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Abstract

This paper introduces an Open Modelling approach for Availability and Reli-
ability of Systems (OpenMARS), which is developed for risk and performance
assessment of large and complex systems with dynamic behaviours. The ap-
proach allows for combining the most common risk assessment and operation
modelling techniques. This ensures a high degree of freedom for the modeller
to accurately describe the system without limitations imposed by an individual
technique. OpenMARS uses a platform-independent tabular format to define
the used modelling technique, to create the model structure, and to assign
the parameter values. We developed the format to enable a straightforward
manual model definition while maintaining database compatibility. This paper
also presents our calculation engine for stochastic simulation-based analysis of
OpenMARS models. Our intention is to use this approach as a basis for new
software. We demonstrate the feasibility of OpenMARS with an example of a
multi-state production process that is subject to failures. The example creates
a comprehensive system model by combining interconnected failure logic, op-
eration phase, and production function models. We believe that the advanced
features of OpenMARS have wide ranging applications for analysis of reliability,
performance, and energy efficiency of complex industrial processes.

Keywords: Risk assessment technique; System performance; Complex
systems; Dynamic modelling; Fault tree analysis; Model data format

1. Introduction

Reliability, availability, and operational performance are integral factors to
consider in system design and management. They provide an essential amount
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of information for risk-informed decision-making. Risk and performance analy-
ses are used, for example, to compare design alternatives, to estimate the return5

of investment time, and to optimize maintenance of the system. Today’s com-
plex systems require sophisticated methods to analyse the effect of failures on
overall system performance. This is especially true when considering dynamic
interdependencies between failures, production and maintenance.

Modern reliability engineering still confronts challenges that relate to the10

representation of the system and quantification of the model [1]. The tradi-
tional methods are not always flexible enough to include all the needed details,
which can lead to unrealistic simplifications. For example, fault tree analysis
is one of the most prominent techniques in risk assessment, but without exten-
sions it lacks the power to express essential dependability patterns, i.e. spare15

management, different operational modes, and dependent events [2]. Modern
reliability engineering has tried to answer these challenges with model-based
dependability assessment (MBDA) [3] and simulation-based analyses [4]. A re-
lated work section gives a brief overview of the latest techniques and compares
OpenMARS to them.20

We have also noted the limitations of the standard tools during our decade-
long experience developing ELMAS [5] software. Various demanding use cases
prompted us to add new advanced features for the modelling of complex rela-
tionships and dynamic operation changes [6, 7, 8, 9, 10]. The use of ELMAS for
availability modelling of future circular colliders [11] in the European Organiza-25

tion for Nuclear Research (CERN) highlighted the challenge that the addition
of customized domain-specific features required programming skills from the
modeller. This motivated CERN to launch a research and development (R&D)
project in collaboration with Tampere University of Technology and Ramentor.
The project goal was to create a new improved approach, which permits the30

inclusion of customised features with minimal programming needs during the
modelling phase.

This paper introduces the result of the R&D project: an Open Modelling
approach for Availability and Reliability of Systems (OpenMARS) [12]. The ap-
proach permits model definition with any of the most common risk assessment35

modelling techniques [13], such as fault tree analysis (FTA), reliability block di-
agram (RBD), Markov analysis, failure mode and effects analysis (FMEA), and
Petri net. With OpenMARS a modeller can combine the most suitable tech-
niques to accurately include all the details that affect the system behaviour.
A model can consist of several sub-models that interact with each other. For40

example, a phase change within a dynamic operation model can update the
failure rates of other models. OpenMARS also includes techniques to model
mathematical and logic functions. With function models, the calculation of
application-specific key performance indicators (KPIs), such as overall equip-
ment effectiveness (OEE) [14], can be attached to the system dependability45

model. To make sure that OpenMARS is always applicable, we allow the mod-
eller to extend the built-in features of the techniques for special needs. The
approach is scalable, and open to support and combine additional modelling
techniques.
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This paper also introduces our model data format. A clear format is re-50

quired to define models, to store the model information and to transfer the
models between the software. As early as the 1970s, the developers of a FTA
computer program had a high priority for developing an input format that was
as simple as possible [15]. Recently, XML-based [16] model exchange formats
have been developed for sharing of FTA [17] and Petri net [18] models between55

different software applications. Our format is platform-independent, human-
readable and tabular. We chose tables as the basis of our format, because in
our opinion an average modeller can understand tabular format easier than any
markup language. Tables are also a natural way to store models. For example,
spreadsheet software and relational databases use tables to present data.60

One of our key requirements is that the format is open, documented, and
non-proprietary, which ensures long-term accessibility of the data. We also
aimed at enabling easy manual definition of vast models and the model creation
in a collaborative fashion. The manual model definition was inspired by a
reliability study that analysed a large system with repetitive structures [19].65

The collaborative development requires the ability to identify models [20], which
is handled by including separate model information and change tables in the
OpenMARS specification [12]. However, this will not be further expounded
upon as this paper focuses on modelling.

We demonstrate the possibilities of the OpenMARS with an example case.70

It is a simplified reliability model of a multi-state industrial process, which can
be used as a basis for individual cases. The example uses a fault tree model for
system failures, a Markov model for processing phase changes, and a function
model for production calculation. This type of model is one of the key elements
in our particle collider availability study [11].75

Our end goal is to create user-friendly software that supports the advanced
features of the OpenMARS approach. The discussion section explains the need
for this type of software along with potential future improvements and appli-
cations of the approach. OpenMARS decouples the model from the calculation
engine, which is used for obtaining the analysis results. Our own implementa-80

tion of the calculation engine is based on the Monte-Carlo [21] method. It can
be configured to analyse various modelling techniques and also to include user-
defined special features. The simulation algorithm uses distributed processing
architecture to permit efficient parallel calculation in a computing cluster.

