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Abstract

We analyze the optimal replacement policy for a system subject to a
general failure and repair model. Failures can be of one of two types:
catastrophic or minor. The former leads to the replacement of the
system, whereas minor failures are followed by repairs. The novelty
of the proposed model is that, after repair, the system recovers the
operational state but its condition is worse than that just prior to
failure (worse than old). (Undertrained operators or low quality spare
parts explain this deficient maintenance. The corresponding failure
process is based on the Generalized Poélya Process which presents
both the minimal repair and the perfect repair as special cases. The
system is replaced by a new one after the first catastrophic failure,

and also undergoes two sorts of preventive maintenance based on
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age and after a predetermined number of minor failures whichever
comes first. We derive the long-run average cost rate and study
the optimal replacement policy. Some numerical examples illustrate
the comparison between the as bad-as-old and the worse than old

conditions.

Keywords: Maintenance; Generalized Pélya process; worse-

than-minimal-repair; optimum policy

1 Introduction

Both time and use make systems or equipment wear-out and eventually fail.

To extend their useful life, systems undergo several maintenance actions

(preventive or corrective) before being replaced. (Maintenance is crucial

Time-based maintenance policies are based on analysis of failure times

which determines a programmed calendar for overhauls. Preventive main-
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tenance, carried out before failure, restores the system to the as-good-as-
new condition. Corrective maintenance (after failure) can go from minimal
repair, that brings the system back to the state just prior to failure (as-bad-
as-old), to perfect repair (as-good-as new). The intermediate situations are
known as imperfect maintenance. The perfect repair process is described by
a renewal, whereas a nonhomogeneous Poisson process (NHPP) is used for
the minimal repair process. If the intensity [3] is an increasing (decreasing)
function, the corresponding times after each repair constitute an increasing
(decreasing) sequence in the hazard rate ordering [4]. Nakagawa [5] provides
an overview on time-based maintenance theory. In [6] a review as well as
recent advances in minimal repair models is presented. Surveys on various
practical maintenance models can be found, e.g., in Sherif and Smith [7],
Valdez-Flores and Feldman [8] and Wang [9]. The reviews in Pham and
Wang [10] and Tanwar et al. [11] focus on imperfect maintenance.

Alternatively to time-based maintenance policies, condition-based main-
tenance (CBM) is applied considering the actual condition of the system
when some information on the level of damage or the state of the system
is available. This procedure reduces the possibility of unnecessary repairs
and unwanted side-effects Such us defects or deterioration induced by main-
tenance. The recent work of Alaswad and Xiang [12] presents a review on
CBM.

Most maintenance models assume that maintenance leads to a reliability
improvement. However, sometimes, maintenance causes an adverse effect
and the system results in a worse state than that prior to failure. This
situation has been analyzed in Berrade et al. [13] by means of a mixture
model where good units are replaced on failure by weak units. This can

be the consequence, for example, of instantaneous replacement when the
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maintainer lacks the required resources or suitable training at maintenance
time. The consequences of judgement errors in maintenance actions have
also been analyzed in Berrade et al. [13].

Cha [1] presents a new approach, the GPP repair process, which in turn
is based on the Generalized Polya Process. A GPP repair removes failures
but the result is not the same as a minimal repair. In fact, it leads to a
worse condition than that before the failure. Tanwar et al. [11] refer to this
case as worse than old.

As discussed in Lee and Cha [15], when a component in a system fails, the
working environment frequently becomes more hostile because of increased
pressure, temperature, humidity, etc. This in turn causes instantaneous
stress or damage to the adjacent non-failed components. For example, as
suggested in [15], “(i) the failure of a still wire cable in a bridge or in
an elevator instantaneously increases the stress on the non-failed cables
and leads to some damages before repairing the failed one; (ii) when an
electric device fails by an external shock (electric or mechanical shock), the
non-failed components are also affected by this external shock and their
reliability performances become worse than before” (see also [15] for more
detailed examples). In this case, the overall state of the system after the
repair of the failed component will be worse than the state it had just prior
to the failure.

The use of refurbished parts to replace a failed component can also il-
lustrate this type of maintenance. The parts conforming a new system, a
car for example, are known as genuine parts. When a genuine part fails, it
can be replaced by an identical one built by the original equipment manu-
facturer (OEM). If so, the new unit presents a similar reliability to that of

the failed one and the minimal repair assumption for the whole system is



reasonable. Alternatively, a refurbished or recycled part is a less expensive
choice. These are used parts where only some characteristics are new but
the rest remain unchanged presenting some type of wear. When this type
of spares is used, a worse than minimal repair assumption seems to be more
realistic. Maintenance models based on an imperfect repair that makes the
system return to a condition between perfect renewal and minimal repair
(Brown and Proschan [16]), are no longer valid in this context. The situ-
ation described in this work requires an assumption of an imperfect repair
that leads the system back to the operating state but in a worse condition
than that of the systems with the same age of its age at failure.

