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France

bSelect Inria, 91405 Orsay, France
cNexter System, 11 Allée des Marronniers, 78022 Versailles Cedex, France

Abstract

Lifetime data collected from a fleet of vehicles or, more broadly, park of systems

are generally non-homogeneous and heavily censored. Indeed, system lifetime

can be affected by the variability of production conditions and usage condi-

tions. Most of the time, this variability is unobserved, but has to be taken into

account for reliability or warranty cost analysis. This research proposes a two-

component Weibull mixture model for modelling unobserved heterogeneity in

in heavily censored lifetime data collection. Performance of classical estimation

methods (maximum of likelihood, EM, full Bayes and MCMC) are significantly

reduced due to the high number of parameters and the heavy censoring. There-

fore, a Bayesian bootstrap method, called Bayesian Restauration Maximisation,

is used. Sampling from the posterior distribution is obtained thanks to an im-

portance sampling technique. Simulation results showed that, even with heavy

censoring, BRM is effective both in term of estimates precision and computation

times. The prior elicitation, sensibility analysis and comparaisons with EM are

discussed. Finally, a real data set is analyzed to illustrate the application of the

method.
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1. Introduction

In reliability or warranty analysis, engineers must often deal with compo-

nents which have more than one failure mode. Usually, this non-homogeneity

coincides with presence of compliant/non-compliant components, early/random

or wear out/random failures, and so forth. For example, in the automotive5

industry, components are produced by different suppliers. In this case, com-

ponent reliability may depend on the supplier, but also on the car operating

environment, (e.g., temperature, humidity, roads, etc.), the usage mode and the

usage intensity. Generally, these various sources of non-homogeneity are not

controlled or not observed. But neglect existing non-homogeneity, can lead to10

errors and misconceptions in the analysis. In manufacturing, reliability has a

serious impact on the warranty servicing cost or maintenance cost. For safety

studying, conclusions of diagnostic tests can be severely misguided, and so on.

Then, mixture of distributions are usually used to modelling failure times from

non-homogeneous data [1, 2].15

Since more than five decades, Weibull distributions is extensively used for

modelling life data in medical or industrial applications. Weibull distributions

exhibit decreasing, constant or increasing hazard function which makes them

suitable for modelling complex failure data. See for example [3, 4] and references

therein. Hence, two-component Weibull mixture is a highly relevant model to20

capture latent heterogeneity for a large majority operating reliability analysis.

Furthermore, the other issue raised in reliability analysis is the large number

of censored failure times. For example, in warranty data collections, during the

time interval over which data are collected, components are put into service at

different times : failure time is censored for the large number of components25

still operating. Percentage of censored failure times may be greater than 70%

and lifetime inference is therefore a particularly difficult challenge.

Different methods are used for fitting a parametric model to data, but they

have substantial difficulties for Weibull mixtures in the setting of heavily cen-

sored data. Graphical methods can provide a quick but crude estimation [5].30
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The maximum likelihood (ML) estimation is the most preferred method due

to its desirable asymptotic properties. As the mixing cause is missing, ML is

not suitable here. Expectation-maximization (EM) algorithm and is stochas-

tic variant, S-EM, are iterative methods to obtain ML estimate when data are

missing [6, 7]. But they can fail due to the heavy censoring. As noted in [8],35

full Bayes can address the issue of ML methods arising from limited data, but

requires complexe integrations that make it computationally prohibitive in the

framework of mixture models. The higher number of parameter combined with

heavy censoring rate makes that Markov chain Monte Carlo algorithms appear

to be deceptive in terms of computation time for Bayesian inference [9, 10].40

In this paper, The Bayesian restoration maximization (BRM) algorithm is

used to estimate the parameters of a two-component Weibull mixture in heavily

censored data setting. BRM algorithm has been used for single Weibull inference

in [11]. According to [12], it is a Bayesian bootstrap method which combines

the prior information and importance sampling technique, to obtain a sample of45

the model parameters distributed similarly to the posterior distribution. In this

paper, BRM was adapted to Weibull mixture inference. The particular issue

of the prior elicitation was discussed. Simulation results showed that BRM is

effective, both in term of estimates precision and computation times.

