks, and extended the 

idea to the case of directed networks. The first topological representation is the space L, which consists of 

nodes being ports, and a link between two nodes which exists if they are consecutive stops on a ship route. 

The node degree k in this topology is just the number of different ship lines one can take from a given port. 

The distance in such a space is measured by the total number of stops passed on the shortest path between 

two nodes. The second representation is the space P, in which an edge is formed between two nodes when 

they are in the same route that a container ship passes through. Consequently, the node degree k in this 

topology represents the total number of nodes reachable using a single ship route and the distance can be 

interpreted as the number of transfers (plus one) one has to take from one port to another.  
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Hu et al. (2009) also used the above two different network representations to construct the worldwide 

maritime transportation network. Ducruet et al. (2010) provided two concepts of GDL (Graph of Direct 

Links) and GAL (Graph of All Links) to replace the spaces L and P (Ducruet & Zaidi 2012; Ducruet & 

Notteboom 2012). The GDL only includes direct successive calls between ports (namely from port A to 

port B and from port B to port C), while the GAL includes direct and indirect calls. It can be argued that 

two ports can also be connected if they belong to the same liner service or loop, although they are not 

adjacent calls (that is from port A to port C). Therefore, in this research, the network type space L (GDL) 

(Seaton et al. 2004, Xu et al. 2007, Ducruet et al. 2010) is considered, which consists of nodes (i.e., ports), 

and a link between two nodes exists if they are consecutive stops on the same ship route.  

3.3 Data source and visualization 

The data source in our research is from the Maersk shipping line with a focus on its Asia-Europe routes in 

July 2014 from Maersk website (http://www.maerskline.com), including 19 shipping lines and 54 calling 

ports. Table 1 shows the index number of each port. 

Table 1. Port index and its name 

 

Index Port name Index Port name 

1 Aarhus 28 Le havre 

2 Algeciras 29 Marsaxlokk 

3 Ambarli 30 Nagoya 

4 Antwerp 31 Nansha 

5 Barcelona 32 Nansha new port 

6 Beirut 33 Ningbo 

7 Bremerhaven 34 Odessa 

8 Busan 35 Port Klang 

9 Chiwan 36 Port Said 

10 Colombo 37 Port tangiers 

11 Constantza 38 Qingdao 

12 Dalian 39 Rijeka 

13 Felixstowe 40 Rotterdam 

14 Fossurmer 41 Salalah 

15 Gdansk 42 Shanghai 

16 Genoa 43 Singapore 

17 Gothenburg 44 Suez canal container terminal (SCCT) 

18 Hamburg 45 Tanjungpelepas 

19 Hong Kong 46 Trieste 

20 Ilyichevsk 47 Valencia 

21 Izmitkorfezi 48 Vungtao 

22 Jebel all 49 Wilhelmshaven 

23 Jeddah 50 Xiamen 

24 Kobe 51 Xingang 

25 Koper 52 Yantian 
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26 Kwangyang 53 Yokohama 

27 La spezia 54 Zeebrugge 

 

An adjacency matrix A represents the links connecting each pair of nodes. The element aij of the adjacent 

matrix A equals to 1 if there is a link from node i to j or 0 if there is not a link. If a network is directed, 

meaning that edges point in one direction from one node to another node, then a node has two different 

degrees, the in-degree kin(i), which counts the number of its incoming edges, and the out-degree kout (i), 

which is the total number of its outgoing edges (Xu et al. 2007, Hu et al. 2009). 

                 𝑘𝑖𝑛(𝑖) = ∑ 𝑎𝑗𝑖𝑗≠𝑖 , 𝑘𝑜𝑢𝑡(𝑖) = ∑ 𝑎𝑖𝑗 , 𝑘𝑎𝑙𝑙𝑗≠𝑖 (𝑖) = ∑ (𝑎𝑗𝑖or𝑎𝑖𝑗)𝑗≠𝑖               (1) 

Because shipping routes are directed, links in the network should also be directed. From the asymmetric 

adjacent matrix A, three kinds of degrees (i.e. in-degree, out-degree and all-degree) can be calculated.  

In addition, traffic on a transportation network is usually not equally distributed. Some links have more 

traffic flows than others, hence playing more important roles in the functioning of the whole network. 