This paper presents a maintenance policy for a system with two types of
failure: catastrophic or minor. A GPP repair follows a minor failure. The
maintenance policy is completed with a replacement of the system after a
catastrophic failure, or when the system reaches age 7', or after the M
minor failure whichever occurs soonest. Previous works have analyzed this
maintenance model under the assumption that a minimal repair is carried
out after a minor failure. The work of Sheu et al. [17] provides a complete
review on this maintenance policy and extends previous models by assum-
ing that the probability of a minor or catastrophic failure depends on the
number of failures since the previous replacement. Sheu et al. [17] consider
several failure modes and inspections for the non-selfannouncing modes as
well as stochastically increasing durations of the repairs. A limited number
of spares or impossibility of doing more rework [18] motivate replacement
policies with a maximum number of imperfect repairs. Zhao et al. [19] com-
pare replacement polices which are carried out at some periodic times and
after a predetermined number of repairs. Our model presents the novelty

of carrying out GPP repairs following minor failures. Thus, after each GPP
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repair, the stochastic intensity increases and this can be interpreted as a
higher proneness to failure of the system. In the work of Lee and Cha [15]
the system experiences one type of failure and scheduled preventive mainte-
nance at periodic times. In the present paper we consider two failure types
and age preventive replacement. Moreover we provide sufficient conditions
for the existence of finite optimum policies. These conditions present spe-
cial interest for maintainers that can deem when replacing the system is a
better choice than keeping on a low quality maintenance.

The structure of this paper is as follows. Section 2 contains both con-
cepts, the GPP process and GPP repair whereas the maintenance model is
defined in Section 3. Furthermore, the long run average cost rate is obtained
and a sufficient condition for the existence of an optimum policy is derived.
In Section 4, we analyze the optimal maintenance policy on the basis of
some numerical examples, comparing it with the minimal repair policy. We
finish in Section 5 with our conclusions about the model and suggestions

for further development.

2 The GPP Process and the GPP repair

2.1 Notation

e \(t): baseline failure rate of the unit.

A¢: stochastic intensity or failure intensity.

a, [: parameters defining the stochastic intensity.

p: probability of catastrophic failure (Type II failure).

T': preventive replacement age.
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e M: maximum number of minor failures in a cycle.

cqpp: cost of repair of a minor failure.

cpym: cost of preventive replacement.

cr: cost of replacement after a catastrophic failure (cg > cpas).

2.2 Preliminary Results

Let {N(t), t > 0} be an orderly point process and H; = {N(u), 0 <u <
t} the history (internal filtration) of the process in [0,¢). The stochastic
intensity (or failure intensity), \;, defined below is very useful in describing

a counting process (see Aven and Jensen [3], Finkelstein and Cha [20]).

P(N(tt+ At) = 1|H,_)

A = lim
S0 Nt 4 A
. E ) t—
= Jm, Al , (1)

where N (t1,t3), t1 < to, represents the number of events in [tq,?5). The fore-
going stochastic intensity is heuristically interpreted as: A\;dt = E [dN(t)|H;_],
which is similar to the ordinary failure rate or hazard rate of a random vari-
able [3].

Doyen and Gaudoin [21] define a new class of imperfect repair models
based on reduction of the failure intensity. Other approaches can be found
in Guerra de Toledo et al. [22], Wu and Scarf [23], Syamsundar and Achutha
Naikan [24] and Guo et al. [25]. As far as we know, there is no attempt to
model an increase of the failure intensity due to faulty maintenance. This
paper focuses on this issue.

Next, the definition of the the generalized Pdlya process is stated.



Definition 1. (Generalized Pélya Process) A counting process {N(t), t >
0} is called the generalized Pdlya process (GPP) with the set of parameters
(A(t),a,B), « >0, >0, if

(i) N(0) = 0;

(ii) At = (aN(t—) + B)A(2).

Note that the GPP with (A\(t),a« = 0, 8 = 1) corresponds to the NHPP with
the intensity function A(¢). Therefore the GPP constitutes a generalized
version of the NHPP.

Observe that the stochastic intensity in Definition 1 can also be formu-
lated as indicated below:

h= @N (=) + AN = (V) +1) 830

Thus, the value of the parameter set (A(t), «, 5) can be expressed as (\(t), «, 1),
i.e., =1, without loss of generality.

Lee and Cha [15] define a new type of repair, the “GPP repair”, based
on the GPP. Repair times are assumed to be negligible. {N(¢), t > 0}
where N(t) is the total number of failures in (0,¢], represents the failure
process of the system with baseline failure rate A(¢). The GPP repair is

formally defined as follows.