The paper is organized as follows. The Weibull mixture and notation are50

presented in Section 2. Classical estimation methods are set out in Section 3 In

Section 4, BRM algorithm is extended to Weibull mixture. Calibration of the

priors hyperparameters, sensibility analysis and performance comparisons with

the S-EM algorithm are discussed in Section 5. A real data set is also analyzed

to illustrate the application of the method. Finally, Section 6 gives a conclusion.55

2. Mixture of Weibull distributions

Weibull distributions have been extensively used for modelling life data in

medical or industrial applications. This is clearly illustrated by the large number

of references on it. A review of the Weibull distribution, in many of its aspects,
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can be found in [3] and [13]. In particular, Weibull distributions exhibit de-60

creasing, constant or increasing hazard function which makes them suitable for

modelling complex failure data.

2.1. Weibull distributions

A two-component mixture was used where both component belongs to the

family of two-parameter Weibull distributions. For x ≥ 0, the probability den-

sity function is

fMIX(x|θ) =

2∑
k=1

αkfW (x|βk, ηk), (1)

where for k = 1, 2

• fW (x|βk, ηk) is the Weibull probability density function with shape pa-

rameter βk > 0 and scale parameter ηk > 0,

fW (x|βk, ηk) =
βk
ηk

(
x

ηk

)βk−1
e
−
(
x
ηk

)βk
; (2)

• αk > 0 is the mixing proportion of the k-th component, with α1 + α2 = 1 ;65

Let’s denote θ = (α1, β1, η1, β2, η2), the set of model parameters.

2.2. Data and notation

The available information in the data are :

Xi is a observed failure time, i = 1, . . . , no;

Yi is a censored failure time, i = 1, . . . , nc;

Zoik indicates the component of failure time,

=

 1 if Xi coming from the k-th component;

0 otherwise;

Zcik indicates the component of censored failure time,

=

 1 if Yi coming from the k-th component;

0 otherwise;
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where no is the number of observed failures, nc the number of censored failures70

and n = no + nc, the sample size.

For a lifetime X, we get

X|zoik ∼ fW (x|βk, ηk), (3)

and

X|(yi, zcik) ∼
[
fW (x|βk, ηk)

RW (yi|βk, ηk)
1(x > yi)

]zcik
. (4)

Unfortunately, (Zoik) and (Zcik) are not observed : the component label, from

which Xi or Yi is coming, is unknown.

Both deterministic and random censoring are considered. In warranty data

set, for example, during the time interval over which data are collected, com-75

ponents are put into service at different times. Then, components still under

warranty have a failure time randomly right censored.

3. Fitting the model

3.1. Weibull quantile-quantile plot

Weibull quantile-quantile plot (QQ-plot) can provide a quick and simply80

confirmatory method for data non-homogeneity [14]:

• for standard single Weibull distribution, the Weibull QQ-plot has a straight

line shape;

• for two-components Weibull mixture, the Weibull QQ-plot has a single

inflection point (S-shaped) with parallel asymptotes.85

According to [5], a roughly estimate of the two-component Weibull parame-

ters, θ̃0, can be obtained from the Weibull QQ-plot. These estimate are non

precise, nor robust, but nonetheless can be used as starting values for alternative

estimation algorithms.
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3.2. Maximum likelihood estimation90

The maximum likelihood (ML) estimate is

θ̂MLE = arg max
θ

lnL((x, y, z)n1 |θ) (5)

where

L((x, y, z)n1 |θ) =

no∏
i=1

2∏
k=1

[αk (fW (xi |βk, ηk))]
zoik ·

nc∏
i=1

2∏
k=1

[αk (RW (yi |βk, ηk))]
zcik .

(6)

The likelihood contains all information in the data that is relevant to esti-

mate parameters. ML estimation is suitable for complete data, but turn to be

imprecise for small and incomplete data. Particulary for Weibull distribution

which has not closed form of the shape parameter estimate [13].

3.3. EM and S-EM algorithms95

Expectation-maximization (EM) algorithm is a ML estimation for data con-

taining missing values [15]. Therefore, EM algorithm is suitable, not only for

censored data, but also for mixture of distributions for which the mixing causes

are missing [6, 7]. Here, the missing data are

• censored failure times, Yi;100

• component labels, Zik.

