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Abstract

The need for cost effective operation and maintenance (O&M) strategies in wind
farms has risen significantly with the growing wind energy sector. In order to de-
crease costs, current practice in wind farm O&M is switching from corrective and
preventive strategies to rather predictive ones. Anticipating wind turbine (WT)
failures requires sophisticated models to understand the complex WT component
degradation processes and to facilitate maintenance decision making. Environ-
mental conditions and their impact on WT reliability play a significant role in
these processes and need to be investigated profoundly. This paper is presenting
a framework to assess and correlate weather conditions and their effects on WT
component failures. Two approaches, using (a) supervised and (b) unsupervised
data mining techniques are applied to pre-process the weather and failure data. An
apriori rule mining algorithm is employed subsequently, in order to obtain logical
interconnections between the failure occurrences and the environmental data, for
both approaches. The framework is tested using a large historical failure database
of modern wind turbines. The results show the relation between environmental
parameters such as relative humidity, ambient temperature, wind speed and the
failures of five major WT components: gearbox, generator, frequency converter,
pitch and yaw system. Additionally, the performance of each technique, associat-
ing weather conditions and WT component failures, is assessed.

Keywords: wind turbine, failure, weather, big data, association rule mining,
k-means clustering, data mining, machine learning, operation & maintenance
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1. Introduction

Throughout the past years the wind energy sector has been growing rapidly.
New wind turbine (WT) technologies and higher installed capacity are resulting
in increased cost and complexity of operation and maintenance (O&M) tasks.
Current maintenance strategies are mainly focusing on corrective and preventive
actions, yet, operators could benefit extremely from applying predictive mainte-
nance approaches.

This issue applies to many industrial fields and the solutions proposed in previ-
ous research are mainly based on the system age. For this purpose, e.g. Martorell
et al. [1] studied age-dependent reliability models such as the proportional age set
back (PAS) and proportional age reduction (PAR) frameworks. Both of them take
into account maintenance efficiency, environmental and operational conditions as
generic imperfect maintenance functions. In their study, three different environ-
mental setups are considered indicating good, normal and bad conditions, which
were found to highly influence the age and reliability functions. In Martorell et
al. [2] these maintenance models have been extended by including the systems
failure causes. It was shown that failures can be related to certain root causes,
which need to be taken into consideration. Carlos et al. [3] applied the PAS mod-
els in wind energy, with the aim of minimizing the O&M cost of wind farms while
maximising their revenue considering the maintenance frequency as decision vari-
able. However, they neglected operational and environmental conditions in the
maintenance scheduling framework. A similar situation can be seen also for age
reduction models. Ding et al. [4] studied an opportunistic maintenance approach
for wind turbines by using an imperfect maintenance model, which depends on
an age reduction ratio. However, they also were not including the environmen-
tal conditions. In general, environmental conditions are being neglected because
of their complexity although having a very high impact on maintenance actions,
as demonstrated by XiaoFei et al. [5]. They model the effect of system age and
environmental conditions on the hazard rate function by introducing a stochastic
process with two states, indicating normal and severe environment. They con-
clude that the system reliability degrades more rapidly when exposed to severe
environmental conditions. Furthermore, the history of the environmental events
is said to affect the hazard rate. Albeit, their study did not include the specific
meteorological parameters themselves.

Thus, previous research shows that for developing effective maintenance de-
cision models, a deep understanding of the component degradation processes in-
cluding the highly variable environmental conditions is required. Complex en-
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vironmental and operational conditions must be defined and studied in detail to
generate realistic ageing and reliability functions. Especially for systems that are
interacting strongly with their surroundings. This paper shows how to comple-
ment these models by associating failure information with significant environmen-
tal variables by providing a tool that enables the interpretation of failures based
on dynamic meteorological conditions. With this, the presented framework aims
at supplementing existing maintenance and reliability models and enhancing the
outcome of maintenance decision models. The framework will be applied to wind
energy but can easily be adapted for other areas.

1.1. Background in Wind Energy
As stated in Kuik et al. [6], environmental conditions and their complicated

combinations still have to be fully understood and methodologies have to be de-
veloped in order to analyse and correlate them to WT failures. Especially short
term environmental variations, such as for example high-speed wind gusts, can
cause a severe impact on components and need to be analysed extensively. This
knowledge is essential for further use in WT reliability models and complex main-
tenance decision making tools.
Much research effort has been dedicated to identifying weather dependent failure
rates and downtimes of WT components. Hahn et al. [7] were the first to carry out
an extensive analysis on the effects of weather on WT reliability. They showed
that with rising average daily wind speed the failure rates of certain components
increased as well. Tavner et al. [8] analysed the effect of monthly averaged wind
speed conditions on component failure rates, using the Danish reliability database
WindStats. Assuming the monthly mean wind speed across Denmark to be rep-
resentative for the considered wind farms, they concluded that there is an annual
periodicity in failure occurrences due to seasonal variation in weather conditions.
Faulstich et al. [9] carried out an analysis on the effects of wind speed on WT
downtimes, taking into account energy- and time-based availability.
Along with high wind speeds, literature also frequently addresses temperature
and humidity as critical parameters. Especially humidity can cause corrosion and
other highly dangerous degradation processes. Costa at al. [10] stated that corre-
lating relative humidity and failures using classical analysis approaches, such as
the analysis of variance (ANOVA) technique, is one of the most challenging tasks.
Tavner et al. [11] cross-correlated component failures with average monthly max-
imum and mean wind speed, maximum and minimum air temperature and average
daily mean relative humidity. Their study refers to three specific wind farms using
yearly and monthly mean weather conditions taken from closely located meteo-
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rological stations. However, neither the actual conditions at the time of failure
occurrence nor short-time weather events, e.g. high-speed gusts, were considered.
Also, only old wind turbine technologies with a rated power of 300 kW were
analysed. They suggested that future studies should ensure to include modern
WTs and short-time weather variations, along with details on maintenance strate-
gies. Wilkinson et al. [12] showed the impact of environmental conditions on WT
reliability using an availability database and WT downtimes. The environmen-
tal data were taken from the Modern-Era Retrospective Analysis for Research and
Applications (MERRA) database and the results showed that there is a strong rela-
tionship between wind speed, temperature and high downtime. Wilson et al. [13]
modelled the relationship between failures and weather conditions using Markov
Chains, based on data for one wind farm over a relatively short period of time.
Recently, the possibilities of using Supervisory Control and Data Acquisition
(SCADA) data for these purposes have been discovered. SCADA systems are
among the standard equipment of modern wind turbines and can provide a huge
amount of information on many operational WT parameters, conditions of its
components, as well as external weather parameters. Such extensive data require
sophisticated analysis techniques and high computational effort. Thus, a number
of research projects have been trying to apply data mining and machine learning
techniques using WT SCADA data. For example Kusiak et al. [14] used apriori
rule data mining to find frequent item sets in SCADA data in order to identify
WT pitch system faults. Machine learning can reveal very interesting results on
component degradation, however, they strongly depend on the availability of a
considerable amount of input data.

