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This paper proposes a complete sensitivity analysis of the use of Autoregressive models (AR) and Mahalanobis Squared Distance in the field of Structural
Health Monitoring (SHM). Autoregressive models come from econo- metrics and their use for modelling the response of a physical system has been well 
established in the last twenty years. However, their aware application in engineering should be supported by knowledge about how they describe 
phenomena which are well defined by physics. Since autoregressive models are estimated by a least square minimization, statistical tools like Global 
Sensitivity Analysis and uncertainty propagation are powerful methods to investigate the performance of AR models applied to SHM. These methodologies 
allow one to understand the role of the uncertainty and uncorrelated noise by a rigorous approach based on statistical motivations. Moreover, it is possible to
quantify the link between the mechanical properties of a system and the AR parameters, as well as the Mahalanobis Squared Distance. By fixing a factor 
prioritization among the variables of a AR model, it is possible to understand which are the parameters playing a main role in damage detection and which type
of structural changes is possible to efficiently detect.

1. Introduction

The importance of improving the understanding of the performance 
of structures over their lifetime with information obtained from 

Structural Health Monitoring (SHM) has been widely documented. 
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structure and converted, by a process of feature extraction, into a rep- 
resentation where variations due to damage are highlighted. 

Vibration based methods have been widely used for identification 
of various types of damages for several real and laboratory 
structures. The methods relying on vibration response -also known as 
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he assessment of structural reliability is strictly connected to the
uality of information provided by a damage detection process [1–
].  The diagnosis of in-service structures on a continuous real-time
asis is of primary importance for aerospace, civil and mechanica
ngineering. The advantages of Structural Health Monitoring (SHM
re optimal use of a structure, reduced downtime and avoidance o
atastrophic failures, moreover it can drastically change the planning
f maintenance service with several economic benefits [7].  There
re many potentially useful techniques to achieve these aims, and
heir applicability to a specific situation depends on the size of the
cceptable critical damage for a structure. 
 As mentioned in the given reference, the problem of damage detection

as a hierarchical structure. At the lowest level, it is required to recognize
amage has occurred or not. At the highest level, damage location and
ize must be identified for a proper estimation of the residual structure
ife. One of the most promising approaches to damage identification i
ased on pattern recognition [8].  Data are measured from a 
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utput-Only methods –represent an important category within the
ibration based methods for Structural Health Monitoring (SHM)
heir use is highly important for in-service structures such as bridges
ircrafts, naval vehicles and others, where the excitation signal is no
vailable. 

In the last twenty years, the scientific community focused its atten
ion on exploitation of different types of autoregressive models and fea
ures for SHM. In [9] Sohn et al. studied AR models and features based on
nalysis of residuals (X-Chart, S-Chart, EWMA). In [10] Carden et al. applied
he more complex ARMA models to SHM application; the approach has been
alidated with experimental data taken from Z24 bridge. Sohn et al. in [11
roposed a linearized version of ARMA, the AR-ARX model. 
he applicability of this approach has been demonstrated with an
xperimental setup based on an eight degree of freedom mass-spring
ystem. Features based on residuals often assume a Gaussian distribution
f sample data sets. This assumption might be misleading, making SHM
lgorithms less efficient. Worden et al. in [12] tried to overcome thi
roblem proposing a more sophisticated data processing called sequentia

robability ratio test (SPRT), which relies on the analysis of extreme value
tatistics. In [13] Yao et al. proposed a comparison between sev- 
ense http://creativecommons.org/licenses/by-nc-nd/4.0/
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Nomenclature 

𝑋 𝑡 , 𝑋 𝑡 −1 , 𝑋 0 Signal sample at time 𝑡, 𝑡 − 1 , 0 
𝜙1 Autoregressive parameter of AR(1) model 
a t Residual between model prediction and signal out- 

put at time t 
q Order of the AR(q) model 
D m 

Mahalanobis square distance 
[ 𝜙] qxp Matrix of Autoregressive reference dataset. p 

is the number of set acquired 
𝜙i Generic i-th AR parameter of the model 
{ 𝜙𝜇} qx 1 Vector of the means of the Autoregressive ref- 

erence datase 
[ S ] qxq Covariance Matrix of the Autoregressive ref- 

erence dataset 
{ ̂𝜙 } qx 1 Vector of the Autoregressive parameters as- 

sumed for the outlier analysis 
Y General output quantity 
X i General i-th input quantity 
V ( Y ) Total variance of the Y output 
V ( E ( Y | X i )) Conditional variance of the Y output with respect 

X i input 
V ( E ( Y | X ∼ i )) Conditional variance of the Y output with respect 

all inputs except X i 

𝑆 𝑋 𝑖 
First order global sensitivity index 

𝑆 𝑋 𝑖 , 𝑋 𝑗
Second order global sensitivity index 

𝑆 𝑇 𝑖 
Total sensitivity index 

[ M ], [ D ], [ K ] Mass matrix, damping matrix, stiffness matrix of a 
generic mechanical system 

m, h, k Mass, damping ratio and stiffness of 1 d.o.f. me- 
chanicals system 

𝜎u Standard deviation of Gaussian white noise excita- 
tion 

U ( ∼ ) Uniform distribution 

ral pattern recognition algorithms using autoregressive models. More-
ver, they introduced a new feature extraction technique, called Cosh

spectral distance (COSH) and validated it with several experimental data.
Among all the possible strategies for time series modelling, the

se of pure AR models is very common. Basically, because the
dentification of the model is made by a simple least squared
inimisation, which requires few computing efforts to be performed

nd the uncertainty of the model is usually low. However, pure AR
odels are only-pole functions and can represent the response o

omplex systems just by an approximation. The consequences are
purious poles that must be introduced in the model in order to
ollow the response of the mechanical system, although it depend
lso on the zeros of the frequency response function of the physica
odel [14].  The popular application of AR models to SHM relies on

heir reliable identification of the mechanical properties of a system
owever, the main property that should be taken into account, in a
HM context, is their sensitivity to a change of the system they are
epresenting. Since AR models are made by physical and spuriou
oles, their sensitivity is not a trivial issue. The AR parameters of a
odel are usually used all together to assess the healthy status of a

ystem, for instance computing a Mahalanobis Square Distance
owever, as it will be shown, only few of them are strongly linked to

he physical properties of the system; so that, their behaviour is no
trictly depending on the physical response they are modelling and to
ts changes. 

Scientific literature lacks examples for the explicit propagation o
easurement uncertainty and Global Sensitivity Analysis for damage
etection algorithms. Yao et al. in [14] proposed a formulation for the
ensitivity of Mahalanobis Squared Distance and COSH distance with

e- spect to both stiffness reduction and measurement noise level. 
owever, the analysis is based only on an analytical study of the 

ssue in place of 
 statistical framework. In that work, simulation results and theoretical
nalysis show some differences due to the approximation adopted fo

the extrapolation of the sensitivity expression. In [15] Roy et al. pro
ided a mathematical formulation to establish the relation between the
hange in an ARX model coefficients and the normalized stiffness of a
tructure. The reason behind the choice of ARX model in place of a stan-
ard AR model is the coefficients of the ARX model can have a direct
orrelation with structural stiffness. Such a correlation is however not
stablished for standard AR model. 

This work focuses on an accurate analysis of the uncertainty related
o vibration-based method. Specifically, it focuses on the use of pure au-
oregressive models and Mahalanobis Squared Distance, among the most
idely adopted approaches in vibration-based methods. Generally, this
pproach could be extended to any kind of damage feature to quantify
ts sensitivity to the changes of a system. 

The contribution of this paper is the attempt of covering the lack
f uncertainty assessment in the SHM literature, performing an Uncer-
ainty Propagation Analysis (UP) and a Global Sensitivity Analysis (GSA)
f AR models and Mahalanobis Squared Distance. As it will be proved,
 rigorous analysis will demonstrate that pure AR models may hide
ome weaknesses that could have strong consequences on their feasi-
ility to SHM. This paper will give some guidelines about the variables
hat strongly affect the performance of AR models for damage detection
nd about the type of structural changes that might be detected with
onfidence. The conclusion will be fundamental to those who want to
se AR models as tools to get information to predict the safety of aging
tructures over their service life. 

The paper is structured as follows. In Section 2 the background the-

𝑢

ry of Autoregressive models and Mahalanobis Squared Distance are
riefly exposed, in the context of damage detection. The Analysis of 
ariance is introduced in Section 3.  The design of the simulation is dis
ussed in Section 4.  Finally, the results of the Analysis of Variance o
he AR model and Mahalanobis Squared Distance applied to damage
etection are presented and commented in Section 5.  

. Autoregressive models

In the next paragraphs, the background theory of AR models and
ahalanobis Squared Distance is briefly introduced, putting them in the

ontext of dynamic system identification. The reader is asked to refer to
 complete background theory provided by the following reference [16]

.1. Description of a system response function by autoregressive models 

Autoregressive models were developed in econometrics as a repre-
entation of time-varying processes, in which the output variable de-
ends linearly on its own previous values and on a stochastic term.
owadays they are used in a wide variety of different fields, for instance
tructural Health Monitoring (SHM). Autoregressive models can be im-
lemented to represent the dynamic response of structures. Through
hese models, it is possible to describe a time series with a lower number
f data, which are the parameters of the AR model. 

