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Abstract

We analyze the optimal replacement policy for a system subject to a

general failure and repair model. Failures can be of one of two types:

catastrophic or minor. The former leads to the replacement of the

system, whereas minor failures are followed by repairs. The novelty

of the proposed model is that, after repair, the system recovers the

operational state but its condition is worse than that just prior to

failure (worse than old). Undertrained operators or low quality spare

parts explain this deficient maintenance. The corresponding failure

process is based on the Generalized Pólya Process which presents

both the minimal repair and the perfect repair as special cases. The

system is replaced by a new one after the first catastrophic failure,

and also undergoes two sorts of preventive maintenance based on
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age and after a predetermined number of minor failures whichever

comes first. We derive the long-run average cost rate and study

the optimal replacement policy. Some numerical examples illustrate

the comparison between the as bad-as-old and the worse than old

conditions.

Keywords: Maintenance; Generalized Pólya process; worse-

than-minimal-repair; optimum policy

1 Introduction

Both time and use make systems or equipment wear-out and eventually fail.

To extend their useful life, systems undergo several maintenance actions

(preventive or corrective) before being replaced. Maintenance is crucial

when replacement cost is high as in big infrastructures, or when a failure

implies risk for human life as in the case of planes or nuclear power plants.

After the pioneering work of Barlow and Hunter [2], maintenance modelling

has experienced widespread attention and many researchers have analyzed

the effects of maintenance in terms of cost or reliability. However less atten-

tion has been paid to deficient maintenance when in fact a number of causes

are responsible for it: lack of personnel, operators with insufficient qualifi-

cation or scarce training, low quality spare parts, or underestimation of the

particular environmental conditions where the system develops its function.

As this is frequently reported in actual cases, the analysis of maintenance

policies that fail to improve reliability is by itself a critical issue for research

purposes.

Time-based maintenance policies are based on analysis of failure times

which determines a programmed calendar for overhauls. Preventive main-
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tenance, carried out before failure, restores the system to the as-good-as-

new condition. Corrective maintenance (after failure) can go from minimal

repair, that brings the system back to the state just prior to failure (as-bad-

as-old), to perfect repair (as-good-as new). The intermediate situations are

known as imperfect maintenance. The perfect repair process is described by

a renewal, whereas a nonhomogeneous Poisson process (NHPP) is used for

the minimal repair process. If the intensity [3] is an increasing (decreasing)

function, the corresponding times after each repair constitute an increasing

(decreasing) sequence in the hazard rate ordering [4]. Nakagawa [5] provides

an overview on time-based maintenance theory. In [6] a review as well as

recent advances in minimal repair models is presented. Surveys on various

practical maintenance models can be found, e.g., in Sherif and Smith [7],

Valdez-Flores and Feldman [8] and Wang [9]. The reviews in Pham and

Wang [10] and Tanwar et al. [11] focus on imperfect maintenance.

Alternatively to time-based maintenance policies, condition-based main-

tenance (CBM) is applied considering the actual condition of the system

when some information on the level of damage or the state of the system

is available. This procedure reduces the possibility of unnecessary repairs

and unwanted side-effects such us defects or deterioration induced by main-

tenance. The recent work of Alaswad and Xiang [12] presents a review on

CBM.

Most maintenance models assume that maintenance leads to a reliability

improvement. However, sometimes, maintenance causes an adverse effect

and the system results in a worse state than that prior to failure. This

situation has been analyzed in Berrade et al. [13] by means of a mixture

model where good units are replaced on failure by weak units. This can

be the consequence, for example, of instantaneous replacement when the
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maintainer lacks the required resources or suitable training at maintenance

time. The consequences of judgement errors in maintenance actions have

also been analyzed in Berrade et al. [13].

Cha [1] presents a new approach, the GPP repair process, which in turn

is based on the Generalized Pólya Process. A GPP repair removes failures

but the result is not the same as a minimal repair. In fact, it leads to a

worse condition than that before the failure. Tanwar et al. [11] refer to this

case as worse than old.

As discussed in Lee and Cha [15], when a component in a system fails, the

working environment frequently becomes more hostile because of increased

pressure, temperature, humidity, etc. This in turn causes instantaneous

stress or damage to the adjacent non-failed components. For example, as

suggested in [15], “(i) the failure of a still wire cable in a bridge or in

an elevator instantaneously increases the stress on the non-failed cables

and leads to some damages before repairing the failed one; (ii) when an

electric device fails by an external shock (electric or mechanical shock), the

non-failed components are also affected by this external shock and their

reliability performances become worse than before”(see also [15] for more

detailed examples). In this case, the overall state of the system after the

repair of the failed component will be worse than the state it had just prior

to the failure.

The use of refurbished parts to replace a failed component can also il-

lustrate this type of maintenance. The parts conforming a new system, a

car for example, are known as genuine parts. When a genuine part fails, it

can be replaced by an identical one built by the original equipment manu-

facturer (OEM). If so, the new unit presents a similar reliability to that of

the failed one and the minimal repair assumption for the whole system is
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reasonable. Alternatively, a refurbished or recycled part is a less expensive

choice. These are used parts where only some characteristics are new but

the rest remain unchanged presenting some type of wear. When this type

of spares is used, a worse than minimal repair assumption seems to be more

realistic. Maintenance models based on an imperfect repair that makes the

system return to a condition between perfect renewal and minimal repair

(Brown and Proschan [16]), are no longer valid in this context. The situ-

ation described in this work requires an assumption of an imperfect repair

that leads the system back to the operating state but in a worse condition

than that of the systems with the same age of its age at failure.