Definition 2. GPP Repair [15] For a system with failure rate A(¢), a
repair is called a “GPP repair” with parameter « if {N(¢), ¢ > 0} is the
GPP with the parameter set (A(t), a, 1).

Thus, under the GPP repair process, the corresponding stochastic intensity

is specified as

At = (aN(t=) + D). (2)



It follows from (2) that the state of the system after the GPP repair is worse
than the state it had just prior to the failure (worse than old) because its
stochastic intensity is larger than that of the minimal repair process (see
also [1] for relevant discussions). Note that the parameter o determines the
degree of repair. The case a = 0 is matched to the minimal repair and
a > 0 means a repair which is worse than the minimal repair. The larger «
the worse the state of the system after the repair. The work of Lee and Cha
[15] presents useful practical interpretations of the modelling parameters as
well as several practical examples where this type of repair can be applied.

Next we derive some preliminary results for further development. From

[1], it follows that

8 ‘
PVE) =) = S (1= copl=a () (espl (1)

B
[eY

Let denote by S;, i = 1,2, - -, the arrival time of the ith event in the GPP
with the parameter set (A(¢), «, 5). The next lemma states the density and

distribution functions of S;. The proof is given in Appendix.

Lemma 1. Consider the GPP with the parameter set (A(¢),«, ). The
distribution and density functions of .S; are given respectively by
i—1 00
F(t) =1- Y P(N(t) = j) = Y P(N(t) = j), (4)
, ‘=

Jj=0

and

. e—BA(m)(l . e—ocA(ac))i—l‘

), i=1,2,...



From Lemma 1 the reliability function corresponding to the ith arrival

time 1s

FS'L(‘I) 1_F51<I>

||
3
=
=
||
<
S~—

3 (General Failure Model and Replacement
Policy

Consider a system with A(¢) being its baseline failure rate. Thus, for this
system, the survival function of the time until the first failure, 57, is given
by Fs, (t) = exp{— fot AMu)du}. The system undergoes any of two types of
revealed failures, minor failures (Type I) and catastrophic failures (Type
IT). A revealed or self-announcing failure means that no inspection or test
is required to detect it but, on the contrary, the failure is observed at the
very moment it occurs. Failures of this sort usually occur in systems under
continuous operation. In the opposite case systems that only work on de-
mand undergo unrevealed failures and should be inspected in the periods
while they are not functioning to guarantee they are available when there
is a demand of use. Type I and type II failures occur independently of any
other events with probabilities 1 — p and p, respectively. We assume that
each Type I failure can be removed by a GPP repair, whereas a Type Il
failure can be removed only by a replacement of the system.

We can reformulate the previous mathematical failure model according
to Definition 2 of the GPP repair process. Thus, the failure of the system
occurs following the GPP with the parameter set (A(t), «, 1). Every time a
failure takes place it is a minor failure with probability 1 — p independently

of the previous failures. If the failure is of the Type II (catastrophic with

10
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probability p) then the failure process ends whereas it continues otherwise.
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Figure 1: Age for renewal T, minor failure (CJ), catastrophic failure (ﬁ), renewal period T .
a) renewal after the M (M=4) minor failure; b) renewal at age T, ¢) renewal after a catastrophic failure.

Note that, from now on, it is assumed that 8 = 1 in the parameter set

(A(t), a, B) of the GPP process stated in the previous section.

Let X be the number of minor failures previous to the first catastrophic

failure. The distribution of X is geometric with parameter p, that is:
PX =k =(1-p*p, k=01,...
The maintenance policy involves the following cost structure:

e Each Type I failure is repaired according a GPP repair with unitary

cost capp-

e The system is renewed at age T, or after a catastrophic failure or

after the M™ type I failure, whichever occurs first. The cost of a

11



preventive replacement is cpy; and the cost of a replacement due to a

catastrophic failure is cg, where cg > cpy.

The time until the replacement of the system (i.e., the length of a renewal

cycle) is

7 = Min(Smin(x+1),0), T)

where min(a, b) also represents the minimum of a and b.

The expected length of a renewal cycle is obtained by

Blrl = [ Poccrn o 0y )
DS AELOEUTED SEEVIDS / PN () = i)y
==Y [P = 0 Y [ PN = i

The first term in the previous equation represents the expected length of
a cycle that is completed at age T or after a catastrophic failure whichever
comes first. The second term corresponds to a cycle that ends at age T or

after the M minor failure whichever occurs first.

12
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Next proposition states the expected cost incurred in a cycle, E[C(7)],
which depends on both the age replacement 7" and the maximum number

of minor failures, M, occurring before the replacement of the system.

Proposition 1. E[C(7)] is given by

where P(N(t) = 1) is given by (3) with g = 1.

The cost function considered is the long-run cost per unit time, Q (7', M).