Previous studies evaluating weather effects on component failures are mostly
limited to a very low number of analysed turbines and/or out-dated WT tech-
nologies. The environmental data considered are mostly comprised of yearly or
monthly average values obtained at close-by located weather stations, and short-
term changes in these parameters are not taken into account. However, the tur-
bines’ SCADA systems provide a rich data source and can give a realistic repre-
sentation of the conditions at the WTs. In an earlier study by Reder et al. [15],
the wind speed effects on WT component reliability have been assessed using
10-minute mean SCADA data taken from failed WTs. It has been found, that
short term wind changes need to be analysed further, in order to obtain a clear
image of the conditions leading to component failures. Also, modern WTs and
further environmental parameters should be taken into account. Hence, there is a
significant need for extending previous studies, such as [12] and [11]. Certainly,
failures are often caused by cumulative stress over a large period of time. How-
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ever, especially short-time weather events including high-speed gusts and ambient
temperature changes, can cause the final impact on a component and lead to its
failure and are an important factor in weather dependent failure analysis.
Considering the fact that this will be based on a significantly higher amount of
data than previous analyses, methodologies capable of handling big data and de-
riving meaningful results have to be developed. Thus, in this study an effective
framework for processing and correlating the different inputs is introduced. This
applied to a historical failure database of modern wind turbines located in Spain
as well as environmental data taken from the affected wind turbines’ SCADA sys-
tem and weather stations close to the wind farm. Five components are considered:
gearbox, generator, pitch system, yaw system and frequency converter. These
were chosen according to the results of previous studies, e.g. Reder et al. [16],
where the components with the highest share of the total WT failure rates and
downtime were identified.

A summary of the relevant literature and the problem statement were presented
in this section. The remainder of this paper is structured as follows. The input
data for a case study, to which the framework will be applied to, are described
in Section 2, comparing the available operational years, sample sizes and WT
technology types to previous studies. The established framework including the
data pre-processing and the methodology behind the supervised and unsupervised
learning algorithms are described in Section 3. Here, also an example for the
calculation of the evaluation metrics for interpreting the results is given. The
results of applying the established framework to the case study are presented in
Section 4. Conclusions are given in Section 5, where the key findings and the
possible application areas are emphasized.

2. Case Study - Data Set Description

The framework was tested and verified using the data sets presented in this
section. These are comprised of historical failure data, SCADA data, historical
weather data and expert judgements.

2.1. Historical Failure Data:
As shown in Table 1, the historical failure database contains a significantly

higher number of turbines compared to previous studies. It represents modern
three bladed, pitch regulated WTs with rated power between 660 kW and 2000 kW,
produced by the same WT manufacturer. All turbines are equipped with a dou-
bly fed induction generator (DFIG). In total 146 failure events were considered,
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consisting of around 30 failures for each of the five components. The failure data
contains the exact time and duration of the failures (downtime) for each turbine.
Failures are defined as WT stops due to component faults that require interven-
tions such as repair or replacement, except inspections and cleaning activities.

Table 1: Historical Failure Data in this study compared to previous studies with similar objectives

Wilson et al. [13] Tavner et al. [11] This study
Number of WTs 140 32 448
Total WT Years 381.7 130 972
WT Technology Variable speed, Enercon 47 WTs with 0.66 MW,

pitch regulated 2.3 MW E32/33 (300 kW) 289 WTs with 0.85 MW,
112 WTs with 2 MW

In failure analyses and reliability modelling the databases are often consider-
ing different turbine technologies separately, as their failure behaviour can differ
substantially. Additionally, even WTs of the same technology behave differently
under the influence of distinct weather conditions. The latter effect has not been
investigated in previous studies, yet.

As the framework presented in this study needs a sufficiently large database in
order to provide meaningful results, it was decided the data set was not going to be
divided into different turbine technology groups. The division was made accord-
ing to the failed component class. When comparing previous studies e.g. [8], [15],
[13] [17] and [18], it can be seen that even though these studies are analysing dif-
ferent turbine technologies, the respective components behave similarly under the
influence of certain weather conditions. At this point it is stressed, that this study
examines different WT technologies made by the same manufacturer. Nonethe-
less, the difference in failure behaviour of different component brands could be
investigated in further studies easily by using the herein presented framework.

2.2. SCADA Data:
The wind speed, the turbine’s power production and the downtimes were taken

directly from the failed WTs’ SCADA system. The values were compared to
the ones collected at close-by turbines, in order to ensure a properly functioning
system. They showed very good correlation.

2.3. Environmental Conditions - NCEP/NCAR Reanalysis data set:
The NCEP/NCAR reanalysis data set [19, 20] is a continuously updated weather

database using observations and numerical weather predictions. It is developed by
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the National Centers for Environmental Prediction (NCEP) and the National Cen-
ter for Atmospheric Research (NCAR). The data can be obtained free of charge
from the National Oceanic and Atmospheric Administration Earth System Re-
search Laboratory of U.S. This served as input for the humidity and temperature at
the given wind farm locations and times of failure occurrences. The downloaded
reanalysis data were compared to real data taken at three different sites and the
results were more than acceptable for the herein used humidity and temperature
ranges (mean error under 3 %).

2.4. Expert Judgement:
The opinion of two big European wind farm operators was consulted in or-

der to define the maintenance strategy and the classification of failure severity
according to its caused WT downtime. The availability of maintenance personnel
has considerable effect on the component repair time.

2.5. Analysed Parameters for the Case Study
The exact times of failure occurrences, the wind speed, relative humidity and

ambient temperature were extracted from the data set, as explained below. Addi-
tionally, the turbine performance is evaluated by considering its power production
and maintenance schedules. The resulting values, labels and clusters for each of
the parameters are discussed in Section 4.

• Wind Speed (WS): The 10-minute mean values for a period of 80 minutes
ahead of failure (WS 80, WS 70, ... , WS 10), and one wind speed measurement
at the time of the failure occurrence (WS atF) were taken from SCADA data.

• Relative Humidity (RH): The hourly values of 10 hours ahead of failure
were included into the analysis and are indicated by RHatF , RH1, RH2, etc.

• Ambient Temperature (T): This includes the monthly mean Tm, maximum
Tmax and minimum temperatures Tmin for the 30 days ahead of failure, as
well as the temperature at the exact time of failure TatF .

• Power Production (P): The power production at failure PatF (last 10-minute
mean value before failure occurrence) and the power production before fail-
ure PbF (the previous 10-minute measurement) are also taken from the tur-
bines’ SCADA data. These values will be presented in relation to the mea-
sured monthly mean power curve. In other words, as the manufacturers
power curves are not site and season specific, a measured monthly mean
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representation of power versus wind speed is taken as reference to display
the turbine’s relative performance. Thus, the observed SCADA value Po

will be divided by the mean monthly value Pm at the same wind speed at the
specific site within the month of failure occurrence. This can be seen as a
measure of efficiency of the turbines’ power production: Pe = Po / Pm with
values between 0 and 1. Nonetheless, values slightly below 0 or above 1
can occur, as the reference power curve is only representing a mean value.
Hence, values of Po/Pm ≤ 0 are set to 0 and values Po/Pm ≥ 1 are used as
1. Another approach to achieve site specific power curves could be accom-
plished by calibrating the manufacturer power curves to different control
systems or site conditions. This was not done in the present study, as the
information required for this process was not available, but could be subject
to further studies. Furthermore, it has to be mentioned that power curves
can change or degrade over the life-time of the wind turbine and assum-
ing a constant power curve over the operational life of a WT is not always
valid. However, as in the present study the average observation period is
three years, the monthly mean power curve is assumed to be constant.

• Downtime / Severity: The downtime per failure is specified in the histori-
cal failure data and cross-checked with the SCADA data. It indicates the
severity of each failure in terms of WT (un-)availability.

• Maintenance Strategy: indicates the availability of the maintenance person-
nel, which directly affects the repair time. It was classified after consult-
ing expert judgement on O&M strategies; and the typical working hours of
close-by located personnel, where the day shift stands for 8:00 to 18:00 and
the night shift covers the remaining hours.