To introduce autoregressive models, let us consider a linear mechan-

cal system. Let us call u( t )  the input of a system and x( t )  the output.

sually the input could be either a deterministic variable or a stochastic

ne. In a civil or mechanical structure, which works under operational

onditions, the excitation can be described as a random force. Under

ome strong assumptions [17],  operational modal analysis considers the

andom force as a Gaussian process. In a real case, these assumptions

re quite well respected if the data are averaged over a long enough

ime window. Therefore, under this condition, 𝑢( 𝑡 )  ∼ 𝑁 𝐼 𝐷( 0,  𝜎2
 

 ).  
Now it is possible to recall the link between a generic dynamic sys-

em and an AR model. For sake of simplicity, let us start with the au-
oregressive model of the first order AR (1), which represents a dynamic
esponse of the first order in the discrete time domain: 

 = 𝝓 𝑿 + 𝒂 (1)
𝒕 1 𝒕 −1 𝒕
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In Eq. (1) Xt  and 𝑋𝑡  −1 are two consecutive samples of the 
ystem output, 𝜙1 is the autoregressive parameter and at  is the 

esidual com- puted between the prediction of the model and the 
cquired value of the output at the same time; t is the generic 
iscrete time index. The autore- gressive parameter 𝜙1 is usually 
stimated by a least square approach [16,18].  The at  term is a 

tochastic element. Here, the residual term is a Gaussian process 

ith zero mean and variance 𝜎2
 

,  i.e. 𝑎 
 

∼ 𝑁 𝐼 𝐷( 0,  𝜎2
 

 ). 
To obtain the complete solution of the first order linear system it is

necessary to iterate Eq. (1) and set the initial condition X 0 [16] : 

 𝒕 = 𝝓𝒕 
1 𝑿 𝟎 +

𝒕 −1 ∑
𝒋 = 𝟎 

𝝓
𝒋 

𝟏 𝒂 𝒕 − 𝒋 (2)

here j is the discrete time index from 0 to 𝑡 − 1 . 
The solution of the autoregressive model AR (1) in the form of

q. (2) is the discrete solution of the dynamic response for a linear sys-
em of the first order excited by a random input. In fact, X t is described
y the sum of two terms. The first term on the right side of Eq. (2) is
he homogeneous solution made by the product between the initial con-
ition X 0 and 𝜙𝑡 

1 which is the analogous of the state matrix. Based on
he theory of discrete time systems [19] , if the eigenvalues of the state
atrix are lower than one - i.e. | 𝜙1 | < 1 - the system will be stable and

tationary after a certain time t . This term represents the free response
f the linear system. The second term on the right-side equation repre-
ents the stochastic part, which is linked to the residual term 𝑎 𝑡 − 𝑗 . This
erm represents the forced response of the linear system caused by a
ure stochastic input u ( t ), which is defined by its variance 𝜎2 

𝑢 
. 

The first order autoregressive model AR (1) cannot represent a dynamic
ystem of higher order. The natural extension of the AR (1) model to a highe
rder system is the Autoregressive Moving Average Model (𝐴𝑅𝑀𝐴( 𝑛, 𝑛 − 1)
16,10].  ARMA modelling is the most accurate tool to describe the output o
inear systems forced with random excitations. The main drawback of using
RMA models is the need of a non-linear least square approach to find the
A moving average coefficients [16].  A non-linear least square has not only

igh computational cost, but it can also have convergence and local minima
roblems. 

To avoid these complications, an autoregressive model AR(  q

an approximate the 𝐴𝑅𝑀𝐴( 𝑛, 𝑛 − 1)  model when q ≫ n,  the AR

odel order and the ARMA model order respectively. The equation of a
R( q)  model is the following [9,11]:  

 𝒕 = 

𝒒 ∑
𝒌 =1 

𝝓𝒌 𝑿 𝒕 − 𝒌 + 𝒂 𝒕 (3)

here again q is the order of the model, t is the discrete time index when
he model is estimated and at  is the residual. The AR(  q)  model has on
ne term for the residual at  which is calculated at the current time step

he order of the system is generally unknown at priori, as well as the
rder of the AR model suitable to describe the system. Therefore, the
rocess to find out the optimal order of the autoregressive model AR(  q)
s not trivial. In literature there are some specific techniques to achieve
his goal, such as the Akaike’s Information Criterion (AIC) or Bayesian
nformation criterion (BIC) [20].  AR(  q)  models are less accurate in
he representation of a dynamic system if compared to the 𝐴𝑅𝑀𝐴(  𝑛
 − 1)  models. In general, by modelling the output of a system

hrough AR models, it is possible to obtain the eigenvalues of the
echanical system in the discrete time domain; then, mapping these

igenvalues to those in the continuous time domain, the natura
requencies of the system are finally obtained. AR models are only
oles functions. Furthermore, since AR(  q)  models have a bigger orde
han the original vibrating system, it has always spurious eigenvalue
epending on the chosen order of the model. 

Autoregressive parameters are computed by using a least square min-
misation and autoregressive model is just an approximation of the re-
ponse of a system subjected to a random excitation. This means that an
nalytical solution representing the exact correspondence between the
R parameters and the mechanical system parameters is unknown. An
lternative strategy to deal with this situation, it is to study the problem
rom a statistical point of view, using methods based on the analysis o
ariance [21].  

.2. Mahalanobis Squared Distance as damage feature 

ne of the main goals of SHM is detection of early stage damage in
 structure. Since it is not possible to directly measure the presence of
amage in structures [22],  the solution is the definition of some
amage sensitive quantities, usually called damage features

ibration-based methods assume that the presence of damage
nfluences the dynamic response of the system [7].  Using an AR
odel, as a discrete representation of the system output, it i
ossible to extract some features from the model itself. In the las
5 years, several features have been developed from autoregressive
odels [9,11–13] and they can be divided in two categories: those

ased on the residual terms and those based on he autoregressive
arameters. Features based on the autoregressive parameters have
enerally shown to be a more robust damage index [13].  

One of the most common features used in SHM applications i
he Mahalanobis Squared Distance (MSD) of the parameters of the AR
odel in the context of outlier analysis. The Mahalanobis Squared
istance is the n -dimension generalisation of the Euclidean distance
ormalised through the covariance matrix. 

The analytical expression of MSD applied to the case of AR parame
ers is the following: 
 𝑴 

= 

[({
𝝓̂
}
− 

{
𝝓𝝁

})𝑻 [ 𝑺 ] −1
({

𝝓̂
}

− 

{
𝝓𝝁

} )]
(4)

here { ̂𝜙 } is the vector made of p AR parameters which represents the
otential outlier, { 𝜙𝜇} is the vector of the means of the p AR parameters
stimated on a reference dataset [ 𝜙], [ S ] is the covariance matrix of the

eference dataset. 
Generally, the literature assumes that multivariate data are normally

distributed, so that the MSD can be approximated by a chi-squared dis
ribution in n-dimensional space [23,24].  Under this hypothesis, the
hreshold to detect the outliers can be estimated as percentile of the
eference dataset made by the all the AR parameters collected from
he system under the normal condition. When the size of the reference
ataset [ 𝜙] is poor or the Gaussian distributions of the variables can-

ot be assured, the definition of the threshold should follow another
method based on Monte Carlo simulation and extreme value statistics
23].  Since in this paper there is an implicit assumption that the refer
nce or training is multivariate Gaussian, the two methods for estimating
he threshold should be both valid.

. Analysis of variance

Finding the relationship between the autoregressive model and the
echanical properties of the structure (mass, stiffness, damping etc.)
nder stable operational conditions, it is possible to quantify the sensi-
ivity of this model to a change of the system. In this work only the case
f stationary operational conditions will be studied. The basic theory of
ensitivity and uncertainty propagation will be given in the following
25]. 

.1. Uncertainty propagation (UP) 

Uncertainty propagation is the process aiming at quantifying the un-
ertainty in the result of a function, starting from the uncertainty of
ts inputs. The easiest way to perform this process is the Monte Carlo
imulation (MCS) [26].  However, MCS can be computationally heavy
nd for this reason it could be difficult to be applied. In order to over-
ome this limit, in the last two decades the use of surrogate models has
een increased. Surrogate models aim to reduce simulation time through
n approximation in a sample space of the model under investigation.
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mong these procedures, the most popular are polynomial chaos expan
ion (PCE) [27–29],  Kriging [30–33],  ANOVA decomposition [34–
9],  neural network [40–42].  