According to the renewal reward theorem this function is
QI M) = ——~

with E[C(7)] and E[7] given in Proposition 1 and equation (5), respectively.
Next we focus on the analysis of conditions for the existence of an opti-

mum policy.

3.1 Optimum policies

The expressions of the density function fg,, cumulative distribution func-

tion, Fs,, and reliability function, Fs, , of the the arrival time of the ith

13



event, S;, in the GPP defined by (A(t); a; B) were presented in Lemma 1. It
follows that
P(N(t) = i) = Fs,(t) = Fs,,, (1)

therefore

and

It can be observed that N (t) is a negative binomial random variable with

5 and p = e=*2® (see (3)). Thus N(t) is log convex (concave)

parameters ~
if £<1(2>1)and N(t) is DFR (IFR) if £ <1 (£ > 1).

Note again that we are assuming 5 = 1.

The mean length of a cycle given in (5) and the cost function in Propo-
sition 1 can be alternatively expressed as follows

M-2

T(T,M) = E[r] = Z(l —p)jp/O F5j+1(3:)d3: + (1 —p)Ml/O Fs,, (x)dx

=0

J=

C(T, M) = E[C(7)] = carp ( ) (1= p)pjFs,,,(T) + (M - 1)(1 - p)M_lFsM(T)>

+ P< = (1= pPp(>] s (T) — jFs,,(T)

j=1 i=1

14



T

+ (cr—cpm) Y (1—pYpFs, (T)+ cpu
i

Il
=)

= corp(Y (1P Y B (1) 4 (1= 9" Y Fy (7))

+ (CR - CP]W) (1 - p>ijSj+1 (T) + cpm
J

Il
=)

Next the derivatives of the numerator and denominator of the cost func-

tion Q(T, M) are obtained

dO(T, M)
-
= carn(X (L= pPp(Y F () + (1= )Y S5 (7))
+ (cr—cpum) - (1 _p)jpfSﬁl(T)
T = (0 pPpPs (1) 4 (1) P ()

Proposition 2. When the maximum number of GPP repairs, M, is fixed,
there exists an optimum 7, denoted by T';, minimizing Q (7', M), provided
that the following condition holds

A>0

15



where A given by

A=
M-—-2 M-1 M-—2
(capp( Z PZC +(1—p)Mt Z Cj) + (cr — cpm) Z p)'pCis1)
=1 7j=1 =0
M—-2 M-—2
E[Sia] + (1 —p)M ' E[Sy]) — Z p)'pCita+ (1 —p)"'Cy)
z:0 1=0
M-—2 M-1 -
x (capp(D_(1- pZZ + ( M =1)) + (cr —cpm) ) (1= pYp+cpum)
7=0 Jj=0

being A\(00) = limy_,o, A(T') and

1248 + ja)

T T

i=1,2...

Observe that in the foregoing expression of C;, f can be considered equal
to 1.
Moreover, T}, is a root of the following equation

dO(T, M)  dr(T, M)

C(T, M) =0

Remark. Regarding the result of Proposition 2, if A(00) = oo, then A > 0
since cg > cpy and the condition for the existence of T}, is verified.

Next study concerns the analysis of sufficient conditions for the existence
of an optimum M when the value of T is fixed. This optimum M is denoted
by M*(T).

Straightforward algebra leads to

Cl(T7 M) = C(T7 M)_C(T7 M_l) = (1_p)M71<CGPPF5M—1(T)+p(CR_CPM)F5M (T))
and
(T, M) =7(T,M)—7(T,M —1) = (1 —p)M_l/0 (Fsyy () — Foy, (x))da

16



We consider the following auxiliary functions

O(T. M) Cepp+plcr —cpu) Fou )
Quran = M T Sl (6)
T1 (T7 M) f() (FSJW,1 (I)fFSIW (x))dx
Fspr 1 (T)
B(M) = Q(T,M)7(T,M —1) - C(T, M — 1) (7)

Proposition 3. If the age for replacement T is fixed and the following

condition holds

by, (8)

«

then there exists an optimum, M*(7'), minimizing Q(7', M) and it can be
computed by using B(M) in (7) as follows:

(1)If there exists My such that My > 1 and B(My) > 0, then M*(T) =
min{M : B(M) > 0}

(i))If B(M) <0 for all M, then M*(T) = oc.
Observe that 3 in (8) can be considered equal to 1.

4 Numerical Examples

In the analysis that follows we set the unit of cost equal to the cost of a
GPP repair, so that cgpp = 1. Considering the example of the refurbished
parts which illustrate the worse than old repair, we assume that the cost
of a minimal repair, cy/r, is greater than cgpp. Following this idea we
analyze the consequences of increasing cpys or cg on both, the optimum age
replacement and maximum number of GPP repairs. This study is extended
to changes in the probability of catastrophic failures, p, and the degree of
reliability of the unit after a GPP repair (quantified by «).