Weighting should be addressed accordingly. In this study, we assume* that the more shipping lines from 

port i to port j are, the greater the weight of the link from i to j. The element wij of the link weight matrix W 

is usually used to represent the strength or importance of relations from port i to port j (Xu et al. 2007; Hu 

et al. 2009). We define the element wij of the weight matrix W is the number of shipping lines passing from 

port i to port j (Hu et al. 2009). Then, another important metric is deduced, called node strength. Node 

strength is defined as the total weight of adjacent connections of a node. The strength distribution is a 

characteristic of a node. It is also divided into in-strength 𝑠𝑖𝑛(𝑖), out-strength 𝑠𝑜𝑢𝑡(𝑖), and all-strength 

𝑠𝑎𝑙𝑙(𝑖), in our network. 

                  𝑠𝑖𝑛(𝑖) = ∑ 𝑤𝑗𝑖𝑗≠𝑖 , 𝑠𝑜𝑢𝑡(𝑖) = ∑ 𝑤𝑖𝑗𝑗≠𝑖 , 𝑠𝑎𝑙𝑙(𝑖) = ∑ (𝑤𝑖𝑗𝑗≠𝑖 +𝑤𝑗𝑖)             (2) 

Finally, the investigated network contains 54 nodes and 132 directed and weighted edges. The network 

visualization is shown in Figure 2. The size of the edges reflects the weights of the associated links.     

 

Figure 2.Visualization of network  

                                                             
* The specific data on cargo throughput in ports and routes is not publically available with respect to the Maersk 

line. However, it can be easily incorporated into the weighting analysis when it becomes available, hence having 

no significant effect on the demonstration of the feasibility of the proposed framework in the paper. 
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4. Analysis on network topology features 

4.1 Degree metrics and their distributions 

 

The above Figure 2 only shows the network topology. It is necessary to use statistical methods to further 

investigate the feature of the network topology. In statistics, the topology structure of a network can be 

analyzed by distribution functions. The spread in the number of edges of a node, i.e., node degree, is 

characterized by a distribution function P(k), which describes the probability that a random selected node i 

has exactly ki edges. Emergence of a power-law in the degree distribution P(k)~k-γ in complex networks 

is an interesting self-organized phenomenon in complex systems. Such a network is called scale-free 

network. In this section, the degree distributions of the 54 nodes in Table 1 are analyzed using Eq. (1). The 

out-degree, in-degree and all-degree of each port are calculated and presented in Figure 3. 

 

Figure 3. Out-degree, in-degree and all-degree according to each port 

 

The cumulative degree distribution function P(k) of in-degree and out-degree (Newman, 2003) are 

calculated and presented in Figure 4, respectively. In order to investigate the topology structure feature of 

the network, the power-law fitting is carried out in a log-log coordinate. 

 

 

Figure 4. In-degree and out-degree distributions in a log-log coordinate 
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In Figure 4, the left subfigure presents the power-law fitting curve of the in-degree distribution, which is 

p(kin)=0.453a*kin
-1.269b, a=0.453, b=-1.269, with R-square as 0.9739, and adjusted R-square as 0.9702 in a 

normal coordinate. The right subfigure describes the power-law fitting curve of the out-degree distribution 

in a normal coordinate. The power-law fitting curve is p(kout)= 0.4293*kout
-1.216b, a=0.4293, b=-1.216, with 

R-square as 0.9312 and adjusted R-square as 0.925. Similarly, the power-law fitting curve of the all-degree 

distribution is obtained and shown in Figure 5, in which the power-law fitting curve of all-degree 

distribution is p(k)= 1.404*k-1.838 with R-square as 0.9586 and adjusted R-square as 0.9552. 

 

Figure 5. Degree distribution of a non-directed network in a log-log coordinate 

 

Consequently, the power-law fitting curves of the in-degree, out-degree and all-degree distributions, 

tending to follow a power law-like distribution, imply the existence of several hub ports in the investigated 

network, which occupy a majority of shipping routes.  

4.2 Node strength metrics and their distributions 

The in-strength, out-strength and all-strength values of each port are calculated using Eq. (2) and shown in 

Figure 6. 

 

Figure 6. In-strength, out-strength and all-strength values of each port 

 

The cumulative node strength distribution functions P(s) of in-strength and out-strength are presented in 
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Figure 7. In order to investigate the structure feature of the network, the power-law fitting is carried out in 

a log-log coordinate. 

