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Highlights 

 The proposed Bayesian Network can treat large systems with complex performance 
metrics 

 A random forest algorithm is adopted for a stable selection of important components 

 The influence of evidenced components is enhanced by a recursive building algorithm 

 A similarity measure ensures the robustness of the off-line Monte Carlo simulation 

 The method is applied to a real-world road network, with a sensitivity analysis 

 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

2 
 

Approximate Bayesian Network Formulation for the Rapid Loss Assessment of Real-World 

Infrastructure Systems 

 

Pierre Gehl*
1
, Francesco Cavalieri

2
, Paolo Franchin

2
  

1
 Risks and Prevention Division, BRGM, Orléans, France 

2
 Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Rome, Italy 

* = corresponding author: p.gehl@brgm.fr 

  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3 
 

Abstract 

This paper proposes to learn an approximate Bayesian Network (BN) model from Monte-Carlo 

simulations of an infrastructure system exposed to seismic hazard. Exploiting preliminary physical 

simulations has the twofold benefit of building a drastically simplified BN and of predicting complex 

system performance metrics. While the approximate BN cannot yield exact probabilities for predictive 

analyses, its use in backward analyses based on evidenced variables yields promising results as a 

decision support tool for post-earthquake rapid response. Only a reduced set of infrastructure 

components, whose importance is ranked through a random forest algorithm, is selected to predict the 

performance of the system. Further, owing to the higher importance of evidenced nodes, the ranking 

method is enhanced with a recursive evidence-driven BN-building algorithm, which iteratively inserts 

evidenced components into the subset identified by the random forest algorithm. This approach is 

applied to a French road network, where only 5 to 10 components out of 58 are kept to estimate the 

distribution of system performance metrics that are based on traffic flow. Sensitivity studies on the 

number of selected components, the number of off-line simulation runs and the discretization of 

variables reveal that the reduced BN applied to this specific example generates trustworthy estimates. 

 

Keywords: Bayesian networks; seismic risk; decision support; road network; Bayesian learning; 

system performance 
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1. Introduction 

The performance of critical infrastructure plays an essential part in the disaster management phase 

following an earthquake, as demonstrated by recent events such as the 2016 Kaikoura (New Zealand) 

earthquake (Mw 7.8), which cut off many settlements. The development of rapid response systems, 

able to update damage predictions in near-real time from field observations, represents one of the main 

challenges of disaster reduction efforts [1]. Thanks to their inference abilities, Bayesian Networks 

(BNs) offer appropriate mathematical tools for the rapid updating of projected loss distributions, as an 

input to decision support systems [2]. 

BNs model the dependencies between variables through directed edges and conditional probability 

tables (CPTs, in the case of a BN with discrete variables), which provide conditional probabilities 

given the states of parent variables. However, in the specific case of infrastructure systems, physical 

components are usually interconnected and most of them contribute to the performance of the system. 

As a result, evaluation of a system performance measure (S) based on the combination of the states of 

n components is one typical case of dimensionality curse, as the CPT size grows exponentially with 

the number of components (O(c
n
) with c ≥ 2). Bensi et al. [3,4] have explored various strategies based 

on the BN‟s topology in order to alleviate this issue: they advocate the grouping of components into 

parallel or series sub-systems through the identification of minimum link sets or cut sets, thus limiting 

the amounts of edges converging towards a given node. However, while the aforementioned BN 

formulations enable the number of components to be increased to some extent, Cavalieri et al. [5] have 

shown that memory issues start to appear as soon as a couple of dozen binary components are 

considered, even when efficiently coalescing the intermediate nodes that represent survival or failure 

sequences. Moreover, these BN formulations require the preliminary identification of all minimum 

link sets and cut sets, usually through recursive algorithms that examine all possible connectivity paths 

in the considered network topology. Such a task quickly becomes overwhelming in terms of 

computation time when studying large systems. 
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Alternative BN frameworks have also been proposed, such as the use of a compression algorithm in 

order to reduce the memory storage space of the CPT of the system performance [6,7]. Those methods 

rely on a simple converging structure from the components to the system node (i.e., naïve 

formulation), since the CPT compression help managing a large number of parent nodes. The variable 

elimination inference algorithm, coupled with a careful ordering of the component nodes, is used in 

order to avoid repeating compression and recompression operations and to reduce the computation 

time. However, most of the considered cases involve independent components (i.e., component nodes 

are root nodes in the BN), while the case of dependent components is just addressed with a single root 

node governing the statistical correlation between components. Therefore, the application of the 

compression algorithm to a real-world system that is exposed to a spatially distributed ground-motion 

field, where the seismic intensity affecting the state of each component is linked to the intensity values 

at all other components‟ locations through a network of several intermediate variables, would require 

more developments and a cumbersome optimization of the variable elimination algorithm. On the 

other hand, Pozzi and Der Kiureghian [8] have investigated Gaussian BNs, which consist of 

continuous variables and have therefore the merit of greatly reducing CPT sizes. However, this 

approach requires all variables to be represented by a Gaussian distribution, which is not the case of 

the components‟ states. This strong limitation prevents the use of exact inference algorithms, and 

approximate inference engines such as importance sampling or Gibbs sampling have to be used 

instead. In order to use exact inference to treat the case of discrete children of continuous parents, it is 

possible to discretize all the continuous variables, as done by Hosseini and Barker [9] in modeling the 

resilience capacity of an inland port. Their BN is composed by Boolean and continuous variables, the 

latter being modeled with a truncated normal distribution that is then discretized. 

Most of the aforementioned BN approaches are focused on connectivity-based performance measures 

only, since such a framework allows for straightforward rules to be extracted (e.g., parallel or series 

assembly of components). Still, recent studies [10,11] have highlighted the major influence of the 

measure type on the accuracy of the estimation of a system‟s performance. It has been shown that 

flow-based measures offer a much more precise picture of the state of the system than metrics based 
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on connectivity only. The work by Cavalieri et al. [5] has constituted a first attempt to overcome this 

issue, by adopting a two-step BN learning procedure. First, Monte Carlo (MC) simulations are 

performed in order to generate samples of the variables‟ states, in the form of a state matrix. Then, the 

most influential components, with respect to a given system performance of interest, are selected in 

order to build an approximate BN formulation that only includes a reduced number of nodes in the 

components-system converging structure. This method enables any type of measure to be considered, 

including flow-based ones, since the relation between the components and the system variables is 

directly obtained from the simulation results. It also leads to a reduction in the complexity of the BN, 

so that larger and more complex systems may be treated: in other words, the approximate BN 

formulation models a complex system through a simplified structure, thus reducing the problem to a 

computationally tractable case.  