17



The comparison of the optimum policy and cost in both policies, GPP
and minimal repair, is one of the keys in the current study. Table 1 contains
the optimum policy (7™, M*) and the optimum cost Q(7™*, M*) when a GPP
repair follows a minor failure whereas the corresponding results when a
minor failure is repaired minimally, (7§, M) and Qo(1y, M), are presented
in Table 2 for c¢yyg = 3. In so doing we see the effect of changes in the
parameters under both maintenance policies. Moreover we give some insight
into the relations between costs that make the minimal repair a preferable
choice to the GPP repair for the maintainer. Following this idea results in

Table 3 aim at analyzing the ratio ccé;\l_Pi to compare both policies.
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30 50
a | P |y | T | M| 2T M) | QT MY | T | M| (T M) | QT M)
10 10.1 3 5.35 2.81 8.2 2 4.26 3.34
0.1 15 12.5 5 6.66 3.41 8.1 4 5.77 4.21
25 18.8 12 8.36 4.10 11.8 6 7.05 5.34
10 7.1 3 4.36 3.63 [e%e) 1 2.98 4.19
0.1 0.2 15 9.8 4 5.13 4.38 8.0 2 3.78 5.55
25 17.3 11 6.25 5.14 9.2 5 5.36 7.04
10 7.5 2 3.27 441 [e%e) 1 2.98 4.79
0.3 15 8.5 4 4.20 5.36 6.8 2 3.21 6.78
25 16.7 11 4.85 6.32 8.6 4 4.21 8.71
10 9.3 3 5.11 2.93 8.0 2 4.16 3.43
0.1 15 10.6 5 6.21 3.64 8.6 3 5.07 4.39
25 15.9 10 7.37 4.52 11.2 5 6.23 5.73
10 8.7 2 3.72 3.73 %) 1 2.98 4.19
0.2 0.2 15 8.9 4 4.84 4.61 7.9 2 3.69 5.69
25 15.3 9 5.70 5.55 9.1 4 4.86 7.42
10 7.3 2 3.19 4.52 (%) 1 2.98 4.79
0.3 15 8.9 3 3.80 5.59 6.7 2 3.13 6.96
25 15.0 9 4.53 6.73 9.0 3 3.81 9.11
10 8.8 3 4.92 3.04 7.9 2 4.07 3.50
0.1 15 11.3 4 5.53 3.81 8.2 3 4.88 4.55
25 14.6 9 6.75 4.84 10.1 5 5.89 6.04
10 8.5 2 3.64 3.81 (%) 1 2.98 4.19
0.3 0.2 15 10.0 3 4.32 4.78 7.8 2 3.61 5.82
25 14.5 8 5.32 5.88 8.6 4 4.64 7.74
10 7.2 2 3.12 4.62 (%) 1 2.98 4.79
0.3 15 8.6 3 3.68 5.79 6.6 2 3.07 7.11
25 14.4 8 4.29 7.07 8.7 3 3.68 9.42
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Table 1. Optimal policy (7", M), «(T",M") and Q(T", M ") for different
values of a, p,c,, and c, (with ¢, =1fixed), A(x)=0.1(z +1)




It is assumed in all the examples presented in Tables 1, 2, and 3 that the
system failure rate is A(t) = 0.1(¢ + 1), ¢ > 0 whereas \(t) = 0.3t? in Table
4. Tables 1 and 4 also provide the optimum expected lengths of a renewal
cycle, 7(T*, M*), and Tables 2 and 3 the corresponding length, 7o(7¢, M),
when minimal repairs are carried out.

The results in Table 1 reveal that when « increases so does the opti-
mum cost. In addition both, M* and 7(T*, M*), decrease although T* is
non-monotonic. The higher a, the lower the reliability induced by the GPP
repair and these reliability levels do not compensate for the cost incurred.
Thus, less GPP repairs before system replacement are recommended. The
maintainer gains protection against low quality repairs by an earlier replace-
ment of the system by a new one. The results with 7* = oo also match that
M* = 1. They correspond to cases where the cost of preventive replacement
is low enough when compared with the cost of GPP repairs and thus it’s
worth replacing the system the first time a GPP failure happens.

When cp); increases, so do both M* and T%. This result indicates that
an increasing cost of preventive maintenance makes the maintainer to post-
pone it extending both, the age for replacement and the maximum number
of GPP repairs. A similar behaviour is observed in Table 2 when the unit
is minimally repaired. This postponement of the preventive maintenance
makes the expected length of a cycle to increase in both cases.