There are also other popular sensitivity techniques such a
orris’ screening method [43–45],  stepwise regression based method

46] and regional sensitivity analysis techniques [47,48]. Since the
roblem addressed in this paper is linear and the computational cos
s affordable, the authors have decided to apply a direct MCS. 
ow the MC method has to be used is widely described in the supple
ent to the “Guide to the expression of uncertainty in measurement

 (GUM), and the reader may refer to it for further details [49].  The
asic way to perform a Monte Carlo simulation follows these steps: 

• define the output quantity Y ;
• determine the input quantities X i upon which Y depends;
• set the model relating Y and X i ;
• on the basis of the available knowledge assign Probability Density

Functions (PDFs) to X i ;
• propagate the PDFs for the X i through the model to obtain the PDF

for Y , where the propagation is performed sampling the value of X i

from their PDFs several times.

The most common and easy way to sample the input data is to use

 random sampling function for several trials, GUM states at least 10 ̂5 –
0 ̂6 runs. In order to decrease the computational cost, more sophisti-
ated methods should be used, like the Latin Hypercube sampling or
quasi-Monte Carlo algorithm, which is the method used in this work
50–52].  Having the PDF of Y it is then possible to apply a GSA and
nhance the knowledge about the relationship among Y and the differ-
nt inputs Xi .  The PDF also allows to define the expectation of Y and

ts uncertainty bandwidth with a specified probability to find Y in that
ange. 

.2. Global sensitivity analysis (GSA) 

Saltelli et al. [25] defines sensitivity analysis (SA) as: “The study

f how uncertainty in the output of a model (numerical or otherwise

an be apportioned to different sources of uncertainty in the model inpu

. In the literature, local sensitivity refers to the sensitivity at a fixed
oint in the parameter space, while global sensitivity refers to an
ntegrated sensi- tivity over the entire input parameter space. 
he methods used to perform GSA can be divided into two kinds o
pproaches: variance-based and density-based [53–59].  The firs
ype of approaches was developed in nineties and it is very popula
ecause various smart computational methods are available
owever, it assumes that variance is a good parameter to represen

he distribution of variables, inputs and outputs, in their hyperspace
ut this hypothesis is not always true. It has been recognised tha
ariance-based methods are not suitable when the outputs have
robability density functions highly skewed or multimodal. In these
ituations, the second type of approaches can be used. Density-based
ethods do not rely on a specific moment to describe the output

ut use all the probability density distribution to perform the Globa
ensitivity Analysis on the model. 
erein the model is the autoregressive model, which is used to fi

he vibration signal. Then the inputs will be the variables involved
n the generation of the vibration data (the dynamic response of the
tructure): mass, stiffness, damping and force. The output of the
odel will be the vector of the autoregressive parameters { 𝜙 }

hich represents the 
response of the system. Since the outputs of the model respect the con-
ditions to apply a variance-based approach, the authors have arbitrarily
chosen this way to develop GSA. To prove the reliability of the obtained
esults also a moment-independent method (PAWN) will be used to es-
imate a GSA on the autoregressive parameters [60,61].  The results o
AWN method will be reported in Appendix B.  

Let { 𝜙 } = 𝑓 ([  𝑀],  [ 𝐷],  [ 𝐾],  𝜎𝑢)  be the unknown function 

inking the outputs – the  AR parameters vector { 𝜙 } – and  the 

nputs – the  mechan- ical properties and random forcing level. The 
ize of vector { 𝜙 } will 
epend on the autoregressive model order chosen to fit the signal. The
nputs are the mass matrix [M], the damping matrix [D] and the stiffness
atrix [K] of the mechanical system, whose size depends on the com-
lexity of the structure, i.e. the degrees of freedom of the system. The
esponse of the structure also depends upon the type of forcing source.
 Gaussian white noise excitation is considered and setting the stan-
ard deviation 𝜎u,

 

 which is the amplitude of its average spectrum, the

mplitude of the force is defined. 
If the probability density function (PDF) of the inputs and the out-

puts are known, then it is possible to quantify the dependency of the
utputs from the inputs. Moreover, it is possible to define the input 
arameters mostly affecting the outputs. As it is explained in Section 
.1,  the populations of the mechanical parameters are generated by
onte Carlo simulations. Once established the populations of the 

eneric inputs Xi  – in  this case [ M ], [ D ], [ K ] and 𝜎u – and 
btained the population of the generic output Y – in  this case the 
R parameter vector { 𝜙 } - it is possible to derive some evaluations
n the conditioned variance and compute the Sobol’s indexes. 

Sobol [50] defined some indexes based on the variance of the 
ata to quantify global sensitivity. 

One is the first-order global sensitivity index of the generic input 
a- rameter Xi  over the output Y [25] 

 𝑿 𝒊 
= 

𝑽
(
𝑬 ( 𝒀 |𝑿 𝒊 ) 

)
𝑽 ( 𝒀 ) 

(5)

here V ( E ( Y | X i )) is the conditional variance and V ( Y ) is the total vari-
nce of the output. Roughly speaking, each sensitivity index 𝑆 𝑋 𝑖 

is ob-
ained by fixing iteratively the variable X i at a given value x i 

∗ (with i = 1
K) and letting the other parameters vary randomly according to their

robability distribution. 𝑆 𝑋 𝑖 
is a number always between 0 and 1. A 𝑆 𝑋 𝑖 

alue close to 1 indicates a strong link between the considered variables
nd the outputs. 

However, a value of 𝑆 𝑋 𝑖 
close to 0 does not mean an irrelevant vari-

ble, because the first order index only quantifies the direct effect of
ach parameters, dropping out the combined effect of more inputs. 

The total effect index of factor X i is obtained by conditioning all fac-
ors but Xi  [25]:  

 𝑻 𝒊 
= 1 − 

𝑽
(
𝑬 ( 𝒀 |𝑿 ∼𝒊 )

)
𝑽 ( 𝒀 ) 

= 

𝑬
(
𝑽 ( 𝒀 |𝑿 ∼𝒊 )

)
𝑽 ( 𝒀 ) 

(6)

It is made of all the terms of any order that are including X i . Note
hat 𝑆 𝑇 𝑖 

and 𝑆 𝑋 𝑖 
carry different information. It can be demonstrated

hat 𝑆 𝑋 𝑖 
= 0 is a necessary but not sufficient condition to exclude the

ependency of Y on X i . Even if 𝑆 𝑋 𝑖 
= 0 , the input X i might still be in-

olved in interactions with other inputs so that, although its first-order
erm is zero, there might be nonzero higher-order terms. On the other
and, if 𝑆 T 𝑖 = 0 , this is a necessary and sufficient condition for X i being
ninfluential. 

In this work, the second-order sensitivity index of two generic input
arameters X i and X j over the output Y has been used too: 

 𝑿 𝒊 , 𝑿 𝒋 
=

𝐕 

(
𝑬 ( 𝒀 |𝑿 𝒊 , 𝑿 𝒋 ) 

)
𝑽 ( 𝒀 ) 

− 

𝑽
(
𝑬 ( 𝒀 |𝑿 𝒊 ) 

)
𝑽 ( 𝒀 ) 

− 

𝑽
(
𝑬 ( 𝒀 |𝑿 𝒋 ) 

)
𝑽 ( 𝒀 ) 

(7)

As it will be clear in the next sections this index will provide
mpor- tant information about the link between the autoregressive
arameters (outputs) and the joined effects of the mechanica
arameters (inputs). Since the sensitivity analysis of a multioutpu
ystem can be heavy, the sensitivity indexes will be evaluated by a
uasi-Monte Carlo method and by means of the framework used by
annavò in [51].  The error associated to the estimation of the
ensitivity indexes will be estimated with a confidence level of 68%
y the formula reported in [51].

 

. Modelling and simulations
The purpose of this paper is to qualify the behaviour of the autore- 
gressive model used to describe the response of a mechanical system 
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Table 1

Parameters of 1 dof system related to the nominal

condition.

1 dof system

Nominal conditions

Mass (m) 10 [kg]

Stiffness (k) 394.78 [N/m]

Damping ratio (h) 0.008 []

Natural Frequency 1 [Hz]

Input

Nominal condition

Type Gaussian white noise

RMS Amplitude ( 𝝈u ) 10 [N]

Output

Time histories

Type Acceleration

Sample frequency 20 [Hz]

Duration 100 [s]
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n a damage detection context. A one degree of freedom (1dof) system
eems to be the best choice to study the relationship between the AR pa
ameters and the mechanical properties of the system. The choice could
e considered too simple, but, as will be shown in the next sections
he aspects to take into consideration are several and the use of a multi
egree of freedom system (MDOF) could just complicate the descrip
ion of the outcomes. In the authors’ opinion, the interpretation of the
esults can be extended to a MDOF system, even if the analysis is per
ormed on a 1dof system. Indeed, through modal analysis the response
f a linear system can be interpret as the sum of the responses of many
dof systems. Since the results and the comments refer to a genera
e- haviour of the AR modelling and its link with the physical pole
f the system, there is no reason to expect a different behaviour fo
 more complex system. Moreover, in Appendix A to this paper, a
rief analysis on a MDOF system will be given to prove the
eneralisation of the main outcomes. 