The EM algorithm is based on a completion of the missing data from the condi-

tional distribution π(z, y |x ; θ(r)), and followed by a maximization of the con-

ditional expectation of the complete log-likelihood;

• initialization: choose θ(1);105

• iteration: for r = 1, . . . , B − 1

1. expectation: with θ(r) compute the conditional expectation of the

complete likelihood,

Q(θ|θ(r)) =
∑
z

∫
y

lnL(x, y, z) | θ)π(z, y |x ; θ(r))dy. (7)
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2. maximization: compute

θ(r+1) = arg max
θ

Q(θ|θ(r)).

• estimation: hence, from (θ(1), . . . , θ(B)) calculate

θ̂SEM =
1

B −M

B∑
i=M+1

θ(r) for M ≤ B. (8)

At each step the log-likelihood lnL((x, y, z)n1 |θ) increases.

For highly censored or small data set, EM converges slowly and towards poor

local maximizers. Stochastic EM (S-EM) resolves the main difficulty of EM that

is the calculation of Q(θ|θ(r)), see [6]. The expected complete log-likelihood is110

estimated by simulating the missing data as follows:

• simulations:

– component labels: (z̃oik) and (z̃cik) are sampled according to the

conditionally distributions:

poik(θr) = E(Zoik|xi ; θ(r)) =
α
(r)
k · fW (xi |β(r)

k , η
(r)
k )

κ∑
j=1

α
(r)
j · fW (xi |β(r)

j , η
(r)
j )

, (9)

pcik(θr) = E(Zcik|yi ; θ(r)) =
α
(r)
k ·RW (yi |β(r)

k , η
(r)
k )

κ∑
j=1

α
(r)
j ·RW (yj |β(r)

j , η
(r)
j )

; (10)

– censored failure times: from the censored failure time yi and label

indice z̃cik, a failure time x̃i is sampled according to (4).

From the completed sample of lifetimes (x1, . . . , xno , x̃1, . . . , x̃nc) and labels (z̃i),

the maximization step is therefore a ML estimation with completed data for each

Weibull component, see [13]. The ML estimates of mixing probabilities are

α̂
(r+1)
k =

n∑
i=1

poik(θ(r)) + pcik(θ(r))

n0 + nc
. (11)

In the context of heavy censoring and several parameters, S-EM algorithm con-115

verges very slowly too.
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3.4. Bayesian estimation

Bayesian estimation is an alternative to ML estimation [16]. It consists of

incorporating prior information, to produce, with the data, a posterior distri-

bution of the parameter. This prior information, noted π(θ), may be data from

previous studies or expert advices which quantifies uncertainty about the pa-

rameters. The posterior distribution π(θ | (x, y, z)n1 ), is obtained using Bayes’

theorem,

π(θ | (x, y, z)n1 ) ∝ L((x, y, z)n1 | θ)π(θ). (12)

Therefore, a Bayesian estimate is

θ̂Bayes = E[θ | (x, y, z)n1 )] =

∫
θ

θ π(θ |(x, y, z)n1 ). (13)

In case of Weibull mixture, due to the large number of parameter, direct Bayes

estimation is quite difficult, see [8] for instance. The posterior distribution is

not in closed form and numerical integration is very time consuming. Even120

Markov chain Monte Carlo methods appear to be deceptive in the context of

Weibull mixture [10]. The Bayesian restoration maximization (BRM) algorithm

has been used to estimate parameters of a basic Weibull distribution in [11].

Here, BRM was used to Weibull mixture inferences. The key feature of BRM

is that the expectation (13) is computed using sampling importance resampling125

technique (SIR) [17].