3. Methodology

A framework has been developed, capable of handling big environmental and
historical failure data in order to quantify the impact of meteorological conditions
on WT component failures. As visualised in Figure 1, it is divided into four steps:
(1) data pre-processing, (2) data processing, (3) unsupervised rule mining and fi-
nally (4) ranking and interpretation of the rules. In the first step, the raw data are
pre-processed and put into a usable form. The second step includes two distinct
data mining techniques: (a) unsupervised k-means clustering and (b) supervised
data labelling. Each technique is carried out independently with the same data set
and is expected to influence the results differently. The output of either one of
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them serves as input to the third step. Here, an association rule mining algorithm
- called apriori ruling - is applied. The algorithm interconnects logically the envi-
ronmental parameters and the component failures. The resulting rules, on the one
hand, give an insight on the environmental conditions that have the highest impact
on WT components failures; and, on the other hand, enable to evaluate for which
input parameters which machine learning technique, (a) or (b), is more appropri-
ate. The framework has been developed, so that in future works, parameters can
be upgraded or changed easily.

Figure 1: Visualisation of the developed framework and its sub-processes

3.1. Data Pre-Processing
In this step, the historical failure data were cleaned, in order to ensure that the

indicated failure meets the herein used failure definition (causing a WT stop and
intervention). Thus, remote wind turbine stops without any component failure or
stops related to external factors, such as grid restrictions or annual inspections,
etc. were excluded. Then the failures were assigned to the affected component,
using a so called wind turbine taxonomy. A taxonomy is a component breakdown,
which groups the assemblies in several stages according to their functionality and
physical location. There are several sophisticated WT taxonomies available, such
as the RDS-PP® [21], and the Reliawind taxonomy, e.g. Wilkinson et al. [22]. As
the availability of the commercial taxonomies is restricted, many of the important
players in wind energy, who do not belong to the VGB, have developed their own
internal WT taxonomy.

In this study a recently presented modern WT taxonomy, Reder et al. [16],
has been applied. This taxonomy was developed accounting for both modern and
older WT technologies. It is based on information provided by big European wind
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farm owners and previously presented WT taxonomies, in order to guarantee the
comparability of the analysis to previous and future research projects. Further
advantages of using this taxonomy are discussed in detail by Reder et al. [16].

The environmental parameters, as explained in Section 2, were extracted from
the respective data sources. The analysis is very sensitive to missing values, which
are usually represented computationally in the data as ”not available” numbers, or
NAs. Thus, only wind farms with complete SCADA history for the observation
period were chosen for this analysis. The SCADA data were compared among
closely located WTs to ensure the functionality of the SCADA systems. How-
ever, in the case of missing values, the latter could be imputed using one of the
techniques described by Moritz et al. [23].

3.2. Data Processing
After having classified the failures regarding the WT taxonomy and having

defined which conditions will be taken into account, this information needs to be
processed. The aim of the data processing is to define thresholds for each variable
and its values, in order to provide a suitable input to the apriori ruling process. As
mentioned before, the data processing was carried out for each variable using two
distinct learning based categorization techniques in parallel:

(a) Supervised Labelling

(b) Unsupervised K-Means Clustering

(b1) 1-Dimensional Input

(b2) Multi-Dimensional Input.

Supervised labelling (a) is a manual variable classification process that is ex-
pected to lead to highly biased results, as the classification is based on opinions
and expert judgements, which in most cases are a result of costly experiments
or profound experience in the field. The unsupervised k-means clustering (b) is
a purely data-driven technique carried out with two different input dimensions:
(b1) 1-dimensional input and (b2) multi-dimensional input, as explained in detail
in Section 3.2.2. The unsupervised data mining certainly results in much higher
computational effort, but is expected to provide better results than the supervised
labelling. However, no expert judgements and/or experiments are needed as it is
exclusively based on the input data, reducing the overall effort of this technique.
A detailed description of both techniques is given in the following sub-sections
3.2.1 and 3.2.2 and their performance will be evaluated in Section 7.
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3.2.1. Supervised Labelling
Supervised labelling is used to define thresholds and assign labels to the input

parameters based on expert judgements and findings from literature. This process
is conducted manually and requires profound knowledge about common parame-
ter classification. In this work, for example the wind speed labelling was carried
out using labels according to common literature findings and the typical cut-in and
cut-out wind speeds of WTs. They were divided into calm, low, high and stormy
wind conditions. Another example is the relative humidity (RH). The relative
humidity can be labelled in terms of its resulting corrosiveness, as indicated for
example in Jiang et al. [24], Leygraf et al. [25] and Xiang et al. [26]. Nonetheless,
it has to be mentioned that this only represents the corrosiveness for one certain
type of steel. As a WT system usually consists of many different types of materi-
als, this is not entirely correct. Very costly experiments would be required in order
to quantify the RH in terms of its corrosiveness for the entire system. Nonetheless,
it is considered a good indicator and in the case study the RH will be described
according to the resulting corrosiveness. Five labels, from dry air to highly corro-
sive and precipitation, were used to manually define the thresholds, one for each
hourly value, as explained in Section 2.5. A detailed description of the assigned
labels in the case study can be found in section 4.1. Also, the limitations of this
technique will be discussed.

3.2.2. Unsupervised Clustering
Contrarily to the supervised labelling, the unsupervised clustering does not

need or permit any manual intervention. It defines automatically clusters for each
input parameter depending exclusively on their appearance in the data set. K-
means is one of the most popular and commonly used clustering methods in un-
supervised learning, and will be used in this work. As the outcome of this method
depends on the input data, two input layouts were considered. This has been done
in order to find the optimal way of analysing the correlation of failures and exter-
nal conditions.
Multi-dimensional (Multi-D) input is the standard input format for k-means clus-
tering, taking into account all time steps of the input parameters as one observation
before a specific failure. This is done for each failure separately. This has been
applied in a similar form in several studies, for example by Yildirim et al. [27],
taking into account wind power and coordinates as one multi-dimensional input
to k-means clustering.
One-dimensional (1-D) clustering takes into account all time steps of each of the
parameters in the data set as one dimensional input vector. For example, all wind
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speed values for each considered time step are included in one sequence, not dis-
tinguishing between the failures. This results in a one-dimensional grouping sim-
ilar to the labelling, but without prior knowledge. Contrarily to Multi-D it takes
each data entry as separate variable and allows to analyse them independently.
This is illustrated in Figure 2, giving an example of the wind speed taken from a
specific WT before failure. In this case, for example, the multi-dimensional in-
put gathers all nine wind speed measurements as one observation to represent the
wind conditions before failure. Thus, it is especially handy to analyse the gen-
eral conditions over the observation period. Contrarily, one-dimensional inputs
are representing one attribute, such as wind speed, with 9 observations (each 10
minute step) for all analysed turbines in one array. This can be used to analyse
one of the time steps in more detail. In literature both forms are present, however,
K-means algorithms are mostly used with multi-dimensional input data. The latter
is especially useful for complex databases, but does not enable the analysis of a
single time-step. Thus, in the presented framework, both techniques are included
and their performance will be discussed in Section 4.