This paper presents a maintenance policy for a system with two types of

failure: catastrophic or minor. A GPP repair follows a minor failure. The

maintenance policy is completed with a replacement of the system after a

catastrophic failure, or when the system reaches age T , or after the M th

minor failure whichever occurs soonest. Previous works have analyzed this

maintenance model under the assumption that a minimal repair is carried

out after a minor failure. The work of Sheu et al. [17] provides a complete

review on this maintenance policy and extends previous models by assum-

ing that the probability of a minor or catastrophic failure depends on the

number of failures since the previous replacement. Sheu et al. [17] consider

several failure modes and inspections for the non-selfannouncing modes as

well as stochastically increasing durations of the repairs. A limited number

of spares or impossibility of doing more rework [18] motivate replacement

policies with a maximum number of imperfect repairs. Zhao et al. [19] com-

pare replacement polices which are carried out at some periodic times and

after a predetermined number of repairs. Our model presents the novelty

of carrying out GPP repairs following minor failures. Thus, after each GPP
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repair, the stochastic intensity increases and this can be interpreted as a

higher proneness to failure of the system. In the work of Lee and Cha [15]

the system experiences one type of failure and scheduled preventive mainte-

nance at periodic times. In the present paper we consider two failure types

and age preventive replacement. Moreover we provide sufficient conditions

for the existence of finite optimum policies. These conditions present spe-

cial interest for maintainers that can deem when replacing the system is a

better choice than keeping on a low quality maintenance.

The structure of this paper is as follows. Section 2 contains both con-

cepts, the GPP process and GPP repair whereas the maintenance model is

defined in Section 3. Furthermore, the long run average cost rate is obtained

and a sufficient condition for the existence of an optimum policy is derived.

In Section 4, we analyze the optimal maintenance policy on the basis of

some numerical examples, comparing it with the minimal repair policy. We

finish in Section 5 with our conclusions about the model and suggestions

for further development.

2 The GPP Process and the GPP repair

2.1 Notation

• λ(t): baseline failure rate of the unit.

• λt: stochastic intensity or failure intensity.

• α, β: parameters defining the stochastic intensity.

• p: probability of catastrophic failure (Type II failure).

• T : preventive replacement age.
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• M : maximum number of minor failures in a cycle.

• cGPP : cost of repair of a minor failure.

• cPM : cost of preventive replacement.

• cR: cost of replacement after a catastrophic failure (cR > cPM).

2.2 Preliminary Results

Let {N(t), t ≥ 0} be an orderly point process and Ht− ≡ {N(u), 0 ≤ u <

t} the history (internal filtration) of the process in [0, t). The stochastic

intensity (or failure intensity), λt, defined below is very useful in describing

a counting process (see Aven and Jensen [3], Finkelstein and Cha [20]).

λt ≡ lim
∆t→0

P (N(t, t+∆t) = 1|Ht−)

∆t

= lim
∆t→0

E [N(t, t+∆t)|Ht−]

∆t
, (1)

where N(t1, t2), t1 < t2, represents the number of events in [t1, t2). The fore-

going stochastic intensity is heuristically interpreted as: λtdt = E [dN(t)|Ht−],

which is similar to the ordinary failure rate or hazard rate of a random vari-

able [3].

Doyen and Gaudoin [21] define a new class of imperfect repair models

based on reduction of the failure intensity. Other approaches can be found

in Guerra de Toledo et al. [22], Wu and Scarf [23], Syamsundar and Achutha

Naikan [24] and Guo et al. [25]. As far as we know, there is no attempt to

model an increase of the failure intensity due to faulty maintenance. This

paper focuses on this issue.

Next, the definition of the the generalized Pólya process is stated.
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Definition 1. (Generalized Pólya Process)A counting process {N(t), t ≥
0} is called the generalized Pólya process (GPP) with the set of parameters

(λ(t), α, β), α ≥ 0, β > 0, if

(i) N(0) = 0;

(ii) λt = (αN(t−) + β)λ(t).

Note that the GPP with (λ(t), α = 0, β = 1) corresponds to the NHPP with

the intensity function λ(t). Therefore the GPP constitutes a generalized

version of the NHPP.

Observe that the stochastic intensity in Definition 1 can also be formu-

lated as indicated below:

λt = (αN(t−) + β)λ(t) =

(
α

β
N(t−) + 1

)
βλ(t)

Thus, the value of the parameter set (λ(t), α, β) can be expressed as (λ(t), α, 1),

i.e., β = 1, without loss of generality.

Lee and Cha [15] define a new type of repair, the “GPP repair”, based

on the GPP. Repair times are assumed to be negligible. {N(t), t ≥ 0}
where N(t) is the total number of failures in (0, t], represents the failure

process of the system with baseline failure rate λ(t). The GPP repair is

formally defined as follows.

Definition 2. GPP Repair [15] For a system with failure rate λ(t), a

repair is called a “GPP repair” with parameter α if {N(t), t ≥ 0} is the

GPP with the parameter set (λ(t), α, 1).

Thus, under the GPP repair process, the corresponding stochastic intensity

is specified as

λt = (αN(t−) + 1)λ(t). (2)
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It follows from (2) that the state of the system after the GPP repair is worse

than the state it had just prior to the failure (worse than old) because its

stochastic intensity is larger than that of the minimal repair process (see

also [1] for relevant discussions). Note that the parameter α determines the

degree of repair. The case α = 0 is matched to the minimal repair and

α > 0 means a repair which is worse than the minimal repair. The larger α

the worse the state of the system after the repair. The work of Lee and Cha

[15] presents useful practical interpretations of the modelling parameters as

well as several practical examples where this type of repair can be applied.

Next we derive some preliminary results for further development. From

[1], it follows that

P (N(t) = i) =
Γ(β

α
+ i)

Γ(β
α
)i!

(1− exp{−α∆(t)})i (exp{−α∆(t)})
β
α ), i = 1, 2, . . . (3)

where

∆(x) =

∫ x

0

λ(t)dt.

Let denote by Si, i = 1, 2, · · · , the arrival time of the ith event in the GPP

with the parameter set (λ(t), α, β). The next lemma states the density and

distribution functions of Si. The proof is given in Appendix.

Lemma 1. Consider the GPP with the parameter set (λ(t), α, β). The

distribution and density functions of Si are given respectively by

FSi
(t) = 1−

i−1∑
j=0

P (N(t) = j) =
∞∑
j=i

P (N(t) = j), (4)

and

fSi
(x) = λ(x)

i−1∏
j=0

(β + jα)
1

αi−1(i− 1)!
· e−β∆(x)(1− e−α∆(x))i−1.

