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Abstract. In the field of engineering, surrogate models are commonly used for approximating
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tistical design is the Latin hypercube sampling (LHS). Even though a space-filling distribution
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behavior of the physical phenomenon into account and new data cannot be sampled in the same
distribution if the approximation quality is not sufficient. Therefore, in this study we present a
novel adaptive sampling method based on a specific surrogate model, the least-squares support
vector regression. The adaptive sampling method generates training data based on the uncer-
tainty in local prognosis capabilities of the surrogate model - areas of higher uncertainty require
more sample data. The approach offers a cost efficient calculation due to the properties of the
least-squares support vector regression. The opportunities of the adaptive sampling method are
proven in comparison with the LHS on different analytical examples. Furthermore, the adaptive
sampling method is applied to the calculation of global sensitivity values according to Sobol,
where it shows faster convergence than the LHS method. With the applications in this paper it
is shown that the presented adaptive sampling method improves the estimation of global sensi-
tivity values, hence reducing the overall computational costs visibly.
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1 Introduction

In numerous fields in civil engineering, numerical models and physical experiments represent-
ing the reality are applied for observing physical phenomenona. For improving modeling prop-
erties, fields like model calibration and uncertainty analysis are topics of various investigations
[1-4]. Uncertainty analysis involves the determination of uncertainties in the model responses
derived from uncertainties in the model parameters and of the relationships between the model
parameters and the model responses, which is done by sensitivity analyses. There are a variety
of approaches for uncertainty and sensitivity analysis in use, such as differential analysis [5-7],
variance decomposition procedures [8—11], and sampling-based approaches [12—15]. In this
study, the focus is on sampling-based approaches, which convince through easy implementa-
tion and the waiver of intermediate models. However, sampling-based approaches involve high
computational cost because a high amount of data must be calculated with numerical models.

A commonly applied technique to reduce computational cost is to use data-based models, so-
called surrogate models. Through that, not the full amount of the data needs to be simulated
with the original model because the applied surrogate approximates parts of the data and the
computation time can be effectively reduced. Surrogate models are frequently applied for sen-
sitivity analysis [16—18], reliability analysis [19—-21], and nonlinear optimization [22, 23]. This
paper focuses in particular on the application of surrogate models to global sensitivity analysis.
Two of the most popular surrogate models used for global sensitivity analysis are, for example,
polynomial chaos expansions [24-27] and Kriging approximations [16, 28-30].

For sufficient results in the analyses, the approximation with the surrogate models must become
sufficiently accurate using a limited number of data for training. An influence on the accuracy
of the approximation has on the one hand the choice of the surrogate model and the correspond-
ing model parameters and on the other hand the structure of the training data. This contribution
deals with the second issue and especially with the challenge of adding new points to an ex-
isting sampling set. Therefore, we present a novel adaptive sampling method with the aim to
accelerate and improve surrogate-based sensitivity analysis.

The paper is organized as follows. After a brief review of the main surrogate modeling tech-
niques, we address issues of adaptive sampling strategies; then, we present the least-squares
support vector regression, which is the applied surrogate model, and introduce the novel adap-
tive sampling method. Finally, we analyze the functionality and applicability of this method
and observe the impact on global sensitivity analysis.

1.1 Surrogate modeling

The concept of constructing a surrogate model requires a set of training data points X, ..., Xy,
within a domain 2 C R¥ with known responses ¥ = [y1,...,yu|T = [f(X1), ..., f(x,)]T of the
observed model, a black box function f, which represents either a physical or a computer ex-
periment. The behavior of the original function f, whose evaluation is usually time-intensive,
can be approximated with a surrogate f based on the training data set. There are several tech-
niques for constructing the approximation function and some intensively discussed are:



Polynomial regression [23, 31]

Moving least squares [32]

Radial basis function [33, 34]

Kriging regression [22, 35]

Support vector regression (SVR) [36, 37]

Artificial neural network [38].

All of these methods possess various properties and require different computational costs.
Therefore, it is often a challenging question to judge on the optimal model choice. In the
approach presented in this paper, we focus on the least-squares support vector regression (LS-
SVR) because it provides the basis for the investigated method with a favorable calculation of
the leave-one-out cross-validation error.

Besides the model selection, the construction of the training data set is a frequently discussed
question. On one hand, there are different sampling possibilities to distribute the training points,
such as full factorial and stratified random sampling techniques [22]. A stratified random sam-
pling method commonly used is the Latin hypercube sampling (LHS), which we also apply for
our analyses. On the other hand, the number n of training points has to be defined optimally.
There is a trade-off between increasing the approximation quality, which mostly improves with
more sample points, and keeping the computation cost low, which is related to choosing n small.
Because the number of required training points is not known, it makes sense to apply adaptive
sampling strategies, which is the topic of the next section.