4. Bayesian Restoration Maximization

4.1. BRM method

The integral (13) was calculated using importance sampling [18]. This tech-

nique exploits the identity

θ̂Bayes =

∫
θ

θ π(θ |(x, y, z)n1 ) =

∫
θ

θ
π(θ |(x, y, z)n1 )

ρ(θ)
ρ(θ), (14)

where the support of ρ includes the support of π(θ |(x, y, z)n1 ). Therefore (14)

can be estimated by Monte Carlo :130
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1. θ̃(1), . . . θ̃(B) are sampled according to a proposal distribution ρ;

2. hence, θ is estimated by

θ̂BRM =
1

B

B∑
r=1

θ̃(r) wr, (15)

with the weights

wr =
π(θ̃(r) | (x, y, z)n1 )

ρ(θ̃(r))
. (16)

4.2. Proposal distribution

Now, we have to select the sampling distribution ρ. It must be a counterfeit

of the posterior distribution easier to obtain. From Bayes’ Theorem

π(θ | (x, y, z)n1 ) ∝ L((x, y, z)n1 |θ) · π(θ).

The likelihood, L((x, y, z)n1 |θ), contains information on the data. For its part,

the prior, π(θ), contains information on the parameter. Therefore, the distribu-

tion ρ was obtained as follows. Let B denotes the number of runs for BRM,135

1. (B) prior sampling : θ̃(1), . . . , θ̃(B) are sampled according to π(θ);

2. (R) missing data restoration : for r = 1, . . . , B−1, using θ̃(r) as start-

ing value, the missing variables Zoik, Zcik and Yi are simulated according

to (9-10) and (4).

3. (M) maximization : ML estimates (θ̂(r)) are obtained from the com-140

pleted data;

4. importance sampling : the distribution of θ̂(1), . . . , θ̂(B) is expected to

be related to the posterior distribution. It cannot be obtained in closed

form. Its kernel density estimate is

ρ̂(θ) =
1

B · hθ

B∑
r=1

K

(
θ − θ̂(r)

hθ

)
, (17)

where K is a Gaussian kernel.

The window size, hθ, minimizing the mean integrated square error is given

in [19].
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4.3. Resampling145

It is worth mentioning that the weights can be uneven distributed weights,

and several may be nil or almost nil. This occurs when prior distribution and

likelihood are separated. This issue can be resolved by a resampling step, see

[17]. For M < B, (
˜̃
θ)M1 are resampled from (θ̃)B1 according to (wi)

B
1 . Then,

credibility interval can be obtain from 2, 5%-quantile and 95, 75%-quantile of150

(
˜̃
θ
(r)

). Resampling step eliminates θ̃(r) with low weight, and duplicates those

with high weight. According to [17], very large ratio B/M may be require for

suitable performance of resampling. Here the ratio was set at M = B/30.

The mixture model is invariant to permutation of the component labels.

Hence, the posterior distribution can be symmetric if a weak prior is used, that155

involves bad inference. This issue, called label switching, is dealt with a k-means

classification, post-resampling, on θ̃(r), see [20].

4.4. Prior elicitation

The choice of prior is the key problem in Bayes estimation [16]. One can dis-

tinguish informative/non-informative prior distribution reflecting the fact that160

prior information is more or less vague. The Bayes estimate (13) shrinks the ML

estimate (5) toward the prior mean, according to how informative the prior is or

how large the sample size is. Therefore, non-informative prior is useful when it

is desired to let the data speak for themselves, without being overly influenced

by the prior. The richer the family of prior distribution is, the more capture of165

information about the parameter is. On the other hand, the choice of prior is

constrained by the tractability of the posterior distribution. For a given sam-

pling distribution f(x | θ), a conjugate prior distribution π(θ) is one for which

the prior distribution and the posterior are in the same distribution family.

They are useful to provided tractable posterior distribution. Unfortunately, no170

natural conjugate prior distribution exists for Weibull distribution when both

the shape and scale parameters are unknown [21]. Independent priors for (α1),

(β1, η1) and (β2, η2) was used.
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Shape parameter prior.

Thanks to its shape parameter, β, Weibull distributions have the ability to175

assume the characteristics of many different types of lifetimes. This has made

it extremely popular to fit data from various fields, see for instance [22, 23] :

• β < 1 indicates early failure, with L-shaped density;

• β = 1 indicates random failure, with exponential density;

• 1 < β ≤ 3 indicates wearout failure, with positively skewed density;180

• 3 < β ≤ 4 indicates wearout failure, with bell-shaped density;

• for β > 4, the Weibull distribution is similar to an extreme value distri-

bution.