9



From Lemma 1 the reliability function corresponding to the ith arrival

time is

F̄Si
(x) ≡ 1− FSi

(x) =
i−1∑
j=0

P (N(x) = j).

3 General Failure Model and Replacement

Policy

Consider a system with λ(t) being its baseline failure rate. Thus, for this

system, the survival function of the time until the first failure, S1, is given

by F̄S1(t) = exp{−
∫ t

0
λ(u)du}. The system undergoes any of two types of

revealed failures, minor failures (Type I) and catastrophic failures (Type

II). A revealed or self-announcing failure means that no inspection or test

is required to detect it but, on the contrary, the failure is observed at the

very moment it occurs. Failures of this sort usually occur in systems under

continuous operation. In the opposite case systems that only work on de-

mand undergo unrevealed failures and should be inspected in the periods

while they are not functioning to guarantee they are available when there

is a demand of use. Type I and type II failures occur independently of any

other events with probabilities 1 − p and p, respectively. We assume that

each Type I failure can be removed by a GPP repair, whereas a Type II

failure can be removed only by a replacement of the system.

We can reformulate the previous mathematical failure model according

to Definition 2 of the GPP repair process. Thus, the failure of the system

occurs following the GPP with the parameter set (λ(t), α, 1). Every time a

failure takes place it is a minor failure with probability 1− p independently

of the previous failures. If the failure is of the Type II (catastrophic with

10

usuario
Resaltado



probability p) then the failure process ends whereas it continues otherwise.

 

τ 

Figure 1: Age for renewal T, minor failure ( ), catastrophic failure ( ), renewal period  τ .  

a) renewal after the M (M=4) minor failure; b) renewal at age T; c) renewal after a catastrophic failure. 
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Note that, from now on, it is assumed that β = 1 in the parameter set

(λ(t), α, β) of the GPP process stated in the previous section.

Let X be the number of minor failures previous to the first catastrophic

failure. The distribution of X is geometric with parameter p, that is:

P (X = k) = (1− p)kp, k = 0, 1, . . .

The maintenance policy involves the following cost structure:

• Each Type I failure is repaired according a GPP repair with unitary

cost cGPP .

• The system is renewed at age T , or after a catastrophic failure or

after the M th type I failure, whichever occurs first. The cost of a
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preventive replacement is cPM and the cost of a replacement due to a

catastrophic failure is cR, where cR > cPM .

The time until the replacement of the system (i.e., the length of a renewal

cycle) is

τ = min(Smin((X+1),M), T )

where min(a, b) also represents the minimum of a and b.

The different renewal cycles are described in the sample paths of Figure

1 for M = 4. In case a) no catastrophic failure occurs before the system is

preventively renewed after M minor failures that happen before T . In case

b) the system is renewed at age T since the number of minor failures before

T is less that M . In case c) the renewal occurs after a catastrophic failure

that takes place before preventive replacement.

The expected length of a renewal cycle is obtained by

E[τ ] =

∫ T

0

F̄Smin((X+1),M)
(y)dy (5)

=
M−2∑
j=0

(1− p)jp

j∑
i=0

∫ T

0

P (N(y) = i)dy +
∞∑

j=M−1

(1− p)jp
M−1∑
i=0

∫ T

0

P (N(y) = i)dy

=
M−2∑
j=0

(1− p)jp

j∑
i=0

∫ T

0

P (N(y) = i)dy + (1− p)M−1

M−1∑
i=0

∫ T

0

P (N(y) = i)dy.

The first term in the previous equation represents the expected length of

a cycle that is completed at age T or after a catastrophic failure whichever

comes first. The second term corresponds to a cycle that ends at age T or

after the M th minor failure whichever occurs first.
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Next proposition states the expected cost incurred in a cycle, E[C(τ)],

which depends on both the age replacement T and the maximum number

of minor failures, M , occurring before the replacement of the system.

Proposition 1. E[C(τ)] is given by

E[C(τ)] =

[
cGPP

(M−2∑
j=0

(1− p)jpj(1−
j∑

i=0

P (N(T ) = i))

+(M − 1)(1− p)M−1(1−
M−1∑
i=0

P (N(T ) = i)
)

+cGPP

(
M−2∑
j=0

(1− p)jp

j∑
i=0

iP (N(T ) = i) + (1− p)M−1

M−1∑
i=0

iP (N(T ) = i)

)

+(cR − cPM)
M−1∑
j=0

(1− p)jp · (1−
j∑

i=0

P (N(T ) = j)) + cPM

]

where P (N(t) = i) is given by (3) with β = 1.

The cost function considered is the long-run cost per unit time, Q(T,M).

According to the renewal reward theorem this function is

Q(T,M) =
E[C(τ)]

E[τ ]
.

with E[C(τ)] and E[τ ] given in Proposition 1 and equation (5), respectively.

Next we focus on the analysis of conditions for the existence of an opti-

mum policy.

3.1 Optimum policies

The expressions of the density function fSi
, cumulative distribution func-

tion, FSi
, and reliability function, F̄Si

, of the the arrival time of the ith
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event, Si, in the GPP defined by (λ(t);α; β) were presented in Lemma 1. It

follows that

P (N(t) = i) = FSi
(t)− FSi+1

(t)

therefore

P (N(t) ≥ i) = FSi
(t),

P (N(t) ≤ i) = F̄Si+1
(t),

and
j∑

i=1

iP (N(t) = i) =

j∑
i=1

FSi
(t)− jFSj+1

(t)

It can be observed that N(t) is a negative binomial random variable with

parameters β
α
and p = e−α∆(t) (see (3)). Thus N(t) is log convex (concave)

if β
α
≤ 1 (β

α
≥ 1) and N(t) is DFR (IFR) if β

α
≤ 1 (β

α
≥ 1).

Note again that we are assuming β = 1.