 

 

Figure 7. In-strength and out-strength distributions in a log-log coordinate. 

 

In Figure 7, the left subfigure presents the power-law fitting curve of the in-strength distribution is p(sin)= 

1.35*sin
-2.021 with R-square as 0.9021 and adjusted R-square as 0.8963. The right subfigure describes the 

power-law fitting curve of the out-strength distribution is p(sout)= 0.8259*sout
-1.583 with R-square as 0.8613 

and adjusted R-square as 0.8531. Similarly, the power-law fitting curve of the all-strength distribution is 

obtained and shown in Figure 8. The part of the distribution exhibits a power law-like degree distribution. 

 

 

Figure 8. Strength distribution of non-directed network in a log-log coordinate. 

 

In Figure 8, the power-law fitting curve of the all-degree distribution is p(k)= 2.79*k-2.02 with R-square 

as 0.7511 and adjusted R-square as 0.744.  

It is clear that any of the in-strength, the out-strength and all-strength distributions follows a power law-

like distribution. Such a result implies that several hub ports connect with the majority of the shipping lines 

in the network, and the rest ports associate with very few lines. Therefore, from the node strength 

perspective, the investigated network can be regarded as scale-free and heterogeneous. 

If random attacks occur on a heterogeneous network of ports, it is less likely to happen on the hub ports 

and will therefore not have a huge impact on the structure and function of the whole system. However, once 

failures occur on any of the hub ports, the impact would spread quickly throughout the whole network.  
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5 Network robustness 

Network robustness denotes the capacity to resist the effect of a random or selected removal of nodes or 

edges. From the definition, it can be seen that network robustness could be analyzed from two perspectives 

of random failures of and deliberate attacks to ports.  

From the above node degree and strength analysis, the investigated network is obviously heterogeneous. 

In general, a heterogeneous network has stronger robustness against random failures but weaker robustness 

against deliberate attacks, given that deliberate attacks target more on highly connected nodes (Barabási et 

al. 1999, Albert et al. 2000). To measure the network performance with more precision, some metrics are 

proposed based on the network connectivity, such as average shortest path length (Albert et al. 2000), 

network efficiency (Latora et al.2001), and largest cluster size (Barabási et al. 1999, Albert et al. 2000). 

Hence, in this section, we investigate the network robustness by two measures of network performance 

which are global network efficiency E and local efficiency clustering coefficient C (Latora et al. 2001). 

5.1 Global network efficiency 

Latora et al. (2001) have introduced the concept of efficiency of a network, which measures how efficiently 

the information is exchanged over the network. In general, the efficiency of a network relates to the shortest 

distance of each pair of nodes, because information spreads rapidly along a network with a small shortest 

path length (Latora et al. 2003, Wang et al. 2006). 

The efficiency 𝜀𝑖 in the communication between node i and j is inversely proportional to the shortest 

path: 𝜀𝑖 =
1

𝑙𝑖𝑗
, ∀𝑖, 𝑗. The efficiency E of a network with n nodes can be defined as (Latora et al. 2001, 

Ducruet et al. 2012): 

                           𝐸(𝐺) =
∑ 𝜀𝑖𝑖≠𝑗∈𝐺 

𝑛(𝑛−1)
=

∑
1

𝑙𝑖𝑗
𝑖≠𝑗∈𝐺  

𝑛(𝑛−1)
                          (3) 

where lij is the shortest path length between node i and j. The maximum value E reaches to 1 when the 

network is fully connected, and the minimum value decreases to 0 when all nodes are isolated (𝐸 ∈ [0,1]). 

In our analytical process, nodes are separated from the network by two strategies which are the random 

failures (i.e. random removal) and deliberate attacks (i.e. selected removal). Using the random failure 

strategy, the nodes are removed randomly, while under the deliberate attack strategy the nodes are removed 

in order from the highest to the lowest degrees. The corresponding dynamics of the network efficiency E 

against the aggregated ration of the removal nodes f are calculated using Eq. (3) and shown in Figure 9. 
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Figure 9. Dynamics of the network efficiency E against the ratio f of the removed nodes. 