A beta prior, symmetric on [bmin ; bmax], has been chosen for both (β1, β2)

β ∼ (bmax − bmin)B(bshape, bshape) + bmin (18)

and

π(β) = (bmax − bmin)
Γ(2bshape)

Γ2(bshape)
βb

shape−1(1− β)b
shape−1 1[0;1]

(
β − bmin

bmax − bmin

)
,

(19)

where

Γ(x) =

∫ +∞

0

txe−tdt.

Hyperparameters (bmin, bmax) reflect engineer expertise on parameters (βk).

They shall be fixed in accordance to the field failure data. Hyperparameter185

bshape reflects uncertainty about (βk). Depending on bshape, the beta distribu-

tion can be informative or non informative.

According to [24], (bmin, bmax) were chosen as follows:

bmin = 0.5 , bmax = 4. (20)

A weakly informative prior has been chosen by setting bshape = 1.1.
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Scale parameter prior.

When βk is known, the generalised inversed gamma distribution is the conjugate190

prior of the Weibull with parameter ηk, see [25]:

π(η |βk, eshape, escale) =
βk (escale)βk e

shape

Γ(eshape)
η−e

shape βk−1 e
−

(
bshape

η

)βk
, (21)

where (eshape, escale1 , escale2 ) are hyperparameters. A natural approach to com-

pute (escale1 , escale2 ) is to equate the expected value of the inverted gamma dis-

tribution to graphical estimation from the Weibull QQ-plot, η̃k, discussed in

Section 3:

escalek

Γ
(
eshape − 1

βk

)
Γ(eshape)

= η̃k. (22)

This starting value not need to be sharp. The hyperparameter, eshape, was

chosen large to specify a weak informative prior, with eshape >
1

βk
according to

(22).

Mixing parameter prior.

The prior on the mixing parameter, α1, represents the lake of information on

α1 on interval [0; 1]. A beta prior on [amin ; amax] was chosen:

π(α) = (amax−amin)
Γ(2ashape)

Γ2(ashape)
αa

shape−1(1−α)a
shape−1 1[0;1]

(
α− amin

amax − amin

)
.

(23)

Hyperparameters (amin, amax) represent beliefs about α1. They shall be195

fixed according to information on α1. Hyperparameter ashape reflect uncertainty

about α1. A weakly informative prior was chosen by setting ashape = 1.1.
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5. Simulations and results

Simulations were carried out, at first, to calibrate the hyperparameter, and

next, to compared BRM and S-EM estimations. The data were simulated from200

the following Weibull mixture.

α1 β1 η1 β2 η2

0.3 1.5 50 3 200

Table 1: Simulated data parameters

Various sample sizes and censoring rates were used.

First and foremost, the Weibull QQ-plot allowed to confirm graphicaly the

presence of a mixture. According to [5], Weibull QQ-plot also allowed to obtain

roughly estimate for α1, η1 and η2, see Figure 1.

Figure 1: Weibull QQ-plot. Graphical test of mixture: for two-component mixture of

Weibull, the scatterplot has a S shape; as x→ +∞ the Weibull QQ-plot asymptote is ∆3 of

slope 1/β2; as x→ −∞ the Weibull QQ-plot asymptote is ∆2 of slope of ∆2; the line ∆1 is of

slope 1/β1. Graphical estimation: parameters α, η1, η2 can be roughly estimated, see [5];

Line D0 highlights the inflexion point of the S curve, and allows to estimate α2; Intersection

of D1 (respectively D2) with the curve allows to estimate η1 (respectively η2).

205
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5.1. Priors calibration

The hyperparameters calibration was experimented from 500 simulated datasets

with a sample size n = 100 and a right censoring level at 70%. The BRM es-

timation was applied to each dataset, with 1 000 runs. Hence, the average bias

and the root mean square error (RMSE) of the mid-life reliability have been

computed to assess the estimation performance:

bias =
1

500

500∑
i=1

(R̂−R), RMSE =

√√√√ 1

500

500∑
i=1

(R̂−R)2.