Figure 2: Multi-D and 1-D Data Pre-Processing, example for Wind Speed
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A methodology developed by Yildirim et al. [28] using k-means clustering for
apriori ruling in wind power analysis is adapted in this study for analysing the
Multi-D and 1-D inputs. The main process starts with the following steps, which
are carried out subsequently:

1. Determine the Number of Clusters:
Before the actual clustering, the number of desired clusters for each vari-
able has to be defined. This is a common problem for partitioning methods
such as k-means clustering, where k indicates the number of clusters for
which the clustering is carried out. Thus, an algorithm has to be run firstly,
in order to determine the optimal number of clusters for the given data set.
There are around 30 methods and indices to define the optimal number of
clusters, such as for example the elbow technique, silhouette and gap statis-
tic methods. An overview over these techniques is given by Charrad et al.
in [29] including an algorithm based on most of the 30 techniques that is
capable of calculating the optimal grouping for a given data set, by varying
all possible combinations of the number of clusters.

2. K-Means for Clustering:
Throughout the k-means clustering process, the data set is analysed with
the aim of assigning each data point to one specific cluster. The clustering
process consists of two steps that are repeated subsequently until the best
result is obtained:

2.a. Cluster assignment step: After setting up the optimal number of clus-
ters in the previous step, each data point is assigned to one of the
cluster centroids, to which it is located closest.

2.b. Move centroid step: Then, the position of the centroids is moved to
the mean location of all assigned data points.

3.3. Association Rule Mining and Ranking
Association Rule Mining (ARM) is a popular approach to find correlations,

frequent patterns, or interesting relations among variables in data sets. The ARM
algorithm chosen for this study is the apriori ruling algorithm. It uses prior knowl-
edge to generate frequent patterns from the data set containing transactions, see
e.g. Agrawal et al. [30].
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3.3.1. Problem Definition and Terminology of the Association Rule Mining
The problem of association rule mining is defined as: finding all rules that

are succeeding a pre-defined value of support and confidence in a given set of
transactions. Thus, in a given database (set of transactions) the algorithm finds
rules, which predict the occurrence of an item with respect to the occurrence of
other items in one transaction. Further explanation can be found for example in
[31]. For a better understanding the terminology used throughout this study will
be discussed very briefly.

• Group: is indicating all data for one specific parameter, e.g. WS , RH, T ,
Component, etc.

• Item (I): is a member of a group. This can be a measured value, such as
WS 20 = calm and WS 80 = 3; or a failed component, e.g. Gearbox.

• Item Set: is a collection of one or more items. A Frequent Item Set is an item
set, which has a support value higher than the defined minimum support.

• Transaction (t): is a combination of items of different groups. As stated in
Yildirim et al. [28], associations are defined based on the transactions. Each
transaction will generate at least one association rule.

• Association Rule: is an implication of the form Item Set X → Item Set Y

• Data Base (DB): is a set of transactions used as input to the case study,
containing measure values for each time step as well as historical failures.
For example: DB={t1, t2, ..., t146}

• Subset DB (SubDB): Is a part of the whole database. In this study the
subsets are related to all the data recorded for a specific component, e.g.
S ubDBGearbox ⊂ DB or S ubDBGenerator ⊂ DB, etc.

In the following section the metrics, support, confidence and lift will be explained
in more detail.

3.3.2. Process of the Association Rule Mining
The task of association rule mining consists of three main steps: (1) the gen-

eration of item sets, transactions and databases; (2) the counting phase (finding
the combination of all frequent item-sets in the DB); and (3) the filtering phase
(testing and generating the strongest rules among the item-sets). Subsequently
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the final post-processing is carried out to evaluate and bench-mark the generated
rules. The strength of each rule is rated by three metrics: support, confidence and
lift. They are defined as shown in Table 2 for X (an item on the left side of the
rule), Y (an item on the right side of the rule) and the total number of transactions
N. Freq stands for the absolute frequency of appearance. The values of each
metric have to be pre-defined, in order to determine the desired filter criteria for
the strength of the rules.

Table 2: Input metrics and their formulations for the apriori ruling

Metric Value Formula

Support 0.3 supp(X → Y) =
Freq(X→Y)

N = Prob(X ∧ Y)

Confidence 0.5 con f (X → Y) =
supp(X→Y)

supp(X) = Prob(X | Y)

Lift - li f t(Y → X) =
supp(X→Y)

supp(X)supp(Y)

Minimum Rule Length 2 -

The support metric is the primary measure in the evaluation of the rules in this
paper. It can be seen as the frequency of occurrence for each association rule in
relation to the total number of transactions. The logical conjunction AND (∧) is
used to indicate the relation between items. At this point, it has to be underlined
that there is a notation difference between the probability of an association indi-
cating the support as (Prob(Y ∧ X)) and the conditional probability representing
confidence as (Prob(X | Y)). This is explained in detail in [32].
Each rule has one support value, which must be greater than the pre-defined limit.
In this manner the generated rules can be compared based on their support val-
ues. The support indicates the importance of the rule and depending on the input
data, the number of analysed parameters and the desired results. It can hold any
value between 0 and 1. For the verification of the framework with the presented
case study, the minimal support was set to 0.3. This has shown to be the best
compromise between the size of the input data, the number of resulting rules and
the amount of information that can be drawn out of the latter. If two rules have
the same support value, the rule with the higher confidence value will be taken
as more important. Likewise is the application of the lift metrics in case that two
rules have the same support and confidence values; see also Tan et al. [31]. Fur-
thermore, the objective was to use the support metric as the only indicator for the
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strength of the rules. This has several advantages and simplifies the evaluation
process. In order to achieve this, the confidence and the lift of all rules needed
to be equal to 1. With this, these two metrics loose their weight when compar-
ing the rules among each other and the support is the only important comparison
metric. As lift is frequently referred to as ”interestingness”, it indicates the cor-
relation of different rules within a DB. A lift > 1 and lift < 1 indicate a positive
or negative correlation between the rules, respectively. Whilst lift = 1 indicates
independent rules and allows the other metrics to be more representative. The con-
fidence metric behaves in a similar manner. This is achieved by dividing the DB
into component related SubDBs. More information on how this has been realised
can be found in the example given in Section 3.3.4, along with the methodology
for calculating the ruling metrics.
Depending on the desired outcome, the ruling can lead to uni- or multi-conditional
results. The metric that controls the outputs’ conditionality is the rule length. The
Minimum Rule Length indicates how many items have to be included in a rule, in
order for it to be considered. The predefined minimum for the ruling process in
this study is 2 - corresponding to at least one input and one output (in this case a
failed component). For more input items the rule length increases and the rules
become multi-conditional.

3.3.3. Example for the Interconnections and Transactions
Figures 3 and 4 show examples for three resulting rules using a rule length of

3 each. They are visualised in a similar manner as proposed in [33]. A rule length
of 3 corresponds to two inputs and one output. The orange circles represent each
association rule, the green ones stand for the input items. The blue circle is the
output item for each rule - in the present case it is the failed component. Each
figure contains more than one rule for the same output item. This was chosen in
order to demonstrate that the same input item can contribute to various rules.
The arrows indicate the direction of the rule leading to the desired outcome. Thus,
the construct green circle (input items)→ blue circle (output item) represents one
rule. The numbers attached to the orange circles are related to the support. Figures
5 and 6 show examples for 10 resulting rules using a rule length of 2, indicating
one input and one output item.

3.3.4. Example for the Evaluation Process - Ruling Metrics
In this section an example for the calculation of the evaluation metrics is given.