.1. 1 dof system 

The mechanical system considered in this work is a mass-spring
amper system excited by a random input, more precisely by a
aussian white noise force. At first, it is necessary to establish the
ormal condition of the system, which means, the condition withou
ny variation due to the occurrences of operational, environmenta
r damage changes. It is decided to arbitrarily assume a natura
requency of 1 Hz for the system. As for the damping factor, a
reviously stated, it has been chosen a viscous damping focusing on
he case of lightly damped systems only. Lightly damped systems are
f interest for SHM applications, because they reflect the behaviou
f some typical structures being monitored, for instance steel bridge
62,63].  Therefore, the damping ratio is initially fixed at 0.8%
ssuming the mass of the system equal to 10 kg, the stiffness of the
pring is 394.78 N/m for a system with a natural frequency of 1 Hz
or the reference condition, the random input to the mechanica
ystem is a Gaussian white noise with a RMS value of 10 N. 

To compute the output response of the dynamic system, differen
p- proaches may be implemented. The most common is based on
he inte- gration of the equations of motion with a numerica
ntegration method, such as Runge Kutta 45. Although this is a very
owerful and effective method, it may be not very efficient when
mployed inside a Monte Carlo simulation run with up to millions o
terations. In this work, with the purpose to speed up the
imulations, a different approach has been implemented, which i
ased on the convolution theorem [64].  It is possible to calculate the
esponse of the system using the convolution integral between the
ime history of the input and the impulse response of the system or
n the same way, computing the arithmetic product between the
requency response function (FRF) of the system and the spectrum o
he input. 

It is important to note that the FRF of the system may be
btained in a closed form, once all the mechanical parameters listed
efore and the spectrum of the Gaussian white noise are imposed. A
his point, by making a simple product, the spectrum of the output i
omputed, but in a more efficient and fast way with respect to an
ntegration approach. Then, through an inverse fast Fourier transform
IFFT) it is possible to get the system output response back to the time
omain. 

From a numerical point of view, directly computing the spectrum
f a numerical generated Gaussian white noise signal may lead to a
pectrum which is far distant from the ideal flat one. For thi
eason, the input spectrum, used in each Monte Carlo simulation to
ompute the response of the system, has been obtained through an
verage of 100 Gaussian white noise spectra numerically generated. In
his way, a flat power spectrum is obtained for the white noise input
loser to the theoretical one. 

The sample frequency has been chosen equal to 20 Hz to have a

yquist frequency of 10 Hz, which is ten times larger than the 
atural frequency of the system (1 Hz). Moreover, in order to obtain a 
pectrum 

d

requency resolution of 1/100 Hz, the duration of each time history is
hosen as 100 s. All these assumptions for the reference condition of the
ystem are summarised in Table 1.  

To determine the FRF of the system, the damping ratio is chosen
s input variable in place of the damping nominal value. In this way,
nce the natural frequency of the system is fixed, it is possible to vary
asily the shape of the FRF. However, it was decided to maintain the
istinction between mass and stiffness because these two parameters
ould vary independently in a real case application. 

.2. Generation of databases 

The Mahalanobis Squared Distance [24] gives information about the
istance of a new unknown condition from a reference one. For that
eason, it is needed to have a database - from now on it will be called
ATAREF - which includes all the time histories related to the reference
ondition. In this work, it has been decided to allow a limited spread to
he mechanical parameters, still considered as a nominal condition. This
ssumption is related to the fact that in a real case, due to the opera-
ional and environmental conditions, these parameters could have small
ariations, even if the structure is still in the nominal condition. In this
aper, it is assumed, that a ± 3% variation could be inside the nominal
ondition and it is due to the intrinsic variability of the physical pa-
ameters of the system. The abnormal conditions for all the parameters
re fixed in the range of ± 30% respect the nominal condition of the
ystem. In other words, to simulate the possibility of an abnormal con-
ition of the system, all the parameters are generated sampling from a
niform distribution whose extremes are fixed at ± 30% with respect to
heir nominal values. Since the damage is unknown, we cannot assume
ny specific distribution type. We can just give the same distribution to
ll the parameters (uniform distribution with 30% of variation) to sim-
late a damage that can equally affect mass, stiffness or damping. The
rbitrary maximum damage considered in this work is a change of the
ynamic parameters of 30%. This database will be called, since now,
ATAWHAT.  

For both the databases - DATAWHAT and DATAREF - the amplitude
f the white noise input varies around ± 50%. This choice is made to
mphasise the fact that, even if the standard deviation of the Gaussian
hite noise may vary a lot due to external factors (for example think
bout environmental excitation of civil structures), this will not change
he sensitivity of the Mahalanobis Squared Distance used as SHM fea-
ure. This is true as long as the input maintains the peculiarity of the
aussian white noise. 

    Concerning the database,  DATAREF is the reference database used
o calculate the covariance matrix and the average vector of the AR
arameters, which are needed to perform the Mahalanobis Squared
istance (cfr. Eq. (6) ). DATAREF is made by 10 4 MC simulations
hich randomly extract the input parameters (mass, stiffness

amping ratio 



Table 2

Input variation for DATAREF.

DATAREF

Reference conditions

Database dimension 10 4

Mass (m) U (10 [kg] ± 3%) 

Stiffness (k) U (394.78 [N/m] ± 3%) 

Damping ratio (h) U (0.008 [] ± 3%) 

RMS Force Amplitude ( 𝝈u ) U (10 [N] ± 50%) 

Table 3

Input variation for DATAWHAT.

DATAWHAT

Unknown conditions

Database dimension 10 6

Mass (m) U (10 [kg] ± 30%) 

Stiffness (k) U (394.78 [N/m] ± 30%) 

Damping ratio (h) U (0.008 [] ± 30%) 

Fore Amplitude ( 𝝈u ) U (10 [N] ± 50%) 
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nd force amplitude) from the uniform probability distributions in the
anges described by Table 2.  

DATAWHAT is made up by 10 6 time histories generated using the
onte Carlo approach from the uniform input distributions reported in
able 3.  

From each combination of the input variables it is possible to extrac
he dynamic response function as describe in 4.1. For all the considered
ime histories, it is finally computed the AR model by means of a leas
quare approach. The order of the model is estimated by the BIC method
 Section 2.2)  and it is fixed at 10. Fig. 1 sums up the generation o
he two datasets and their use for the GSA analysis. 

. Results and discussion

Since the Mahalanobis Squared Distance is a function of AR
arameters (cfr. Eq. (4) ), it is reasonable to perform the GSA and UP
nalyses on these parameters at first and then on this damage feature
n order to complete the description of the statistical behaviour of the
rocess. Generally, this approach could be applied to any damage
eature in order to quantify its sensitivity to several changes of a
ystem. Section 5.1 reports the results obtained by the AR parameter
amples, generated by a Monte Carlo simulation, applied to the 1 do
ystem de- scribed in Section 4.1.  The results from the samples of the
ahalanobis Squared Distance –estimated by means of the AR

arameters samples –are shown in Section 5.2.  Intuitively, it i
easonable to expect that the two sets of analyses will give the same
nterpretation of the statistical behaviour of the mechanical system
specially in terms of links between the variation of the mechanica
arameters and the distribu- tion of the autoregressive quantities (AR
arameters and Mahalanobis Squared Distance).

 

.1. Autoregressive parameters 

The following two sections ( Sections 5.1.1 and 5.1.2)  will sum up the
ain results obtained by performing the GSA analysis and the UP anal-

sis on the AR parameters, calculated from the samples of the data set
ATAWHAT . GSA is necessary to understand which mechanical param-
ters – mass, stiffness, damping ratio and force magnitude – have more
nfluence on the variability of the AR parameter populations but, above
ll, how much is their contribution to define this variability. When this
rst screening on the data is performed, the uncertainty propagation
nalysis is used to quantify the uncertainty of the outputs – in this case
he AR parameters of the autoregressive model - which are directly con-
ected to the reliability of the Mahalanobis Squared Distance used as
amage feature. 
A
fi
p

.1.1. Global Sensitivity Analysis results 

The numerical values of Table 4 show the results obtained by
SA for the first order sensitivity index, the second order sensitivity

ndex and the total sensitivity index, estimated as defined in Section
.2.  The error estimation of these indexes has given values lower than
% with a confidence level of 68%. Recalling the system of Section
.1,  the sensitivity indexes are estimated on the structural response
o a white noise input force without adding uncorrelated noise to
he output signal. The results of the first order index show that the
R parameters 𝜙i from 1 to 9 (over 10) are highly affected by the

ariation of mass and stiffness. The damping ratio has a negligible
ffect on the variability of the AR parameters probably because i
as decided to focus attention only on lightly damped systems. It i

easonable to expect a larger contribution of this parameter fo
ighly damped systems. Finally, the magnitude of the force used to
xcite the system has no effect on the variability of the AR
arameters, as expected. Indeed, the autoregressive model is time
iscrete approximation of the response of the system and its rep
esentation projected in the Z domain is an all poles function [13]
his confirmation can be used as a clue of the goodness of the
nalysis. 