2. Related Work85

Fault tree analysis (FTA) [22], reliability block diagram (RBD) [23], Markov
analysis [24], and Petri net [25] are examples of traditional formalisms for quan-
titative risk assessment. Recent research has proposed various extensions and
generalizations to increase their expressive power and ease of use. Generalized
stochastic Petri net (GSPN) [26], continuous-time Markov chains (CTMC) [27],90

extended stochastic Petri nets (ESPN) [28, 29], and semi-Markov process (SMP) [30]
are examples of extensions that enhance the modelling power [31] of the tradi-
tional techniques. In contrast, coloured Petri net (CPN) [32] is an extension that
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focuses on the practical use of the formalism instead of increasing its expres-
sive power. Hybrid techniques have been created for situations where a single95

formalism is not the most practical for all parts of the model. For example,
the RBD driven Petri net [33] and the conjoint system model (CSM) [34] both
combine Petri net and RBD techniques.

Various software tools exist to enable efficient use of the modelling tech-
niques. For example, CPN Tools [35] is for editing and simulation of CPN100

models, GRIF BStoK [36] for RBD driven Petri nets, and REALIST [37] for
CSM. All of them share similarities with ELMAS [5] software, which was used
as a basis for OpenMARS. The use of tabular format distinguishes OpenMARS
from all these tools that are based on graphical user interface. We find the
tabular format more efficient with very large and complex models. Another105

difference is that the tools use fixed modelling techniques and their combina-
tions. ELMAS permits inclusion of user-defined code [7] to support modelling of
domain-specific features. In Section 4.1 we present how our calculation engine
improves this approach further. We have not found similar possibilities with
other tools.110

Over the past twenty years, researchers have made continuous efforts to
simplify the analysis process by automatically synthesising dependability re-
lated data from system models [38]. This has led to the emergence of the field
of model-based dependability assessment (MBDA). While certain techniques fo-
cus on making the analysis process more manageable, other MBDA techniques115

have been developed to address the limitations of traditional techniques [39].
The field of MBDA encompasses a large variety of techniques, such as HiP-
HOPS workbench [40], FPTN [41], FPTC [42], SAML [43], smartIflow [44],
AltaRica [45], and Figaro [46].

The MBDA techniques can be classified according to different criteria. For120

example, the model provenance is a criteria that distinguishes MBDA techniques
based on their relationship with the system design process [3]. Models can
be defined either through extension to the design model, or as a standalone
model without direct connections to design models. Creation of a dedicated
dependability model requires more work, but it allows using the optimal level125

of abstraction and inclusion of only the needed details from reliability and risk
analysis point of views.

The general underlying formalism and the types of analyses performed typi-
cally gravitate MBDA techniques towards two leading paradigms [39]. In failure
logic synthesis and analysis (FLSA) the fault tree or other failure model is au-130

tomatically constructed from the information stored in the system model. The
other approach is behavioural fault simulation (BFS), where faults are injected
into the model that simulates system behaviour.

One classification criteria is the type of connection modelling [44]. Directed
connections are commonly used in MBDA techniques, but in some situations the135

use of undirected connections helps to keep a model structure close to reality.
Also the use of an object-oriented paradigm as a basis of the models can be
used as a classification criteria [47].

Table 1 presents the classification of certain MBDA techniques by using the
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previously mentioned criteria. Also a characterization of the approach presented140

in this paper is included in the table. OpenMARS uses standalone models, which
are dedicated to risk and performance analysis. Behavioural fault simulation can
be made by using OpenMARS models. Basic modelling techniques, such as fault
tree and Markov models, use directed connections in OpenMARS, but it is also
possible to define a special modelling technique for the creation of undirected145

models. The object-oriented paradigm is used as a basis for OpenMARS models.

Table 1: Model-based dependability assessment (MBDA) formalisms

Use of design
models

Underlying
formalism

Connection
modelling

Object-
Oriented

HiP-HOPS yes FLSA directed no
FPTN standalone FLSA directed no
FPTC yes FLSA directed no
SAML yes BFS directed no
smartIflow yes BFS undirected yes
AltaRica standalone BFS undirected yes
Figaro standalone BFS both yes
OpenMARS standalone BFS both yes

The comparison made with these four classification criteria shows that Open-
MARS shares the most similarities with Figaro. However, we recognize two clear
differences between OpenMARS and modelling language-based approaches. The150

first difference is the use of tabular model definition format, which based on our
understanding is not used in any other approach. We decided to use tables be-
cause in our opinion an average modeller can understand tabular format easier
than any markup language, such as XML[16]. Figaro uses Scala programming
language [46] for model definition, which in our opinion creates a threshold for155

the modeller.
The other difference is the separation of modelling technique definition from

model creation, which is presented in Section 3.3. OpenMARS includes sev-
eral built-in techniques and permits the definition of a customized technique.
All techniques are defined with the same tabular format, which allows using160

built-in techniques as a basis for a new technique. Based on our review, other
approaches use only fixed techniques and possibly allow their combination. A
more detailed comparison between the modelling features of OpenMARS and
other MBDA techniques could be an issue of a separate publication. For exam-
ple, such comparison has been made between AltaRica and SAML [47].165

Future trends are likely to yield more robust integrations between existing
paradigms and techniques [39]. SAML is an example of an integrative approach.
Specifications can be written with various high-level tools, transformed into a
SAML model, and verified using a selected verification tool. Similarly, guarded
transition systems (GTS) [48] is a low-level formalism, which generalizes clas-170
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sical formalisms and also interprets the semantics of AltaRica and dynamic
fault tree (DFT) [49] models. Open-PSA [17] and Petri Net Markup Language
(PNML) [18] are similar model exchange formats for traditional techniques. We
see that OpenMARS fits to this trend perfectly because it generalizes the tra-
ditional techniques and is also open for interacting extensions. For example,175

the creation of a modelling technique that is compatible with GTS would allow
various GTS assessment tools for OpenMARS models. Conversely, it also adds
our calculation engine as a tool for all compatible formalisms.

3. OpenMARS Methodology

This section provides an executive summary on the methodology behind the180

OpenMARS approach where the focus is on its basic principles and concepts.
The OpenMARS specification [12] covers all features of the approach in greater
detail.