As expected, informative prior improved the performance: see Table 2 for the

prior support of α, and Table3 for scale hyperparameter prior of η. Not sharply

anticipated value of (η̃k) provided relatively small bias and RMSE for ηshape = 5,

see Table 4.

[amin ; amax] [0; 1.0] [0; 0.5]

average bias -0.0212 -0.0016

RMSE 0.0725 0.0546

Table 2: α1 prior hyperparameters, [amin,amax] calibration. Mid-life reliability

estimate for 500 datasets, with 1 000 runs and sample size n = 100; Diffuse prior [0 ; 1] and

more informative prior [0 ; 0.5].

eshape 3 5 10 20

average bias -0.0113 -0.0016 0.006,8 0.0053

RMSE 0.0701 0.0546 0.0394 0.0336

Table 3: η prior hyperparameters, eshape calibration. Mid-life reliability BRM estimate

for 100 datasets, with 1 000 runs and sample size n = 100. Generalized inverse gamma prior

with several values of the shape hyperparameter: the higher eshape is, the more the prior is

informative

210
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eshape = 5

η̃ 0.5η0 η0 1.5η0

average bias -0.1721 -0.0016 0.0617

RMSE 0.1407 0.0546 0.0523

eshape = 20

η̃ 0.5η0 η0 1.5η0

average bias -0.2244 0.0053 0.0644

RMSE 0.1437 0.0336 0.0441

Table 4: η prior hyperparameters, escalek calibration. Mid-life reliability BRM estimation

for 500 datasets, with 1 000 runs and sample size n = 100. Generalized inverse gamma prior

with several scale hyperparameter : η̃ � η0, η̃ ≈ η0 or η̃ � η0. To the left, a weak informative

prior with eshape = 5. To the right, more informative prior with eshape = 20.

5.2. BRM number of runs

The number of runs is proportional to the computing time. The figure 5

shows that the RMSE decreases slightly with the number of runs.

BRM number of runs 500 1 000 6 000

average bias -0.0030 -0.0016 0.0032

RMSE 0.0544 0.0546 0.0512

Table 5: BRM runs number calibration. Mid-life reliability BRM estimate for 500 datasets,

with sample size n = 100 and censoring rate at 70%; runs number as 500, 1 000, or 6 000.

16



5.3. Sensitivity analysis

The sample size and the censoring rate are two inputs that influence the215

estimation. As can be seen from Table 6 and Table 7, BRM is still efficient even

for small sample heavily censored.

sample size 100 200 600

average bias -0.0016 0.0088 0.0125

RMSE 0.0546 0.0432 0.0631

Table 6: Sample size analysis. Mid-life reliability BRM estimation for 500 datasets, with 1 000

runs, 70% censoring and sample size n = 100, 200 and 600.

censoring 70% 80% 90%

average bias 0.0125 -0.0200 -0.0581

RMSE 0.0631 0.0828 0.0950

Table 7: Censoring. Mid-life reliability BRM estimation for 500 datasets, with 1 000 runs,

sample size n = 600 and 70%, 80% and 90% censoring.

5.4. Comparisons

BRM and S-EM estimates have been compared from 500 datasets in several

configuration : several sample size, deterministic or random right censoring and220

various censoring. As illustrated in figures 2 and 3, BRM estimation is more

efficient than S-EM, in terms of biais and RMSE, and this for all configurations.
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S-EM BRM

Figure 2: SEM-P and BRM estimations. Reliability for small, mid and long-term ; boxplots

for 500 dataset, with n = 600 and 70% censoring ; green triangle denotes the component 1

reliability ; red box, the component 2 reliability ; blue circle the mixture reliability.

S-EM BRM

Figure 3: SEM-P and BRM estimations. Reliability for small, mid and long-term ; boxplots

for 500 dataset, with n = 600 and 90% censoring ; green triangle denotes the component 1

reliability ; red box, the component 2 reliability ; blue circle the mixture reliability.

In real applications, the mixture depicts the presence, in the used parts, of

a small amount of substandard parts with short lifetime. This small proportion

of ”weak parts” plays a significant role in reliability for small-term, continues to225

impact the reliability for mid-term, and finally can be neglected for long-term.