Therefore, this paper builds upon the idea of approximate BN formulation introduced by Cavalieri et 

al. [5], with the objective of improving it and demonstrating its feasibility in the case of a real-world 

system. While this approximate BN method has shown promising results when applied to a virtual 

infrastructure system [5], several points still need to be addressed, such as the most adequate 

importance measure for the selection of components, the number of components required in order to 

obtain stable inference results, the discretization scheme for continuous variables, the number of off-

line MC simulation runs that lead to a reliable BN or the appropriateness of accounting only indirectly 

for evidence on components not directly linked to the system performance. The successive steps in the 

construction of the approximate BN are provided in Section 2, where the adopted supervised BN 

learning algorithm is detailed. An importance measure based on a random forest analysis [12] of the 

Monte Carlo outputs is introduced as a more robust alternative to linear Pearson's correlation. 

Moreover, a recursive evidence-driven BN-building algorithm is introduced, which iteratively replaces 

the components connected to each system variable of interest, mixing components with evidence and 

components from the random forest algorithm, while keeping their total number always within 

computable limits. Then Section 3 describes the real-world infrastructure system, i.e. a road network 

connecting a few towns in the Pyrenees mountain range in France, which is used for the application of 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7 
 

the BN framework. Finally, the BN is applied to the road network in Section 4, where various 

inference scenarios are demonstrated, through the inclusion of field observations that are relevant to 

potential disaster management operations. Section 4 also reports several sensitivity studies, which aim 

to evaluate the robustness of the inference scenarios with respect to the number of selected 

components, the number of simulation runs and the discretization of continuous variables. 

 

2. Strategy for the BN Modeling of Real-World Infrastructure Systems 

The proposed BN formulation starts with the quantification of the hazard and damage events, at the 

level of the spatially distributed infrastructure components, as shown in Figure 1. This BN structure is 

similar to the one adopted by Bensi et al. [3] and Cavalieri et al. [5], except that a Z node has been 

added in order to model the possibility of sampling earthquake events from different seismogenic 

zones. Indeed, apart from this generalization, the BN model by Bensi et al. works very well for the 

upper portion related to seismic hazard and even to the level of components‟ damage state. It is the 

bottom system-level portion that has limitations in dealing with larger-size systems and flow-based 

performance measures. This paper deals with a better model for this bottom portion of the BN. 

Most of the variables are continuous and must therefore be discretized beforehand, with the exception 

of the seismogenic zone node (finite number of states, or zones) and components‟ states. Therefore, 

the considered variables, from top to bottom, are: 

a) Z (discrete): root node, where each state represents one of the seismogenic zones that are 

susceptible to generate an earthquake event near the system (these areas have been discretized 

beforehand as a result of probabilistic seismic hazard assessment – e.g. Woessner et al. [13]); 

b) M (continuous, discretized): magnitude of the earthquake event, function of the activity 

parameters of the seismogenic zone; 

c) E (continuous, discretized): location of the earthquake event within the seismogenic zone 

(point-source model); 

d) Ri (continuous, discretized): epicentral distance for each vulnerable component i; 
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e)   I i  (continuous, discretized): logarithm of the median value of the seismic intensity measure 

(IM) of interest, as estimated by the ground-motion prediction equation; 

f) U (continuous, discretized): standard normal variable that is common to all sites (first part of 

the Dunnett-Sobel decomposition [14] of the intra-event error term); 

g) Vi (continuous, discretized): standard normal variable that is specific to each site i (second 

part of the Dunnett-Sobel decomposition [14] of the intra-event error term); 

h) εi (continuous, discretized): intra-event variability of the ground-motion, which is specific to 

each site i, depending on the relative contribution of the U and Vi Dunnett-Sobel variables [14] 

that account for the spatial correlation of the ground-motion field; 

i) η (continuous, discretized): inter-event variability of the ground-motion, which is common to 

all sites; 

j) Ii (continuous, discretized): logarithmic IM at site i; 

k) Ci (discrete): component node, with states representing the damage states of the component, 

using fragility curves to build the conditional probability table. 

The CPTs of the variables are quantified by considering established analytical and empirical models, 

such as, e.g., ground motion prediction equations (GMPEs) for p(I|M,R,,), fragility curves for p(C|I) 

and earthquake recurrence laws for p(M|Z). More details on the construction of this part of the BN are 

provided in Cavalieri et al. [5], which adopts the Bensi et al. [3] approach. 
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Figure 1. BN model of distributed seismic hazard, applied to a five-component example system.  

As mentioned in Section 1, the lower portion of the BN, i.e. the definition of the system performance 

measure S as a function of the components‟ states Ci, is here achieved by adopting a converging 

structure from the components to the system node (i.e., naïve formulation). This choice is guided by 

the findings of Cavalieri et al. [5], who have shown that, for a reduced number of components (e.g., 

around a dozen), a naïve formulation remains the most computationally efficient strategy when using a 

junction tree algorithm. Therefore, in order to keep the number of components to a reasonable amount, 

it is proposed to select only the most „critical‟ components, i.e. the ones that provide the most accurate 

conditional distribution of the S variable. To this end, a three-step BN learning procedure is 

introduced, as detailed below: 

1. Generation of a set of N samples, through a Monte Carlo-like simulation of all the 

variables involved, from Z to S. The subset of results of interest for learning the BN can 

be represented as a state matrix of size [N ; n+m], where each row represents the outcome 

of a one simulation run, the first n columns represent the states (C) of the n components in 

the system, and the last m columns represent the m system performance measures (S) of 

interest. This is the most computationally intensive step and is performed only once off-

line. 
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2. Ranking of the n components based on their influence on each system‟s performance 

measure S (m distinct rankings). This is not a computationally intensive task, and in any 

case it is performed only once, off-line, in order to establish the most influential 

components for each system measure, in the absence of any evidence (i.e. when all 

components‟ states are unobserved). The use of random forest classification as a ranking 

method is detailed below. 

3. Selection of k components for the construction of the CPT of each of the S variables, 

initially based on their influence on the system‟s performance as established in Step 2. The 

CPT of S is then built only from the states of the k components, instead of all n parent 

nodes. The conditional probability of the discretized S to be in state s, given that the 

components Ci are in states ci (for i = 1…k), is evaluated as in Eq. (1), where N is the total 

number of simulated samples and δa,b(j) is the Kronecker delta for the j
th
 sample, which 

takes the value 1 if a = b, and 0 otherwise. The joint probabilities can then be 

approximated by counting the number of occurrences in the state matrix, if enough 

samples are generated. This step is the least computationally intensive and is repeated 

whenever evidence is obtained on a component initially not included among the first k in 

the ranking. When this happens, the component is added to the list of ne components with 

evidence and the remaining k-ne components are taken from the corresponding initial 

ranking from Step 2 (i.e. each time a component outside the set receives evidence, it 

replaces the least important component in the set). If evidence is collected on components 

already in the set, or on other variables such as the event magnitude, epicenter location, 

intensity at a site, etc. the BN stays the same. 
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The resulting structure, referred in Cavalieri et al. [5] as the thrifty-naïve or t-Naïve formulation 

(Figure 2), presents the double merit of (i) using a much smaller amount of components in order to 

reduce the computational complexity, and of (ii) enabling any type of system performance measure S 

to be estimated, since the relation between the components‟ and system‟s states is simply obtained by 

counting, without the need to use any connectivity or capacity rules. However, since the t-Naïve 

formulation is learned from Monte Carlo simulations, it is not able to explore component 

configurations that are beyond the solution space discovered by the simulations. As a result, the 

application of the proposed method to predictive analyses (i.e., forward inference) does not provide 

much benefit when compared to more conventional Monte Carlo sampling. On the other hand, the 

inference abilities of such a Bayesian framework are well suited to the diagnostic analysis (i.e., 

backward inference) of an infrastructure system immediately following an earthquake: initial model 

predictions are updated from field observations in order to provide a posterior distribution of the 

variables of interest. 