3.1. Model Elements

The OpenMARS approach is based on an object-oriented paradigm. A model185

consists of elements, and each element has a class, which defines the individual
attributes of the element. An attribute can be another element or a primitive.
For example, strings and numbers are primitives, which store single parame-
ter values, such as title, description, cost, duration, or colour. Elements are
structured attributes that can contain multiple primitives. Four fundamental190

element classes form the basis of all modelling techniques. Each class of every
technique inherits one of the following parent classes:

Node: Models the possible states of an item

Operator: Defines rules between state changes of different nodes

State: Models whether a particular set of circumstances is active195

Transition: Defines the possible state changes

Each modelling technique has a catalogue of available classes, which extend
the fundamental element classes based on the needs of the modelling technique.
The common base classes make the combination of different techniques more
straightforward. The goal is that most cases should be covered with the built-in200

modelling technique classes. To guarantee that the concept is always applica-
ble, expert users can create model specific classes to customize the model to
their special needs. The new classes can be defined to extend the attributes or
overwrite the default values of an existing class.

As an example of how we implemented different techniques with element205

classes, Table 2 and Figure 1 show how the fundamental classes adapt to selected
techniques. In the FTA technique, a fault node is a container for two states
(fault and normal) and two transitions (failure and restoration). So, it forms a
small Markov model where the active state element defines the fault node state.
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Fault nodes are connected with gate operators to define the logic rules, such210

as AND, OR, Vote, etc... A Markov node element is a container for a Markov
model, which consists of user-defined states and transitions. Like fault nodes,
the state of the Markov node is defined by the active state element. Petri nets
consist of places, transitions, and arcs [25]. In OpenMARS a Petri net place
is a node and its state is defined by the number of tokens in it. Petri net215

transitions are instances of an Operator class1. Arcs are formed by connecting
places and transitions. A function modelling technique has value nodes, where
the state is defined by the contained numeric value. Value nodes are connected
with function operators, which can read and update the node values and other
numeric attributes.

Table 2: The use of fundamental classes with different modelling techniques

Technique Node Operator State Transition
FTA Fault Gate Normal, Fault Failure, Restoration
Markov Markov - User-defined User-defined
Petri net Place Transition - -
Function Value Function - -

Fault Tree Model Markov Model

Value Node

State = Value

Function Model

Petri Net Model

Place Node

State = Tokens

Markov Node

1. 
state

X. 
state

1. transition

Y. transition

Fault Node

Normal 
state

Fault
state

Failure transition

 Restoration transition

Figure 1: Examples of nodes in different modelling techniques

220

The model structure is formed by defining directed connections between el-
ements. In OpenMARS, a connector has no parameters. An operator element
is used to define the type of connection between nodes. For example, in FTA
models the gate operators define the connections between fault nodes. Similarly,
transition elements are used to define the connections between states. Figure 2225

1Here confusion caused by the name of the Transition class and Petri net transitions is
regrettable.
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illustrates how gate operators are used in FTA and transitions in Markov mod-
elling technique.

Markov node

Node State

Fault

Gate

FaultFault

Gate

Fault

Fault

Gate

FaultFault

Fault Tree Model Markov Model

Connection

Transition

Transition

Operator

Fault

StateState

Transition

Figure 2: Connections in FTA and Markov modelling techniques

3.2. Special Features

The OpenMARS concept contains folders, which improve the handling of
large models. Each folder is a container of nodes and operators. If a model230

structure is created inside a folder, it is possible to create multiple instances of
the folder where each contains the same structure. This helps the definition of
models with repetition. Similarly, nodes are containers of states and transitions.
It is possible to define the structure of states and transitions only once and
create as many node instances as needed. For example, each fault node instance235

contains the two states and transitions.
The creation of multiple similar fault node instances follows the class-based

paradigm, where the fault node is a class that is defined by the modelling tech-
nique. With the help of an array assignment, OpenMARS also supports a
prototype-based [50] approach for the creation of several objects with similar240

contents. By adding an interval or a list inside square brackets as a suffix of
the element or folder name, it is possible to create an array of similar objects.
For example, definition ’pump[1-5]’ creates five pumps. After this, it is possible
to use the name ’pump’ to make prototype-based definitions that consider all
pumps. It is also possible to refer a set of pumps with ’pump[1-3]’ or a specific245

one with ’pump[4]’. Furthermore, a comma separated list can be used instead
of single values as a compact way to make multiple definitions just by using one
table row. For example, ’valve, motor’ can be used to make the same definition
for both valve and motor.

The array assignment is also used for the definition of mode-dependent at-250

tributes. In OpenMARS, an array is actually an ordered map, which allows
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associating values to keys. Instead of using an attribute name, the key of the
array assignment can be used to indicate the name of the mode when the at-
tribute value is valid. For example, with failure transition it is possible to
use definitions ’failure[prepare]’ and ’failure[produce]’ to have different failure255

distributions for preparation and production modes.
Unique Identifier (UID) is defined for each created folder and element. The

UID is formed by combining the UID of the container with the name of the
element by using a slash (/) symbol as a delimiter. The empty UID refers to
the default base folder of the model, which is used if an element of a folder does260

not belong to any other container. With UID it is possible to refer any element
of the model, which also allows connecting sub-models possibly defined with
different techniques.

We have also included a broadcasting system, which allows connecting sepa-
rate models without a need to know the exact UIDs of the elements. OpenMARS265

uses radios and listeners for communication between distinct sub-models. A ra-
dio can be attached to transitions or states and set to broadcast messages on
certain channels in defined situations. The radio broadcasts when the transi-
tion is triggered or when the state activates or ends. Similarly, listeners can
be attached to both transitions and states. If the listener receives a signal in270

a certain channel, the transition or the state is activated. The channels form a
simple and clear interface for combining separate sub-models to a comprehen-
sive model. Figure 3 illustrates the connection between two simple models. A
system fault causes a radio to broadcast on a waitStartChannel. The listener in
the operation phases model receives this and changes to a wait phase. Similarly,275

the operate phase starts when the system returns to normal state.