1.2 Review of adaptive sampling methods

The LHS method provides a favorable, space-filling distribution of the training points. Nev-
ertheless, if a sufficient approximation quality is not reached, new sample points have to be
added to the existing training data set. This expansion cannot be done in the strategy of the
LHS method. In the application fields of reliability analysis and nonlinear optimization, var-
1ous adaptive sampling methods exist that sample new points regarding their objectives (e.g.
[20, 39-41]). However, we are interested here in the application to global sensitivity analysis,
which requires a good approximation quality over the whole range of the parameters. There-
fore, areas with low approximation quality have to be identified and improved by adding new
training points. Some existing global adaptive sampling strategies are listed here:

e Kriging approaches
For example, the entropy approach [42]
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e Cross-validation approach [43]
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e Maximin distance approach [44]

max (min (@ (xnex) ). )
The Expressions 1, 2, and 3 describe the corresponding selection criteria for a new training point
Xnew- The Kriging approaches use the benefits of the ordinary Kriging method, which provides
the estimation of the prediction error. In the mentioned example, the entropy approach, the aim
is to maximize the amount of information that can be obtained from new sample points. There,
R, describes the correlation matrix between the initial training data set and a new point, and
1,41 is a (n+ 1)-dimensional vector of 1’s. Even when several sequential approaches based on
the Kriging method exist, they are not applicable to other surrogate models.

In contrast, the cross-validation approach can be applied to all kinds of surrogate models. It
calculates a mean squared error based on the deviation between the surrogate function f for n
training points and the sub-surrogates f~/(x) constructed with the training data set except the
i’th point for i = 1,...,n. Therefore, it requires more computational effort because n additional
approximation functions have to be constructed.

In the third mentioned method, the maximin distance approach, the information obtained from
the existing surrogate are not taken into account; instead, the aim is to maximize the Euclidean
distance d(x;,X;) between the sample point X; and its nearest neighbor x;. Therefore, new
points are sampled where no information from the original function exists and not where the
approximation quality is perhaps lower.

In this contribution, we introduce a novel global adaptive sampling method, which offers a cost
efficient calculation due to the properties of the underlying LS-SVR.

2 Proposed approach

In this section, we explain first the applied surrogate method and secondly, we introduce the
novel global adaptive sampling method.

2.1 Least-squares support vector regression

One class of surrogate methods are the SVR methods, which have been originally introduced
in the context of binary classification [45, 46] and then extended to regression methods [47].
A special form of the SVR methods is the LS-SVR [48, 49], which will be explained in this
section. In order to give an overview about the functionality of the LS-SVR, we explain the idea
first in the linear case and extend it then to a nonlinear approximation. Finally, the calculation
of the model parameters is described.
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Figure 1: Linear least-squares SVR

Linear case:

The approximation function built in the linear case and expressed at point X is formulated as
followed:

f(x) =w'x+b, 4)
where w = [wy,...,w;]T and b are the unknown parameters of the method. To identify the
optimal parameters, the optimization problem

o L € 5
s.t.y; = WTXi+b—|— Ci, i=1,...,n

has to be solved. We minimize in the concept of the LS-SVR the sum of squares of the error

between the response of the original function and the response of the approximation §; = y; —

f(x;) instead of a sum of the absolute error greater than € as for the standard SVR based on the

e-insensitive loss function. The resulting advantage will be discussed later. The sum of squared

errors is penalized by the parameter C > 0 to control the smoothness of the approximation. The
linear approximation problem is displayed in Figure 1.

The optimization problem defined in Equation 5 can be reformulated into the following dual
optimization problem by applying the Lagrangian function and the Karush-Kuhn-Tucker con-

ditions for optimality:
K+C 'n 1,] (@) _ (¥
{ 17 0]\p) \0O ©)

with (K);; = x!'x; and the n Lagrangian multipliers & = [0, ..., @,]T. Since this optimization
problem consists of a linear set of equations, it can be solved easily to obtain the parameters of
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the approximation function, expressed as

f(x) = Z 04X} X+ b. (7)

i=1

Whereby, the construction of the approximation function is faster than for the classical SVR,
which require solving a quadratic optimization problem. The only concern that is listed against
the LS-SVR in comparison with the classical SVR, is that the prediction is written in terms of
all training points and thereby cannot be formulated in terms of a sparse representation. This
can lead to higher processing time if n gets high, which should be avoided already because of
the computational costs of the original function f.

Nonlinear case:

The concept of the linear LS-SVR can be directly adapted to the nonlinear case by using kernel
functions. The main idea is to map the input data into a nonlinear feature space denoted by .7,
enabling a linear LS-SVR in .%. It is unnecessary to define the mapping ¢ : ¥ — % explicitly;
choosing a kernel function k that corresponds to k(x;,x;) = ¢(x;) ' ¢(x;) is sufficient [45, 50].
Therefore, the nonlinear approximation function is expressed as

f(x) = i oik(x;,x) + b. (8)
i=1

For a linear mapping, Equation 8 becomes Equation 7. To identify the optimal model parameters
a and b, the dual optimization problem from Equation 6 has to be solved, as for the linear
case. Though, the entries of the matrix K are now defined by the kernel function with (K);; =
k(x;,x;). Some possible choices for the kernel function are [37, 51]:

Ixi—x, |

202

e Gaussian kernel: k(x;,X;) = exp(— ) with o € Ry
e Polynomial kernel: k(x;,X;) = (a+x;x;)¢ withd € N>gand a € R+
e Sigmoid kernel k(x;,x;) = tanh(kx!x; — 5) with x and s € R~.