The mean length of a cycle given in (5) and the cost function in Propo-

sition 1 can be alternatively expressed as follows

τ(T,M) = E[τ ] =
M−2∑
j=0

(1− p)jp

∫ T

0

F̄Sj+1
(x)dx+ (1− p)M−1

∫ T

0

F̄SM
(x)dx

C(T,M) = E[C(τ)] = cGPP

(
M−2∑
j=0

(1− p)jpjFSj+1
(T ) + (M − 1)(1− p)M−1FSM

(T )

)

+ cGPP

(
M−2∑
j=1

(1− p)jp(

j∑
i=1

FSi
(T )− jFSj+1

(T ))
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+(1− p)M−1(
M−1∑
i=1

FSi
(T )− (M − 1)FSM

(T ))

)

+ (cR − cPM)
M−1∑
j=0

(1− p)jpFSj+1
(T ) + cPM

= cGPP (
M−2∑
j=0

(1− p)jp

j∑
i=1

FSi
(T ) + (1− p)M−1

M−1∑
i=1

FSi
(T ))

+ (cR − cPM)
M−1∑
j=0

(1− p)jpFSj+1
(T ) + cPM

Next the derivatives of the numerator and denominator of the cost func-

tion Q(T,M) are obtained

dC(T,M)

dT
=

= cGPP (
M−2∑
j=1

(1− p)jp(

j∑
i=1

fSi
(T )) + (1− p)M−1(

M−1∑
i=1

fSi
(T )))

+ (cR − cPM)
M−1∑
j=0

(1− p)jpfSj+1
(T )

dτ(T,M)

dT
=

M−2∑
j=0

(1− p)jpF̄Sj+1
(T ) + (1− p)M−1F̄SM

(T )

Proposition 2. When the maximum number of GPP repairs, M , is fixed,

there exists an optimum T , denoted by T ∗
M , minimizing Q(T,M), provided

that the following condition holds

A > 0
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where A given by

A =

(cGPP (
M−2∑
i=1

(1− p)ip
i∑

j=1

Cj + (1− p)M−1

M−1∑
j=1

Cj) + (cR − cPM)
M−2∑
i=0

(1− p)ipCi+1)

×(
M−2∑
i=0

(1− p)ipE[Si+1] + (1− p)M−1E[SM ])− 1

βλ(∞)
× (

M−2∑
i=0

(1− p)ipCi+1 + (1− p)M−1CM)

× (cGPP (
M−2∑
j=0

(1− p)jp

j∑
i=1

i+ (1− p)M−1(M − 1)) + (cR − cPM)
M−1∑
j=0

(1− p)jp+ cPM)

being λ(∞) = limT→∞ λ(T ) and

Ci =

∏i−1
j=0(β + jα)

αi−1(i− 1)!
, i = 1, 2 . . .

Observe that in the foregoing expression of Ci, β can be considered equal

to 1.

Moreover, T ∗
M is a root of the following equation

L(T,M) = τ(T,M)
dC(T,M)

dT
− dτ(T,M)

dT
C(T,M) = 0

Remark. Regarding the result of Proposition 2, if λ(∞) = ∞, then A > 0

since cR > cPM and the condition for the existence of T ∗
M is verified.

Next study concerns the analysis of sufficient conditions for the existence

of an optimum M when the value of T is fixed. This optimum M is denoted

by M∗(T ).

Straightforward algebra leads to

C1(T,M) = C(T,M)−C(T,M−1) = (1−p)M−1(cGPPFSM−1
(T )+p(cR−cPM)FSM

(T ))

and

τ1(T,M) = τ(T,M)− τ(T,M − 1) = (1− p)M−1

∫ T

0

(FSM−1
(x)−FSM

(x))dx
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We consider the following auxiliary functions

Q1(T,M) =
C1(T,M)

τ1(T,M)
=

cGPP + p(cR − cPM)
FSM

(T )

FSM−1
(T )∫ T

0 (FSM−1
(x)−FSM

(x))dx

FSM−1
(T )

(6)

B(M) = Q1(T,M)τ(T,M − 1)− C(T,M − 1) (7)

Proposition 3. If the age for replacement T is fixed and the following

condition holds

β

α
≤ 1, (8)

then there exists an optimum, M∗(T ), minimizing Q(T,M) and it can be

computed by using B(M) in (7) as follows:

(i)If there exists M0 such that M0 ≥ 1 and B(M0) > 0, then M∗(T ) =

min{M : B(M) > 0}
(ii)If B(M) ≤ 0 for all M , then M∗(T ) = ∞.

Observe that β in (8) can be considered equal to 1.

4 Numerical Examples

In the analysis that follows we set the unit of cost equal to the cost of a

GPP repair, so that cGPP = 1. Considering the example of the refurbished

parts which illustrate the worse than old repair, we assume that the cost

of a minimal repair, cMR, is greater than cGPP . Following this idea we

analyze the consequences of increasing cPM or cR on both, the optimum age

replacement and maximum number of GPP repairs. This study is extended

to changes in the probability of catastrophic failures, p, and the degree of

reliability of the unit after a GPP repair (quantified by α).

17



Both, confidentiality reasons and lack of data make it difficult to get the

right values of the involved parameters. The ratio of the cost of preventive

replacement to the cost of a catastrophic failure is based on the numerical

analysis given in Berrade et al. [14]. Obtaining information about the time

between consecutive failures results even harder. Si et al. [26] present a

review of developments for estimating the useful life left of a system from a

given time. This review focuses on statistical methods when observed data

are available. These data are usually obtained from condition monitoring.

Wang [27] suggests that estimation can be based on expert opinion when

data do not exist or are insufficient.