System Fault

normal fault

waitStartChannelwaitEndChannel

failure

restoration

Operation Phases

operate wait
stop

start

waitEndChannel waitStartChannel

Figure 3: Examples of radios and listeners that connect separate models

OpenMARS allows modellers to define mode-dependent attribute values.
Radios and listeners signal the currently active modes to elements, which update
the attribute values based on the active mode. Radios emit the mode start or end
messages, and listeners convey them to the elements which they are attached280

to. A practical example of this feature is the modelling of failure rates that
change based on the operation mode. A modeller can assign higher failure rates
to the modes that are more demanding. Section 5 presents an example where a
Markov model determines the active operation mode that is linked to the failure
rates of a fault tree.285
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The function modelling technique of OpenMARS creates an environment for
visual programming. The basic operators, such as addition and subtraction are
built in, but modellers can also define functions freely with programming code.
This is the key feature that enables the definition of custom KPIs. Programming
code is required only when the KPI cannot be defined as a combination of basic290

operators.

3.3. Definition of Models with Tabular Format

The OpenMARS approach uses five different tables to define models: (i)
Class, (ii) Attribute, (iii) Element, (iv) Connection, and (v) Value. The model
definition can be divided to three phases: modelling technique definition, model295

structure creation, and parameter value assignment. Each step requires own
type of knowledge and expertise.

The modelling technique definition is made by using the first two tables. The
Class table contains the following columns:

CLASS: The name of the introduced class300

IS A: The name of the parent class that the new class extends

The Attribute table contains the following columns:

CLASS: The name of the class to which the new attribute is associated

TYPE: A class name that indicates the type of the new attribute

ATTRIBUTE: The name of the new attribute or an asterisk symbol (*)305

to define the class as a container for this type of object

The content of the first two tables is identical for all models that use the
same modelling techniques. Sometimes the definition of a special tailor-made
technique is needed, but usually already existing traditional techniques can be
translated to the OpenMARS format and used directly. An expert user can310

use these tables to create model specific classes. Each created class inherits the
attributes of a built-in parent class and extends them with new attributes that
are needed to model special features.

Usually the modelling technique definition can be skipped by using built-in
techniques. Practical experience about the reliability modelling helps to select315

the most suitable techniques for solving the analysed problem. The selected
modelling techniques provide a catalogue of classes for the model structure cre-
ation, which is made by using the next two tables. The Element table creates
elements and folders of the model. It contains the following columns:

CONTAINER: The container of the new element320

ELEMENT: The name of the new element

CLASS: The class of the new element
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The Connection table defines the directed connections between elements.
This forms the model structure, which is a finite directed graph [51] of elements.
The correct direction of the connection is defined by the modelling technique.325

For example, in FTA the root faults are the sources that are connected to the
top fault through gates and intermediate faults. The Connection table contains
the following columns:

SOURCE: The source element of the connection

TARGET: The target element of the connection330

The last phase of the model definition is the parameter value assignment.
The Value table is used for defining values for elements and classes. If an
attribute value is defined for a class, it is the default value for all instances of
that class. The Value table contains the following columns:

OBJECT: The element or the class for which the attribute value is defined335

ATTRIBUTE: The name of the attribute

VALUE: The assigned value

4. Analysis of OpenMARS models

The OpenMARS models are decoupled from calculation. Potentially each
modelling technique has various simulation tools or analytical solvers, which340

are created by different tool providers. This section presents our approach for
a simulation-based analysis of OpenMARS models.

4.1. Dynamic compilation of the simulation algorithm

We have created a calculation engine that can be configured to analyse var-
ious modelling techniques. Figure 4 illustrates how the calculation engine, a345

simulator tool, and modelling technique-dependent configurations are dynami-
cally compiled to a Java simulation program. The dynamic compilation ensures
that only the procedures that are needed by the analysed model are included in
the simulation algorithm. This increases the efficiency of the analysis process
because the used algorithm is always as simple as possible.350

The Java simulation program is built by using a template method pat-
tern [52], which is an example of an inversion of control (IoC) design princi-
ple [53]. In object-oriented programming, the IoC is used to increase the mod-
ularity of the program. In traditional programming the custom code calls for
static libraries, but with IoC, it is the generic framework that calls task-specific355

codes. Figure 5 illustrates how the extensible algorithm skeleton forms a frame-
work that divides the stochastic discrete event simulation (DES) [54] process to
separate phases. Each phase is a template method. The configuration of the
simulator tool defines the Java code of each template method. This dynamically
builds a Java object that implements the simulation algorithm.360

11



D
yn

a
m

ic
co

m
p

ila
tio

n

Sto
ch

a
stic D

ES
 p

ro
ce

ss

R
e

ad
in

g
 o

f th
e

 
ta

b
u

lar m
o

d
el

Java simulation 
program

Analysis 
results

OpenMARS model definition

Modelling 
technique(s)

Model 
structure

Model 
parameters

Simulation algorithm definition

Technique(s) 
configuration

Simulator 
tool

Calculation 
engine

OpenMARS 
model

2

33
20

4 1

Figure 4: The dynamic compilation of the Java simulation program

The model elements have also similar template methods, which are called by
the simulator tool. The calculation engine translates each OpenMARS model el-
ement to a corresponding Java object. The classes of the Java objects implement
the template methods with Java codes that are defined by the corresponding
OpenMARS classes. The configuration uses the Value table to assign the Java365

codes for each OpenMARS class in tabular format. If a new class or modelling
technique is added, a new configuration must be created to specify how the new
elements are handled in the simulation.

By using the Class and Attribute tables the configuration declares the sim-
ulator tool and the simulation attributes of the model elements. An attribute370

is used either as a parameter or a variable. The parameters are defined by the
model creator and only read during the simulation process. For example, ’rounds
limit’ and ’simulation period’ are parameters of the simulator tool, which de-
fine the simulated time. The variable values are updated during the simulation
progress. Variables can store the current status, collect statistics data or store375

analysis result values. For example, the simulator tool has status variables ’cur-
rent round’ and ’current time’. The ’cumulative action count’ of transitions
and ’cumulative active time’ of states are examples of statistics variables.