This shall give an explanation on how the support value can be used as only rule
metric, while setting confidence and lift equally to 1.
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Figure 3: Multi-D K-means application to
Gearbox Failures - rule length 3
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Figure 4: Multi-D K-means application to
Pitch Failures - rule length 3
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Figure 5: Multi-D K-means application to
Gearbox Failures - rule length 2
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Figure 6: Multi-D K-means application to
Pitch Failures - rule length 2

The evaluation of the rules (post-processing) is carried out in two steps: (a) find
frequency of appearance of a combination of items, and (b) calculate and compare
the evaluation metrics. Table 3 gives an example for the frequency of appearance
of item sets in a DB with 149 failures of different components.
When analysing the whole DB, the item set (2) was found 21 times and item set
(3) was found nine times. When considering only the part of DB that contains
failures related to the gearbox, S ubDBGB, the ratio of appearance of item set (2)
obviously changes. Thus, due to the smaller input it becomes equal to expression
in the 6th row of Table 3. This effects the calculation of the evaluation metrics,
as shown in Table 4. When using S ubDBs as reference input, the confidence and
lift metrics become equal to 1 and support can be used as sole indicator for the
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Table 3: Counting appearances in DB(N=146) and S ubDBGB (N=30)

Input N Item Set Freq.
(1) DB 146 Freq(Failure = GB) 30
(2) DB 146 Freq(severity = 3 ∧ T = 1) 21
(3) DB 146 Freq(severity = 3 ∧ T = 1 ∧ Failure = GB) 9

(4) S ubDBGB 30 Freq(Failure = GB) 30
(5) S ubDBGB 30 Freq(severity = 3 ∧ T = 1) 9
(6) S ubDBGB 30 Freq(severity = 3 ∧ T = 1 ∧ Failure = GB) 9

strength of the rules.

Table 4: Calculating metrics for DB(N=146) and S ubDBGB (N=30) Metrics

Input Item Supp. Conf. Lift

DB Prob((Failure = GB ∧ S ev = 3 ∧ T = 1) = 9/146 0.06 - -

DB Prob((Failure = GB | (S ev = 3 ∧ T = 1)) =
(9/146)

(21/146) - 0.43 -

DB
Prob((Failure=GB | (S ev=3∧T=1))= (9/146)

(21/146)

Prob(Failure=GB)=(30/146) - - 2.09

S ubDBGB Prob(Failure = GB ∧ S ev = 3 ∧ T = 1) = 9/30 0.3 - -

S ubDBGB Prob((Failure = GB | (S ev = 3 ∧ T = 1)) =
(9/30)
(9/30) - 1 -

S ubDBGB
Prob((Failure=GB | (S ev=3∧T=1))= (9/30)

(9/30)

Prob(Failure=GB)=(30/30) - - 1

This enables a fast and very representative evaluation, as the support values can
be converted to percentage of appearance directly. Furthermore, the pre-defined
minimum confidence for the application of the framework of 0.5 is exceeded here-
with. This is beneficial, especially for analysing different components and many
environmental parameters.

4. Results and Discussions

The presented framework has been applied to a case study considering five
main WT components. The results of each step of the framework will be presented
in the following in order to evaluate its performance and analyse the weather con-
ditions before component failures. The open source programming language R
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[34] was used to perform the case study analysis as well as the comparison of the
proposed methodologies.

4.1. Results of the Data Processing
Table 5 displays the thresholds for the manual labelling process, the minima

and maxima for the clusters obtained for the one-dimensional (1-D) input data
and the cluster centroids for the multi-dimensional (Multi-D) input data. It can be
seen, that for some parameters, the number of defined labels differs highly from
the number of clusters. Also, the thresholds are in some cases very different.

Table 5: Results for Labelling and Clustering with One-Dimensional (1-D) and Multi-Dimensional
(Multi-D) Input

Minimum and Maximum Values for the Labelling
Label WS [m s−1] Label RH [%] Label P [−] Label Downtime [h] Label T [◦C]
calm < 3 dry air 20 - 40 consumption Po < 0 Minor < 48 freezing −10 - 0
low 3 - 10 moist air 40 - 60 not efficient (ne) 0 ≤ Po < Pm Major ≥ 48 very cold 0 - 5
high 10 - 26 corrosive 60 - 80 efficient (e) Po ≥ Pm cold 5 - 10
storm > 26 highly corr. 80 - 98 cool 10 - 15

precipitation 100 mild 15 - 20
room temp. 20 - 25
warm 25 - 30
hot 30 - 35
very hot 35 - 40

Minimum and Maximum Values for the Clusters obtained for the 1-D Input
Cluster WS [m s−1] Cluster RH [%] Cluster P [−] Cluster Downtime [h] Cluster T [◦C]
1 0 - 6.568 1 32.46 - 62.3 1 0 - 0.27 1 27.5 - 144 1 3.34 - 10.65
2 6.62 - 12.98 2 62.84 - 79.19 2 0.3 - 0.7509 2 151.17 - 360 2 10.68 - 14.85
3 13 - 27.08 3 79.2 - 98.46 3 0.759 - 1 3 402 - 980.66 3 14.96 - 20.15

4 20.44 - 30.13

Centroids of the Clusters obtained for Multi-D Input1

Cluster WS [m s−1] Cluster RH [%] Cluster P [−] Cluster Downtime [h] Cluster T [◦C]
1 3.97 1 64.63 1 0.12 1 72.68 1 10.24
2 9.36 2 80.78 2 0.53 2 226.84 2 17.03
3 15.98 3 563.98 3 22.69

1 As the multi-dimensional input also results in multi-dimensional clusters, the minima and maxima cannot be displayed. Thus, the cluster
centroids are being displayed instead, giving an idea about the location of the clusters.

For example the severity measurement, downtime, was clustered by the k-
means algorithms into three categories, whilst the labelling only took two thresh-
olds into account: major (≥ 48 hours) and minor (< 48 hours) interventions. Thus,
k means actually provides more information and should be used in this case. Tem-
perature data was labelled into eight categories, while the k-means algorithms only
defined three and four clusters. This means, that the labels might give too much
information, which is not very handy for the interpretation of the results. For
categorising power production efficiency, labelling and 1-D clustering have three
categories, while Multi-D takes into account only two. For relative humidity, the
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dimensions were reduced significantly by clustering. Wind speed was labelled ac-
cording to the cut-in and cut-out WS of a common WT. Four labels were assigned,
including one for stormy conditions. This number was slightly reduced by both
clustering techniques. As only one storm condition was represented in the data
set, k-means was not able to assign this to a separate cluster.
The characteristics for the maintenance strategy are given in Table 6. No cluster-
ing was applied to this parameter. After consulting expert opinions and taking into
account the typical working hours of the close-by located maintenance personnel,
it has been divided into two segments: day and night time.

Table 6: Maintenance Labels

Working hours Label Characteristics
8 AM to 6 PM Day Shift Failure detection is more likely and

maintenance personnel is available.
6 PM to 8 AM Night Shift Failure detection is less likely and

availability of maintenance person-
nel is limited.

The aim of this comparison is to find the best technique to process the input
data for further use in the apriori ruling algorithms. As the input parameters are
all clustered according to their appearance in the data, k-means clustering was
expected to show better results than the highly biased labelling. Depending on
the amount of available information for each parameter, the use of a combination
of both techniques showed the best results, though. For parameters with highly
available information the use of labelling outperformed clustering and vice versa.

4.1.1. Performance of 1-D and Multi-D K-means Clustering versus Labelling
Table 7 displays the characteristics that have been observed for each technique

by applying the framework to the case study data set. It is shown clearly that the
techniques perform differently for each of the desired purposes.