Although the BIC method (Section 4.2)  suggested to use 10 AR
arameters to model the signal, the last two parameters 𝜙9 and 𝜙1

eem to be overfitting factors since their sensitivity to changes of the
echan- ical properties of the structure is low. Even if the order o

he model is probably too high and the proper one should be 8, the
0th order model is maintained because overfitting problems are
ommon in real applications and it could be useful how to deal with
hem and their contribution to the damage feature definition. 

The second order index between mass and stiffness could give more
nformation about the relationship among these two mechanica
arameters and the autoregressive model. However, its value is almos
egligible with respect to the first order index. This means that the
ariation of he joint effect of mass and stiffness is less significant than
he direct effect of the variation of mass or stiffness separately. This fina
bservation opens to the inference about the relation between these
wo mechanical parameters ( m and k)  and the autoregressive
arameters Φi.  Since the first order indexes are the most significan

nes, the conclusion is that the relationship between m and k on one
ide and the output Φi is mainly additive [25],  i.e. 𝜙𝑖 ∼ ( m + k) .  
egarding the total sensitivity index, the results show that every AR
arameter 𝜙i owes its dispersion to the direct effect of the single me

hanical parameter variation ( m and k ), which is represented by the firs
rder index, whereas the higher order effects are almost negligible
s seen for the second order index. Indeed, the total sensitivity index
uantifies the effect of all the terms of any order which link the
echanical parameters (m and k)  to the AR parameter 𝜙i.  In thi

ase, the first- order index and the total sensitivity index have almos
he same value. It must be noticed that the total indexes of 𝜙9 and 𝜙1

re not reported in Table 4 since the analysis gives a consistent leve
f uncertainty for the estimation of these values. This is probably due
o the weak relation these two AR parameters have with the mechanica
ystem because they are basically overfitting parameters. 

Looking their total sensitivity indexes, it is possible to affirm the
amping ratio and the force amplitude have a negligible effect on
he autoregressive parameters. 

Since the variability of the AR parameters depending on the vari- 

tion of the mechanical quantities is almost entirely described by the
rst-order index, it is possible to focus on these indexes and add
ome analyses about the effect of uncorrelated noise. The two plots in
ig. 2 show the effect of uncorrelated noise on the link between the
echanical parameters ( m and k)  and the AR parameters 𝜙

dding noise to the system response signals reduces the amount of
ariability of the AR parameters 𝜙i which can be directly correlated

o the variation of the mechanical parameters. This because the AR
odel is fitting both the mechanical response and the added noise

s can be seen by the plots, the effect of noise is the same for the 
rst sensitivity index of mass and stiffness. Not all the AR 

arameters 𝜙i are affected by noise in the same 



Fig. 1. Data generation and analysis flow chart.
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ay. The parameters from 𝜙3 to 𝜙6 seem to be more robust to the neg-
tive presence of uncorrelated noise. In the worst case – SNR of 20 dB –
he first order sensitivity index decreases from 0.5 to 0.4. This probably
ccurs because these are more correlated to the mechanical parameters
f the system. Indeed, the AR parameters 𝜙9 and 𝜙10 – which are over-
tting parameters not really required to properly reconstruct the signal
are  strongly affected by the presence of noise and their first-order sen-

itivity index goes to zero.
To complete the analysis, Table 5 shows the GSA performed on the

ame system with a nominal damping ratio of 5%, higher than the pre-



Table 4

GSA results of the autoregressive parameters modelling the response of the system without noise. S_m is the first order sensi- 

tivity index for the mass, S_k for the stiffness, S_h for damping ratio, and S_u for the amplitude of the force; S_mk is the second

order sensitivity index for the joint effect of mass and stiffness; St_m is the total sensitivity index related to the mass, St_k to

the stiffness, St_h to the damping ratio, and St_u to the amplitude of the force.

I Order II Order Total Sens. Index

S_m S_k S_h S_u S_mk St_m St_k St_h St_u

phi1 0.492 0.460 0.0054 0.000 phi1 0.023 phi1 0.532 0.499 0.026 0.017

phi2 0.502 0.472 0.000 0.000 phi2 0.020 phi2 0.527 0.497 0.007 0.005

phi3 0.503 0.473 0.000 0.000 phi3 0.019 phi3 0.526 0.497 0.005 0.004

phi4 0.503 0.474 0.000 0.000 phi4 0.018 phi4 0.526 0.496 0.004 0.004

phi5 0.502 0.474 0.000 0.000 phi5 0.018 phi5 0.526 0.498 0.006 0.006

phi6 0.502 0.474 0.000 0.000 phi6 0.018 phi6 0.526 0.498 0.007 0.007

phi7 0.496 0.471 0.000 0.000 phi7 0.017 phi7 0.529 0.504 0.016 0.015

phi8 0.485 0.461 0.000 0.003 phi8 0.007 phi8 0.539 0.517 0.045 0.043

phi9 0.406 0.400 0.004 0.001 phi9 0.014 phi9 n.a n.a n.a n.a

phi10 0.117 0.129 0.087 0.001 phi10 0.008 phi10 n.a n.a n.a n.a

Fig. 2. First order sensitivity indexes of the autoregressive parameters modelling the response of the system adding noise: blue points are data without noise, red points are data with

20 dB SNR and green points are data with 10 dB SNR: (a) first order sensitivity index for mass; (b) first order sensitivity index for stiffness. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)

Table 5

GSA results of the autoregressive parameters modelling the response of the system without noise and

5% damping ratio.

I Order Total Sens.Index

S_m S_k S_h S_u St_m St_k St_h St_u

phi1 0.377 0.331 0.235 0.003 phi1 0.430 0.385 0.256 0.018

phi2 0.482 0.437 0.046 0.003 phi2 0.515 0.471 0.055 0.006

phi3 0.498 0.456 0.016 0.002 phi3 0.525 0.483 0.023 0.004

phi4 0.503 0.464 0.006 0.002 phi4 0.528 0.488 0.013 0.004

phi5 0.505 0.467 0.004 0.001 phi5 0.527 0.490 0.011 0.006

phi6 0.505 0.471 0.001 0.002 phi6 0.527 0.492 0.009 0.007

phi7 0.502 0.473 0.001 0.001 phi7 0.525 0.497 0.013 0.012

phi8 0.492 0.474 0.000 0.002 phi8 0.525 0.508 0.030 0.028

phi9 0.447 0.449 0.035 0.000 phi9 0.514 0.517 0.103 0.065

phi10 0.317 0.341 0.224 0.001 phi10 0.429 0.453 0.328 0.096
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iously adopted value of 0.8%. In this case the signals are processed
ithout adding uncorrelated noise. The error estimation of these in
exes has given values lower than 5% with a confidence level o
8% as like in Table 4.  The values are basically the same as those
eported in Table 4 with the only exception of the parameter 𝜙1,

 

 𝜙

nd 𝜙10.
 

 These parameters show a dependency on damping ratio a

roved by their sensitivity indexes, which means that the
nformation about damping ratio is carried by fewer parameters with
espect to those needed for the identification of the natura

requency. It is also worth observing d
hat the parameters sensitive to damping ratio are those less sensitive
o frequency, as shown in Fig. 2.  This proves the low sensitivity of au
oregressive models to any change in damping ratio because only a few
arameters are necessary to carry this information even if the nomi
al damping ratio is higher. So, the conclusions about the sensitivity
ndexes of Table 4 were wrong. The effect of the change of damping
atio on the autoregressive model is always weak, not only in the
ase of lightly damped systems. It must be noticed that this outcome
oes not mean that the AR model cannot properly estimate the

amping ratio 



Fig. 3. Scatterplot of the autoregressive parameter 𝜑 3 as function of: (a) damping ratio and mass; (b) damping ratio and stiffness; (c) damping ratio and frequency. 

Fig. 4. Surface fitting of the autoregressive parameter 𝜑 3 scatterplot as function of damping ratio and frequency: (a) fitting surface and scatterplot; (b) residues between scatterplot and 

fitting surface; (c) normality test of the residues.
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ut only that its influence on the whole model is weak. Moreover, it is
easonable to expect also the Mahalanobis Squared Distance to be less
ensitive to damping ratio than frequency. 

.1.2. Uncertainty propagation results 

The uncertainty propagation from the mechanical parameters to the
R parameters 𝜙i is crucial to understand the robustness of the autore-
ressive model fitting the signal. Moreover, the reliability of the chosen
amage feature (which in our case is a function of the AR parameters)
ust be assessed. Indeed, their uncertainties are strictly linked together.