 

Figure 2. Example of a t-Naïve formulation when three components out of five are selected.  

While Cavalieri et al. [5] have used the Pearson correlation between the components‟ states and the 

system states in order to rank the importance of each component, it is proposed here to use a random 

forest classification [12], which is more suited to discrete or categorical variables. This algorithm 

generates a set of single classification models such as decision trees [15]. In the case of categorical 

variables (i.e., damage states of the components Ci), a decision tree is built by progressively splitting 

the domain space {Ci}i=1..n until homogeneous regions with respect to the target variable (i.e., the state 

of the performance measure S) are created. The Gini index is computed at each split node of the tree in 

order to decide which input variable Ci has to be split next, thus creating a new set of branches (see 
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Figure 3). Before any splits are carried out, the Gini index of the target variable S is expressed as 

follows [15]: 
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where GINI(t-1) represents the Gini index of the target variable at the previous split node of the given 

branch, and GINI(t
-
) and GINI(t

+
) represent the Gini index given the state of component Ci at split 

node t (failure and survival, respectively).  

This computation is carried out for all possible components Ci and split nodes t, and the combination 

that yields the smallest Gini index is selected to create the next split of the classification tree. 

 

Figure 3. Construction of a classification tree, with the first split made on the states of component C4. 

The principle of the random forest classification algorithm relies on the bootstrap sampling of 

numerous classification trees (see Figure 4), with the aim of generating a stable classification and 

reducing model overfitting (e.g., reduction of the impact of components that are very rarely damaged 

in the Monte Carlo simulations). The bootstrap sampling is carried out on two levels, namely (i) on the 
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simulation outcomes (i.e., removal of some rows of the state matrix) before each classification tree is 

built, and (ii) on the components to consider (i.e., removal of some columns of the state matrix), for 

each decision split in the classification tree. For each classification tree generated, a classification error 

Err is computed, by counting the amount of misclassifications that are found when applying the 

classification tree to the sub-set of data that has not been included in the bootstrap sample (i.e., out-of-

bag sample of size N-N’, if N’ is the number of simulation outcomes selected in the bootstrap): 

 
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where δa,b(i) is the Kronecker delta for the i
th
 out-of-bag sample, sCT is the state of S as predicted by the 

classification tree, and sOOB is the actual state of S. 

The generation of the random forest is achieved through the TreeBagger function in MATLAB [16], 

which creates bootstrap samples of classification trees. This algorithm is also able to provide an 

unbiased prediction importance estimate for each component, which may then be used to build a 

straightforward ranking of the most important components. This predictor importance measure 

corresponds to the difference between the actual error rate as computed in Eq. (4) and the error rate 

obtained when permuting the values taken by a given component in the state matrix [17]: a large error 

rate means a large variation in the target variable distribution due to the permutation, and consequently 

a large influence of this component on the performance measure S. 
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Figure 4. Construction of a random forest and computation of the unbiased importance measure, using 

boostrap samples of the state matrix to generate classification trees. 

Alternative learning strategies have been discussed in the literature, such as the K-2 algorithm [18], 

which is a form of unsupervised BN learning that creates dependency links between component nodes 

(i.e., no a priori assumption of the BN structure). This approach, however, is not compatible with the 

case of a seismic risk analysis, for which the physical relations between the hazard intensity and the 

states of the components must be fully explicated in the BN, in order to respect a principle of causality 

between physical parameters. Therefore, directly counting the state matrix in order to build the system 

CPT remains the most appropriate strategy in the present case, since all BN nodes correspond to 

engineering models [19]. Albeit out of the scope of the present study, elaborate supervised BN 

learning algorithms are still worth investigating, by setting for instance a prior probability of zero to 

all tentative BN structures that do not present a converging structure. 
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Finally, it is important to remark how, of the improvements with respect to [5], the introduction of a 

recursive evidence-driven BN-building procedure with Step 3 represents a major advancement. In the 

t-Naïve formulation, where some links are trimmed, evidence on the state of components excluded 

from the subset of the most influential ones, such as, e.g., components C3 and C5 in Figure 2, is only 

indirectly affecting the state of the system. The importance of the components formalized through the 

initial ranking in Step 2 is based on the assumption that all components are on an even starting level, 

affected by uncertainty. Evidence, however, is highly informative and its effect showed to be different 

when propagated to S indirectly, through the intensity variables (I) and then the states of other 

components (C), or directly from C to S. For this reason, including always the components with a 

known state in the subset greatly improves the performance of the approximate BN. 

3. Application: Road Network in the Pyrenees (France) 

This section describes the case-study that is used for the demonstration of the proposed enhanced t-

Naïve BN formulation. It is adapted from that presented in Gehl et al. [20]. 

3.1. Presentation of the Case-Study 

The case-study area is located in the South of France, along the border with Spain. The small towns 

and villages within this area are connected through a set of departmental roads that are mainly running 

along the steep valleys of the Pyrenees mountain range. Seismic hazard is a potentially disruptive 

threat, since the area is characterized by an average seismicity level according to the French seismic 

zonation. The region has been indeed the object of previous seismic risk studies (e.g. SISPYR, 

www.sispyr.eu, or ISARD projects). Ground shaking has the potential to affect engineering works 

such as bridges or even to trigger landslides on the unstable slopes that overhang some road segments. 

In total, the road network model is composed of 219 nodes and 265 bidirectional edges: 58 edges, 

namely 20 bridges and 38 unstable slopes, are considered to be vulnerable to seismic hazard. For the 

network analysis, 10 Traffic Analysis Zones (TAZs) have been selected, corresponding either to 

population settlements or to entry points to the network. The road network is presented in Figure 5, 

together with a close-up on its central part, where most of the vulnerable components are located. 
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Figure 5. a) Schematic view of the road network and b) zoomed-in area around the sites and TAZs of 

interest. TAZs #2 and #8 respectively represent the end of the valley (ski resort) and the town of Saint-

Béat, which are used to estimate trips at the local level. 