 

 Figure 9 shows that, as nodes are separated from the network, deliberate attacks result in a remarkable 

drop, and the network efficiency descends to 0 quickly (when about 50% nodes are separated). By contrast, 

random failures cause a relatively small drop. The efficiency E has a sharp drop when f reaches 0.15, which 

indicates that a key node of high influence (i.e. connectivity) on the network efficiency is removed by the 

random selection strategy. This phenomenon suggests that the maritime transport network of interest in this 

paper is more vulnerable to deliberate attacks than random failures with regard to the network efficiency. 

5.2 Local efficiency 

Clustering coefficient is used to act as a proxy of local efficiency hereby. The clustering coefficient is an 

important concept which reflects transitivity at a local level in a complex network. Watts and Strogatz (1998) 

proposed so-called clustering coefficient Ci to measure local cohesiveness of the network in the 

neighborhood of the node i. The neighbors of a node refer to all nodes linking to the node directly. First of 

all, a quantity Ci, the local clustering coefficient of node i, is defined as: 

𝐶𝑖 =
Number of edges in 𝐺𝑖

maximum possible number of edges in 𝐺𝑖
=

Nubmer of edges in 𝐺𝑖

𝑘𝑖(𝑘𝑖 − 1)/2
 

where Gi and ki are the sub-graph of neighbors and the number of neighbors of node i, respectively. The 

clustering coefficient C(G) of graph G is defined as the average of Ci over all nodes. 

                                  𝐶(𝐺) =
1

𝑛
∑ 𝐶𝑖𝑖∈𝐺                                   (4) 

The dynamics of the clustering coefficient C of the investigated network are calculated using Eq. (4) and 

presented in Figure 10. 
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Figure 10. Dynamics of the clustering coefficient C against the ratio f of the removed nodes. 

 

From the above Figure 10, when ports are separated from the network, deliberate attacks result in 

remarkable drops, and the network clustering coefficient descends to 0 quickly (when about 25% nodes are 

separated); in contrast, random failures cause relatively small drops, which indicates that the maritime 

transport is more robust when facing random failures compared to deliberate attacks with regard to the 

clustering coefficient. 

6 Identification of important ports 

Identification of important nodes presents the most practical purpose of this research for the analysis of 

maritime network vulnerability. It is carried out by both a multi-centrality model and a robustness analysis 

model. By incorporating a robustness analysis model into the identification of important nodes can 

complement the results by using a classical multi-centrality model only. Therefore, in practice it can provide 

more insights for a rational decision making.  

6.1 Identification by centrality 

Degree centrality 

First, we identify vulnerable ports according to node degrees. From Table 2 we can see that, except port 

NO.44, other high-degree ports have no significant differences from each other. However, port NO.44 is 

Suez Canal container terminal (SCCT), which presents the gate between Europe and Asia, and obviously 

the analysis result verifies its importance. Other high degree ports are NO.42 (Shanghai with a high out-

degree), NO.43 (Singapore with a high out-degree), NO.52 (Yantian with a high in-degree), NO.45 

(Tanjungpelepas with both high in-degree and out-degree), and NO.40 (Rotterdam with a high in-degree) 

with specific sequences according to different degrees. 

Secondly, we investigate the strength of the ports. The top 5 ports are NO.44 (SCCT), NO.42 (Shanghai), 

NO.52 (Yantian), NO.33 (Ningbo), NO.45 (Tanjungpelepas). Ningbo replaces Singapore, which means that 

more shipping lines connect with Ningbo. 
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Table 2. Top 5 high degree ports 

 

Sorted by out-degree Sorted by in-degree Sorted by all-degree 

Port index(Name) Out-degree Port index(Name) In-degree Port index(Name) All-degree 

44(SCCT)) 13 44(SCCT) 9 44(SCCT) 15 

42(Shanghai) 6 52(Yantian) 8 52(Yantian) 10 

43(Singapore) 6 40(Rotterdam) 7 43(Singapore) 9 

52(Yantian) 5 45(Tanjung pelepas) 6 45(Tanjung pelepas) 9 

45(Tanjung pelepas) 5 42(Shanghai) 5 42(Shanghai) 8 

 

Betweenness centrality 

We conduct the analysis on node betweenness. From Table 3 it can be seen that port NO.36 (Port Said) is 

an unexpected key node in the network, and other key nodes are kept in similar places to those obtained by 

the above methods. 