In this investigation we use the Gaussian kernel which is the most widely used kernel in the
SVR literature.

Estimation of the model parameters:

To result in the most suitable approximation function, we need to identify the optimal choice
of the kernel parameter ¢ and the regularization parameter C. If another kernel function is
applied, different kernel parameters has to be identified accordingly. Therefore, we define the
hyperparameters 6 = [C,o,...]T including all utilized parameters.

As a criteria to decide about the parameter selection the K-fold cross-validation error [52] is
frequently applied. Therefore, the training data set is split randomly into K sub data sets and
sub-surrogates are built, for each of which one subset of the training points is left out. The
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left-out subset can be used as an untrained test data set to examine the approximation quality in
unobserved areas. The smaller K is choosen, the faster is the calculation of the cross-validation;
however, the training data set gets quite reduced compared to the whole one and the variance
of the cross-validation error increases. We apply in this study the special case K = n, known
as leave-one-out error. The leave-one-out error is an almost unbiased estimate of the expected
error [53] and provides therefore the best decision criterion. Because the calculation of the
leave-one-out error is costly, commonly, a 10-fold cross-validation error is used [54]. However,
by using the LS-SVR, the calculation cost of the leave-one-out error can be reduced, which is
shown below.

For the leave-one-out error, the sub-surrogate £~ is constructed each time with the training data
set except the i’-th training point. The result of the sub-surrogate at the left-out point x; is then
compared with the result of the true function value y;, so that the leave-one-out error Err oo is

formulated as .

1 Aj ’
ErrLoo = ZZ()’i‘f ‘(x;,0))". ©)
i=1
By minimizing Err oo, we obtain the best choices for the hyperparameters 6. For the calcu-
lation of this error value, it is necessary to construct the corresponding sub-surrogates f—* for
i = 1,...,n, which requires more computational time. However, the LS-SVR enables an analyti-
cal calculation of the deviation of the true responses y; to the result of the sub-surrogates f —*(x;)

[55] through
s o;
yi—fﬂ(xi)zﬁ, (10)

where (K~1);; is the i-th diagonal element of the inverse of

—1
. [K+C Lixn ln}' (11

K=
1! 0

With the analytical formulation of the leave-one-out error, the LS-SVR offers a very efficient
parameter estimation. Therefore, and due to the linear problem settings, the LS-SVR is a prac-
tical method with low computational costs, especially useful for high dimensional problems.
Furthermore, the analytical formulation of the leave-one-out error offers the basis for the adap-
tive sampling method explained in the next section.

2.2 Distance-based LOO error sampling method

The global adaptive sampling method we introduce in this investigation is called the “distance-
based LOO error sampling method”. It uses two different criteria to choose suitable new sam-
pling points.

First, we want to identify areas which have a higher uncertainty in the approximation quality
than others. An indicator for the uncertainty of the whole approximation function is the leave-
one-out error defined in Equation 9. This error consists of the sum of the deviation at each
training point, so that each summand describes the uncertainty at one training point. In case
of the LS-SVR, the analytical formulation of each of these deviations is given in Equation 10.
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The uncertainty of the approximation function at an unobserved point can be approximated
by the uncertainty at the training points, implying that the behavior of the model uncertainty is
continuous. More precisely, we use the deviations y; — f ~i(x;) fori=1,...,n as responses of the
training points to construct the leave-one-out error function fLOO(X) by applying the LS-SVR.
New sampling points can be then obtained by maximizing the function f; oo over x.

Second, we want to avoid getting redundant information by constructing new training points.
However, it is possible that /i oo is maximal at or close to an existing training point. Therefore,
we take additionally the maximin distance approach into account, which is also done in the
cross-validation approach in [43]. The maximin distance approach prevents close and therefore
redundant training points.

By taking both criteria into account, we obtain an optimization problem where we have to
maximize both the leave-one-out error function fi oo and the minimal distance between the
sample points. This optimization problem can be formulated as follows:

max( fLoo(x) mind(x,x;)). (12)
Xe9 i

As a distance function d(X,x;) the Euclidean metric is selected.

Selection of suitable points:

Still, there is the question how to solve the optimization problem from Expression 12. We use
the following two ways to select new sampling points related to this optimization problem:

e Selection out of a predifined large sample set X"V with e.g. Npew = 50000

e Sampling related to the quasi-distribution function & (x) with 8 (x) = fi 0o (X) min; d(x,X;).