3.2. Modelling Assumptions for the Supporting Monte Carlo Simulation 

In order to model the seismic hazard in the area and to cover the spatial extent of the vulnerable 

components, seven seismogenic zones have been selected, whose activity is characterized in terms of 

the parameters of the truncated Gutenberg–Richter recurrence law: λ0 (i.e., the mean annual rate of the 

events in the source with magnitude greater than the lower limit ML), magnitude slope β, lower and 

upper magnitude limits ML and MU. The parameter values in Table 1 have been retrieved from 

Woessner et al. [13]. The seismogenic areas have been truncated so that only the parts within 100 km 

to the closest vulnerable components are kept (see the general layout of the areas in Figure 8): this 

optimization allows for more damaging earthquake events to be sampled, instead of many far-field 

earthquakes that would be irrelevant for the construction of the state matrix. The mean annual rate λ0 

has been adjusted by the ratio of the selected area (i.e., the one within 100 km of the infrastructure) on 

the total area of the seismogenic zone. 

Table 1. Seismic activity parameters of the selected seismogenic zones.  

Zone # 1 2 3 4 5 6 7 
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λ0 0.0028 0.0061 0.0066 0.0053 0.0067 0.0090 0.0012 

β 2.303 2.303 2.303 2.303 2.303 2.372 2.303 

ML 5.5 5.5 5.5 5.5 5.5 5.5 5.5 

MU 6.8 6.8 6.8 6.8 6.5 6.8 6.8 

 

A spatially correlated ground motion field is generated over the area of interest by using the GMPE by 

Akkar and Bommer [21], as extended by Bommer et al. [22] to periods below 0.05 s. Local site 

amplifications are also accounted for by the GMPE, through the specification of Eurocode 8 soil 

classes for the vulnerable sites. Given the illustrative character of the application, only one limit state 

is considered for the vulnerable edges, so that the corresponding BN nodes are binary. However, the 

BN framework is general and the extension to multi-state components is straightforward. Since the 

selected limit state is the least severe one (yield for bridges and slight/minor damage for unstable 

slopes), consequences of damage are limited to traffic reduction in terms of free-flow speed and 

capacity (closure is foreseen only for more severe damage states): in particular, it is assumed that for a 

damaged edge both properties reduce by 30%. All fragility curves used in this work are taken from the 

literature [23] and are lognormal cumulative distribution functions defined in terms of PGA (g). In 

particular, the fragility curve adopted for all 20 bridges has a median PGA of 0.12 g and σlog = 0.44, 

while the one adopted for unstable slopes is characterized by a median PGA of 0.16 g and σlog = 0.40, 

and a yield acceleration ky = 0.05 g. The analysis is carried out at the traffic flow level, rather than 

purely in graph-theoretical terms of connectivity. For this purpose, an origin-destination (O-D) matrix, 

displayed in Table 2, is generated, with trips between the ten TAZs in vehicles per hour (vph). Such 

matrix is completely arbitrary, given that the scope of the paper is not the reliability analysis of the 

Pyrenees road network: however, the assumed trips are realistic for a pre-earthquake scenario. The 

pre-earthquake O-D matrix is used here given the illustrative character of the application, and also 

because, to the best knowledge of the authors, a methodology to establish reliably post-earthquake 

demands is one of the research gap in regional/urban seismic risk analysis, and it is obviously outside 

the scope of this paper. The interested reader is referred, e.g., to [24]. 

 Table 2. Origin-destination matrix for the Pyrenees road network. 
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TAZ # 1 2 3 4 5 6 7 8 9 10 
From\To 

1 0 200 500 300 150 500 200 250 350 250 

2 200 0 500 300 150 500 200 250 350 250 

3 300 300 0 250 120 600 150 200 200 150 

4 350 300 200 0 120 80 150 100 250 180 

5 60 60 50 200 0 40 50 40 90 60 

6 300 250 450 300 80 0 100 80 350 160 

7 300 300 200 300 80 300 0 40 80 100 

8 300 300 200 300 80 300 40 0 80 100 

9 400 400 250 500 100 400 100 50 0 120 

10 150 150 100 100 40 160 80 160 80 0 

 

The performance of the road network as a system is measured through two system performance 

measures, as detailed below. Both measures account for the capacity of the road edges to 

accommodate the traffic flow, and they may be either local (i.e., trip performance between two given 

TAZs) or global (i.e., aggregated trip performance over all TAZs): 

1. Global measure S1: Drivers‟ Delay (DD), defined as the difference between the congested (i.e., 

not free-flow) total travel time in damaged and normal, undamaged conditions (denoted with 

subscript “0”). Such total travel time is the sum of flow dependent edge travel times TT(x) over all 

network edges, indexed by i, weighted by edge flows x: 

 
  
DD = x

i
×TT

i
(x

i
)

iå - x
0,i
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0,i
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0,i

)
iå   (5) 

DD is a measure of lost passenger hours and was originally used as a factor to multiply a monetary 

value of the worked hour to give a proxy for indirect loss [25]. 

2. Local measure S2: Local Drivers‟ Delay (LDD), which is simply the drivers‟ delay between two 

TAZs of interest with respect to normal conditions, due to damage suffered by the road network. 

This performance metric has the same definition as DD, Eq. (5), but with both summations 

extended over only the edges belonging to the shortest path between the two TAZs: 
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In the case of interruption of all possible paths between the two TAZs, LDD is set to infinity. 

However, for the present application only the light damage limit state is considered for vulnerable 

edges, so that no breakage occurs and at least one path between all couples of TAZs always exists. 

In both undamaged and damaged conditions, user equilibrium solved by the Frank-Wolfe algorithm is 

used to establish traffic flows and congested travel times on all network edges.  

3.3. Monte Carlo Sampling and Initial Component Selection 

Step 1 of the proposed approach consists in the generation of a dataset of the variables‟ states, by 

means of Monte Carlo sampling. To this end, the OOFIMS (Object Oriented Framework for 

Infrastructure Modelling and Simulation) platform [26] is used to model the road network and to 

sample 50,000 outcomes of the system‟s performance metrics, in terms of DD and LDD, according to 

the assumptions described in Section 3. Therefore, the OOFIMS platform outputs a state matrix of size 

[50,000 x 60], with the first 58 columns representing the components‟ states and the last two the 

performance metrics LDD and DD. This state matrix constitutes the dataset of descriptor/target 

variables for the creation of the random forest classification, from which unbiased importance 

measures are extracted in order to rank the components. As the random forest classification is specific 

to each system performance measure considered, two different sets of k=10 components are selected 

(this number is chosen here for illustration, based on the sensitivity to the number of components 

reported later on in 4.1): this amounts to 2
10

 = 1024 combinations of the parents‟ states for each 

variable S, which remains manageable in terms of computation cost. For each S, it is then possible to 

count the occurrences of the various combinations of the selected components‟ states, and to evaluate 

the conditional probabilities with Eq. (1). This process is exemplified in Table 3, displaying the 20 

most frequent combinations of ten components, ranked by decreasing importance. The information 

reported in Table 3 reflects the component importance ranking. As an example, it can be noted that all 

the combinations involving damage for the first and most important component, C40 (see entries equal 

to 2 in the first column), result in zero occurrence of DD being in the first interval out of 50,000 

samples (i.e., insignificant probability of occurrence). This observation indicates that damage on C40 
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will severely affect the network‟s functionality: this is expected, given the importance of C40 in the 

estimation of DD (see also Figure 11b). 