Table 3. Top 4 ports based on betweenness centrality 

 

Index(Name) Node betweenness 

44(SCCT) 1860.15 

45(Tanjung pelepas) 913.667 

36(Port Said) 679 

52(Yantian) 628.85 

 

Closeness centrality 

The findings from closeness analysis are presented in Figure 11. Top 4 ports are listed in Table 4. NO.13 

(Felixstowe), NO.35 (Port Klang) are identified due to their high out-closeness. 

 

 
Figure 11. Closeness analysis 

 

Table 4. Top 4 ports in terms of closeness 

 

Sorted by incloseness Sorted by outcloseness 

Port index(Name) Incloseness Port index(Name) Outcloseness 
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44(SCCT) 35.57 44(SCCT) 42.4 

45(Tanjung pelepas) 33.333 45(Tanjung pelepas) 34.194 

52(Yantian) 30.636 13(Felixstowe) 33.544 

36(Said) 30.114 35(Klang) 33.333 

 

6.2 Multi-centrality model based on the Borda Count Method 

In the past studies, single centrality is often used to mark the importance of ports (Xu et al. 2007; Hu et al. 

2009; Laxe et al. 2012; Ducruet et al. 2012). However, single centrality provides partial information about 

nodes and cannot reflect the whole profile. In order to aggregate the information from different centrality 

measures and rank the nodes with respect to their overall role in the network, parametric approaches such 

as analytical hierarchy process (Bian et al., 2017), technique for order performance by similarity to ideal 

solution (Hu et al., 2016), fuzzy logic (Parand et al., 2016), and non-parametric ones like ordered weighted 

averaging (Hernández et al. 2016, Rocco et al. 2016) are used to assign a different weight to each measure. 

However, these methods requires to subjectively evaluate the relative importance of the selected attributes. 

It sometimes makes decision makers to assign more importance to some attributes over the others, which 

often causes subjective bias. More importantly, it constrains the presentation of each combined measure to 

be uniformed. To avoid the subjective bias caused by decision maker preferences, a non-parametric method 

based on partial order set (Rocco et al., 2014) was introduced to aggregate different topological measures 

to rank the nodes in a network. Furthermore, voting aggregation methods like the Borda Count method 

(Zwicker, 1991,) and Copeland's Score method (Baroud et al. 2014), cutting down individual influence on 

the final result by electing a candidate with the broadest acceptance from all the voters, are often considered 

as a consensus-based approach rather than a majoritarian one. The principles of two methods are similar, 

while the calculation process of the Borda Count is simpler than that of Copeland's Score. The Borda Count 

method is used in this paper, and it is a voting method in which voters rank candidates in order of preference. 

Each candidate is given a certain number of points corresponding to the position in which the candidate is 

ranked by each voter. The candidate with the most points is the winner. It presents a rational solution in 

combining different measures from multi-centrality analysis as evidenced from its applications and the 

associated implications in recent studies (e.g. Alipour et al., 2014). In our case, all ports are the candidates, 

and the above centrality measures are the voters. The Borda Count method is a voting method in which 

voters rank candidates in order of preference. Each candidate is given a certain number of points 

corresponding to the position in which the candidate is ranked by each voter. The candidate with the most 

points is the winner. In our case, all ports are the candidates, and the above centrality measures are the 

voters.  

  In this paper, a model containing degree centrality, node strength centrality, betweenness centrality and 

closeness centrality is developed based on the Borda Count method. For example, there are 54 ports totally 

in this case, the all-degree of node No.44 ranks the first, so it gets 54 points, and the strength of this node 

also ranks the first, and it gets 54 points again. The total score of No.44 is 270. All ports are calculated and 

ranked and the result is shown in Table 5.  

 

Table 5. Ranking of all indexed ports in terms of their aggregated centrality measures 
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Ranking Index Name Ranking Index Name Ranking Index Name 