Data Analysis:. Labelling represents the most complex and a highly time con-
suming pre-processing. As reliable expert judgements are often hard to obtain
and evaluate, this involves a considerable amount of manual work. Nonetheless,
after the data thresholds are defined, the data processing is much faster than for
the other two techniques. For the multi-dimensional clustering the data did not
have to be pre-processed extensively, however, the actual data processing is more
time consuming. The effort for one-dimensional clustering is slightly higher than
for the multi-dimensional data pre-processing, as the data have to be converted to
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Table 7: Characteristics of the used Techniques

Labelling 1-D Clustering Multi-D Clustering
ANALYSIS
Time Consumption Data Pre-Processing high medium low
Time Consumption Data Processing low high medium
Expert judgement needed X 7 7

POSSIBLE RESULTS
Behaviour over Time X X 7

Punctual Analysis X X 7

General Conditions 7 7 X
POST-PROCESSING
Interpretation of Results medium dificult easy
Number of Rules per Component very high very high low
Number of obtained Rules in the Case Study 15783 12814 127

a one-dimensional array. The data processing for 1-D was the most time consum-
ing, as the computational effort increases with the one-dimensional input.

Possible Results:. Also the way of extracting the possible results differs highly
for each of the three techniques. Labelling performs similar to 1-D clustering and
both can be used to analyse one specific time step (e.g. WS atF , RH8, etc.) or to
detect e.g. alternations by considering subsequent time steps over the observation
period. The multi-dimensional clustering is especially handy for analysing the
general conditions over the observation period. It treats the input as a whole and
cannot detect efficiently one specific time step nor variations over time.

Post-Processing:. The post processing and the interpretation of the results depend
strongly on the amount of obtained rules. Whilst the Multi-D clustering results in
a fairly low amount of rules and interpretation is quite easy, the 1-D clustering
showed the opposite behaviour. Labelling also resulted in a very high amount
of rules, however, these are quite easy to interpret due to the manually defined
thresholds. The quality of the results, has to be evaluated for each input parame-
ter separately. For this, the pre-processing restrictions, discussed in Section 4.1,
should be taken into account. Generally speaking, for fast analyses where the ac-
curacy of the outcome does not play a significant role, Multi-D is a very efficient
technique. It avoids the time and resource consuming labelling and does not re-
quire as much effort in data processing as 1-D clustering. Nonetheless, a general
problem of the k-means clustering is that it only considers data that serves as input
to the algorithm. Thus, the input has to be carefully chosen and the results must
be analysed and interpreted thoroughly. Labelling, however, is in some cases too
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biased and can result in a loss of information.

4.2. Results and Discussion of the Weather Effects on Component Failures
In this section, the most relevant results derived from the application of the

presented framework to the available case study are discussed. As stated, the
primary importance metric for the classification of the rules is the support (supp.)
value. Multi-D labelling was used for discovering the general conditions for wind
speed (WS ), relative humidity (RH), power production (P), severity of failure
and ambient temperature (T ) throughout the whole observation period before each
failure. Labelling and 1-D clustering were used to define the conditions at a certain
point in time, that occurred with high frequency. These can be for example WS 20

or WS atF , etc. Also the variations of a parameter over time (alternations) were
analysed using these two techniques.

Figure 7: Grouped matrix for labelling rules with a minimum support of 0.03

Due to the overwhelming amount of obtained rules it is fairly hard to present or
visualise all of them in a limited space. Figure 7 shows an example for a grouped
rule matrix for the labelling results, which displays the cases of rule length ≥ 2
and a single input database for all observations. The grouped rule matrices for
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1-D and Multi-D clustering are shown in Appendices A1-1 and A1-2. Since all
the observations are taken into account in one single database, the lift metric has
a meaningful scale in these figures.

These matrices are a compact form of displaying the results and shall be dis-
cussed at this point using the example of Figure 7. The rules on the right hand
side (RHS) of the figure suggest the following interpretations:

• For the frequency converter the rules indicate with small support and medium
lift values that it commonly fails during months with very low monthly min-
imum temperatures and that the turbine shows efficient production values
just before the failure.

• The rules for the yaw system show strong support and lift values for failures
under calm wind speed conditions 20 minutes before the failure occurrences
and low corrosive relative humidity values 2 hours before the failure. The
other two rules show a similar but weaker relation between failures and
calm wind speeds. However, these weaker rules show association with high
corrosive relative humidity 4 hours before failure.

• The pitch system tends to fail for the moist air at the failure and moist air 2
hours before the failure occurrences, indicated by rules with relatively small
support and weak lift values.

• The rules for the generator failures show medium support and medium lift
values for failures under low wind speed conditions 10 minutes and 20 min-
utes before failure. The association between temperature, power efficiency
and the generator failures is observed with weak support and weak lift.

• The gearbox failures are associated to rules with with medium support and
significant lift values for failures under high wind speed conditions 10 min-
utes before the failure and high corrosive relative humidity. The association
between monthly minimum temperature, relative humidity 6 hours before
failure and generator failure is given with weak support and weak lift.

Appendices A1-1 and A1-2 can be interpreted in a similar manner as discussed
above. Nonetheless, these grouped matrices do not permit a quantitative and item
based interpretation. Thus the results are presented in Table 8, which gives the
most frequently obtained rule for each environmental parameter with each tech-
nique presented in percentage of their appearance in S ubDB, as discussed in Sec-
tion 3.3.4. The table can be interpreted in three ways:
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1. Technique-based: For analysing the possible results that can be extracted
from each of the three techniques it is possible to compare the results row-
wise for labelling, 1-D and Multi-D clustering for each component.

2. Component/Item-based: For inspecting one environmental parameter and
comparing its influence on different components, the table can be inter-
preted column-wise. This allows extracting the general parameter condi-
tions (Multi-D) and the condition at a specific time step (Labelling and 1-D)
that most frequently appeared in the data.

3. Combinations: If the combinations of several parameters before component
failure are of interest, all rows related to the component can be combined
and analysed.

Table 8: Results for the three Approaches - Rules with highest Support Value (supp.)

WS supp. RH supp. Power supp. Severity supp. Temp. supp.

G
ea

rb
ox

Label WS atF = low 46% RHatF= highly corr. 60%
PatF=ne
PbF=ne

57%-
46% Major 96% Tm = cool 60%

1-D WS 60 = 2 (max: 3) 50% RH2=3 (max: 3) 63%
PatF=1 (max: 3)
PbF=3 (max: 3)

43%-
67% 1 46% TatF = 1 (max: 4) 53%

Multi-D WS = 2 (max: 3) 40% RH=2 (max: 2) 70% P = 2 (max: 2) 67% 1 46% T = 1 (max: 3) 66%

WS supp. RH supp. Power supp. Severity supp. Temp. supp.

G
en

er
at

or Label WS atF = low 53% RH 8 = highly corr. 70%
PatF=ne
PbF=e

67%-
50% Major 96% Tmin = cold 46%

1-D WS 30 = 2 (max: 3) 50% RH8 = 3 (max: 3) 70%
PatF=1 (max: 3)
PbF=3 (max: 3)

40%-
80% 2 50% TatF = 2 (max: 4) 30%

Multi-D WS = 2 (max: 3) 46% RH = 2 (max: 2) 73% P = 2 (max: 2) 90% 2 50% T = 1 (max: 3) 46%

WS supp. RH supp. Power supp. Severity supp. Temp. supp.

C
on

ve
rt

er Label WS 30 = low 55% RHatF = highly corr. 48%
PatF=ne
PbF=e

78%-
48% Major 81% Tmax = mild 48%

1-D WS atF = 1 (max: 3) 52% RHatF= 3 (max: 3) 48%
PatF=2 (max: 3)
PbF=3 (max: 3)

48%-
81% 1 81% TatF = 1 (max: 4) 63%

Multi-D WS = 1 (max: 3) 51% RH=2 (max: 2) 55% P = 2 (max: 2) 85% 1 81% T = 1 (max: 3) 51%

WS supp. RH supp. Power supp. Severity supp. Temp. supp.