In the first case, new points are taken from a large sample set. We choose the points with the
highest result for fLOO(X) min; d(X,X;). This calculation needs a computational effort depending
on the size Npey of the sample set where we choose the new points from. Therefore, it is
recommended to use this way to select new points only for research analyses. For numerical and
physical applications, where small computation time is desired, the second selection method is
recommended. There, the objective of the optimization problem is taking as a quasi-distribution
function 6(x). New points are randomly sampled along 0 (x) with the slice sampling routine
[56]. Accordingly, sample points with higher results for the optimization function have a higher
possibility to be chosen. After identifying the new sample points with one of the two methods
the corresponding responses have to be calculated with the original function. With the expanded
training data set, a new surrogate can be constructed.

In the following, we explain in more details how the adaptive sampling algorithm works and
give a pseudo-code for a Matlab implementation.

Implementation:

In the main program, first, the LS-SVR is constructed with the initial training data set X =
[X1,...,X,|T and their responses of the original function y. During the approximation process
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the parameters o and b are calculated by solving Equation 6, and 68 by minimizing Equation 9.
We also obtain the results y; — f/(xi) from Equation 10 for i = 1,...,n, which are used for
the adaptive sampling method. As the second part stepwise new points are added to X and y by
applying the distance-based LOO error sampling method. The number m of calls of the adaptive
sampling method and the number n,y of new points in each step is predefined. However, it is
possible to include a termination criterion in the corresponding loop such as Erry oo greater than
a constant number corresponding to a sufficient approximation quality. Therefore, the limit for
sufficient approximation quality is strongly dependent on the observed problem; influencing
factors could be the dimension, parameter range, assumed noise in the input parameters, or the
application field. The pseudo-code of the main program is listed below.

Main program
% Constructs the approximation function hf based on the LS-SVR with the use of the
distance-based LOO error method

% Input: X — initial training data set (size: n X k)

% y — responses of the training set ( = f(X))

% m — number of steps for the adaptive sampling strategy
% n_new — number of new points in each step

%% Calculation of the parameters for the LS-SVR:

[SVR_par, LOOerr_vec| = LS_SVR_parameter (X, y);
% SVR_par — Parameter of the LS-SVR: a, b, 6 (=[C,0,...])
% calculated by solving Equation 6 and minimizing Equation 9
9% L.OOerr_vec — results from Equation 10 fori=1,...,n

%% Adaptive sampling:

fori=1:m
Adaptive_sampling % chooses the new training points x_new
y_new = f(x_new); % new responses from the original function
%% Update of the parameters:
X =[X; x_new]; y = [y; y_new];
n=n+n_new;
[SVR_par, LOOerr_vec] = LS_SVR_parameter (X, y);

end

%% Construction of the LS-SVR:
hf = @(x) LS_SVR_approximation (x, X, SVR_par);
% hf — approximation function from Equation 8.

As explained earlier, there are two possibilities how to choose new sampling points in order to
maximize Expression 12. First we explain the procedure where new points are picked out of
a predefined sample set Xpew. It is necessary to compute the minimum distance of each point
of Xjew to the existing training data set X and the results of the function fLoo~ Thereby, the
results of f oo min;d (x,x;) for all X in Xpey can be calculated and compared. After a new point
is chosen, just the minimum distances have to be adjusted with the new training point before
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the next point can be chosen. Details are given in the following pseudo-code.

Adaptive_sampling (based on a large sample set)
% Samples new training points by maximizing Expression 12

% Input:  X_new — set of possible training points (size: N_new xk)
% MD_new — minimum distances of each entrance of X_new
% to the existing training points

% X — previous training set

% LOOerr_vec - results from Equation 10

% n_new — number of new points

%% Determine the optimality criterion:

d = @(x, y) sqrt(sum((x-y)’2, 2); % Euclidean distance

fLOO_par = LS_SVR_parameter (X, LOOerr_vec);

fLOO = @(x) abs(LS_SVR_approximation (x, X, fLOO_par));
% leave-one-out error function

fLOO_new = fLOO(X_new);

%% Choose new points:
X_new = zeros(n_new, k);
fori=1:n_new
[e, ie] = max(fLOO_new.xMD_new); % maximizing Expression 12
x_new(i, :) = X_new(ie,:); % new sampling point
%% Update of the parameters:
X_new(e, :) =[ ]; N_new = N_new - 1;
MD_new(ie) = [ |; fLOO_new(ie) = ];
fori N=1: N new
MD_new(i_N) = min(MD_new(i_N), d(X_new(i_N, :), X_new));
end
end