 Table 3. Occurrences and probability estimation of DD being in the 1
st
 discrete interval, for the 

20 most frequent combinations of ten components, over the 50,000 outcomes of the state matrix. The 

ten components are ranked by decreasing importance. 

ID 

States (1=intact, 2=damaged) of the ten selected 

components Total 

occurrences 

Occurrences 

of the 1st DD 

interval 

Estimated 

probability 

of the 1st 

DD interval 
C40 C57 C34 C51 C48 C44 C12 C47 C45 C46 

1 1 1 1 1 1 1 1 1 1 1 40835 40656 0.9956 

2 1 1 1 1 1 1 2 1 1 1 743 699 0.9408 

3 1 1 2 1 1 1 1 1 1 1 591 499 0.8443 

4 2 1 1 1 1 1 1 1 1 1 587 0 0.0000 

5 1 2 1 1 1 1 1 1 1 1 535 438 0.8187 

6 1 1 1 1 2 1 1 1 1 1 431 403 0.9350 

7 2 1 2 1 1 1 1 1 1 1 373 0 0.0000 

8 1 1 1 1 1 1 1 2 1 1 343 272 0.7930 

9 1 1 1 2 1 1 1 1 1 1 317 241 0.7603 

10 1 1 1 2 1 1 1 2 1 1 260 57 0.2192 

11 1 1 1 1 1 2 1 1 1 1 228 113 0.4956 

12 1 1 1 1 1 1 1 1 1 2 196 74 0.3776 

13 1 1 1 1 1 1 1 1 2 1 176 49 0.2784 

14 2 1 2 1 1 1 2 1 1 1 158 0 0.0000 

15 2 1 2 1 2 1 1 1 1 1 131 0 0.0000 

16 2 1 1 1 1 1 2 1 1 1 121 0 0.0000 

17 1 1 2 1 1 1 2 1 1 1 111 45 0.4054 

18 2 1 2 1 2 1 2 1 1 1 89 0 0.0000 

19 1 2 1 1 1 1 2 1 1 1 85 35 0.4118 

20 2 1 1 1 2 1 1 1 1 1 78 0 0.0000 

… … … … … … … … … … … … … … 

 

3.4. Bayesian Inference with the t-Naïve BN Formulation 

Once the CPTs for both system metrics have been estimated from the state matrix, the t-Naïve BN is 

built by using an exact formulation down to the component nodes (i.e., as in Figure 1) and the 

approximate formulation from the component nodes to the S nodes. The resulting BN, composed of 

355 nodes and 544 edges, is displayed in Figure 6. It can be seen that only ten edges converge to each 

S node: in particular, components C40, C57, C34, C51, C48, C44, C12, C47, C45 and C46 are linked to S1 
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(DD), while components C40, C34, C46, C44, C45, C48, C55, C12, C54 and C52 are linked to S2 (LDD). The 

components are ordered in descending order of importance ranking. 

 

Figure 6. Layout of the t-Naïve BN formulation for the case-study, with ten components selected 

for each performance metric. 

Figure 7 shows the location of the two sets of k=10 selected components, linked to the LDD and DD 

nodes, respectively. It can be noted that all the components related to LDD (red spots in the figure) are 

located in the shortest path between the TAZs of interest, #2 and #8, while the components linked to 

DD (blue circles in the figure) are scattered in the network, but anyway contained in the portion 

shown, which is therefore the most important one from the point of view of functionality. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

22 
 

 

Figure 7. Zoomed-in area of the road network, showing the location of the ten selected components 

linked to the LDD (red) and DD (blue) nodes in the BN. Sites A and B represent vulnerable 

components that are used as a source of field observations in the Bayesian inference presented later. 

This BN is implemented in the Bayes Net toolbox, BNT [27]. All continuous variables must be 

discretized beforehand, in order for exact inference engines such as the junction-tree algorithm to be 

used. The following discretization schemes are assumed for the continuous variables: 

 Magnitude M: 10 intervals based on equal quantiles following the Gutenberg-Richter 

distribution (i.e., from wider intervals for low magnitudes to more refined intervals for large 

magnitudes), for each seismogenic zone; 

 Epicenter location E: uniform intervals distributed among the seven seismogenic zones (see 

the green dots in Figure 8 corresponding to all discretized locations), for a total of 421 points; 

 Epicentral distance Ri: 421 uniform intervals, based on the number of epicenter locations; 

 GMPE error terms U, Vi, εi and η: 10 intervals based on equal quantiles following the standard 

normal distribution (i.e., wider intervals at the tails and narrower intervals around 0); 

 Intensity measures   I i  and 
  
I

i
: 20 uniform intervals between the lowest and highest possible 

intensities; 
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 System performance measures S1 and S2: 10 uniform intervals between 0 (i.e., no loss) and the 

maximum sampled loss.  

It should be noted that the size of CPTs and cliques in the junction-tree algorithm is directly linked to 

the number of states in the BN nodes, thus limiting the number of discrete intervals. For instance, with 

the adopted discretization, the BN in Figure 6 leads to a junction tree with the largest clique size 

reaching a little more than 430,000,000 elements. Therefore this discretization process constitutes a 

potential source of errors and uncertainties, which will be discussed later in Section 4.3 along with 

potential refinement strategies. 

Several inference operations are then performed on the BN in order to demonstrate its ability to 

account for various types of field observations and update the probability distributions of other 

variables. If this BN framework is to be used in the context of crisis management, the following 

evidences may be entered in the BN in order to update target variables (i.e., marginalized nodes) such 

as system performance metrics S: 

 Estimation of the earthquake magnitude and epicenter location, which is usually known within 

several minutes after the event; 

 Measure of the ground-motion intensity at some locations by recording stations; 

 Observation of damaged physical components through ground or airborne reconnaissance. 

Other evidences could include the observation of local performance metrics, on the condition that 

these loss metrics are actually measurable or observable (e.g., disruption of water flow at a given 

location of a water supply system). As such measurable system metrics are practically unavailable in 

the case of road networks, only the observations at the level of the components are considered here. 