4.2. Simulation process

During the DES process, the simulation algorithm calculates pre-defined380

number of rounds. Each round handles events and updates the status and
statistics variables until the pre-defined simulation time period is reached. The
model elements create initial events at the beginning of each round. An event
has a time of occurrence and a target model object that handles the event. The
events are stored within a chronologically ordered list. The first event of the385

list is always removed after it has been handled. The handling of an event can
create new events, which are inserted to the list. An event can also set some

12



Simulation round

Start

End

Yes

Yes

No

eventHandle()simulationStart()

roundStart()

Step()

isEventStart()

isRoundEnd()

eventEnd()

No

isSimulationEnd()
Yes

createResult()

No

Figure 5: The DES algorithm skeleton divides the process to template methods

events to wait, wake them up or remove them from the list. Various analysis
results are calculated based on statistics variables after all rounds are simulated.

The following list illustrates how the simulator tool handles the template390

methods that were shown in Figure 5. The list gives examples of the operations
that the fundamental model element classes make during each template method.

simulationStart() method is called at the beginning of each simulation.
Here a reset is made to the status variables that control the simulation
process and to the statistics variables that collect the data. For example,395

the simulator tool resets the ’current simulation round’, the transitions the
’cumulative activation count’ and the states the ’cumulative active time’.

isSimulationEnd() test is made after a simulation round has ended. Here
the simulator tool increases the value of the ’current simulation round’ and
compares it to the ’rounds limit’.400

roundStart() method is called before the handling of a new round starts.
Here the simulator tool resets the ’current time’, which represents the sim-
ulation clock. The simulator tool also clears the events list. Each node
element activates the initial state and creates the first state change event to
the events list.405

isRoundEnd() test is made before a simulation step is taken. The cur-
rently simulated round is ended if the ’current time’ equals the ’simulation
period’.

isEventStart() test is made after each event handling and after taking a
time step. A new event is handled if the ’current time’ equals the time of410

the first event.

13



eventHandle() method is called when an event handling is started. Here
the simulator tool calls the template method of the event target model el-
ement, which implements the event handling. For example, (i) a transition
creates a new immediate event for its target state and increases the ’cumu-415

lative activation count’, (ii) a state creates an immediate event for its owner
node and calls the event creation method of its target transitions, (iii) a node
creates a new immediate event for its target operators, and (iv) an operator
checks the active states of its source nodes to decide whether an immediate
state update event needs to be created for its target nodes. If the element420

that handles the event has a radio attached, new immediate activation events
are created for all elements that listen to the same channel.

eventEnd() method is called after an event has been handled. Here the
simulator tool removes the first event from the events list.

step() method is called if an event does not exist at the current time. Here425

the step is taken to the occurrence time of the next event or to the end of
the simulation period if there aren’t any events that occur before it. The
simulator tool calculates a value for the ’step length’ status variable, which
is added to the ’cumulative active time’ of each currently active state. After
all elements have handled the step, the ’step length’ is added to the ’current430

time’ of the simulator tool.

createResult() method is called when all simulation rounds have been fin-
ished. Here the analysis results are calculated based on the statistics vari-
ables of the model objects. For example, the simulator tool calculates the
product of ’current round’ and ’simulation period’ to get the ’total simulated435

time’ result value. Each state element adds the ’cumulative activation count’
variables of all its source transitions to get the ’number of state activations’
result value. It can be used together with the ’cumulative active time’ for
the calculation of various other results. For example, the ’state probability’
is obtained by dividing the ’cumulative active time’ by the ’total simulated440

time’ and the ’mean duration of an activation’ is obtained by dividing the
’cumulative active time’ by the ’number of state activations’.

For the needs of large simulations, our calculation engine is suitable for
deployment in a distributed processing environment. This enables an efficient
parallel calculation in a cloud computing cluster. The parallelization is made by445

dividing the simulated rounds between processes before the simulationStart()
method is called. Each process simulates the rounds independently. The statis-
tics variables of all processes are combined to the root process before the cre-
ateResult() method. After this, the analysis result creation can be done in the
root process like in a basic single core simulation.450

5. An OpenMARS Example Model

This section demonstrates the application of OpenMARS with an example
case, which resembles a multi-state industrial production process that is subject
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to failures. In an actual case the model could be more complex but, in our opin-
ion, this simple case captures the core concepts of production process modelling455

and makes explaining them easier. For example, our availability model for a
particle collider uses a similar modelling approach [11]. The example shows the
basic use of the fault tree, Markov, and function models. The tabular format
is used to define the modelling techniques, to create the model structure, and
to assign the parameter values. The model is analysed to study how much the460

failures reduce the annual production. The analysis also compares the effect of
different failure mitigation scenarios and changing the production parameters.

5.1. Case Description

The KPI of the production process is the cumulative annual production.
The process has an operation cycle that consist of two main phases: prepare465

and produce. During the prepare phase the process gets ready for the produc-
tion, which occurs in the produce phase. The process has a time-dependent
production rate, which is first a constant but starts to diminish after certain
time. Due to the diminishing production rate, a maximum length is defined
for the produce phase to optimize the cumulative production. The end of the470

produce phase restarts the operation cycle from the prepare phase.
The process is subject to failures. The sources for system faults are a power

input and two identical pumping units, which both have two redundant pumps.
The produce phase is more demanding for the pumps, which makes them more
likely to fail during the production. Each system fault interrupts the process and475

makes it wait until the fault is repaired. After the restoration a new operation
cycle is started from the prepare phase.

The process phases are modelled with a Markov model and the production
with a separate function model. The produce phase of the Markov model acti-
vates the function model to calculate the cumulative production of an operation480

cycle. The calculation is made after the produce phase ends by using the length
of the production as an input.

