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Highlights 

 Propose a stochastic programming for infrastructure restoration under uncertainty  

 A multi-mode component repair model of higher practicality is considered 

 Propose a tailored Benders decomposition to effectively solve the model 

 Show the added value of the stochastic model against its deterministic counterpart 
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ABSTRACT 

The planning of post-disruption restoration in critical infrastructures often relies on deterministic 

assumptions such as complete information on resources and known duration of the repair tasks. In fact, 

the uncertainties faced by restoration activities, e.g. stemming from subjective estimates of resources 

and costs, are rarely considered. Thus, the solutions obtained by a deterministic approach may be 

suboptimal or even infeasible under specific realizations of the uncertainties. To bridge this gap, this 

paper investigates the effects of uncertain repair time and resources on the post-disruption restoration 

of a critical infrastructure. A two-stage stochastic optimization provides insights for prioritizing the 

intensity and time allocation of the repair activities with the objective of maximizing system resilience. 

The inherent stochasticity is represented using a set of scenarios capturing specific realizations of 

repair activity durations and available resources, and their probabilities. A multi-mode restoration 

model is proposed that offers more flexibility than its single-mode counterpart. The restoration 

framework is applied to the reduced British electric power system, and the results demonstrate the 

added value of using the stochastic model as opposed to the deterministic model. Particularly, the 

benefits of the proposed stochastic method increase as the uncertainty associated with the restoration 

process grows. Finally, decision-making under uncertainty largely impacts the optimum repair modes 

and schedule. 
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Keywords: Critical infrastructures; system resilience; restoration planning; uncertainty; stochastic 

programming.  

1. INTRODUCTION 

Critical infrastructures (CIs) such as power grids, telecommunication networks, transportation 

networks, are the backbone of our society which depends on their seamless operations to provide 

services and flows of electrical power, information, energy, materials, etc. [1-4] At the same time, 

disruptions such as malicious attacks, natural hazards, or technical accidents, become inevitable in 

today’s increasingly complex and risky operating environment [5]. They can significantly impact CIs 

performance and cause severe economic losses, such as power outages experienced by 2.5 million 

customers during the 1994 Northridge earthquake in Los Angeles and by 50 million customers during 

the 2003 North America blackout. Justifiably, then, critical infrastructure protection (CIP) has become 

a priority for all nations [2, 6-8]. 

In recent years, lessons learned from catastrophic accidents and the acknowledgment of unknown 

hazards have drawn the focus of CIP studies towards the concept of resilience. In this regard, a system 

should not only be reliable, i.e. having an acceptably low failure probability, but also resilient, i.e. 

being capable of effectively absorbing, adapting to and rapidly recovering from disruptive events [2, 

9-13]. While resilience can be characterized by different system features and attributes [14], it can be 

effectively enhanced by developing optimum plans for timely restoring the disrupted service after the 

occurrence of disruptive events. In this context, the main decision is to determine a schedule of tasks 

for recovering the failed components [15, 16].  

In planning the CI restoration, resources are often limited during the post-disruption phase, e.g. during 

the restoration of transportation networks, repair crews and equipment are usually extremely scarce in 

the immediate aftermath of an earthquake. Hence, optimization approaches are typically used to 

facilitate the identification and scheduling of effective restoration strategies for the rapid 

reestablishment of system functionality while accounting for limited amount of resources. Various 

studies have been proposed in the literature in the context of post-disruption CI restoration into a 
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mathematical programming framework. Bryson et al. [17] applied a mixed integer programming (MIP) 

approach for selecting a set of recovery subplans giving the greatest benefit to business operation. 

Casari and Wilkie [18] discussed restoration when multiple infrastructures, operated by different firms, 

are involved. Lee et al. [19] focused on a case of network restoration that involves selecting the 

location of temporary arcs (e.g., shunts) needed to completely reestablish network services over a set 

of interdependent networks. A MIP model was proposed to minimize the operating costs involved in 

temporary emergency restoration. Matisziw et al. [20] proposed an MIP model to restore networks 

where the connectivity between pairs of nodes is the driving performance metric associated with the 

network. Nurre et al. [21] studied an integrated network design and scheduling problem for the 

restoration of CI systems. The problem was formulated using integer programming and a dispatch 

rule-based heuristics is proposed for its efficient solution. They recently provided a comparative study 

focusing mainly on model complexity and heuristic dispatch rules for this problem [22]. In addition, 

González et al. [23] proposed a MIP model for optimal infrastructure system restoration considering 

joint restoration due to the geographical interdependence between multiple CI systems. Ouyang and 

Wang [24] studied and compared the effectiveness of five strategies for joint restoration of 

interdependent infrastructures. Here, they applied a Genetic Algorithm (GA) to generate recovery 

sequences. 

The studies above are based on deterministic assumptions such as complete information on the 

restoration resources and full knowledge of the activity duration. On the other hand, the restoration of 

infrastructure systems is complicated by the many decisions to be made in a highly uncertain 

environment exacerbated by the disaster itself, people’s reaction, and limited capability of information 

gathering. Several factors introduce uncertainty into the parameters of a disaster situation, i.e. 

available restoration resources and repair crews, the time duration of the repair activity of failed 

components and the required resources that should be allocated to it. For example, in post-earthquake 

power systems restoration, all on-duty personnel is likely to be immediately available in the aftermath 

of the event, but off-duty personnel may have difficulty reporting if the roads are damaged or they 

have suffered personal injury. Neglecting these uncertainties may lead to budget and schedule 

overruns, compromised performance and ineffective resource allocation in the system restoration 
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process [25]. Therefore, preparations and recovery plans must be robust with respect to many 

scenarios, for which the modeling of uncertain parameters is significant [26]. 