The inference scenarios on the BN are described in Table 4. 

Table 4. Proposed inference scenarios for the demonstration of the BN applied to the road network. 

Sites A and B are shown in Figure 7 and the epicenter location in Figure 8. 

Scenario ID Evidence Marginalized node 

#0 (prior) None LDD, DD, IB, CB 
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#1 Epicenter (Ravg = 49 km), Mw 6.5 LDD, DD 

#2 Epicenter (Ravg = 49 km), Mw 6.5, CA and CB damaged LDD, DD 

#3 Epicenter (Ravg = 49 km), Mw 6.5, IA and IB high LDD, DD 

#4 Epicenter (Ravg = 49 km), Mw 6.5, IA high IB, CB 

 

 

Figure 8. Location of the earthquake epicenter in inference scenarios #1 to #4 (green star), with 

respect to the seven seismogenic areas (red polygons). 

Using a 2.40 GHz eight-core CPU with 32 GB RAM, the computational time is around 20 hours for 

the off-line Monte Carlo simulation (50,000 samples) and twelve minutes for the inference-related 

operations (i.e., component selection, BN creation and execution of all inference scenarios in Table 4, 

by the junction-tree algorithm). The prior and posterior distribution of all scenarios are detailed in 

Figure 9. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25 
 

 

Figure 9. Prior and posterior distributions for the considered inference scenarios. 

As shown in Figure 9, introducing evidence of a severe event (e.g., large magnitude, high local 

intensity measures, observation of damaged components, etc.) leads to a shift of the loss distributions 

towards the right. It should be noted that, even though components A and B are not included in the ten 

components selected for the estimation of metrics DD and LDD, evidence on their damage states or of 

the hazard intensity at their locations have a significant impact on the performance of the road 

network. This observation demonstrates the ability of the proposed approximate BN formulation to 

provide accurate estimates of the system behavior while including a reduced number of components: 

this effect is made possible by the statistical dependency between the Ii variables, which propagates 

the evidence to neighboring components and finally to the system performance metrics (e.g., see the 

two bottom plots in Figure 9). 

The LDD distribution is more heavily affected by the additional evidence on CA and CB (i.e., 

difference between inference scenarios #1 and #2) than the DD distribution. Since LDD is a local 

metric measuring the accessibility between two TAZs, it usually involves a reduced set of very 

influent components, so that selecting ten components out of the total 58 provides an accurate 

estimation of the local performance of the network. On the other hand, DD is based on all inter-TAZ 
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trips and the ten selected components are slightly less efficient to fully describe the global behavior of 

the network. 

Finally, it should be noted that the two bottom plots are the result of an exact BN inference with an 

accurate modeling of the variables, since all the nodes involved correspond to the part of the BN 

where an exact formulation is used (see Figure 1). The only potential source of error lies in the 

discretization of continuous variables such as Ri or Ii, which may lead to imprecise representations of 

the probability density functions. Inference scenario #4 appears to have a significant impact on the 

distribution of the hazard intensity at site B (IB), however it does not lead to a huge change in the 

damage distribution of CB: even if the updating of the damage probability of CB is marginal, the 

integration of all components at the system level provides a lever effect, where the joint damage 

probabilities of several components have a high impact on the network performance. 

As already pointed out, evidence on damage states of not selected (i.e., excluded from the set) 

components has still an influence on the performance of the road network, due to the statistical 

dependency between the Ii variables. However, such influence can be only indirect, leading to possibly 

overlook important features derived from valuable pieces of information. In order to overcome this 

issue, the proposed methodology is adaptive and evidence-driven, in the sense that the components 

selected through an importance ranking algorithm can be replaced by other components for which 

evidence is available. In this way, all the information made available is directly used to update the 

posterior distribution of BN nodes. The replacement is undertaken in place of simple addition in order 

to keep the computational cost affordable, so that the number of components linked to S nodes 

remains unchanged. Figure 10 exemplifies this procedure, with reference to a base case with only five 

components linked to both system measures S. For this configuration, and using the same 2.40 GHz 

eight-core CPU with 32 GB RAM, the computational cost is 17 seconds for BN creation (including 

computation of CPTs for both S nodes) and just two seconds for a single marginalization on all 58 

vulnerable components (i.e., estimation of prior or posterior distribution of component states given an 

evidence scenario). The importance ranking of components by random forest is carried out just once at 
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the beginning of the procedure, and for this case-study (i.e. 58 vulnerable components, m=2 system 

metrics S and a 50,000 sample Monte Carlo simulation) it takes six minutes. 

The subplots in Figure 10 show the probability of failure of all 58 vulnerable components, with 

different color shades from white (low probability) to black (high probability), according to the 

following seven evidence scenarios. 

a) No evidence (i.e., prior probability); 

b) Epicenter (Ravg = 49 km east) and Mw 6.5; 

c) Scenario b) plus damage evidence on the first and most important component (C40) included in , 

which is the vector (5×1) containing the IDs (ranging from 1 to 58) of the components selected 

through random forest; 

d) Scenario c) plus damage evidence on a component not included initially in the set, which then 

replaces the fifth component of ; 

e) f) and g) Scenario d) plus damage evidence on other three components not included initially in the 

set, which then replace the fourth, third and second components of , respectively (according to 

the initial numbering). 

The subplot b) shows that, given evidence on M and E located 49 km to the East, the two easternmost 

components have an increase in failure probability, as expected. Subplots from c) to g) clearly display 

the failure probability increasing over the network, as new evidence on component damage becomes 

available. It is important to note that the introduction of evidence on the fourth and fifth components 

(see subplots f) and g)) does not have a large impact on probabilities across the network, with only a 

few components reaching the last probability range (0.48-0.57, see Figure 10 legend) and thus 

possibly changing their mode (i.e., the damaged state becomes the most likely). This suggests that the 

methodology is able to give emergency managers a clear indication of updated failure probability 

across a realistic network with just a few pieces of evidence, in near-real time. 
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Figure 10. Probability of failure of components according to: a) the prior distribution and b) to g) the 

posterior distributions for the considered successive inference scenarios. The evidenced components 

are shown with red squares. 

 

4. Sensitivity Analysis 

In order to be guided in the choice of the number of selected components, the number of simulation 

samples and the discrete intervals of some continuous parameters, several sensitivity analyses have 

been carried out. In this section, the results of such analyses are presented, serving also the purpose to 

justify the assumptions made in the first part of the paper. 

4.1. Components Selection 

The random forest algorithm for component selection involves a stochastic process and hence a 

variability of the solution, in the form of epistemic uncertainty. To investigate the sensitivity of the 

results to the ten component sequence that is output from the random forest algorithm, a total of 50 

sequences have been generated and for each sequence the inferences have been performed, in terms of 
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the prior and two posterior distributions (#1 and #2 in Table 4) of DD, in particular the first DD state; 

then the statistics (mean and standard deviation) of the inference results have been computed. Table 5 

highlights that the highest value of standard deviation is still very low, thus confirming the robustness 

of the component selection via random forest.  