The fault tree models the system’s failure logic. The fault tree and the
Markov model are connected in two ways. First, the active phase in the Markov
model affects the failure rate of the pumps in the fault tree. This requires each485

phase change in the Markov model to send information to the fault tree. Second,
if a system failure occurs or is restored, the Markov model changes the active
phase. This requires the fault tree to send information to the Markov model.
Figure 6 illustrates the example model that combines fault tree, Markov, and
function models.490

5.2. Definition of FTA, Markov, and Function Modelling Techniques

The system model can be created by combining FTA, Markov, and function
modelling techniques. This section shows how the Class and Attribute tables
can be used to define these techniques. In a basic situation this phase of the
modelling could be skipped, because OpenMARS has these techniques built-495

in. By using the the Class and Attribute tables it is also possible to declare
tailor-made techniques for special needs.
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Figure 6: The example is a combination of fault tree, Markov, and function models

Table 3 declares the classes of the three techniques. For example, FTA
uses fault nodes that are connected with OR and AND gate operators. The
transition classes are used both by the fault tree model to describe failure and500

restoration times, and by the Markov model to describe the transitions between
process phases. Table 3 also illustrates the class inheritance. For example, the
Operator is a parent of the Gate class.

Table 3: The Class table for the example model

CLASS IS A
Fault, Markov, Value Node
Gate, Function Operator
OR, AND Gate
Addition, Subtraction, UserFunction Function
ExpTransition, WeibullTransition, ConstantTransition Transition

Table 4 declares the attributes for the FTA and Markov modelling technique
classes. The fault nodes have two states and transitions with predefined names.505

The Markov nodes are defined as containers for states and transitions by using
the asterisk (*) symbol. The last two rows of the table declare the attributes
for the transitions.

Table 5 declares the attributes for the function modelling technique classes.
The value nodes have a single numeric value attribute. A minuend is declared510

for subtraction, which allows defining the role of the operands. The container
declaration is used for values of the user function, which allows a modeller to
use any names for the parameter values of the function.
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Table 4: The Attribute table for the FTA and Markov modelling technique classes

CLASS TYPE ATTRIBUTE
Fault State normal, fault
Fault Transition failure, restoration
Markov State, Transition *
ExpTransition, ConstantTransition Number mean
WeibullTransition Number scale, shape

Table 5: The Attribute table for function modelling technique classes

CLASS TYPE ATTRIBUTE
Value Number value
Subtraction Value minuend
UserFunction Value *
UserFunction Text code

Table 6 declares the attributes for broadcasting messages between models.
Radios and listeners are declared for all states and transitions. States have515

radios to send a message when the state starts and ends. Also folders can have
a listener, which conveys the messages to the elements within the folder. Special
wake and wait listeners are defined for elements and folders. They are used for
activating and deactivating mode-dependent attributes.

Table 6: The Attribute table for connections between models

CLASS TYPE ATTRIBUTE
State, Transition Name radio, listener
State Name endRadio
Folder Name listener
Element, Folder Name wakeListener, waitListener

5.3. Definition of the Model Structure520

This section shows how the example model structure is created by using the
Element and Connection tables. The comprehensive model consists of three sub-
models that are made using different techniques. Table 7 creates the fault tree
model elements. The system contains two similar pumping units, which are in
their own folders. This illustrates how the array definition can efficiently create525

similar structures. The pumping[1-2] creates two folders that can be referred
to by setting the text ’pumping’ as the container. This creates identical model
structures within both folders. If needed, a specific folder could be identified by
referring to it’s number, for example, pumping[1].
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Table 7: The Element table for the fault tree model

CONTAINER ELEMENT CLASS
system Folder

system systemFault, powerFault Fault
system systemOR OR
system pumping[1-2] Folder
pumping pumpingFault Fault
pumping pumpingAND AND
pumping pumpFault[left,right] Fault

Table 8 adds the connections of the fault tree model. The table illustrates530

how the array definition is a simple way to add multiple connections. A line with
pumpingAND as a source and pumpingFault as a target creates a connection in
both pumping folders. However, if a modeller wants to specify in which folder
the connection is made, for example, (i) pumping[1]/pumpingAND to pump-
ing[1]/pumpingFault creates the connection only in one folder, and (ii) pump-535

ing[1]/pumpingAND to pumping/pumpingFault creates the connection from the
pumpingAND in folder pumping[1] to pumpingFaults in both folders.

Table 8: The Connection table of the fault tree model

SOURCE TARGET
systemOR systemFault
powerFault, pumping/pumpingFault systemOR
pumpingAND pumpingFault
pumpFault pumpingAND

Table 9 shows the creation of the Markov model. In this example the Markov
node contains a state for each of the three process phases. The start and stop
are defined as constant time transitions. In OpenMARS this means that the540

transition activates always after the set constant duration. The classes for the
transitions toWait and toPrepare are not specified. Normally this means that
the transition type will be defined in the Attribute table. However, in this case
the definition of a specific transition class is not needed because the transitions
are only triggered by radio messages from the fault tree model.545

Table 10 adds the connections of the Markov model. Transition elements
are added between the states. It is notable that the transition toWait has two
sources, because the wait phase can be started from both prepare and produce
phases.
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Table 9: The Element table for the Markov model

CONTAINER ELEMENT CLASS
phases Markov

phases prepare, produce, wait State
phases start, stop ConstantTransition
phases toWait, toPrepare Transition

Table 10: The Connection table of the Markov model

SOURCE TARGET
prepare start
start produce
produce stop
stop, toPrepare prepare
wait toPrepare
prepare, produce toWait
toWait wait

Table 11 shows the creation of the function model elements. The output550

folder contains several values and functions. It is notable that here the user-
defined production function contains value nodes as it’s attributes. They are
used as parameters of the user-defined function.

Table 11: The Element table for the function model

CONTAINER ELEMENT CLASS
output Folder

output difference Subtraction
output production UserFunction
production length, constant, factor, power Value
output sum Addition
output cumulative Value

Table 12 adds connections of the function model. The first two of them
connect the simulated variable values to be the function operators. The simu-555

lator/currentTime measures the time in the simulation, and phases/produce/s-
tartTime the latest start time of the produce phase. The other connections
define how the functions are combined to calculate the KPI.
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Table 12: The Connection table of the function model

SOURCE TARGET
simulator/currentTime output/difference/minuend
phases/produce/startTime output/difference
difference production/length
production, cumulative sum
sum cumulative

5.4. Model Parametrization

This section shows how the Value table is used to parametrize the example560

model. Table 13 defines the basic transitions of the fault tree and Markov
models. By default all failure and restoration transitions are exponentially
distributed and defined by using the mean parameter, which allows for defining
the mean value directly for powerFault failures. In this example all restoration
times have the same mean value, which is defined in one row. The last two rows565

define the constant durations for transitions of the Markov model.