1 44 SCCT 19 46 Trieste 37 48 Vung tao 

2 45 Tanjung pelepas 20 41 Salalah 38 34 Odessa 

3 52 Yantian 21 11 Constantza 39 27 La spezia 

4 40 Rotterdam 22 2 Algeciras 40 30 Nagoya 

5 36 Said 23 17 Gothenburg 41 10 Colombo 

6 42 Shanghai 24 50 Xiamen 42 20 Ilyichevsk 

7 43 Singapore  25 3 Ambarli 43 21 Izmit korfezi 

8 37 Tangiers 26 28 Le havre 44 39 Rijeka 

9 33 Ningbo 27 18 Hamburg 45 6 Beirut 

10 13 Felixstowe 28 54 Zeebrugge 46 24 Kobe 

11 35 Port Klang 29 23 Jeddah 47 14 Fos sur mer 

12 29 Marsaxlokk 30 26 Kwangyang 48 16 Genoa 

13 8 Busan 31 51 Xingang 49 5 Barcelona 

14 7 Bremerhaven 32 32 Nansha new 

port 

50 25 Koper 

15 38 Qingdao 33 12 Dalian 51 15 Gdansk 

16 31 Nansha 34 49 Wilhelmsha

ven 

52 4 Antwerp 

17 9 Chiwan 35 53 Yokohama 53 22 Jebel all 

18 19 Hong Kong 36 47 Valencia 54 1 Aarhus 

6.3 Robustness analysis model based on relative drop of network efficiency 

Compared with the multi-centrality model in Section 6.2, the robustness analysis model based on relative 

drops of network efficiency aids to identify important nodes of network from a different perspective. The 

main idea of the model is to identify key ports by comparing the size of efficiency drops resulted from 

removing each of them from the network. The robustness analysis model proceeds as follows.  

 First, compute the aggregate efficiency; denoted by 𝐸 of the full network with 𝑛 nodes by using Eq 

(3). In this study, n = 54. 

 Secondly, remove the jth (𝑗 = 1, … , 𝑛) node from the network and figure out the remaining efficiency, 

denoted by 𝐸𝑗, of the new network with the remained 𝑛 − 1 nodes.  

 Thirdly, calculate the margin of 𝐸𝑗 (𝑗 = 1, … , 𝑛)  against 𝐸, denoted by 𝑉𝐸𝑗, using the equation of 

𝑉𝐸𝑗 = 𝐸 − 𝐸𝑗. 

 Finally, sort the set of  𝑉𝐸𝑗  (𝑗 = 1, … , 𝑛)  in an ascending order. The higher the rank of 𝑉𝐸𝑗, the more 

important the jth node.  

By employing the above process, a set of network efficiency margins denoted by {𝑉𝐸𝑗 , 𝑗 = 1, … , 54}  are 

calculated and shown in Figure 12. 
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Figure 12. Network efficiency margins of separated nodes  

 

The top 10 ports of the highest drops are listed in Table 6. In accordance with the results, the above two 

models (i.e. multiple centrality and robustness analysis) generate two sets of important ports of a large 

similarity, which casts more confidence on the findings. The inconsistency due to the different mechanisms 

(as well as perspectives) of the two methods suggests that the combination of two models (i.e. Tables 5 and 

6) can provide more insights for rational decision on robustness and resilience of maritime supply chains. 

It helps avoid ignorance of any hidden important ports if and when only the traditional centrality based 

method is employed in vulnerability analysis of complex networks. The supportive evidence and details on 

the insights for rational decision are given in Section 7. 

 

Table 6. Top 10 high drop ports 

 

Index Name 

44 SCCT 

45 Tanjung pelepas 

36 Port Said 

29 Marsaxlokk 

52 Yantian 

7 Bremerhaven 

46 Trieste 

43 Singapore 

13 Felixstowe 

3 Ambarli 

 

7 Research Implications and Discussions 

It should be well noted that by using the two models, i.e., multi-centrality model and robustness analysis 

model, this study can provide more insightful analysis, including: 

(1) Cross reference. The above two different approaches focus on different perspectives of node importance. 

The multi-centrality model focuses on the position of node and relations with other nodes from a local 
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node/component level. Unlike that, the method based on relative drop of network efficiency focuses on the 

impact of a given node on overall network connectivity from a global network perspective. The results of 

these two models can be cross-referenced with each other, and thus make the conclusion more reliable and 

convincible. For example, in accordance with the results, two sets of important ports identified by the two 

models have a large similarity. Six ports are commonly presented in the two lists (i.e. tables 5 and 6); 

furthermore, their ordering is at large consistent. Both SCCT and Tanjung pelepas are ranked 1st and 2nd; 

Yantian is ranked 3rd and 5th, Port Said 5th and 3rd, Singapore 7th and 8th and Felixstowe 10th and 9th, when 

using the centrality and robustness analysis methods respectively.   