Table 5. Sensitivity of the inference results to uncertainty in the sequence of ten components generated 

via random forest algorithm. The results are referred to the probability of the first state of DD, 

according to the prior distribution and two posterior distributions. 

Distribution 

Inference type 

P[DD(1)]prior P[DD(1)]posterior#1 P[DD(1)]posterior#2 

Mean 0.8821 0.8252 0.5604 

St. Dev. 0.0016 0.0064 0.0099 

 

Finally, in order to investigate the sensitivity of the solution to the number of components retained in 

the t-Naïve formulation, the prior and two posterior distributions (#1 and #2 in Table 4) of DD have 

been computed with a variable number of components linked to the DD node, from one to thirteen. 

Figure 11a), presents the results with reference to the first DD state. Taking the values with thirteen 

components as “exact”, it can be seen that considering more than seven or eight components does not 

practically change the probability values of the first DD state: it is thus possible to conclude that the 

performance is quite well captured with even less than ten components. This is also evidenced by 

Figure 11b), where the normalized unbiased importance measure reaches larger values for the first few 

components (with some clear gaps between them) and attains quite low values after the tenth one (i.e., 

C46). This clearly indicates that the remaining components do not play an important role in the 

estimation of the quantities of interest. Based on these results, the number of components for the 

inferences of Figure 9 has been set to ten, which is a good compromise between accuracy in the results 

and computational effort. 
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Figure 11. a) Sensitivity of the prior and two posterior distributions of Drivers‟ Delay to the 

number of selected components, and b) normalized importance measure of the 58 components ranked 

by decreasing importance. 

As indicated above, all inferences in this work have been carried out via junction-tree algorithm. With 

this exact inference engine and the t-Naïve formulation, and given the hardware properties of the 

employed computer, the highest number of components that it is possible to retain to get the solution 

in a reasonable amount of time resulted to be thirteen (see Figure 11b)). In order to exceed this number 

and get a more accurate solution, a possible choice would be changing the inference engine and in 

particular trying an approximate inference. Among the possible approximate engines available in the 

BNT, the authors found that the likelihood weighting algorithm [28], which performs an importance 

sampling where the weights are based on the likelihood of the evidence; is the only feasible one. 

However, the inference analyses took long computational times and yielded very unstable results, 

which are not worth the presentation in this paper. More robust sampling-based inference algorithms, 

such as Gibbs sampling, deserve further investigations, although they are currently not implemented in 

the BNT. 

It may be argued that the above results regarding the sensitivity to various selection parameters are 

specific to the present case-study, as they depend on many factors such as the network topology, the 

hazard distribution or the vulnerability of the components. However, it remains feasible to perform the 
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proposed sensitivity analyses after the Monte Carlo simulation phase (i.e., “off-line” computations 

ahead of any potential earthquake), in order to build a robust BN that can then be used in an 

operational capacity. 

4.2. Number of Simulation Samples 

As already said, the analyses in Section 3 are based on a Monte Carlo simulation with 50,000 

samples, carried out in the OOFIMS platform and producing a state matrix of size [50,000×60]. In 

order to get an increasingly more refined solution, tending to the exact one, one option is simply 

increasing the number of samples. This will of course require more computational time. However, it is 

noted that the simulation is carried out off-line, before the occurrence of an earthquake event, and 

therefore an increase in computational time does not compromise the capability of BNs to be used as 

rapid response systems, able to update damage and loss predictions in near-real time from field 

observations. In order to gain more insight into the increase of accuracy with the number of samples, 

bootstrap analysis has been performed starting from the initial 50,000 samples. Employing bootstrap, 

the vectors of normalized importance measure of all 58 components, as derived from the random 

forest classification for DD, as well as the probability of the first DD state, according to the prior and 

two posterior distributions (#1 and #2 in Table 4), have been re-evaluated on the base of randomly 

drawn sub-samples of the larger state matrix with 50,000 rows. For this exploration, 100 random 

samples have thus been drawn for each sample size K from 10,000 to 40,000 with steps of 10,000. 

Figure 12a) shows the frequency histograms of a measure of similarity between the generic 

importance vector, derived from a random sub-sample of the state matrix, and the reference 

importance vector obtained from the entire state matrix of size 50,000. Calling Θ the generic 

importance vector (58×1) containing the normalized unbiased importance measure (ranging between 0 

and 1) of components, and Θref the reference importance vector, the proposed similarity measure, 

ranging between 0 and 1, is then defined as: 

   (7) 
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The frequency histograms in Figure 12a) are based on 100 values of similarity for each sample size. It 

is possible to see that, taking as “exact” the results with 50,000 samples, there is a quite small 

reduction in similarity, meaning that the sub-sample simulations lead to very similar importance 

vectors, especially for sample sizes from 20,000 up; the histograms for 30,000 and 40,000 samples 

appear to be almost superimposed, with similarity values approaching unity. The sensitivity of 

probability distributions to the sample size is analyzed in Figure 12b), displaying the 5% and 95% 

fractile of the distribution of P[DD(1)] (according to the prior and two posterior distributions) 

normalized by the reference value (i.e., related to 50,000 samples). Figure 12b) shows that the 

goodness of results is linked to the type of distribution one is interested in: in particular, the prior 

distribution is practically insensitive to the sample size, while for the posterior #2 one can expect a 

divergence up to 15% for 10,000 samples, which could be even considered acceptable for such a cheap 

analysis. Again, especially for sample sizes from 20,000 up, the sensitivity to sample size is quite low: 

as an example, it is possible to state that, with 90% probability, the posterior #1 will fall within 

[+1,+4%] of the reference value for K as low as 20,000, and within [-1,+3%] for K = 30,000. These 

findings make the overall approach robust against the user-defined number of simulation runs. 

Finally, coming back to the initial issue of this section, another possible option to obtain a more 

refined solution is using “variance reduction techniques”, such as importance sampling, which 

increase the accuracy of results at parity of simulation runs, or allow to get a fixed accuracy carrying 

out a lower number of samples. This issue has not been investigated herein. Future work will 

investigate the feasibility of adopting an importance sampling scheme in place of plain MC to inform 

the BN. 
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Figure 12. Bootstrap results, based on 100 random samples of size K. a) Frequency histograms, 

with normal distribution fit superimposed, of Similarity for different sample sizes; b) curves of 5% and 

95% fractile of P[DD(1)], according to the prior and two posterior distributions, normalized by the 

reference value. 