Fig. 3 shows the scatterplot of parameter 𝜙3 obtained by the sys-
em response signal without uncorrelated noise added to the output
he first picture from the left is the scatterplot of the chosen paramete
s a function of mass and the second one as a function of stiffness

n the end, the dependency from frequency and damping ratio
ogether is given in Fig. 3 (c). The dependency of 𝜙3 upon mass alone

 Fig. 2 (a)) and stiffness alone ( Fig. 2 (b)) is mainly linear but also the
ependency from the frequency, i.e. the ratio of mass and stiffness, i
lmost linear. The effect of damping ratio is negligible as expected
or lightly damped systems: varying change in damping ratio the
alue of 𝜙3 remains almost constant ( Figs. 2 (c) and 3 (a) giving
wo different points of view). The t
hape of all the scatterplots is due to the important variation of the me
hanical parameters m and k,  so the surface is representative of the link
etween the AR parameter and these two physical quantities. The
uantification of this link is possible using a fitting surface which i
eported in Fig. 4 (a). The equation of the surface has no physica
eaning, be- ing just an interpolating function. However, it i

ignificant understand how the residues between the surface and the
catterplot points are distributed. 

Fig. 4 (b) shows the residues cloud and Fig. 4 (c) its normality tes
esults (Quantile-Quantile plot). The two charts prove the goodnes
f the interpolation since the residues are normally distributed around
he fitting surface and they are homoscedastic. They can be used to
uantify the uncertainty of the AR model estimation only related to
he minimisation algorithm. Reiterating the same procedure for all the
arameters 𝜙i,  which have the same distribution but different values

t is possible to quantify the uncertainty estimation of the AR
arameters 𝜙i in terms of ± 2 𝜎, where 𝜎 is the standard deviation o

he residues around the fitting surface (cfr. Fig. 4 (b)). Fig. 5 show
or each parameter 𝜙i the uncertainty interval corresponding to the

5% of the residues around the mean value (blue intervals) and the
ariation of the same parameters changing the mechanical properties o

he structure (red intervals). 



Table 6

Percentage ratio between the uncertainty and the variation of the AR parameters due to the mechanical

changes in the reference structure. Values are referred to simulations without noise, with SNR = 20 dB and 

with SNR = 10 dB. 

phi1 phi2 phi3 phi4 phi5 phi6 phi7 phi8 phi9 phi10

No noise 9.5 5.6 4.8 4.9 5.9 6.5 9.7 16.2 35.4 96.0

S/N = 20 [dB] 30.3 19.2 16.6 16.7 19.9 21.8 32.0 52.6 126.9 233.2

S/N = 10 [dB] 63.6 44.8 36.1 34.3 37.4 38.7 53.3 88.9 238.5 83.9

Fig. 5. Bands corresponding to the 95% percentile of the residues of each AR parameter 
(blue intervals) compared to the bands corresponding to the AR parameter variations due 
to the change of the mechanical parameters of the system (red intervals). In this case, no 
noise is added to the system response. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version 
of this article.)

I  

p

 

u s 
h  

A  

n

  

F  

t  

p  

p  

o  

e  

t

 

i  

n t 

t

a  

p t 

t  

p t 

c

c

5

T  

d  

D f 
u l 
p f 
t  

A  

s  

d  

p s 
a  

s  

c

5

- 
l  

i s 
l  

d  

t  

t s 
d  

a f 
M  

j  

t  

o s 
S s 
e . 
T - 
p  

n  

t , 
e s 
m s 
S

 

c  

T  

M  

v s 
i  

E  

d  

M s 
s l 
f

5

 

t - 
t .  
t is easily seen that the ratio between the two bands is different for each
arameter 𝜙i.  

If the same AR model is built on the same response signals but adding
ncorrelated noise, it is possible to see the effect in Fig. 6.  The two chart
ave been obtained with a 20 dB SNR and a 10 dB SNR, respectively.
s expected, the uncertainty estimation gets worse as the uncorrelated
oise level increases. 

All these statements can be summarised and quantified by Table 6.

or the case without noise, the percentage ratio between uncertainty of
he AR parameters 𝜙i and their change due to the system mechanical

roperties is in the range between 5 and 20%, except for the last two
arameters 𝜙9 and 𝜙10.

 

 Since their correlation to the physical quantities

f the structure is poor, the variation due to the change of these prop-
rties is comparable to the uncertainty estimation. For these two cases,
he percentage uncertainty grows up to 35% and 96%, respectively. 

When uncorrelated noise is added to the signal, the values reported

n Table 6 confirm the same behaviour of Fig. 2.  Increasing the
oise, the relative uncertainty of parameters from 𝜙3 to 𝜙6 are almos

he same – 15/20% for 20 dB SNR and 35/40% for 10 dB SNR –

nd  theirs values are lower than the other AR parameters, where the

ercentage uncer- tainty exceeds 50%. The results seem to suppor

he idea that the AR parameters are not equally depending on the

hysical quantities of the system. The SNR has a negative effect tha
ould mask the variation of the AR parameters due to a physical 

hange of the system. 
T
p
f

𝜙̂

.2. Mahalanobis Squared Distance 

he Mahalanobis Squared Distance is a feature that estimates the
istance between a multivariate sample and a multivariate population.
ATAWHAT,  used in the previous Section 5.1 will be the group o
n- known scenarios since the variability of the mechanica
arameters is significant in this population. The healthy picture o
he system will be provided by DATAREF: the database made by the
R parameters ob- tained by fitting the response functions of the
imulated system when the mechanical parameters have a uniform
istribution, as reported in Table 2.  This means that the AR
arameters corresponding to a mechan- ical system having mas
nd/or stiffness and/or damping ratio larger than three times the
tandard deviation of the corresponding nominal values, should be
onsidered a damaged scenario. 

.2.1. GSA results 

The first row of Table 7 reports the results of GSA when uncorre
ated noise is added to the signal. The error estimation of these
ndexes and the other tables reported in this section has given value
ower than 5% with a confidence level of 68%. Force amplitude and
amping ratio seem to have a negligible effect on the output, while
he values of the first order indexes state that mass and stiffness are
he two main param- eters having a direct effect of the Mahalanobi
istribution. However, their values are lower than 0.5; in fact, they
re 0.23 and 0.14 respec- tively. This states that the distribution o
SD values not only depends on mass and stiffness but also on the

oined effect of the two parame- ters together, as it can be seen by
he second order index, which is close to 0.60. Since the second
rder index is large, the relationship between the Mahalanobi
quared Distance and the mechanical frequency of the system i
xpected to be multiplicative, as it will be shown in the next section
he second and the third row of Table 7 are the picture of what hap
ens when uncorrelated noise is added to the signal. When the signal to
oise ratio is 20 dB or 10 dB the relationship between the damage fea-
ure and the mechanical system parameters maintains its characteristics
specially for the second order index which is the most important. Thi
eans that even if there is a lot of noise in the signal, the Mahalanobi

quared Distance keeps its sensitivity to damage. 
As final statement, if the nominal damping ratio is set to 5%, the

on- clusions drawn at the end of Section 5.1.1 are confirmed, see
able 8.  Even if the nominal damping ratio is high, the
ahalanobis Squared Distance sensitivity to its change is low. The

alues of Table 8 show the dependence on damping ratio i
nconsistent. Since the Mahalanobis Squared Distance is defined by
q. (4) and only few autoregressive pa- rameters are sensitive to
amping ratio, the final contribution of damping ratio to the
ahalanobis variation is negligible. Basically, it means this feature i

uitable for detection of damages related to a change of natura
requencies rather than a change of damping ratio. 

.2.2. Uncertainty propagation results 

Using data from DATAWHAT and DATAREF, it is possible to estimate
he distribution of the Mahalanobis samples as the distance of each vec
or { } - belonging to DATAWHAT - from all the vectors of DATAREF
he scatterplot of the damage feature shows the distribution of the sam- 
les as a function of the mechanical parameters, for instance the natural 
requency and the damping ratio as it can be seen in Fig. 7.  If the Maha- 



Fig. 6. Bands corresponding to the 95% percentile of the residues of each AR parameter (blue intervals) compared to the bands corresponding to the AR parameter variations due to the

change of the mechanical parameters of the system (red intervals). (a) System response with a 20 dB SNR; (b) System response with a 10 dB SNR. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.). (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)
Table 7

GSA results of the Mahalanobis Squared Distance estimated by the autoregressive parameters mod- 

elling the response of the system without noise, SNR = 20 dB and SNR = 10 dB. 

I Order II Order Total Sens.Index

S_m S_k S_h S_u S_mk St_m St_k St_h St_u

No Noise 0.23 0.14 0.01 0.00 0.61 0.85 0.76 0.02 0.00

S/N = 20 [dB] 0.24 0.14 0.01 0.00 0.61 0.85 0.76 0.02 0.01

S/N = 10 [dB] 0.25 0.14 0.01 0.00 0.59 0.86 0.75 0.01 0.01

Table 8

GSA results of the Mahalanobis Squared Distance estimated by the autoregressive parameters mod- 

elling the response of the system without noise but higher damping ratio (5%).

I Order II Order Total Sens.Index

S_m S_k S_h S_u S_mk St_m St_k St_h St_u

No Noise 0.19 0.12 0.06 0.001 0.58 0.81 0.74 0.10 0.005
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Table 9

Bands corresponding to the 95% percentile of the residues for the Mahalanobis

Squared Distance.