In this context, BRM still efficient for small and mid-term.
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5.5. Real data

One real data set has been analyzed for illustration. It consist in 729 auto-

motive parts which have been put into service during several years. At the time230

of this study, 74% were still operating. Therefore it is a random right censoring

context. In order to anticipate warranty costs, we need to estimate the reliabil-

ity in the short, medium and long term. Histogram and Weibull QQ-plot have

showed the presence a mixture. It can be costly not to take into account this

heterogeneity. A two-component Weibull mixture was used. The parameters235

were estimated with BRM. A roughly estimate of parameters α, η1 and η2 was

obtained from the Weibull QQ-plot, see Figure 4.

Figure 4: Real dataset, 729 automotive parts put into service during several years ; 74% of

them are still operating.

Using BRM, the data were fitted with a two-component Weibull mixture,

see Figure 5.

Credibility intervals and estimates was computed for all parameters and for240

reliability to short, medium and long term, see Table 8. The component 2

contains weak parts, and component 1 strong ones, β̂2 > β̂1 and η̂2 < η̂1.
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Figure 5: Real dataset ; two-component Weibull mixture fitting.

credibility interval

2.5% 97.5% BRM estimation

α 79.7% 89.5% 86.%

β1 0.84 0.95 0.86

β2 1.89 2.37 1.99

η1 2 959.93 3 393.87 2966.0

η2 388.31 534.92 409.77

R(200) 87.3% 90.4% 88.4%

R(1 000) 53.5% 61.0% 55.4%

R(2 000) 38.9% 45.9% 40.1%

Table 8: Credibility intervals and BRM estimations

5.6. Discussions

By incorporating prior information, BRM allows to overcome the issue of

highly censoring for inferences using Weibull mixture. In addition, since the245

likelihood is easy to compute, BRM is less time-consuming than iterative al-

gorithms such as EM, S-EM or MCMC. It is a Bayesian bootstrap method :

parameters are firstly simulated from priors, then based on the weights, a new

sample is obtained. This sample is similarly distributed as the posterior distri-

bution, see Figure 6.250
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(β1, η1) joint prior pdf (β1, η1) with the weights

(β2, η2) joint prior pdf (β2, η2) with the weights

Figure 6: BRM is a Bayesian bootstrap method [12]; parameters are simulated from prior,

then, from importance sampling weights, a new sample is obtain which is similarly distributed

as the posterior distribution; the true values of the parameter are highlighted and marked by

a diamond ; the BRM estimates are marked by a triangle.

Simulations showed that there is no label-switching issue with a weak infor-

mative beta prior on [0 ; 0.5] for the mixing proportion, α1.
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6. Conclusion

Systems and components lifetime depends on various internal and external

factors. The failure rate could vary according to manufacturing quality, wear-255

ing intensity or environmental conditions. Frequently, these variations are very

significant, and require specific analysis. Hence, Weibull mixture is a appropri-

ated model to handle heterogeneity in lifetime data collection. Unfortunately,

sources of this non-homogeneity are not controlled or not observed. Further-

more, in industrial context the data are heavily censored. In this framework,260

performance of classical estimation methods (maximum of likelihood, EM, full

Bayes and MCMC) are significantly reduced. In this paper, inferences for a

two-component Weibull mixture have been made using the Bayesian restoration

method (BRM). It is Bayesian bootstrap method : firstly, model parameters are

sampled from the joint prior. Next, a new sample is obtain using a importance265

sampling technique. This sample, thus obtained, is similarly distributed as the

posterior distribution.

Priors elicitation is the main issue in Bayes estimations. Here, poor infor-

mative prior are used, and prior elicitation is very simple, making it operable

in various industrial applications. By incorporating prior information, for the270

Weibull mixture model when the mixing cause is missing and in the context

of heavily censoring, simulation shows that BRM provides more robust estima-

tions than S-EM. In addition, since the likelihood is here accessible, BRM is

less time-consuming than iterative method such as S-EM, or MCMC methods.

To conclude, in an industrial context for which data heterogeneity must be han-275

dle, with however heavily censoring data, BRM is a simple, low-cost and quite

precise estimation method for reliability or warranty statistical analysis.
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