For the second way to choose new sampling points, the slice sampling routine [56] is used.
There, points are sampled along a pseudo-distribution function p. As an initial point a x-value
is chosen with p(x) > 0. Outgoing from the result from the previous step a random value u;
between 0 and p(x;_1) is chosen. Then, x; is sampled randomly until a value is found with
p(x;) > u;. With this procedure sampling points with higher values of p have a higher prob-
ability to be selected. The one-dimensional case of one step of the slice sampling routine is
shown in Figure 2. In our application p(x) is chosen as f; oo min;d(X,x;). The corresponding
adaptive sampling routine is presented below. In this program we assume the sample points in
the interval [0, 1], which has to be adjusted according to the problem of interest.
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Figure 2: Slice sampling method

Adaptive_sampling (based on the slice sampling method)

% Input: X — previous training set
% LOOerr_vec - results from Equation 10
% n_new — number of new points

%% Create the pseudo-probability function:

d = @(x,y)sqrt(sum((x-y)."2, 2) % Euclidean distance
fLOO_par = LS_SVR_parameter (X, LOOerr_vec);

fLOO = @(x) abs(LS_SVR_approximation (x, X, fLOO_par));

p = @(x) fLOO(x)*min d(x, X); 9% pseudo-probability function

X_new = zeros(n_new, k);
xi = rand(1,k); pi = p(x1); % start point for slice sampling

%% Slice sampling method:
fori=1:n_new
ui = randpi;
xi =rand(1, k); pi = p(x1);
while pi < ui
xi =rand(1, k); pi = p(xi);
end
xX_new(, :) =xi
end

In the next section, we show with different examples the functionality and advantages of the
distance-based LOO error sampling method.
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3 Numerical analysis

In the following numerical analysis, we observe the efficiency of the introduced adaptive sam-
pling method by comparing it with the LHS method. Although, the LHS method is not an
adaptive sampling method, still it provides an equally distributed sample set better than the
maximum distance approach; therefore, it gives a good comparison to the adaptive sampling
method, where we improve the approximation quality in specific areas.

Two quality criteria are used to assess the approximation quality of the respective surrogate
model. Both are based on the coefficient of determination (CoD) [57], which is formulated as
followed

Y ()’i_f(xi))z

i=1

n n 2"
'§1 (yi - (,l, '§1 yi) )

The CoD describes how much of the behavior of the original function can be described by
the approximation and indicates a good approximation with a value close to 1. Although, the
CoD is a meaningful error criterion, it uses the training points also as test points and could
result therefore in misleading outcomes. Instead, we use on the one hand the cross-validation
approach and on the other hand an additional unused data set. By using f/ instead of f, we
result in the CoD based on cross-validation (CoD¢y). In the second case -the validated CoD
(CoDyq)- the test points x; and their responses y; withi =1,..., N come from a large data set (for
example N = 100000), which was not used before. In the investigation, the most meaningful is
the CoDy,, but it can be used only for selected examples where the amount of available data is
large enough.

CoD=1-

(13)

In the following subsections, we observe different functions which represent cases that can
appear in real-world problems and investigate the application of the adaptive sampling method
to the sensitivity analysis. For a better overview, the discussed examples are listed hereinafter:

e One-dimensional model f(x) = xsinx (Subsection 3.1)
e Three-dimensional model f(X) = x; sinx] +x; sinx + x3 sinxz (Subsection 3.2)

e Model with Singularity H(®) = 1/(—m? + cwi+ k) (Subsection 3.3)

k
Model with decaying influence of the variables f(x) = Y, % sin+/ix; (Subsection 3.4)
i=1

Noisy function (Subsection 3.5)

With the first example we show how the introduced adaptive sampling method works. After-
wards, the aim is to show the efficiency of the distance-based LOO error sampling method by
comparing the results of different function types represented by the listed examples. There, we
start for the application of the adaptive sampling method with a LHS data set of size n = 5 (if
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k=1)orn=25 (if k > 1) and add each step 1 or 5 points accordingly in the sense of the adap-
tive sampling method. Based on this constructed training data set a LS-SVR is built and then
tested with the CoDcy and the CoDy,. We compare this results with the calculations based on
full LHS data sets. To get an overview on the expected quality and the variance of the approxi-
mation, 100 independent simulations are performed and results are displayed in boxplots. The
mean 50% of the data are represented by a box with the middle line as the median. With the
whiskers, 95% of the results are depicted and the remaining are outliers.

3.1 One-dimensional model f(x) = xsinx

As a first example showing the functionality of the distance-based LOO error method, we
observe the approximation of the one-dimensional function f(x) = xsinx within the interval
[0, 15]. In Figure 3, on the left hand side, the approximations with six, seven, and eight training
points are plotted, while on the right hand side, f; oo, 10min;d(x,x;), and f; oo min; d(x,x;) are
depicted. The new elected points regarding the optimization problem from Expression 12 are
marked with a cross in all plots.

It is obvious that the new sampling points are selected in areas where the approximation quality
has to be improved. Both optimization criteria affect the choice of new points. Often the
fLoo takes the maximum value close to already-existing training points. Therefore, including
the maximin distance approach is important for the sampling strategy and depending on the
existing approximation has more or less influence.