The higher the probability p of a catastrophic failure or its associated
cost, cg, the smaller the time 7™ for age replacement. The results derived
from the minimal repair in Table 2 also show a decreasing 7] when p or
cr increases. This means that in order to prevent the occurrence of a
catastrophic failure, an earlier preventive replacement is recommended to

reduce this risk.
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Cr
30 50
P olcp | Ty | My | 7T, M) | Qu(T,, M) | T, | M, | 7,(T,,M,) | Q,(T,,M,)
10 14.7 2 4.45 3.26 8.6 2 4.39 3.66
15 00 4 6.56 3.96 10.1 3 5.60 4.62
ol 20 oo 6 7.84 4.43 12.9 4 6.55 5.28
25 (o) 9 9.05 4.74 15.6 6 7.84 5.77
10 9.3 2 3.93 3.94 oo 1 2.38 4.19
15 12.8 3 4.90 4.82 8.3 2 3.89 5.80
02 20 00 6 6.30 5.30 9.2 3 4.82 6.70
25 oo 10 6.94 5.60 10.6 5 5.86 7.32
10 7.7 2 3.37 4.69 0o 1 2.09 4.79
15 10.3 3 4.16 5.71 7.0 2 3.30 7.00
03 20 14.5 6 5.03 6.28 7.8 3 3.98 8.12
25 (%) 11 5.31 6.63 9.5 4 4.50 8.88

Table 2. Optimal policy (7,,M,), 7,(T, ,M,) and Q,(T, ,M,) for different

values of p,c,, and ¢, (with ¢, =3 fixed)

The reduction in 7™ and 7§ aims at avoiding the natural wear-out lead-
ing to failure. The maintainer should be more concerned with wear-out
when the consequences of a catastrophic failure get worse. An increasing
value of p or cg also reduces the number of the maximum number of minor
failures before replacement when GPP repairs are performed, that is M*.
However Table 2 shows that M is not monotonic and therefore a similar re-
sult does not hold in the case of minimal repairs. Note that after a minimal
repair the reliability is the same as that the system presented just before
failure so the probability of a minor failure does not increase as in the case

of GPP repairs. Hence M} is not so critical than M*. The expected length
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of a cycle decreases with p in Tables 1 and 2 as expected.

Regarding the comparison between GPP and minimal repairs, the re-
sults in Table 1 and Table 2 show that in most cases it pays to do GPP
repairs instead minimal repairs since Q(T*, M*) < Qo(Ty, M{). However a
closer look at the results reveals that this economic advantage depends on
the parameter values. Thus if «, p, cpyr or cg increase enough, then the
inequality is reversed making the minimal repair a more profitable action.

The following examples illustrate this idea:

e p = 0.3, cg = 30 and cpyy = 25 then Qo(T§,M;) = 6.63 and
Q(T*, M*) =6.32 for a« = 0.1 but Q(T*, M*) = 7.07 for a = 0.3.

e a=0.2,p=02,cg=30and cpp; = 25 then Qo(T, M) = 5.596 and
Q(T*, M*) = 5.55. For p = 0.3, Qo(Ty;, M) = 6.63 and Q(T*, M*) =
6.73.

e a =03, p=0.3, cg =30 and cpy; = 10 then Qo(Ty, M) = 4.69
and Q(T*, M*) = 4.62. For cpy = 25, Qo(Ti, M) = 6.63 and
Q(T*, M*) = 7.07.

e a=02p=0.2, cg =30 and cpy = 25 then Qo(7Ty, M) = 5.59 and
Q(T*, M*) = 5.55. For cp = 50 , Qo(Ty:, M3) = 7.32 and Q(T*, M*) =
7.42.

When Q(T*, M*) > Qo(Ty, Mg) for a given cpys, the same inequality
holds when cpj; increases, therefore the minimal repair remains to be the
preferable choice.

In addition M* < M and T* < Ty for those cases where Q(T™*, M*) >
Qo(Ty, M§). The minimal repair produces higher reliability and thus the

preventive maintenance can be postponed.
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i
L5 2
Polew | TV [ My | n(TiMy) | QM) | T | My | oy(Ty M) | O(T) M)
10 10 4 6.4 2.82 11.5 3 5.64 2.98
15 | 158 6 7.84 332 173 5 1.27 3.55
o 20 | 236 | 11 9.58 3.62 26.6 9 9.05 391
25 00 18 10.57 3.783592 00 14 10.13 4.13
10 7.6 3 4.61 3.618986 9.2 2 3.93 3.74
15 | 107 5 5.87 4.275491 114 4 5.51 4.47
"2 20 | 161 9 6.83 4.624515 16.2 8 6.71 4.86
25 00 19 7.24 4.812131 00 15 7.18 5.08
10 1.7 2 337 4.385567 1.7 2 3.37 4.49
15 9.2 5 4.65 5.229731 9.5 4 4.50 5.40
. 20 | 139 9 523 5.68482 144 7 5.14 5.89
25 1261 | 20 5.35 5.984506 269 | 16 5.34 6.20