The comparison of the optimum policy and cost in both policies, GPP

and minimal repair, is one of the keys in the current study. Table 1 contains

the optimum policy (T ⋆,M⋆) and the optimum cost Q(T ⋆,M⋆) when a GPP

repair follows a minor failure whereas the corresponding results when a

minor failure is repaired minimally, (T ∗
0 ,M

∗
0 ) and Q0(T

∗
0 ,M

∗
0 ), are presented

in Table 2 for cMR = 3. In so doing we see the effect of changes in the

parameters under both maintenance policies. Moreover we give some insight

into the relations between costs that make the minimal repair a preferable

choice to the GPP repair for the maintainer. Following this idea results in

Table 3 aim at analyzing the ratio cMR

cGPP
to compare both policies.
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Rc

30 50

a p
PMc

*
T

*
M ),( ** MTt ),( ** MTQ *

T
*

M ),( ** MTt ),( ** MTQ

0.1

0.1

10 10.1 3 5.35 2.81 8.2 2 4.26 3.34

15 12.5 5 6.66 3.41 8.1 4 5.77 4.21

25 18.8 12 8.36 4.10 11.8 6 7.05 5.34

0.2

10 7.1 3 4.36 3.63 1 2.98 4.19

15 9.8 4 5.13 4.38 8.0 2 3.78 5.55

25 17.3 11 6.25 5.14 9.2 5 5.36 7.04

0.3

10 7.5 2 3.27 4.41 1 2.98 4.79

15 8.5 4 4.20 5.36 6.8 2 3.21 6.78

25 16.7 11 4.85 6.32 8.6 4 4.21 8.71

0.2

0.1

10 9.3 3 5.11 2.93 8.0 2 4.16 3.43

15 10.6 5 6.21 3.64 8.6 3 5.07 4.39

25 15.9 10 7.37 4.52 11.2 5 6.23 5.73

0.2

10 8.7 2 3.72 3.73 1 2.98 4.19

15 8.9 4 4.84 4.61 7.9 2 3.69 5.69

25 15.3 9 5.70 5.55 9.1 4 4.86 7.42

0.3

10 7.3 2 3.19 4.52 1 2.98 4.79

15 8.9 3 3.80 5.59 6.7 2 3.13 6.96

25 15.0 9 4.53 6.73 9.0 3 3.81 9.11

0.3

0.1

10 8.8 3 4.92 3.04 7.9 2 4.07 3.50

15 11.3 4 5.53 3.81 8.2 3 4.88 4.55

25 14.6 9 6.75 4.84 10.1 5 5.89 6.04

0.2

10 8.5 2 3.64 3.81 1 2.98 4.19

15 10.0 3 4.32 4.78 7.8 2 3.61 5.82

25 14.5 8 5.32 5.88 8.6 4 4.64 7.74

0.3

10 7.2 2 3.12 4.62 1 2.98 4.79

15 8.6 3 3.68 5.79 6.6 2 3.07 7.11

25 14.4 8 4.29 7.07 8.7 3 3.68 9.42

Table 1. Optimal policy ),( ** MT , ),( ** MTt and ),( ** MTQ for different 

values of 
PMcp,,a and Rc (with 1=GPPc fixed), )1(1.0)( += ttl
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It is assumed in all the examples presented in Tables 1, 2, and 3 that the

system failure rate is λ(t) = 0.1(t+ 1), t ≥ 0 whereas λ(t) = 0.3t2 in Table

4. Tables 1 and 4 also provide the optimum expected lengths of a renewal

cycle, τ(T ∗,M∗), and Tables 2 and 3 the corresponding length, τ0(T
∗
0 ,M

∗
0 ),

when minimal repairs are carried out.

The results in Table 1 reveal that when α increases so does the opti-

mum cost. In addition both, M∗ and τ(T ∗,M∗), decrease although T ∗ is

non-monotonic. The higher α, the lower the reliability induced by the GPP

repair and these reliability levels do not compensate for the cost incurred.

Thus, less GPP repairs before system replacement are recommended. The

maintainer gains protection against low quality repairs by an earlier replace-

ment of the system by a new one. The results with T ⋆ = ∞ also match that

M⋆ = 1. They correspond to cases where the cost of preventive replacement

is low enough when compared with the cost of GPP repairs and thus it’s

worth replacing the system the first time a GPP failure happens.

When cPM increases, so do both M∗ and T ∗. This result indicates that

an increasing cost of preventive maintenance makes the maintainer to post-

pone it extending both, the age for replacement and the maximum number

of GPP repairs. A similar behaviour is observed in Table 2 when the unit

is minimally repaired. This postponement of the preventive maintenance

makes the expected length of a cycle to increase in both cases.

The higher the probability p of a catastrophic failure or its associated

cost, cR, the smaller the time T ∗ for age replacement. The results derived

from the minimal repair in Table 2 also show a decreasing T ∗
0 when p or

cR increases. This means that in order to prevent the occurrence of a

catastrophic failure, an earlier preventive replacement is recommended to

reduce this risk.
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Rc

30 50

p
PMc

*

0T
*

0M ),( *

0

*

00 MTt ),( *

0

*

00 MTQ
*

0T
*

0M ),( *

0

*

00 MTt ),( *

0

*

00 MTQ

0.1

10 14.7 2 4.45 3.26 8.6 2 4.39 3.66

15 4 6.56 3.96 10.1 3 5.60 4.62

20 6 7.84 4.43 12.9 4 6.55 5.28

25 9 9.05 4.74 15.6 6 7.84 5.77

0.2

10 9.3 2 3.93 3.94 1 2.38 4.19

15 12.8 3 4.90 4.82 8.3 2 3.89 5.80

20 6 6.30 5.30 9.2 3 4.82 6.70

25 10 6.94 5.60 10.6 5 5.86 7.32

0.3

10 7.7 2 3.37 4.69 1 2.09 4.79

15 10.3 3 4.16 5.71 7.0 2 3.30 7.00

20 14.5 6 5.03 6.28 7.8 3 3.98 8.12

25 11 5.31 6.63 9.5 4 4.50 8.88

Table 2. Optimal policy ),( *

0

*

0 MT , ),( *

0

*

00 MTt and ),( *

0

*

00 MTQ for different 

values of 
PMcp, and 

Rc (with 3=MRc fixed)

The reduction in T ∗ and T ∗
0 aims at avoiding the natural wear-out lead-

ing to failure. The maintainer should be more concerned with wear-out

when the consequences of a catastrophic failure get worse. An increasing

value of p or cR also reduces the number of the maximum number of minor

failures before replacement when GPP repairs are performed, that is M∗.