Pi
tc

h

Label WS atF = high 58% RH8 = highly corr. 62%
PatF=ne
PbF=e

79%-
35% Major 86% Tm = cool 37.9%

1-D WS 20 = 2 (max: 3) 51.7% RH8 = 3 (max: 3) 62.1%
PatF=1 (max: 3)
PbF=3 (max: 3)

48%-
69% 1 48.3% TatF = 4 (max: 4) 34%

Multi-D WS = 2 (max: 3) 41% RH = 2 (max: 2) 58.6% P = 2 (max: 2) 69% 1 48.3% T = 1 (max: 3) 48.3%

WS supp. RH supp. Power supp. Severity supp. Temp. supp.

Ya
w

Label WS atF = low 63% RH2 = low corr. 60%
PatF=ne
PbF=e

53%-
43% Major 70% Tmax = mild 47%

1-D WS 20 = 1 (max: 3) 70%
RHatF=2 (max: 3)
RH10=3 (max: 3)

56%
56%

PatF=2 (max: 3)
PbF=3 (max: 3)

33%-
63% 1 90% TatF = 1 (max: 4) 36%

Multi-D WS = 1 (max: 3) 60% RH = 2 (max: 2) 70% P = 2 (max: 2) 70% 1 90% T = 1 (max: 3) 53%

It should be noted, though, that much more information could be drawn out of
the results. However, due to limited space, not everything can be discussed here.
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Additionally, there are more environmental conditions, such as ice and snow that
can be responsible for certain failures. These have not been considered directly in
this analysis, but enter indirectly considering the temperatures and seasons. For
easier interpretation, the results for 1-D and Multi-D clustering in Table 8 are
always showing the maximum number of clusters for each parameter in brackets.

4.2.1. Results for the Labelling and 1-D Clustering - Environmental Conditions
at Time of Failure

In this section the environmental conditions at the exact time of failure (punc-
tual analysis) are discussed. As discussed before, they were obtained with the
labelling and 1-D k-means clustering algorithms. Figures 8 (a) to (c) show the ob-
tained results for supervised labelling and apriori ruling for the parameters relative
humidity, wind speed and temperature at the time of failure occurrence. Figures
8 (d) to (f) represent the same results obtained from the 1-dimensional clustering
and apriori ruling. These plots show the failure frequency, which indicates the
total number of failures assigned to each of the clusters or labels for the differ-
ent components. It can be seen that the number of clusters differs in some cases
significantly from the numbers of assigned labels. If the amount of input data is
rather modest, the use of both techniques on parallel can provide the best results.
As shown in Table 7 the effort for 1-D clustering is lower than for labelling. This
can lead to significant advantages when using very large databases.
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Figure 8: Conditions at Failure obtained for Labelling (a)-(c) and 1-D clustering (d)-(f)
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All components showed an increased number of failure occurrence with higher
relative humidities. Especially the frequency converter, the generator and the gear-
box showed significantly higher numbers of failures in corrosive environments.
Labelling and 1-D clustering showed similar results for this parameter, although
the 1-D clustering only assigned 3 clusters. Nonetheless, the output is consistent
when combining the labelling results for dry and moist air. It should be noted, that
the case study data contained very few failure observations in dry air. Thus, the un-
supervised clustering could not assign these to a separate cluster. Only analysing
the clustering results, might lead to the assumption that quite a high number of
failures occurred at low RH (cluster 1). However, it is important to compare this
to the labelling results, where dry air is listed as a separate class. Hence, it can be
seen that most failures occurred at least in moist air or higher relative humidities.

From an engineering perspective high wind speeds represent highly distributed
loads on the WTs. Naturally, failure occurrences are expected to be in correlation
with high and critical loads, hence, high wind speeds. Albeit, the results demon-
strate a different trend. High wind speeds did not seem to affect all components.
This is also connected to the design specific operational wind speed range of the
respective wind turbine technology. In the results for the labelling technique it
can be seen that only the pitch system suffered from a higher number of failures
in the presence of high wind speeds. The other components showed more failures
with wind speeds in the lower range. This has to be combined with the results of
the long term wind speed conditions in Section 4.2.2. This seems contradictory
to previous studies where failures are frequently related to high wind speeds. It
has to be stated though, that for this case study only 80 minutes of wind speed
data ahead of failure were considered. It is supposed that failures occur with a
certain delay and this short time span is not representative enough, as the peak
wind speed is not always reached within this observation. In further application
of the framework the observation period should be extended as the wind speed
conditions immediately before failure seem to be lower. Nonetheless, it states
clearly that the pitch system is more likely to suffer immediately from failures in
the presence of high winds.
Also, when comparing the labelling and 1-D clustering results, it can be seen that
the failure distribution in Figure 8e is way more balanced among the different
wind speed categories than in Figure 8b. This is, e.g. due to the nature of the un-
supervised clustering, which tries to balance the number of data points per cluster,
see also Section 4.1. Thus, the labelling showed more detailed results.
The temperature at failure time showed to be mainly in the range from cold to mild
for most components. Especially the gearbox showed many failures in the pres-
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ence of cool and cold temperatures, This was the case for both, Labelling and 1-D
clustering. Using the labelling technique, provides the possibility to distinguish
further between the different temperature thresholds.

4.2.2. Results for the Multi-D Clustering
Using Multi-Dimensional clustering allows finding general environmental con-

ditions over a longer period of time and throughout the whole observation period
ahead of failure, see Table 8.
Corrosive conditions were recorded before the failures of all components.
Gearbox failures showed high support values for cool mean monthly temperatures
Tm. The failures occurred mostly during the winter months and high relative hu-
midities were recorded. The wind speeds at failure were not significantly high.
The generator showed failure occurrences at mostly low wind speeds and temper-
atures at failure in the lower range (cluster 1) and a mean monthly temperature in
the cold range. However, before failure occurrences the main wind speed condi-
tions were in cluster 2 - being elevated velocities.
The converter showed failures mostly with mild monthly mean temperatures. and
in highly corrosive conditions at failure. Mostly low wind speeds were recorded,,
both, at failure and prior to failure (WS was in cluster 1).
Pitch failures mainly occurred in the presence of higher wind speeds at failure,
and cool monthly mean temperatures, as well as highly corrosive surroundings.
In high and especially changing wind speed conditions the pitch system has to
intervene more often, and is thus, more likely to fail.
Yaw system failures occurred mainly at low wind speeds and cool monthly mean
temperatures. The WTs use the yaw system to find the main leading wind direc-
tion in order to place the rotor in a favourable position for the energy production.
Especially in low wind speed this is a quite difficult task and the yaw system is
constantly employed, and hence, more likely to fail.