Table 13: The Value table to define the transitions of the example model

OBJECT ATTRIBUTE VALUE
Fault failure, restoration ExpTransition
powerFault/failure mean 8760 h
Fault/restoration mean 24 h
phases/start mean 48 h
phases/stop mean 24 h

Table 14 shows the definition of an operation mode-dependent failure rate
for pumps. The first row defines the transition type for both modes. Here we
use a Weibull distribution, but each mode can also have a different transition
type. The Weibull scale parameter definition shows how the name of the mode570

is used as a key for the attribute value map. The Weibull shape parameter is
the same for both modes, so it does not need to be mapped.

Table 14: The definition of the mode-dependent failure rate for pumps

OBJECT ATTRIBUTE VALUE
pumpFault failure[prepare, produce] WeibullTransition
pumpFault/failure[prepare] scale 240 h
pumpFault/failure[produce] scale 180 h
pumpFault/failure shape 1.5
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Table 15 shows how the model is set up to use the prepare mode values when
the Markov model is in the prepare phase, and the produce mode values during
the produce phase. Radios broadcast on certain channels when the prepare and575

produce phases start in the Markov model. The correct channels are defined for
listeners, which activate and deactivate the modes.

Table 15: The definition of radios and listeners for mode changes

OBJECT ATTRIBUTE VALUE
phases/prepare radio prepStartChannel
phases/produce radio prodStartChannel
pumpFault wakeListener[prepare] prepStartChannel
pumpFault waitListener[prepare] prodStartChannel
pumpFault waitListener[produce] prepStartChannel
pumpFault wakeListener[produce] prodStartChannel

The transition rates from the prepare and produce phases to the wait phase
are not set. A connection with the fault tree model is required for the wait phase
to activate. Table 16 shows how to define a situation where the top failure of580

the fault tree model starts and stops the wait phase of the Markov model. The
radios and listeners are set up (i) to start the wait phase when the fault state
starts, and (ii) to activate the transition to the prepare phase when the normal
state starts.

Table 16: The definition of connections between fault tree and Markov models

OBJECT ATTRIBUTE VALUE
systemFault/fault radio waitStartChannel
systemFault/normal radio waitEndChannel
phases/wait listener waitStartChannel
phases/toPrepare listener waitEndChannel

The attributes for the production function are defined in Table 17. In the585

first two rows a radio-listener pair is created to activate the function model in
the output folder each time when the produce phase ends in the Markov model.
In subsequent rows, the three input parameter values are defined for the user
function. The last row shows how a value can also be read from an external file
by using the URL of the location that contains the user-defined code.590

The implementation of the OpenMARS calculation engine can define which
programming languages are supported and how the code is executed during the
simulation process. Listing 1 shows how our current Java-based implementation
defines the function. The production of each operation cycle depends on the
time spent in the produce phase. The production rate is stable up to a certain595

time constant and decreases after that. The attribute names of the function
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Table 17: The Value table for the function model

OBJECT ATTRIBUTE VALUE
phases/produce endRadio functionChannel
output listener functionChannel
production/constant value 10 h
production/factor value 3
production/power value 0.6
production/code url ’url to the code’

operator are used as variable names in the listing, which allows the calculation
engine to attach the user-defined code directly to the simulation algorithm.

Listing 1: The user defined code for the example production function

i f (length < constant) {600

return factor * length;

}

return factor * (constant +

Math.pow(length - constant + 1, power) - 1);
605

5.5. The Analysis Results

The analysis results are based on a one year period, which was simulated
10000 times. The following list presents the key results of our analysis:

• The mean number of failures is 36 and mean time to restoration (MTTR)
is 12.5 hours, which causes 5.1% unavailability.610

• The mean number of prepare phase starts is 136. The same value for
produce phase is 110, which means that over a one year period, failures
interrupted the operation cycle 26 times at the prepare phase.

• The mean production time of one operation cycle is 22.7 hours, which is
1.3 hours less than the optimal uninterrupted production period.615

• The mean annual cumulative production is 4450. The 5% quantile for the
production is 4240 and the 95% quantile is 4650.

By changing certain model parameters, we compare the current situation
to four different scenarios: (i) the mean time to failure (MTTF) of the power
input improves from 8760 to 17520 hours; (ii) the mode-dependency of the pump620

failure rate is eliminated, which means that the scale parameter of the Weibull
distribution would be 240 hours during both prepare and produce phases; (iii)
the mean time to restoration (MTTR) improves from 24 to 18 hours; and (iv) the
length of the period where the production rate is a constant increases from 10
to 11 hours. Figure 7 shows the mean annual production in each scenario. Error625
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Figure 7: The mean annual production in four scenarios

bars illustrate the 90% confidence interval, which is obtained by calculating the
5% and 95% quantiles of the production.