However Table 2 shows that M∗
0 is not monotonic and therefore a similar re-

sult does not hold in the case of minimal repairs. Note that after a minimal

repair the reliability is the same as that the system presented just before

failure so the probability of a minor failure does not increase as in the case

of GPP repairs. Hence M∗
0 is not so critical than M∗. The expected length
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of a cycle decreases with p in Tables 1 and 2 as expected.

Regarding the comparison between GPP and minimal repairs, the re-

sults in Table 1 and Table 2 show that in most cases it pays to do GPP

repairs instead minimal repairs since Q(T ∗,M∗) < Q0(T
∗
0 ,M

∗
0 ). However a

closer look at the results reveals that this economic advantage depends on

the parameter values. Thus if α, p, cPM or cR increase enough, then the

inequality is reversed making the minimal repair a more profitable action.

The following examples illustrate this idea:

• p = 0.3, cR = 30 and cPM = 25 then Q0(T
∗
0 ,M

∗
0 ) = 6.63 and

Q(T ∗,M∗) = 6.32 for α = 0.1 but Q(T ∗,M∗) = 7.07 for α = 0.3.

• α = 0.2, p = 0.2, cR = 30 and cPM = 25 then Q0(T
∗
0 ,M

∗
0 ) = 5.596 and

Q(T ∗,M∗) = 5.55. For p = 0.3, Q0(T
∗
0 ,M

∗
0 ) = 6.63 and Q(T ∗,M∗) =

6.73.

• α = 0.3, p = 0.3, cR = 30 and cPM = 10 then Q0(T
∗
0 ,M

∗
0 ) = 4.69

and Q(T ∗,M∗) = 4.62. For cPM = 25, Q0(T
∗
0 ,M

∗
0 ) = 6.63 and

Q(T ∗,M∗) = 7.07.

• α = 0.2, p = 0.2, cR = 30 and cPM = 25 then Q0(T
∗
0 ,M

∗
0 ) = 5.59 and

Q(T ∗,M∗) = 5.55. For cR = 50 , Q0(T
∗
0 ,M

∗
0 ) = 7.32 andQ(T ∗,M∗) =

7.42.

When Q(T ∗,M∗) > Q0(T
∗
0 ,M

∗
0 ) for a given cPM , the same inequality

holds when cPM increases, therefore the minimal repair remains to be the

preferable choice.

In addition M∗ ≤ M∗
0 and T ∗ ≤ T ∗

0 for those cases where Q(T ∗,M∗) >

Q0(T
∗
0 ,M

∗
0 ). The minimal repair produces higher reliability and thus the

preventive maintenance can be postponed.

22



MRc

1.5 2

p
PMc

*

0T
*

0M ),( *

0

*

00 MTt ),( *

0

*

00 MTQ
*

0T
*

0M ),( *

0

*

00 MTt ),( *

0

*

00 MTQ

0.1

10 10 4 6.4 2.82 11.5 3 5.64 2.98

15 15.8 6 7.84 3.32 17.3 5 7.27 3.55

20 23.6 11 9.58 3.62 26.6 9 9.05 3.91

25 18 10.57 3.783592 14 10.13 4.13

0.2

10 7.6 3 4.61 3.618986 9.2 2 3.93 3.74

15 10.7 5 5.87 4.275491 11.4 4 5.51 4.47

20 16.1 9 6.83 4.624515 16.2 8 6.71 4.86

25 19 7.24 4.812131 15 7.18 5.08

0.3

10 7.7 2 3.37 4.385567 7.7 2 3.37 4.49

15 9.2 5 4.65 5.229731 9.5 4 4.50 5.40

20 13.9 9 5.23 5.68482 14.4 7 5.14 5.89

25 26.1 20 5.35 5.984506 26.9 16 5.34 6.20

Table 3. Optimal policy ),( *

0

*

0 MT , ),( *

0

*

00 MTt and ),( *

0

*

00 MTQ for different

values of 
PMcp, and

MRc (with 30=Rc fixed)

The decision between both policies depends also on the ratio cMR

cGPP
. Table

3 contains the optimum policy and cost under minimal repair for cMR = 1.5

and cMR = 2. The comparison with Table 1 shows that the minimal repair

is now the most economic choice most of the times. This is the case when

cMR = 2 for α = 0.3, α = 0.2 and p = 0.3, α = 0.2 and p = 0.2 and

cPM ≥ 15 among others. For cMR = 1.5 the advantage of minimal repair

is observed in all the examples except one when α, p, and cPM take the

smallest values.
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Table 4. Optimal policy ),( ** MT , ),( ** MTt and ),( ** MTQ for different 

values of 
PMcp,,a and 

Rc (with 1=GPPc fixed), 23.0)( tt =l

Rc

30 50

a p
PMc

*
T

*
M ),( ** MTt ),( ** MTQ *

T
*

M ),( ** MTt ),( ** MTQ

0.2

0.1

10 3.1 2 2.19 5.64 1 1.73 5.78

15 3.4 3 2.48 7.63 3.0 2 2.18 8.43

25 4.4 6 2.91 10.49 3.5 3 2.49 12.28

0.2

10 1 1.54 6.50 1 1.54 6.50

15 3.3 2 1.97 9.11 1 1.54 9.75

25 4.2 5 2.41 12.32 3.3 2 1.97 14.92

0.3

10 1 1.35 7.43 1 1.35 7.43

15 3.0 2 1.69 10.72 1 1.35 11.14

25 4.0 5 2.03 14.42 3.0 2 1.69 17.61

0.3

0.1

10 3.0 2 2.16 5.70 1 1.73 5.78

15 3.3 3 2.42 7.78 2.9 2 2.14 8.53

25 4.4 5 2.73 10.84 3.4 3 2.44 12.52

0.2

10 1 1.54 6.50 1 1.54 6.50

15 3.2 2 1.94 9.22 1 1.54 9.75

25 4.0 5 2.34 12.66 3.3 2 1.95 15.10

0.3

10 1 1.35 7.43 1 1.35 7.43

15 3.0 2 1.68 10.85 1 1.35 11.14

25 4.1 4 1.95 14.78 3 2 1.68 17.83

The study of the optimum policy under a different baseline rate is pre-

sented in Table 4 where a similar analysis to that in Table 1 is carried out

for λ(t) = 0.3t2. Thus, the time to failure of the unit is assumed to follow
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a Weibull distribution with shape and scale parameters equal to 2 and 1013

respectively. The dependence of the optimum policy on p, cPM and cR re-

sembles the previous one. Table 4 contains more cases where T ⋆ = ∞. This

is so because when comparing λ(t) = 0.3t2 with λ(t) = 0.1(t + 1), the for-

mer describes a system with significantly lower reliability when new. Thus,

replacement turns out to be a better option than maintaining the system.