Two standard deviation of the Mahalanobis Squared Distance

95% uncertainty band

No Noise 36.8

S/N = 20 [dB] 43.9 (36.8 + 20%) 

S/N = 10 [dB] 67.9 (36.8 + 80%) 
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anobis estimation process were not affected by any type of uncertainty,
he data should lay on a surface, in this case a paraboloid. Since the AR
arameters 𝜙i are estimated through a minimisation algorithm, they are

ffected by uncertainty due to the tolerance of the solution used in the
teration, and the Mahalanobis Squared Distance is affected by uncer-
ainty by itself. The samples are distributed around a fitting surface and
the thickness of the cloud made by these points can be considered the un-
certainty estimation of the Mahalanobis Squared Distance. Fig. 7 shows
the scatterplot and the two surfaces enclosing the 95% of the data: the
distance between the two surfaces corresponds to a Mahalanobis varia-
ion of 36.8 units. The trend is parabolic as expected in [14].  

When uncorrelated noise is added to the signal, it is obvious to expec
he growing of the Mahalanobis uncertainty. Table 9 summarises the
esults obtained when the signal to noise ratio is 20 dB and 10 dB: in
he worst case, the uncertainty bandwidth has a variance about 70 of
he Mahalanobis interpolating surface. 

If the threshold to discriminate the undamaged and the damaged sce-
arios is estimated by using the extreme value statistics as proposed by
orden et al. [65],  the classification of the scenarios are those
eported in Fig. 8.  In this case, the discriminating value between
amaged and undamaged scenarios is estimated as the p percentile ( p
o be chosen) of the distribution of the maxima. 

Previously, it has been seen that the variation of Mahalanobis
quared Distance is most correlated to the change of frequency, the
amping ratio of the system has a negligible effect on it. Therefore, the



Fig. 7. Surface fitting of the Mahalanobis Squared Distance scatterplot as function of damping ratio and frequency: the two red surfaces correspond to the constant uncertainty bands of

the DATAWHAT around the fitting surface. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.). (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Discriminant threshold as 1% outliers of the maxima distribution. The data refer to the case without adding uncorrelated noise to the signal.
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and 10 dB uncorrelated noise.
uthors focus their attention to frequency to describe the behaviour of
he Mahalanobis Squared Distance. 
In Fig. 8 the blue points are the data beyond the threshold - which are

detected as damage scenarios - and the threshold is the horizonta
iolet line. The green points are the data denoting the reference con-
ition, i.e. the scenarios belonging to DATAREF.  Then the pink point
re the false positives (I type error), which means the data recognised
s damaged scenarios but their natural frequency belongs to the range
f the reference DATAREF.  The red points are the false negative (II type
rror) data, the scenarios recognised as undamaged but their natural
requency is out of the range described by DATAREF. Adding noise, it is
easonable to expect the raise of type I and II errors – pink  and red point
 as it will be show in Table 10.  This illustrates the percentages of false
ositives and false negatives over the total amount of data belonging to
ATAWHAT for the three conditions: no noise, 20 dB uncorrelated noise



Fig. 9. Effects of structural changes on the FRF of the AR model: (a) frequency variation; (b) damping variation.

Table 10

Damage detection performances fixing the threshold by Mahalanobis tail

percentage estimation.

NO NOISE 20 dB NOISE 10 dB NOISE

POSITIVE 62.74% 62.97% 57.79%

NEGATIVE 37.26% 37.03% 42.21%

FALSE NEGATIVE 15.23% 14.94% 19.17%

FALSE POSITIVE 0.93% 0.86% 0.05%

TOTAL ERROR 16.16% 15.80% 19.22%
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The results show the threshold estimation by using the maxima dis-
ribution of the Mahalanobis Squared Distance is very effective in reduc-
ng the I type error. Basically, since the threshold value is quite large, it
s difficult to make this type of mistake. However, the drawback is the
arge number of false negatives. Since the Mahalanobis Squared Distance
s a paraboloid as a function of the mechanical parameters of the system
at least for the 1 dof system- it is difficult to avoid the type II error us-
ng just a constant threshold. The false negatives are rather dangerous
or structural health monitoring since this means that incipient damage
onditions are not always detected.

It could also be noted that the performance of the Mahalanobis
quared Distance with data corrupted by 20 dB of uncorrelated noise
s comparable to the case without noise. This confirms the robustness
f the Mahalanobis Squared Distance as a damage feature thanks to its
oise rejection property. The 10 dB noise condition indeed is an extreme
ase that should not happen in real practice when the measurement
etup is properly settled down. 

. Comments to the results in a SHM prospective

The previous sections have reported an extended analysis of AR mod-
ls in the SHM context on the base of a Global Sensitivity Analysis
ramework. Some results corroborate and enhance knowledges already
eported in the literature, such as the good noise rejection property of
he MSD or the independency of AR models from the excitation ampli-
ude. Other results can be said unexpected and original. 

When a signal representing the dynamic response of a system is mod-
lled by a pure AR model, the AR parameters are not equally depend-
ng on the mechanical parameters of the structure. This means it could
e possible to strengthen those parameters, which are more linked to
he physic of the system, to improve a damage detection process. For
nstance, in the case of the MSD, it could be possible to explored the
ossibility to defined a Weighted Mahalanobis Squared Distance where
ifferent weights are given to the variables. Some papers have proposed
he use of a Weighted Mahalanobis Distance (WMD) in the field of Gaus-
ian classification but its application to SHM is rather uncommon as 
o the authors’ knowledge [66–68].  

Another important and unexpected outcome is that AR modelling is much
more sensitive to the frequency of the system rather than its damp

ng. To better understand this behaviour, Fig. 9 shows what happens to
he eigen values of the AR model with respect to the nominal system in
hree cases: a frequency change of 10%, a damping ratio of 10% and a
amping ratio of 500%. Fig. 9 (a) shows that the poles of the discrete
ystems are equally distributed in the complex plane as declared in [14].  
    Among all the poles, only the ones close to the physical poles o
he system show a clear change according to the system they are
epresenting, as shown in Fig. 9 (b). Varying the frequency around
0% the pole of the model is subjected to a strong variation. On the
ontrary, in order to see a variation of the same magnitude due to
he damping ratio, it must vary about 500%. From a dynamic poin
f view, it could be said that the AR model is just representing wha
s already well-known in the dyamics theory: the poles of a
echanical system are more depending on frequency than damping

atio. The direct consequence is that AR modelling can be efficiently
sed to detect a damage related to a change of the frequency, a
ass or stiffness loss for instance; however, if the structure i

ubjected to a significant change of its damping ratio, the model wil
ignal this occurrence by a slight alteration. 

The final important outcome of this work is the dependency o
he AR model on the SNR of the recorded signal. This effect is much
tronger as the AR parameter is less correlated to the mechanica
roperty of the system. In practical situation, once the order of a mode
s fixed, the SNR ratio of the signal could vary from one acquisition to
nother. Supposing the nature of the forcing source would not change
.e. the shape of the input spectrum remains stable, this means the
R model could experience a variation due to the operationa
onditions. Changing the level of the input excitation, the SNR in
he signal might be influenced, thus also the AR model could
anifest a variation which is indirectly due to the operationa

onditions. For instance, the AR model representing the response o
 civil structure could show a variation from day to nigh
ccordingly with the impact of the traffic around the building.

 

. Conclusion
This work has proved that the AR parameters depend in different 
ways on the dynamic parameter of the system itself. Most of the AR 
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Table A.3

GSA results of the autoregressive parameters modelling the response of the

3dof system without noise.

Omega 1 Omega 2 Omega 3 h 1 h 2 h 3

Phi 1 0.01 0.08 0.35 0.01 0.03 0.53

Phi 2 0.02 0.2 0.24 0.06 0.01 0.46

Phi 3 0.1 0.08 0.26 0.31 0.1 0.12

Phi 4 0.13 0.32 0.01 0.14 0.26 0.12

Phi 5 0.2 0.59 0 0.09 0.07 0.02

Phi 6 0.44 0.46 0.01 0.07 0 0.01

Phi 7 0.73 0 0.01 0.05 0.1 0.11

Phi 8 0.48 0.36 0.01 0.01 0.11 0.03

Phi 9 0.31 0.63 0 0 0.05 0.01

Phi 10 0.34 0.65 0 0 0 0

Phi 11 0.67 0.26 0 0 0.04 0

Phi 12 0.54 0.28 0 0.01 0.14 0.01

Phi 13 0.22 0.71 0 0.01 0.05 0

Phi 14 0.22 0.76 0 0 0.01 0

Phi 15 0.46 0.5 0 0.01 0.01 0

Phi 16 0.81 0.06 0 0 0.11 0.01

Phi 17 0.35 0.59 0 0 0.06 0

Phi 18 0.22 0.76 0 0 0.02 0

Phi 19 0.25 0.74 0 0 0 0

Phi 20 0.62 0.22 0 0 0.11 0.01

Phi 21 0.22 0.65 0 0 0.11 0.01

Phi 22 0.07 0.88 0 0 0.04 0

Phi 23 0.07 0.91 0 0 0.01 0

Phi 24 0.2 0.78 0 0 0 0

Phi 25 0.68 0.18 0 0.01 0.12 0

Phi 26 0.31 0.61 0 0.01 0.07 0

Phi 27 0.14 0.81 0 0.01 0.03 0

Phi 28 0.18 0.78 0 0.02 0 0

Phi 29 0.25 0.64 0 0.03 0.02 0

Phi 30 0.36 0.3 0 0.05 0.23 0

t  

i  
arameters depend on the natural frequency of the system and only
ew parameters on the damping ratio when its value is consistent. This
eans that the autoregressive model is more sensitive to a change of
atural frequency since most of the AR parameters strongly depends on
t. Since the Mahalanobis Squared Distance is a function of the AR pa-
ameters, also this damage feature shows more sensitivity to a change of
atural frequency of the system than damping ratio. The damage which
an be detected by the Mahalanobis Squared Distance more easily is
he one can cause a frequency change. Moreover, adding uncorrelated
oise to the signal it has been proved that the sensitivity of the AR pa-
ameters to a change of natural frequency of the system is worsened
ut the negative effect is not the same for all the parameters. Some of
hem maintain a strong relationship with the mechanical parameters of
he system and this positive property seems to be the reason why the
ahalanobis Squared Distance has a good noise rejection. Indeed, the