The function f(x) = xsinx is a function with similar behavior over the whole domain. It varies
over the whole range; even though, the variation of the function increases with increasing x.
Therefore, it is expected that an equally distributed sample set is of advantage and that the ap-
plication of the adaptive sampling method cannot effectively improve the approximation quality.
From the results of the CoDcy and the CoD,, shown in Figure 4, it is visible that there is no
great differences between the results of the adaptive sampling method and the LHS method.
Nevertheless, the results indicate already some improvements by the use of the adaptive sam-
pling method. By applying the distance-based LOO error sampling method, better results are
obtained for n =7 and n = 9. Also for higher n, the CoDy, of the adaptive sampling method is
slightly larger than for the LHS method and the variance is smaller.

3.2 Three-dimensional model f(x) = x| sinx| + x; sinx; + x3 sinxs

As a second example we observe the three-dimensional function x sinx; 4 x, sinx; + x3 sinx3
within the interval [0, 15]°. The variation of the function is similar to the previous one. Though,
in this case more input parameter are important and have the same influence on the response of
the function.

In Figure 5, the CoDcy- and CoDyy -values are depicted. The results of the CoDcy indicate
clearly that the LHS method gives the better results. However, the CoDy, show that the adaptive
sampling method improves the results from n = 175. An explanation is that, first sample points
are chosen over the whole domain to adopt global behavior; later the local approximation quality
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can be improved. Therefore, the adaptive sampling method shows its improvement just for
higher values of n and it would make sense to start later with this method.

It should be mentioned that the results of the CoDcy do not show an improvement of the adap-
tive sampling method for any number of n. However, the CoD,, uses an additional data set and
is therefore more trustable.

3.3 Model with Singularity H(®) = 1 /(—m®? + cwi + k)

We are interested here in functions with weak discontinuities in some regions. This functions
have some areas with low and high variations. As an example we study a typical function from
engineering: The absolute value of the transfer function of the equation of motion. The problem
is described as follows:

e Equation of motion: mii(t) + cu(t) 4+ ku(t) =0
Parameters: mass m, damping c, stiffness k,

displacement u(z), velocity u(t), acceleration ii(¢) depending on the time ¢
e Transfer function: H(®) = 1/(—m®? + cwi+k)
e Observed function: f(x) = |H(®)|

e Parameters: m = 1kg, ¢ =0.5 % k=1 %

The choice of the damping parameter c¢ influences the damping effect and therefore the nonlin-
earity of the observed function. In Figure 6 we can see on the left hand side an approximation
with the training points sampled using the adaptive sampling method and on the right hand side
an approximation with LHS training points. It is evident that the first approximation is closer to
the true function, because more sample points are constructed where the curvature of the graph
of f(x) changes more rapidly.

By comparing the results of the CoDy, for both the adaptive sampling method and the LHS
method, it is also visible that the convergence to an acceptable solution is faster and more
robust if the distance-based LOO error method is used, as illustrated in Figure 7. Again, the
CoDcvy misinterprets the results for the smallest n and recommends the use of the LHS method;
however, from n = 12 also the CoDcy shows that the application of the adaptive sampling
method provides better results.

3.4 Model with decaying influence of the variables

Another type of functions worth to investigate are functions where the input parameters have
different influence on the output. Therefore, we analyze the following benchmark function

f=Y \% sinV/ix; (14)

i=1
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within the interval [0, 15]%. For increasing dimension, the input parameters with higher indices
have less and less influence and we investigate if the adaptive sampling method can identify the
different influences.

The result of the function f from Equation 14 for dimension k = 2 are displayed in Figure 8.
From the values of the CoDcy and the CoDy, it is visible that the approximation is already
satisfying with n = 100 training point, but slightly better for the adaptive sampling method.
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Figure 8: Boxplot of the CoDcy (left) and the CoDy, (right) for the distance-based LOO er-
ror method (red) and LHS method (blue) depending on n for the approximation of x; sinx; +
% sinv/2x,

In the three-dimensional case of the function f from Equation 14, we have to use a higher
number of training points to get a sufficient approximation quality (CoDy, > 0.9). The results
are shown in Figure 9. The values of the CoDcy recommend to use only LHS data because the
results of the distance-based LOO error sampling method are lower and have a higher variance.
However, the CoDy, show that the approximation quality with the use of the adaptive sampling
method is better for n larger than 300. Because at the beginning the adaptive sampling method
not necessarily provides better approximation quality, it is recommended to start later sampling
new points with respect to that strategy, depending on the dimension of the observed problem.
For this example, it is recommended to start with n =200 LHS training points and increase then
the quality by adding new points regarding the distance-based LOO error method.

3.5 Noisy function

If the observed data are obtained from experiments, it is expected that the responses are cor-
rupted by noise. In those cases it is desirable that the surrogate model approximates the behavior
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of the underlying engineering effect and does not get lost in the noise. Especially for the adap-
tive sampling method, the noise should not prevent sampling new points in interesting areas.