The graphs of the cost function reveal an interesting feature of the opti-

mum policy. Figure 2 contains a high-resolution graph of the cost function

Q(T,M⋆ = 2) for λ(t) = 0.1(t+1), α = 0.2, p = 0.2, cR = 30 and cPM = 10.

Q(T ⋆, 2) does not differ much from Q(T, 2) for T > T ⋆. In fact the min-

imum cannot be told apart from asymptotic values under different values

of cPM in Figure 3, where the resolution is lower. This behaviour can also

be observed in the corresponding graphs for cR = 50, λ(t) = 0.3t2 and even

when a minimal repair follows a minor failure. These graphs are omitted

to avoid enlarging the paper. As far as costs are concerned, the main con-

clusion is that replacement at T is unnecessary when the system is going to

be replaced after M minor failures. The system is over maintained if both

types of preventive replacement are carried out and the age replacement can

be ignored. Indeed the consequences on the reliability of not performing the

preventive maintenance at T should be analyzed. The maintainer must be

aware of the risks incurred before deciding which preventive maintenance

to carry out. This analysis is to be assigned for future research.
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5 Concluding Remarks

This paper analyzes a maintenance policy for a system that can undergo

failures of two types: minor and catastrophic. Minor failures follow a general
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failure model which allows a worse than minimal repair after each failure

by means of a GPP repair. The motivation for this assumption is the

maintenance based on refurbished parts rather than those from the original

equipment manufacturing. This practice happens to occur in middle-aged

systems or those close to retirement.

Refurbished parts are old components with some degree of wear-out that

can be reused once some kind of recycling is performed. In general these

components present lower reliability levels and more failures are reported.

Thus, the warranty that a user gets from a refurbished component is usu-

ally less than that of an original component. The benefit of GPP repairs

decreases as the probability of a catastrophic failure or its cost increases.

In addition, we analyze the conditions that make a GPP repair less prof-

itable from an economic point of view than other maintenance procedures

such as the minimal repair. This is the case, for example, if the GPP repair

leads to such a poor quality (α large) that the reliability after repair is very

low. The examples also reveal that the higher the probability of a catas-

trophic failure, p, or its associated cost, cR, the less advantageous is the GPP

repair when compared to the minimal repair. A reasonable explanation is

that the the GPP repair tends to produce more frequent failures than the

minimal repair and therefore a catastrophic failure is more likely to occur.

When cR increases the maintainer obtains higher protection against catas-

trophic failures with the minimal repair. The maintenance model includes a

maximum number of GPP repairs before preventive replacement. Availabil-

ity of spares and warranty restrictions [18] motivate this assumption. When

the cost of the scheduled preventive maintenance cPM increases, minimal

repairs are preferable to GPP repairs because the time until the Mth fail-

ure is delayed. The analysis indicates that the choice between minimal and
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GPP repairs cannot be only based on the ratio cMR

cGPP
but all the parameters

involved. It can be pointed out as a general result that maintainers can

consider GPP repairs when these repairs lead to a reliability level not far

from that obtained from a better maintenance such as the minimal repair.

This type of repairs can also be profitable even when they produce a low

reliability if the maintainer is not specially aware with it because the costs

derived from preventive replacements and catastrophic failures are low.

The model in this paper focuses on optimum policies based on cost. The

analysis of the objective function reveals that the cost incurred when subop-

timal solutions, (T = ∞,M⋆), are applied is near the optimum value. Thus,

the interest of age replacement diminishes when the system is replaced after

M minor failures. The implication on the reliability of both, suboptimal

policies and GPP repairs is to be analyzed.

6 Appendix

Proof of Lemma 1

The event Si ≤ t is equivalent to N(t) ≥ i, which yields FSi
(t) in (4). The

corresponding density function fSi
(x) can be obtained by taking derivative

of FSi
(t) as follows:

fSi
(x) = −

i−1∑
j=0

d

dt
P (N(t) = j),
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where

d

dt
P (N(t) = 0) = −βλ(t) exp{−β∆(t)},

d

dt
P (N(t) = 1) = −βλ(t) exp{−β∆(t)}

(
− exp{−α∆(t)}+ β

α
(1− exp{−α∆(t)})

)
,

d

dt
P (N(t) = 2) = −βλ(t) exp{−β∆(t)}

[
−
(
β

α
+ 1

)
(1− exp{−α∆(t)}) exp{−α∆(t)}

+
β

α

(
β

α
+ 1

)
(1− exp{−α∆(t)})2

]
,

d

dt
P (N(t) = 3) = −βλ(t) exp{−β∆(t)}

×

[
−
(

β

2α
+ 1

)(
β

α
+ 1

)
(1− exp{−α∆(t)})2 exp{−α∆(t)}

+

(
β

2α
+ 1

)(
β

α
+ 1

)
β

3α
(1− exp{−α∆(t)})3

]
,

Thus, it follows that

d

dt
P (N(t) = 0) +

d

dt
P (N(t) = 1)

= −βλ(t) exp{−β∆(t)}
(
1 +

β

α

)
(1− exp{−α∆(t)}) ,

d

dt
P (N(t) = 0) +

d

dt
P (N(t) = 1) +

d

dt
P (N(t) = 2)

= −βλ(t) exp{−β∆(t)}
(
1 +

β

α

)(
1 +

β

2α

)
(1− exp{−α∆(t)})2 ,

· · ·
i−1∑
j=0

d

dt
P (N(t) = j)

= −βλ(t) exp{−β∆(t)}
(
1 +

β

α

)(
1 +

β

2α

)
· · ·
(
1 +

β

(i− 1)α

)
× (1− exp{−α∆(t)})i−1

= −β(β + α)(β + 2α) · · · (β + (i− 1)α)
1

αi−1(i− 1)!
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×λ(t) exp{−β∆(t)}(1− exp−α∆(x))i−1.