The results show that the improvement of the power input reliability does
not have a notable effect. The shorter restoration time improves the annual pro-
duction a bit more than the elimination of mode-dependency of pump failures.630

A change of the parameter that defines the length of the constant production
rate improves the KPI more than the changes of the failure and restoration
times. For comparison, the current situation and a theoretical scenario of oper-
ation without any failures are included in the Figure 7. Because the lengths of
the prepare and produce phases are constants, the optimal production result is635

without deviation.
Sensitivity analysis was made to study the effect of changing the maximum

length of the production in a one operation cycle, which is used because of the
diminishing production rate. Figure 8 shows the mean annual production with
different maximum lengths of the produce phase. Also the 5% and 95% quantiles640

are included in the figure. The results show that minor changes to the current
maximum length of 24 hours does not have a significant effect. The mean annual
production is over 4400 with all maximum lengths that are between 18 and 40
hours.
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Figure 8: Sensitivity analysis to study the maximum production length parameter
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6. Discussion645

Section 5 showed how the core concepts of a multi-state reliability and per-
formance model can be implemented utilizing the OpenMARS approach. We
see a wide range of industrial applications for this kind of model. Our brief re-
view shows that a combination of operations and reliability modelling has been
made for (i) a nickel reduction plant production line [55], (ii) dynamic pro-650

cess simulation of a LNG fuel storage tanks risk assessment [56], (iii) extended
warranty cost prediction [57], (iv) availability of offshore installation [58] and
manufacturing lines [59]. Also, maintenance spare part circulation [60] could be
modelled with OpenMARS.

We developed the OpenMARS to answer the needs we have encountered in655

various industry cases. For example, in cases from the metal industry, robotics,
and nuclear industry, we have required advanced features for (i) combination of
FTA and FMEA analysis [8], (ii) multi-state modelling of partial process flows,
(iii) dynamic rules for backup power supply use [9], and (iv) definition of exclu-
sive stochastic consequences [10]. The extensive use of the advanced features660

was required in our particle collider availability model [11], which prompted us
to develop OpenMARS. Like in the presented example, the model combines a
fault tree model of failure logic, Markov models of operational cycles, and a
function model for production calculation.

The OpenMARS development at CERN relates to an ambitious plan to build665

a 100 km long future circular collider (FCC), which would reach 7 times higher
collision energies than the present large hadron collider (LHC) complex [61].
The FCC study was motivated to develop the collider operations model thanks
to success of the LHC and HL-LHC availability studies [62, 63]. Accelerator re-
liability and performance models are also made for (i) the Tevatron hadron col-670

lider [64, 65], (ii) the planned International Linear Collider [66], (iii) the IFMIF
fusion material test facility [67], and (iv) the European Spallation Source [68].
The reliability of particle accelerators have become consistently more impor-
tant with increasing complexity of infrastructure and tightening user require-
ments [69]. For example, sustainable operations of accelerator-driven reactor675

applications depends highly on accelerator reliability [70].
A common feature of many of our reviewed studies2 is that the model was

developed for in-house software. This means that a major part of the opera-
tional reliability simulation project was spent developing software for that task.
Several tools are available for standard applications, but for advanced tasks680

the lack of reasonably user-friendly software has hindered implementation of
reliability methods [1]. In the current ELMAS version, some of these features
could be added with user-specific Java snippets. This requires programming
knowledge, which creates a threshold for a modeller to implement special fea-
tures. The key motivation of our collaboration to develop the OpenMARS was685

to limit the need for programming in model development. This helps to shift

2In-house software or model is used at least in studies [55], [57] and [59]-[68].
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the paradigm where the reliability engineer needs to have expert knowledge in
software engineering in order to model complex system behaviours.

The applicability of OpenMARS can be extended to new situations by in-
cluding new modelling techniques. One potential technique for implementa-690

tion is functional-failure identification and propagation (FFIP) [71], which is
proposed as a method for performing risk assessment on conceptual design
information before the FTA top event and the mechanisms leading to it are
known. Another possibility is to enable translation of FTA and RBD models
to a Bayesian network [72], which can then include features like probabilistic695

gates, multi-state variables, uncertainty on model parameters, and dependence
between components. Additionally, the implementation of dynamic flowgraph
methodology (DFM) [73] would allow for producing a system model, which
can be derived via algorithmic procedures to several timed fault trees. There
also exists alternative ways to implement the already built in techniques. For700

example, our current FMEA implementation is based on a German automo-
tive standard [74], but other qualitative risk classification techniques could also
be included. Outside the field of reliability modelling, for example, project
evaluation and review technique (PERT) [75] for task management and design
structure matrix (DSM) [76] for requirement engineering could be implemented705

in OpenMARS.
We developed a tabular model data format for OpenMARS to permit efficient

definition of large models. Graphical user interface (GUI) can help the manual
definition of OpenMARS models but with large and complex systems it can be
challenging to handle the visualization of the model. The tabular format has a710

strict structure, which permits computer-supported model definitions. A future
aim for OpenMARS is that various sources, such as management systems, are
used for automatic creation of the model structures.

The OpenMARS specification [12] does not define tools for the analysis of the
created models. The approach is decoupled from the calculation and open to be715

used with any analysis tool. Our implementation uses a stochastic simulation-
based calculation engine. We see several ways to develop our calculation engine
further, such as including the Latin hypercube sampling [77] for sensitivity anal-
ysis, and genetic algorithms [78] for optimization. We also consider the inclusion
of analytical solvers, such as finding of minimal cut sets of fault trees [79], be-720

cause they can reduce the calculation time in cases where their application is
possible. Additionally, research is needed for efficient handling of continuous
phenomena. Our calculation engine can currently combine models with dis-
crete (e.g. FTA, Markov model) and continuous (e.g. function model) state
spaces, but the simulation of continuously changing states has not yet been725

implemented.

7. Conclusions

This paper introduced the OpenMARS approach and summarised the basic
concepts presented in our open specification document [12]. We focused on spe-
cial features of OpenMARS by presenting how modelling techniques are defined,730
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how dependability models are created and how custom KPIs are included. We
demonstrated the potential of our approach in a simple example that captures
the core concepts of production process modelling. In the example, the com-
prehensive model for risk and performance assessment is created by combining
FTA, Markov, and function modelling techniques.735

We see high potential for our approach in the operations and performance
modelling of industrial applications. In this field the lack of user-friendly tools
has slowed down the application of this type of analysis. In many cases the
accurate modelling of the application-specific features has required creating an
in-house software. Our end goal is to develop a user-friendly tool that supports740

the advanced model definition features of the OpenMARS approach. We have
already created a Monte-Carlo method based calculation engine, which we plan
to employ in a distributed computing environment. With these tools Open-
MARS will be the basis of a highly potent modelling and analysis environment.
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