To analyze noise corrupted functions, we revisit the model from Subsection 3.3 and add ran-
domly to each sample point normally distributed noise with zero mean and a variance of 0.1
and 0.2. The corresponding approximations with and without the adaptive sampling method are
displayed in Figure 10 and 11.

The higher the deviation of the training data from the original trend, the higher variation in both
approximations is visible especially in the area that was nearly linear before. Still, the use of the
adaptive sampling method offers a better approximation especially in the interesting area where
the damping effect is visible. In the case where only the LHS method is applied, high deviations
close to the edges of the domain can appear. Nevertheless, the displayed approximations are
just possible surrogates, which change with the use of different training data. Therefore, we
show in Figure 12 and 13 the results of 100 approximations with and without the use of the

adaptive sampling method for the absolute transfer function with an additional noise distributed
with .47(0,0.1) and .#7(0,0.2).

With the displayed results of the CoDy, it is visible that with increasing noise the maximal
possible approximation quality decreases, which is reasonable because the error in the training
data set through the noise cannot be avoided. In the case with ¢ = 0.1 the variance of the CoDyy
is higher for n = 18,19 and 20 than for n = 14 to n = 17 if a LHS training data set is used. It
shows that not always the use of more training points improves the approximation quality, rather
the locations of new points are important. This effect is not visible for the higher noise level.
From the results it can be concluded that the distance-based LOO error method provides better
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approximations even if the data are corrupted by noise. However, if the variance of the overlying
noise gets higher, the variation of the noise and of the function cannot be distinguished and the
results of both ways of approximation are more and more similar. The reason is that in this
case no area is of special interest anymore because of its higher nonlinearity and therefore, new
points are sampled over the whole domain. The results of the CoDcy show for 62 = 0.1 again
at the beginning (until » = 10) a better convergence of the surrogates using LHS training data
sets. However, at the latest from n = 14 a significant decrease of the variance and improvement
of the results is visible for both noise-levels.

4 Computation of sensitivity indices based on the adaptive
LS-SVR

With the previous examples it is shown that the distance-based LOO error sampling method
mostly improves the quality of the approximation, especially if more points are required in
specific areas. However, not only the results of the CoDcy and the CoDy, are important, but
also it is of interest how the adaptive sampling method affects the calculation of the sensitivity
values.

The sensitivity analysis is of importance to determine the most decisive parameters on the re-
sponse, so that further research could be focused on those parameters first. There are different
possibilities to perform a sensitivity analysis such as variance-based methods and derivative-
based approaches. In the present work we focus on the application of surrogate models to
variance based methods because they have the opportunity of being model-independent and
they take the whole input space into account. One often used global variance-based approach
is the Sobol indices proposed by Sobol [58], where we observe the first-order effects S; and the
total effects S7; of each input parameter X; (i = 1,...,n) on the output Y. The values S; represent
the single influence of each parameter, while the values S7; contain also the interaction effects
between the parameters. They can be calculated using Equation 15 and 16.

5 — Var\(lli((l;lifi)) (15)
CE(Var(Y[X.)) . Var(E(Y[X<))
51 = Var (Y) T Var(y) (16)

In these equations Var(Y) is the unconditional variance and E(Y'|X;)) and (E(Y|X~;)) describe
the conditional expected values. Thereby, conditional on X.; means depending on all X; with
J # i. However, it is usually not possible to calculate these sensitivity values analytical so that
the following estimator of the Sobol indices is used [9]:
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data sets with the function evaluations y; = f([x;1,...,x;]) and y; = f([x};,..,x;]). Addition-
ally, k data sets are constructed by exchanging the i’th row of X’ with values from X. Thus, we
detenpine the fl{nction responses y;(" of [x}l, ...,x’jiil,x ji,x}i 1> ...,x}k]T: .T'hat means (k+2)N
function evaluations are needed to calculate the estimators of the sensitivity values. In order
to get good estimations, N have to be high, which causes high computational time and is the

reason for applying surrogate models.

By the application of the surrogate models, we get the approximations §?’N and §’};N of the esti-
mators SV and SV and therefore estimators for the Sobol indices S; and S7,. The approximation
quality of §77N and S"};N depends not only strongly on the number of sample points n and N,
but also on the distribution of the sample points. The number N does not decisively influences
the computational costs because it only concerns the number of evaluations of the relatively
cheap surrogate model. In contrast, it is important to keep n low. Through the application of the
adaptive sampling strategy, it is to be achieved that an optimal sampling strategy is found with
which the number of required function calls can be reduced.

In the following subsections we observe how the approximation quality of the surrogate-based
estimator of the Sobol sensitivity values can be improved by applying the adaptive sampling
strategy. Each time one hundred simulations with N = 100000 for different n are performed
and displayed in boxplots.