Finally, we have

fSi
(x) = λ(x)

i−1∏
j=0

(β + jα)
1

αi−1(i− 1)!
· e−β∆(x)(1− e−α∆(x))i−1.

Proof of Proposition 1

The cost of a cycle, C(τ) is given as follows

C(τ) = cGPP ((M − 1) ∧X)1{S(X+1)
∧

M≤T} + cGPPN(T )1{S(X+1)
∧

M>T}

+cR1{X+1≤M,SX+1≤T} + cPM1{X+1≤M,SX+1≤T}c ,

where 1{·} is the corresponding indicator function. Then, it can be observed

that

E[(M − 1) ∧X)1{S(X+1)
∧

M≤T }] = E[(M − 1) ∧X)1{N(T )≥(X+1)
∧

M}]

=
M−1∑
j=0

j(1−
j∑

i=0

P (N(T ) = j)(1− p)jp

+(M − 1)(1−
M−1∑
i=0

P (N(T ) = j)
∞∑

j=M

(1− p)jp

=
M−1∑
j=0

(1− p)jpj(1−
j∑

i=0

P (N(T ) = i))

+(M − 1)(1− p)M(1−
M−1∑
i=0

P (N(T ) = i)

=
M−2∑
j=0

(1− p)jpj(1−
j∑

i=0

P (N(T ) = i))

+(M − 1)(1− p)M−1(1−
M−1∑
i=0

P (N(T ) = i).
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On the other hand,

E[N(T )1{S(X+1)
∧

M>T}]

=
M−1∑
j=0

(1− p)jpE[N(T )1{N(T )≤j}] +
∞∑

j=M

(1− p)jpE[N(T )1N(T )≤M−1]

=
M−1∑
j=0

(1− p)jp

j∑
i=0

iP (N(T ) = i) + (1− p)M
M−1∑
i=0

iP (N(T ) = i)

=
M−2∑
j=0

(1− p)jp

j∑
i=0

iP (N(T ) = i) + (1− p)M−1

M−1∑
i=0

iP (N(T ) = i).

Furthermore,

P (X + 1 ≤ M,SX+1 ≤ T ) =
M−1∑
j=0

(1− p)jp · (1−
j∑

i=0

P (N(T ) = j)).

Therefore

E[C(τ)] = cGPP

(M−2∑
j=0

(1− p)jpj(1−
j∑

i=0

P (N(T ) = i))

+(M − 1)(1− p)M−1(1−
M−1∑
i=0

P (N(T ) = i)
)

+cGPP

(M−2∑
j=0

(1− p)jp

j∑
i=0

iP (N(T ) = i) + (1− p)M−1

M−1∑
i=0

iP (N(T ) = i)
)

+cRP (X + 1 ≤ M,SX+1 ≤ T ) + cPM(1− P (X + 1 ≤ M,SX+1 ≤ T )).

and thus the formula in Proposition 1 is obtained.

Proof of Proposition 2

Notice that

L(0,M) = −(
∑M−2

j=0 (1− p)jp+ (1− p)M−1)cPM = −cPM < 0

In addition

lim
T→∞

FSi
(T ) = 1
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and by means of L’Hopital rule we have

lim
T→∞

F̄Si
(T )

e−β∆(T )
= lim

T→∞

fSi
(T )

βλ(T )e−β∆(T )
=

Ci

β

Therefore,

lim
T→∞

L(T,M)

λ(T )e−β∆(T )
= A

and if A > 0, then there exists an optimum T ∗
M .

Proof of Proposition 3

First we prove the following property: if β
α
≤ 1, then Q1(T,M) in (6) is

increasing.

If β
α

≤ 1, N(t) is log convex and therefore N(t) is also DFR. Thus,

(P (N(x) ≥ M))2 = F 2
SM

(x) ≤ FSM−1
(x)FSM+1

(x) = P (N(x) ≥ M −
1)P (N(x) ≥ M + 1) for all x. Moreover,

FSM
(T )

FSM−1
(T )

≥ FSM
(x)

FSM−1
(x)

, x ≤ T

as SM is increasing in the likelihood ratio order (SM−1 ≤lr SM). Therefore∫ T

0
(FSM−1

(x)− FSM
(x))dx

FSM−1
(T )

≥
∫ T

0
(FSM

(x)− FSM+1
(x))dx

FSM
(T )

Hence, Q1(T,M) is increasing in M.

Next we show that Q is decreasing (increasing) in M if B(M) defined

in (7) is non positive (non negative)

Q(T,M) =
C(T,M − 1) + C1(T,M)

τ(T,M − 1) + τ1(T,M)
≤ Q(T,M − 1) =

C(T,M − 1)

τ(T,M − 1)

⇔ C1(T,M)τ(T,M − 1)− τ1(T,M)C(T,M − 1) ≤ 0

⇔ B(M) = Q1(T,M)τ(T,M − 1)− C(T,M − 1) ≤ 0

and Q(T,M) = C(T,M−1)+C1(T,M)
τ(T,M−1)+τ1(T,M)

> Q(T,M − 1) ⇔ B(M) > 0.

In addition, if Q1 is increasing in M so does B.

B(M + 1)−B(M) = (Q1(T,M + 1)−Q1(T,M))τ(T,M)

32



and thus B(M) is increasing in M if β
α
≤ 1.

The previous results lead to the sufficient condition stated in Proposition

3 for the existence of an optimum M when T is given.
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