(2) Contrast analysis. By comparing the differences of the results generated by the two models, drawbacks 

of each individual model could be overcome and more valuable findings could be obtained. As far as the 

different port ranking orders are concerned, Marsaxlokk is ranked 4th by the robustness model while 12th 

by the multi-centrality model. From the topological structure in Figure 1, we can see that the port 

Marsaxlokk is the only link to port Valencia, Fossurmer and Barcelona, so deleting Marsaxlokk will lead 

to the separation of the three ports from other ports. Port Bremerhaven is similar to Marsaxlokk. Therefore, 

their importance and impact from a network perspective are evaluated higher, indicating that their roles in 

the vulnerability analysis of maritime supply chains are underestimated, if only classical centrality measures 

are used. Obviously, the hybrid of the two models generates more insightful findings. It means Port 

Marsxlokk and Port Bremerhaven should also be considered as vulnerable nodes for accident prevention. 

(3) Managerial implications for stakeholders. The proposed analysis framework could contribute to 

generating valuable managerial implications for the stakeholders such as shipping lines, ports, and port 

states to ensure the robustness of the investigated maritime supply chains. For example, the results of our 

empirical study based on the data of the Maersk Line is helpful to identify key ports with respect to the 

vulnerability of its EU-Asia maritime network. The empirical can easily be expanded to other shipping 

lines. 

(4) It should also be noted that this research is carried out based on route data, but the actual strategic 

decision making can be made by including more detailed data, e.g., cargo throughput. This is one of the 

future research directions. 

(5) Another possible research direction is to assign weights to the outcomes from the two methods for a 

final synthesized ranking order. The Borda Count method can be applied again by incorporating a 

coefficient e (e = [0, 1]). For instance, when e equals to 0.5, both methods have the same influence to the 

final ranking. When e equals to 0, the final ranking refers to the result from the multi-centrality method, 

indicating the vulnerability focuses more on the node level. When e equals to 1, the final ranking is decided 

by the result from the robustness analysis method, revealing that the vulnerability is conducted purely from 

a global network perspective.      

8. Conclusion 

There are scanty studies on vulnerability analysis of maritime supply chains from a complex network 

perspective in the current literature. Our work is a study of multi-disciplinary nature incorporating science 

relating to complex network, vulnerability analysis and maritime transportation operations. The findings 

reveal that the proposed methodology is capable of providing insights on the identification of vulnerability 

in maritime supply chains.   

Based on related works, different concepts of vulnerability within the context of maritime networks are 

discussed and analyzed and a four-step research framework for study of maritime network vulnerability is 
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presented. Then, a real case of the Maersk shipping line on its Asia-Europe routes is studied to demonstrate 

the feasibility of the framework.  

Main contributions of this paper can be concluded as follows. First, from the data source, basic network 

topology features are analyzed. All degree and strength distributions exhibit a power law-like distribution. 

As a result, it is found that the Asia-Europe routes of the Maersk shipping line is not homogeneous, 

indicating that a few hub ports occupy major shipping lines. 

Secondly, network robustness is tested and analyzed in different contexts in terms of random failures and 

deliberate attacks. As ports are separated from the network, deliberate attacks result in remarkable drops, 

and the network efficiency and clustering coefficient descend to 0 quickly. In contrast, random failures 

cause relatively smaller drops. The network having stronger robustness against random failures, appears to 

be more vulnerable to deliberate attacks on highly connected nodes. 

Thirdly, given that use of single centrality is arguable to provide sufficient information about 

vulnerability analysis of nodes for rational decision making, two methods are simultaneously conducted to 

identify vulnerable ports of maritime supply chains. One is the direct way through a multi-centrality model 

hybridizing degree centrality, node strength centrality, betweenness centrality and closeness centrality 

based on the Borda Count Method, while the other is the indirect way via a robustness analysis model. The 

results from the two models show that vulnerable nodes identified by different ways are consistent to a 

large extent. However the inconsistency of port ranking in terms of their vulnerability also triggers the 

concern that using a single method could render the ignorance of vulnerable ports when seeking solutions 

to ensure the resilience of maritime supply chains. The combination of two models will therefore be able 

to provide a more comprehensive evaluation result for aiding rational decisions. 

In future research, the traffic volume of cargo throughput should be taken into account properly. In 

addition, the prerequisite for the research of this kind is a stable topology of the network in a fixed time 

window, and the dimensions of time can be investigated to reveal their impacts to the vulnerability of 

maritime supply chains in a dynamic manner in future work. 
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