4.1 Computation of sensitivity indices of f(x) = x; sinx| +x3 sinx; +x§ sinx;

As an example, we investigate the results of a function where the input parameters have very dif-
ferent influence on the output and therefore different sensitivity values. The observed function
is the following:

f(x) =xysinx; +x% sinx; —I—xg sinx; (19)

within the interval [0, 15]3. The third input parameter x3 has the highest influence on the output
variance with a sensitivity value S3 = 0.9938, while the other two parameter have a sensitivity
close to zero (§; = 0.0002 and S, = 0.0061). The total effects have same values as Sy, S, and
S3 because no interaction effects appear.

From the results of the quality criteria depicted in Figure 14, a high improvement by applying
the adaptive sampling method is visible. The convergence of the CoD¢y and the CoDy,; to one
is significantly faster in the case where the adaptive sampling method is applied. Also from
n = 125 the variance of the results is lower.
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Figure 14: Boxplot of the CoDcy (left) and the CoDy, (right) for the distance-based LOO
error method (red) and LHS method (blue) depending on n for the approximation of f(x) =
X1 sinxy + x% sinx, —|—x§ sinx;

Now, we compare the sensitivity values calculated from the different surrogate models with
the true sensitivity values. The results of all first-order and total-order effects are shown in
Figure 15. Here, we come to the same conclusion, that the adaptive sampling method improves
the result visibly. For the two low sensitivity values, the differences between the results of the
two methods are visible particularly for the total sensitivity values. It requires more training
points to detect a low total sensitivity value if only a LHS data set is used. The results of the
third input parameter even show a clear improvement for the first sensitivity value.

4.2 Computation of the sensitivity indices of the model with decaying in-
fluence of the variables

In this subsection, we have a look at the example from Subsection 3.4. In the analysis of
Expression 14 for kK = 2 it was visible that the adaptive sampling methods improves the results
of the approximation quality at the latest n = 100. The results for the sensitivity analysis, shown
in Figure 16, provide the same results: The surrogate approximations of the sensitivity values
are all closer to the true sensitivity values (dashed line) from n = 100 and have a lower variance.
Even though, the results do not differ extremely.

For the three-dimensional case, the CoDy, indicates a better approximation with the use of
the adaptive sampling method from n = 400, while the results of the CoDcy advise to use a
LHS-data set. Besides, a sufficient approximation quality is not reached with n = 500 sample
points. This is also visible for the approximation of the sensitivity values plotted in Figure 17
where not always the deviation from the true value for n = 500 is acceptable. For all sensitivity
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values except S1, the approximation based on the adaptive sampling method is closer to the true
values. Though, sometimes earlier and sometimes later than n = 400. An improvement for high
n is with the use of the adaptive sampling method definitely visible; however, it is not clearly
recognizable from the related quality criteria.

From the results of these two sensitivity examples it can be concluded that the distance-based
LOO error method improves the approximation of the true sensitivity values. How great the
improvement is and from which # it starts depends on the respective example. It is clear that if
the CoDcvy advises the use of the distance-based LOO error method, also the sensitivity values
based on this method are more accurate. Other way around is not necessarely true as seen in the
second example.

5 Closure

In this paper we presented a new global adaptive sampling method and investigate it with dif-
ferent analytical examples. The use of the distance-based LOO error method is of advantage
because it identifies areas where the uncertainty of the approximation is the highest; new sam-
ples are taken correspondingly. Furthermore, the calculation time remains low because the
advantages of the LS-SVR are used. Therefore, it can just be used for the approximation with
the LS-SVR, which can be regarded as a disadvantage.

During the numerical analysis, it was visible that the distance-based LOO error method can be
used to improve the approximation quality. The method is particularly suitable for functions
with critical behavior in some specific regions. Depending on how much the variation of the
function changes over the whole region, the global adaptive sampling method is more visibly
helpful. Often it makes sense to firstly adapt the global trend of the observed function and
later start with the adaptive sampling method to improve the approximation in local regions.
One critical point in our investigation is that the CoDcy and the CoDy, not always show the
same results. In fact, the CoD,,; is more trustable; however, it cannot be used for real-world-
applications because it requires too many sample points. For these problems, we have no other
choice than to trust the results of the CoDcy.

By observing the calculation of sensitivity values an improvement by the use of the adaptive
method was also visible. This effect was more distinct when the results from the CoD¢y match
the results from the CoD,,;. Therefore, the CoDcv is a sufficient criterion for the usefullness of
the application of the distance-based LOO error method. In general, it is advised to apply the
observed sampling strategy to global sensitivity investigations.

Finally, it should be mentioned that we compared in this paper only the adaptive sampling
method with the LHS method because it gives the most suitable space-filling distribution. How-
ever, in an engineering application it does not make sense to sample new, larger LHS data
sets if the previous number of sample points is not sufficient. In this situation an adaptive
sampling method has to be considered, anyway. Therefore, further research will compare the
distance-based LOO error method with other global adaptive sampling methods and will apply
this method to different engineering examples.
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