Table 3. Optimal policy (T, ,M,),
values of p,c,, and c,, (with ¢, =30fixed)

The decision between both policies depends also on the ratio <A Table

cGgppP’
3 contains the optimum policy and cost under minimal repair for ¢y = 1.5
and cpr = 2. The comparison with Table 1 shows that the minimal repair
is now the most economic choice most of the times. This is the case when
0.2 and p = 0.3, « = 0.2 and p = 0.2 and

cur = 2 for a = 0.3, a =

cpy > 15 among others. For cjr = 1.5 the advantage of minimal repair
is observed in all the examples except one when «, p, and cpy; take the

smallest values.
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Cr
30 50
a | P ey | T oM | QT M) | T oM7) | T, M)
10 3.1 2.19 5.64 (%) 1.73 5.78
0.1 15 34 2.48 7.63 3.0 2.18 8.43
25 44 291 10.49 35 2.49 12.28
10 [e%) 1.54 6.50 %) 1.54 6.50
0.2 0.2 15 33 1.97 9.11 oo 1.54 9.75
25 42 241 12.32 33 1.97 14.92
10 (%) 1.35 7.43 (%) 1.35 7.43
0.3 15 3.0 1.69 10.72 %) 1.35 11.14
25 4.0 2.03 14.42 3.0 1.69 17.61
10 3.0 2.16 5.70 (%) 1.73 5.78
0.1 15 33 242 7.78 29 2.14 8.53
25 4.4 2.73 10.84 34 2.44 12.52
10 %) 1.54 6.50 (%) 1.54 6.50
0.3 0.2 15 32 1.94 9.22 (%) 1.54 9.75
25 4.0 234 12.66 33 1.95 15.10
10 (%) 1.35 7.43 (%) 1.35 7.43
0.3 15 3.0 1.68 10.85 (%) 1.35 11.14
25 4.1 1.95 14.78 3 1.68 17.83

The study of the optimum policy under a different baseline rate is pre-
sented in Table 4 where a similar analysis to that in Table 1 is carried out

for A\(t) = 0.3t>. Thus, the time to failure of the unit is assumed to follow
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Figure 2: cost function o =0.2, p=0.2, ¢;=30, cp,~10, A(#)=0.1(¢+1)
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Figure 3: cost function under different values of ¢,

5 Concluding Remarks

This paper analyzes a maintenance policy for a system that can undergo

failures of two types: minor and catastrophic. Minor failures follow a general
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failure model which allows a worse than minimal repair after each failure
by means of a GPP repair. The motivation for this assumption is the
maintenance based on refurbished parts rather than those from the original
equipment manufacturing. This practice happens to occur in middle-aged
systems or those close to retirement.

Refurbished parts are old components with some degree of wear-out that
can be reused once some kind of recycling is performed. In general these
components present lower reliability levels and more failures are reported.
Thus, the warranty that a user gets from a refurbished component is usu-
ally less than that of an original component. The benefit of GPP repairs
decreases as the probability of a catastrophic failure or its cost increases.

In addition, we analyze the conditions that make a GPP repair less prof-
itable from an economic point of view than other maintenance procedures
such as the minimal repair. This is the case, for example, if the GPP repair
leads to such a poor quality (« large) that the reliability after repair is very
low. The examples also reveal that the higher the probability of a catas-
trophic failure, p, or its associated cost, cg, the less advantageous is the GPP
repair when compared to the minimal repair. A reasonable explanation is
that the the GPP repair tends to produce more frequent failures than the
minimal repair and therefore a catastrophic failure is more likely to occur.
When cpg increases the maintainer obtains higher protection against catas-
trophic failures with the minimal repair. The maintenance model includes a
maximum number of GPP repairs before preventive replacement. Availabil-
ity of spares and warranty restrictions [18] motivate this assumption. When
the cost of the scheduled preventive maintenance cpys increases, minimal
repairs are preferable to GPP repairs because the time until the Mth fail-

ure is delayed. The analysis indicates that the choice between minimal and
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GPP repairs cannot be only based on the ratio ccé‘i .~ but all the parameters

involved. It can be pointed out as a general result that maintainers can

consider GPP repairs when these repairs lead to a reliability level not far
from that obtained from a better maintenance such as the minimal repair.
This type of repairs can also be profitable even when they produce a low
reliability if the maintainer is not specially aware with it because the costs

derived from preventive replacements and catastrophic failures are low.