4.2.3. Analysing Changing Environmental Conditions over Time using 1-D Clus-
tering and Labelling

After having analysed the weather conditions directly at failure occurrence
(Section 4.2.1) and the general ones during the observation period before the fail-
ure (Section 4.2.2), now their behaviour throughout the observation period will
be analysed. As it is not very handy to simply plot the time series before each
failure, for this purpose, the same framework was applied with the condition of
extracting the probability of occurrence of a certain label or cluster for each avail-
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able time step. The results have been evaluated and combined in order to test if
the conditions were alternating or steady throughout the observation period. As
an example of the capabilities of the proposed framework, the wind speed and
relative humidity alternations will be presented here. As discussed before, the
Multi-D clustering did not perform well for punctual analyses and will not be
used in this part. The labelling and the 1-D clustering based frameworks will be
used. However, as mentioned in Section 4.1 both perform differently for differ-
ent parameters. In order to analyse the wind speed, for which extensive previous
information is available, labelling was used as data processing technique. For
analysing the relative humidity a mixture of labelling and the 1-D-clustering al-
gorithm was employed. In this case, previous knowledge about the harmful RH
thresholds for WTs is limited and can only be assigned manually based on find-
ings from other areas. Nonetheless, clustering reduced the number of categories
too much and needs to be cross-checked with the assigned labels in order to draw
useful conclusions. The temperature analysis is carried out using 1-D clustering,
as it showed to reduce the number of input categories to a reasonable extend.
Figure 9 summarizes the percentages of appearance for the characteristics of the
wind speed time series before each component failure. It is distinguished between
steady, indicating no significant changes in the thresholds; alternation between
different thresholds; as well as descending and ascending behaviour towards the
time of failure. Especially the pitch system and the gearbox showed an elevated
number of failures in the presence of wind speeds that were steadily in the low
or high range. Alternations in wind speed seemed to play a role for the genera-
tor and yaw system. The frequency converter rather showed higher numbers of
failures exposed to wind speeds with steadily low or ascending behaviour. It has
to be mentioned that 10-minute mean wind speeds are used for this analysis and
wind speed alternations in higher frequency ranges are not captured, but could be
affecting the components drastically. This will be subject to further studies.

Figure 9: WS conditions over time obtained
with supervised labelling

Figure 10: RH conditions over time obtained
from 1-D clustering
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Figure 10 shows the behaviour of the RH parameter before component fail-
ures. In general, most failures occurred in steady corrosive conditions or those
conditions where the relative humidity was ascending towards high corrosive states.
Descending relative humidity might be misleading, as it still takes into account the
RH being in the (highly) corrosive range at least 10 hours before the failure oc-
currence. Thus, most components are affected by high relative humidity. The
temporal changes in RH are not as significant as they are for WS.

4.2.4. Seasonal Failure Occurrence
Figure 11 presents the failure events within each season. All components

showed an increase in failure frequencies during the winter months. This is prob-
ably due to higher wind speeds, lower temperatures, and other factors like snow
and icing. Especially the gearbox seemed to be affected during the winter, which
could be related to poor performance with lower lubrication oil temperatures.
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Figure 11: Number of failures per season and component

4.2.5. Energy Production Losses
As expected, in most cases the power production shortly before failure did

decrease below the reference value for efficient production at the specific wind
speed. This is especially interesting for failure detection, as the power production
is a parameter, which is easy to measure in real time. The mean monthly power
production at wind speed in the same wind farm during the month in which the
failure was detected, was taken as reference to determine if the production is ef-
ficient (e) or not efficient (ne). The manufacturer’s power curve did not represent
well the on-site conditions and monthly variance and could not be used as reliable
representation of the expected power production of the specific WTs.
In general, labelling performed well to indicate, if the power production was effi-
cient or not. 1-D clustering performed better in terms of stating to what extend the
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power production was inefficient. Here, the production was assigned to three clus-
ters according to the percentage of expected power output. Nonetheless, 1-D clus-
tering did not distinguish between productions of 76%-100% in cluster 3, mixing
efficient and slightly inefficient production. Multi-D clustering only showed that
the general power production conditions were in cluster 2. The power production
is directly related to wind speed. A power production in cluster 2 means that most
failures occur around an efficiency of 50 % corresponding to a wind speed in low
to medium range. When looking at the wind speed distributions this is actually
the threshold with the highest probability of appearance. Hence, this result makes
sense when comparing a longer period of time before failure. Nonetheless, it does
not provide any specific information on the power production conditions before
the failure occurrence. Table 8 shows an inefficient power production during the
last 10 minutes for all components. The converter and pitch system showed the
highest percentage of failures with an anticipated loss in energy production. The
gearbox was the only component that showed an inefficient production also in Pb f .
As indicated by 1-D clustering, the pitch system, gearbox and generator showed
especially low efficiencies in the last 10 minute interval before failure. This could
be indicating a gradual degradation before the failure.
To sum it all up, for analysing the efficiency of power production a mixture of
labelling and 1-D clustering gives the best results. Labelling can be used for ob-
taining if the power production is efficient or not; 1-D clustering can be used to
analyse then to what extend it was not efficient.

4.2.6. Downtimes and Availability of Maintenance Personnel
The failure severity in this study was categorised by the hours of downtime

they have caused. As expected, the framework identifies the gearbox and gen-
erator as the most severe component in terms of downtime. The downtimes are
strongly affected by the applied maintenance strategy and the availability of main-
tenance personnel at failure occurrence. Pitch system failures mainly occurred
during the day shift (in 79% of the cases). As the occurrence of pitch system
failures is strongly correlated to high wind speeds, this is most likely due to the
diurnal wind speed pattern and its peak during the day. The frequency converter
failures occurred in 65% of the cases during the night shift. By looking at the diur-
nal pattern of the relative humidity, this could be explained due to a rise in relative
humidity during the late evening and night time. Also lower temperatures during
the night time might be affecting this behaviour. For the generator and gearbox
the failures occurred equally distributed between day and night shift.
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5. Conclusions

A framework has been presented that is capable of correlating and analysing
failure data and environmental conditions ahead of wind turbine component fail-
ures. It has been shown that it can be applied to several environmental parameters
and for various analysis purposes. Three different data pre-processing techniques
are employed. Either one is being followed by an apriori ruling process, where
rules are established that are interconnecting the different parameters and calcu-
lating the probability of occurrence of their combinations.
The pre-processing techniques, (a) supervised labelling, (b1) unsupervised 1-D
clustering and (b2) unsupervised Multi-D clustering performed differently for the
different input parameters and output requirements. For obtaining a quick in-
sight on the general conditions over the observation period, the Multi-D clustering
based technique has shown very good results. It is fast and the interpretation of
the results is quite easy, although, the number of resulting rules and their accuracy
is lower compared to the other two techniques. Supervised labelling and unsuper-
vised 1-D clustering are capable of analysing the environmental conditions before
failures in more detail. Thus, the conditions at a certain time-step within the ob-
servation period, such as at the exact time of failure, can be extracted (punctual
analysis). Also, the behaviour of each weather parameter over the whole obser-
vation period before failure can be observed by applying these two techniques.
With this, it is possible to detect if the parameters alternate or are rather stable
throughout an extended time before failure. Nonetheless, certain differences be-
tween these two approaches have been highlighted. Whilst 1-D clustering requires
less pre-processing, labelling needs time extensive and costly expert judgements
to establish the parameter thresholds accurately. Labelling performs best, when
extensive knowledge on the parameters behaviour is available, such e.g. for wind
speed. However, it can introduce a bias if the expert judgements are limited. If
there are very few information for defining the parameter thresholds, as for exam-
ple for RH, the 1-D clustering shows a better performance.
The performance of the framework was very satisfying and the spectrum of possi-
ble results is big. It can be applied to a variety of tasks in failure analysis, detection
and prevention; and could significantly decrease O&M and condition monitoring
expenses.
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Appendix A. Results visualised as Ruling Plots

Figure A.12: Grouped matrix for 1-D clustering rules with a min. support of 0.03

Figure A.13: Grouped matrix for Multi-D rules with a min. support of 0.03
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