4.3. Variable discretization 

As pointed out above, in the present case most of the variables are continuous and have been 

discretized beforehand, in order to use the exact inference. It is important to carefully evaluate the 

consequences of the discretization, as suggested by Nojavan et al. [29]. Their work identified three 

commonly used discretization methods, each designed to capture certain features of the data 

distribution, namely (i) Equal interval, (ii) Equal quantile and (iii) Moment matching. The sensitivity 

of the inference results to the discretization adopted has been investigated also in this work. First of 

all, the focus has been put on the root nodes of the considered BN, namely M, U, Vi and η. Since the 

nodes U, Vi and η have a normal distribution, they have been discretized with the equal quantile 

method, so to capture their mode. On the other hand, M follows the Gutenberg-Richter distribution 

and has been discretized with equal intervals in the original version of the formulation. This 

discretization is not adapted to the problem at hand, i.e. the identification of failure events in the 

infrastructure: in fact, a more refined discretization is needed over the portions of the range associated 
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with high probability mass [3]. Therefore, also for the magnitude node the equal quantile method 

(called here “smart discretization”) has been applied and its influence on the inference results has been 

evaluated. Table 6 summarizes the sensitivity results, in terms of influence of the smart discretization 

and number of states (5, 10 or 20) of M on the prior and two posterior distributions (#1: Epicenter 

only, #2: Epicenter+CA+CB) of the first DD state. It can be noted that the higher the number of states, 

the larger the influence of the more accurate discretization on the inference results. Since the highest 

magnitudes are better captured, the probabilities of the first DD state tend to decrease, with consequent 

increase of the probabilities at higher states: this means that the predicted impact on the performance 

metric is larger, as expected. For the inferences of Figure 9, the smart discretization for the magnitude 

node with ten states has been adopted. 

Table 6. Sensitivity of the inference results to the discretization (type and number of states) of the 

magnitude node. The results are referred to the probability of the first state of DD, according to the 

prior distribution and two posterior distributions. 

Smart 

discretization 

# states 

Inference type 

P[DD(1)]prior P[DD(1)]posterior#1 P[DD(1)]posterior#2 

NO 5 0.9084 0.9651 0.5374 

YES 5 0.9008 0.9501 0.5296 

NO 10 0.9024 0.9611 0.5653 

YES 10 0.8803 0.9310 0.5498 

NO 20 0.8996 0.9592 0.5831 

YES 20 0.8666 0.9205 0.5513 

 

Coming to BN nodes that are not roots, a smart discretization cannot be applied a priori, given the lack 

of a marginal distribution. For such nodes it is first needed to enter evidence and retrieve a posterior 

distribution. Based on the latter, it is possible to refine the discretization iteratively, again with the aim 

to better capture the distribution over the portions of the range associated with high probability mass. 

To test the feasibility and the influence of a smart discretization on target variables, in this work the 

DD node‟s distribution has been refined following an iterative approach, along the lines of the one 

proposed by Neil et al. [30], named dynamic discretization. Firstly, the target node‟s distribution is 
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initialized, following in our case the equal interval method. Then evidence is entered and the inference 

is performed, retrieving the target node‟s posterior distribution. A new discretization is then created, 

by splitting in two halves the interval with the highest probability and merging two consecutive 

intervals with the lowest probability. The process is repeated a user-defined number of times and is 

stopped if the lowest probability in the current distribution is higher than a user-defined threshold. 

Figure 13 shows the effects of the dynamic discretization, with five iterations, on the DD node‟s 

distribution, using the posterior distribution given scenario #2 in Table 4 as target distribution. The 

threshold has been set to 0.01, meaning that only if the lowest probability is less than 0.01 another step 

will be undertaken. The focus in the figure is on the first four states, the most significant for this 

variable. It has been seen how the process leads to increase the number of intervals (eight in place of 

four) in the same DD range (0-3000 hours/day), thus better capturing not only the posterior #2 but also 

the prior and posterior #1. In the subplots of Figure 13a) and Figure 13b), the DD range has been 

limited to the most important intervals, in order to improve the figure‟s readability and thus better 

highlight the interval increase. Based on these results, the subplots in Figure 9 related to the 

performance metrics LDD and DD could be updated a user-defined number of times: this is not shown 

here since the aim of Figure 9 is just to show the capabilities of the framework with reference to a few 

sample inference scenarios. It should be noted that this smart discretization scheme may only be 

carried out after an earthquake event has occurred, since it is based on the posterior distribution once 

evidence has been entered. Depending on the time taken to perform one inference, however, several 

iterations of the discrete intervals might still be feasible in order to deliver a refined loss distribution 

within the imposed timeframe. Still, the first iteration without any smart discretization may be 

delivered as a first approximation, before more refined distributions are generated. Another possible 

approach might be supervised discretization, which scores all possible discretization schemes, based 

on the same principle as supervised BN learning. 
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Figure 13. Dynamic discretization of the target variable DD (five iterations), using the posterior 

distribution given scenario #2. 

 

5. Conclusions 

Starting from current computational and conceptual challenges regarding the use of BNs for the 

seismic loss analysis of spatially distributed infrastructure systems, this paper has detailed a three-step 

approach that builds a simplified BN structure based on a preliminary off-line Monte Carlo simulation 

of the system. By approximating the probabilistic relation between the state of the components and the 

distribution of a system performance measure of interest, it has been shown that a naïve BN 

formulation (i.e., converging structure from the components to the system node) is able to provide 

satisfying probability estimates, even when considering a fraction of the vulnerable components. This 

encouraging result is due to two main factors: 

(i) component failures are statistically dependent through the spatial correlation of the ground-motion 

field, which enables some component events to be considered as proxies for the others; 
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(ii) the BN adopts (and slightly modifies) the exact structure by Bensi et al. [3] for all variables in the 

seismic hazard portion of the BN, and down to the component states, while only the system portion is 

approximate. 

The application of this so-called t-Naïve BN formulation to a real-world road network in France has 

demonstrated its potential in a backward analysis framework, when a Bayesian inference is produced 

from field evidence such as the recording of ground-motion intensities or the observation of damaged 

components at various locations. For this specific case-study, stable posterior probability estimates 

could be obtained even with a handful of selected components. The applicability of this approach to 

any type of infrastructure systems, however large and complex, remains to be investigated, although 

case-specific sensitivity studies performed on the number of selected components or the selection 

algorithms constitute useful tools to estimate the level of uncertainty that should be expected when 

studying a given area. The extension of this approach to other hazards such as floods or landslides 

depends strongly on the type of hazard propagation models used, since it has been shown here that the 

spatial correlation of the hazard intensity is one of the main drivers of the statistical dependence 

between the component damage events. Finally, it should be kept in mind that the use of a BN with 

discrete variables may also be a source of imprecision due to the discretization of continuous 

variables: it has been shown that the uncertainty introduced by this issue, which is often overlooked, 

may be comparable to the one due to the approximate BN formulation. 
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