6 Appendix

Proof of Lemma 1
The event S; <t is equivalent to N(t) > 4, which yields Fg,(¢) in (4). The
corresponding density function fg,(z) can be obtained by taking derivative

of Fg,(t) as follows:
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CPING =0) = BN exp{~BA(M),
GPONO =1 = ~AOep{-5A0) (- exp(-ad®) + 2 (1 - exp{-ad(0]) )
GPON0=2) = ~AOel-550) | - (241) (1 - expl-ad@)) esp{-adin)
+7 (g T 1) (1- exp{—aA(t)}f] ,
CPINW =8) = —AND) exp{~BAM)
X [— (% + 1) (g + 1) (1 — exp{—aA(t)})* exp{—aA(t)}

4 (% + 1) (g + 1) 3% (1- eXp{—aA(t)})gl ,

Thus, it follows that

d d
ap(N(t) =0) + ap(N(t) =1)

d d d
SP(N(1) = 0) + 2 PIN(t) = 1) + 5 P(N(1) =2)
— A exp{—BA)} (1 ; §> (1 n %) (1 - exp{—aA(B)})?

= —BA(t) exp{—BA(t)} (1 + g) (1 + ﬂ) <1 + %)

20 17— 1)04 '
X x (1 —exp{—aA(t)})""

= BB+ a)(B+2a) - (B+ (i - 1)0‘)ai—1<i — 1)
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x \(t) exp{—BA(t)}(1 — exp —aA(x)) .

Finally, we have

fsi(x) = A(x) | | (B + je)

J

ﬂ LePR@ (1 — efaA(w))ifl_
at~ e —1)!

Il
=)

Proof of Proposition 1

The cost of a cycle, C(7) is given as follows

C(7) = cgpp((M — 1) A X)l{S(x+1)/\M§T} + CGPPN<T)]‘{S(X+1)/\IVI>T}

teplixr1<m 55 <1y T CPMLl{x1<M,Sx 1 <T}es

where 11 is the corresponding indicator function. Then, it can be observed

that

E[(M - 1) A X)l{s(x+1)/\1v1§T}] = EKM - 1) A X)l{N(T)E(X+1)/\M}]
M—1 7

=30 ZP(N(T) =j)d—pyp



On the other hand,

[N T)l{S(X+1) A M>T}]

= M__Ol(l = p)PE[N(T)Lnem<p] + zﬂ; (1= p)PEIN(T)Iner)<ar-1]

- MZ pzzp Fa-p)" M_Olsz(T) =)

= M<1 _pypiizongv(;p) — i)+ (1= ]:[_:sz(T) ~i)
Furthermore,

P(X +1<M, Sy <T) :M 1 z]:P(N(T):j)).
Therefore _ _
EIC(r)] = cGPP(M: zj;zﬂuvm =1))
(M- 1)(1— 3 P(N )
+pop(M22 ﬂ‘p;zp(w) i)+ (1= ]fz_ojlz'P(Nm =)

J: =
+CRP(X+1 S M,Sx_H S T) —l—CPM(]_ —P(X+1 S M,Sx+1 S T))

and thus the formula in Proposition 1 is obtained. [ ]
Proof of Proposition 2
Notice that
L(0, M) = (X2 (L= p)p + (1= )M Y)epar = —cpar < 0
In addition
Tlg]go Fs.(T)=1
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and by means of L’Hopital rule we have

lim Fs,(7) = lim _JsD) _G
T—o0 e BAMT) — Tooo BA(T)eBAT) I}
Therefore,
o L@M)
A N(T)esam ~ 4
and if A > 0, then there exists an optimum 77;. [

Proof of Proposition 3
First we prove the following property: if g < 1, then Q1(T, M) in (6) is
increasing.

If 2 <1, N(t) is log convex and therefore N(t) is also DFR. Thus,
(P(N@) = M)? = Fi,(x) < Fs, ,(1)Fs,,,,(c) = P(N(@) = M —
1)P(N(z) > M + 1) for all z. Moreover Pon @) 5 Loy@ 0 <

» Fsy((T) Fsy_q(x)’
as Sy is increasing in the likelihood ratio order (Spr—1 <} Sar). Therefore

Jo Fsyy s (2) = Fs,, (@) _ J)' (F,, (2) = Fs,, ., (x))de
FSMA (T) N FSM (T>

Hence, Q1(7T, M) is increasing in M.
Next we show that ) is decreasing (increasing) in M if B(M) defined

in (7) is non positive (non negative)

C(T, M — 1) + Cy(T, M)

(T, M — 1)+ 7 (T, M)
& C\(T, M) (T, M — 1) — 7(T, M)C(T, M — 1) < 0

(T, M —1)
T(T,M —1)

Q(T, M) = <QT,M-1)

& B(M) = Qu(T, M)r(T,M —1) — C(T,M — 1) < 0

and Q(T, M) = ST LD > Q(T, M — 1) & B(M) > 0

In addition, if (), is increasing in M so does B.
B(M +1) = B(M) = (Qu(T, M + 1) — Qu(T, M))7(T, M)
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and thus B(M) is increasing in M if g <1.
The previous results lead to the sufficient condition stated in Proposition

3 for the existence of an optimum M when T is given. ]
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