ensitivity analysis on this damage feature shows that the relationship
etween the damage feature and the parameters of the system do not
hange when uncorrelated noise is added to the signal. 

The conclusions of this paper should be extended to the methods
sing AR parameters to predict the reliability of aging structures. A fur-
her work should be a wide analysis of the effects of the outcomes of
his work on the uncertainty of remaining lifetime prediction. 

ppendix A. Brief GSA analysis on a MDOF system 

This appendix shows briefly the results obtained from a variance-
ased GSA applied to a 3 dof system ( Fig. A.1 ). The system used 
o perform the analysis is fixed by its modal parameters accordingly 
o Tables A.1 and A.2.  

The GSA simulations are made by varying the modal natural frequen-
ies around 10% and the damping ratios around 50%. The database 
ATAWHAT is generated following the approach of Section 4.  
odal residues are kept fixed since they are related to the zeros and
he ampli- 

Fig. A.1. Simulated 3 dof system

Table A.1

Parameters of 3 dof system related to the nominal condi- 

tion.

3 dof system 1st dof 2nd dof 3rd dof

mass [kg] 1 1 1

stiffness [N/m] 500 1000 5000

damping [Ns/m] 1.78 3.5 6.7

Table A.2

Modal parameters of 3 dof system related to

the nominal condition.

Modal parameters

1st Natural Frequency [Hz] 2.03

2nd Natural Frequency [Hz] 19.17

3rd Natural Frequency [Hz] 51.77

1st damping ratio 0.045

2nd damping ratio 0.045

3nd damping ratio 0.045
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ude of the FRF of the system; the AR model is an only-pole function and
s not influenced by these quantities. The AR model used to represent
he response of the system in correspondence of mass 2 is made by 30
arameters. No noise is added to the signals. 

The results confirm the analysis conducted on the 1dof model. The
R parameters do not depend on the modal parameters equally. The
elationship is stronger with the natural frequencies and negligible with
he damping. Among the natural frequencies, the dependency of the AR
arameters is not equally distributed but a general rule cannot be found
ince this behaviour depends on the specific mechanical system, i.e.
he number of natural frequencies and their value Table A.3.  

ppendix B. PAWN results 

This appendix briefly reports the results obtained by applying PAWN
ethod [61].  The reader is asked to refer to [60] for a complete
escrip- tion of the approach. The moment-invariant technique ha
een applied to the AR parameters of the model fitting the dynamic

esponse of the 

Table B.1

PAWN results of the AR parameters modelling the re- 

sponse of the system without noise.

Kolmogorov-Smirnov statistic

Mass Stiffness Damping Force

phi1 0.48 0.50 0.07 0.01

phi2 0.48 0.50 0.03 0.01

phi3 0.48 0.50 0.02 0.01

phi4 0.49 0.50 0.02 0.02

phi5 0.49 0.50 0.02 0.02

phi6 0.49 0.50 0.02 0.01

phi7 0.48 0.49 0.01 0.01

phi8 0.48 0.49 0.02 0.01

phi9 0.45 0.45 0.05 0.01

phi10 0.23 0.27 0.21 0.02



Table B.2

PAWN results of the autoregressive parameters modelling the response of the system with noise.

Kolmogorov-Smirnov statistic

20SNR 10SNR

Mass Stiffness Damping Force Mass Stiffness Damping Force

phi1 0.48 0.49 0.04 0.02 0.38 0.42 0.07 0.03

phi2 0.50 0.50 0.04 0.02 0.45 0.46 0.03 0.02

phi3 0.50 0.50 0.04 0.02 0.47 0.47 0.05 0.02

phi4 0.51 0.49 0.03 0.02 0.47 0.47 0.05 0.02

phi5 0.49 0.50 0.03 0.02 0.46 0.47 0.04 0.02

phi6 0.50 0.50 0.02 0.02 0.46 0.46 0.02 0.02

phi7 0.50 0.49 0.02 0.02 0.43 0.42 0.04 0.02

phi8 0.45 0.45 0.04 0.02 0.33 0.34 0.06 0.02

phi9 0.26 0.29 0.06 0.02 0.12 0.15 0.08 0.03

phi10 0.12 0.08 0.09 0.02 0.34 0.25 0.05 0.02

Fig. B.1. Unconditional CDF and the conditional CDFs of 𝜙1 with variation of the inputs accordingly to Table 3.  
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dof system described in Table 1.  The results should be compared with
hose reported in Tables 4, 5 and Fig. 2.  

Pawn method is simple. The approach characterises the conditiona
nd unconditional distributions by their Cumulative Distribution Func
ions (CDFs). The sensitivity is than measure by estimating the varia
ions between the unconditional CDF and the conditional CDFs. As a
easurement of the distance among the CDFs, the method applies the
olmogorov-Smirnov statistic, i.e. the absolute value of the maximum
istance between unconditional CDF and the conditional CDFs. 

As an example, Fig. B.1 reports the comparison of the
nconditional CDF and the conditional CDFs of the first AR
arameter 𝜙1 obtained by the system described in Table 1 and

etting the inputs varying accord- ing to Table 3.  The number o
imulations used is 10 6.  As it can be seen from the plots, the red
ines correspond to the unconditional CDF of 𝜙1,

 

 whereas the black

ines are the conditional CDFs obtained by fixing the input variable
t different values of their range. From the plots, it is 
lear that mass and stiffness have a strong effect on the probability
is- tribution, whereas damping and force amplitude basically do no
hange anything. 

If this analysis is repeated for each AR parameter and the
olmogorov-Smirnov statistic is estimated, it is possible to obtained
oment-independent sensitivity indexes that can be compared with

hose reported in Tables 4, 5 and Fig. 2.  
able B.1 reports the results of moment-independent GSA applied on 
he AR parameters modelling the dynamic response without adding un-
orrelated noise. Pawn’s sensitivity indexes show the same
onclusion obtained from the variance-based GSA. Mass and stiffnes
ave a strong effect on all the autoregressive model, wherea
amping and force am- plitude are negligible. 

Table B.2 reports the results obtained when uncorrelated noise is
dded to the response of the mechanical system. In this case, the

orrespondence with the results reported in Fig. 2 is less strong, especially

hen the level of noise is low. However, it is possible to see the same

rend. When uncorrelated noise is added to the signal, the sensitivity o

ome indexes decreases. For instance, when SNR is 20 dB, the last three
R parameters 𝜙8,  𝜙9 and 𝜙10 show lower sensitivity values for mas

nd stiffness. When SNR is 10 dB the correspondence with Fig. 2 i

learer. All the AR parameters show lower sensitivity indexes, especially
he first two AR parameters 𝜙1,  𝜙2 and the last three 𝜙8,  𝜙9 and 𝜙10.  

Finally, Table B.3 shows the results when the nominal value of damp-
ng is higher. Also in this case it is possible to recognise a correspondence
ith the results obtained by a variance-based GSA. The sensitivity of the
R parameters to damping in general is still low. Only 𝜙1 , 𝜙2 , 𝜙9 and

10 shows an increased dependency on damping, especially the first and
he last one. 



Table B.3

PAWN results of the AR parameters modelling the re- 

sponse of the highly damped system without noise.

Kolmogorov-Smirnov statistic

Mass Stiffness Damping Force

phi1 0.45 0.39 0.38 0.02

phi2 0.48 0.48 0.16 0.01

phi3 0.48 0.49 0.08 0.02

phi4 0.48 0.48 0.07 0.01

phi5 0.48 0.49 0.05 0.02

phi6 0.48 0.48 0.04 0.02

phi7 0.48 0.48 0.02 0.02

phi8 0.48 0.48 0.04 0.01

phi9 0.47 0.46 0.13 0.01

phi10 0.25 0.24 0.33 0.02

R
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