To the best of our knowledge, few studies have tackled uncertainty in post-disruption CI restoration. 

Xu et al. [27] has looked at restoring a power network after an earthquake by scheduling inspection, 

assessment, and repair operations, where the duration of these tasks are assumed to be random 

variables with known probability distributions. Instead of solving the stochastic program model, the 

authors used a GA to produce a priority list of repair tasks, which might be suboptimal. Extensive 

research efforts have been dedicated from the Operation Research (OR) community to the so-called 

resource-constrained project scheduling problem (RCPSP) under uncertainty [28, 29]. However, 

existing approaches from the classical RCPSP under uncertainty cannot be directly applied to the CI 

restoration planning problem (CIRPP) studied in the present paper due to the following challenges: i) 

there is a precedence network in RCPSP that defines the finish-start precedence relations among the 

project activities, whereas the relations are not given and thus should be determined in CIRPP; ii) 

RCPSP is generally based on the minimization of the makespan, i.e. the time to complete the project, 

whose calculation is trivial, while the evaluation of the objective function in the CIRPP is complicated 

by system performance quantification through a physical model, e.g. the maximal network flow model 

[21]. 

To bridge this research gap, this paper proposes a stochastic programming [30, 31] approach for the 

post-disruption CI restoration planning problem (CIRPP) which maximizes the expected system 

resilience over possible realizations of the uncertain restoration parameters. Specifically, the repair 

tasks of failed components are modeled as multi-mode activities, in which the repairs are performed 

with variable allocations of resources, and the processing duration is a function of the amount of 

allocated resources. For example, the total work content of 18 man-hours can be performed by 1 man 

in 18 hours, 2 men in 9 hours, or by 1.5 men in 12 hours. Multi-mode repair modeling offers more 

flexibility than its single-mode counterparts [21, 23, 27], and is thus of higher practicality for operators 

of CI systems. To tackle the computational burden of the stochastic program, a tailored Benders 

decomposition algorithm is proposed to solve the mixed-integer equivalence of the original model, 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6 

 

where the mixed-integer equivalent problem is obtained by scenario generation (sampling) and 

reduction techniques [32].  

The post-disruption CI restoration planning problem (CIRPP) studied in this paper is related to 

classical maintenance repair problems (MRPs) [33-37]. However, those two problems are essentially 

different in terms of the following aspects: I) The CIRPP focuses only on the restoration stage after a 

single, large-scale disruption on critical infrastructure systems, i.e., assuming the damages to the 

system components have occurred. Conversely, MRPs usually cover the whole failure and repair 

process considering component failures as the main source of uncertainties; II) the CIRPP focuses on 

the identification and scheduling of effective restoration strategies for the rapid reestablishment of 

system functionality while accounting for limited amount of repair resources. Conversely, MRPs 

usually focus on the available strategies for system maintenance and repair, e.g., different choices of 

the maintenance periods for the system components and of the number of repair teams to keep on site 

[35]; III) the CIRPP is considered as a planning problem and thus studied in a mathematical 

programming and optimization framework in the literature. Conversely, MRPs typically represent the 

failure and repair processes from a statistical point of view, describe the processes through stochastic 

models, e.g., using failure and recovery rates, and adopt simulation methods like Monte-Carlo [34, 35]. 

The main contributions of the present study lie in the following aspects: i) a two-stage stochastic 

programming model is proposed for the post-disruption CIRPP for system resilience, which, to the 

best knowledge of the authors, is the first effort in the literature to investigate the effects of uncertainty 

on the post-disruption CI system restoration by OR methods; ii) the modeling of the multi-mode repair 

of failed components offers more flexibility than its single-mode counterparts, and is thus of higher 

practicality for operators of CI systems; iii) a tailored Benders decomposition algorithm is proposed to 

effectively solve the mixed-integer equivalence of the proposed stochastic program model. 

The remainder of this paper is organized as follows. Section 2 introduces the multi-mode CI 

restoration planning problem. Section 3 formulates it as a two-stage stochastic programming model. In 

Section 4, the proposed solution methodology is presented. Section 5 illustrates the numerical results 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

7 

 

on a test network based on the British electric power transmission system. Finally, concluding remarks 

and directions for future research are given in Section 6. 

2. POST-DISASTER RESTORATION PROBLEM 

In this study, CI systems are modeled as networks, in which the movement of commodities 

corresponds to flows and the service is provided if the flows exceed the desired supply level. The CI 

network is defined as a collection of nodes and links; commodities are exchanged across nodes along 

paths in the network. Network flow problems have been extensively studied in the literature and 

fundamentals can be found in [38]. Mathematically, an infrastructure is represented as an undirected 

graph        comprising a set of nodes (vertices)   connected by a set of links (arcs)  . The network 

nodes are classified into supply nodes   , transshipment nodes   , and demand nodes    (      

    ). Each arc     is characterized by flow capacity   
      

 , and each supply node      

has a supply capacity  ̅     
  in the time period  ; each demand node      has a demand  ̅   

  
  in time period   describing nominal operations. System performance, i.e. system service level     , 

is measured as a function of the percentage of demand that can be met throughout the system at time  . 

     
∑   ̅            

∑  ̅      

  (1) 

where      is the amount of unsatisfied demand at node      at time  , and we have        

 ̅  . 

The main system components, i.e. supply units, transmission lines, and relay nodes, may be subject to 

damage stemming from natural disasters or manmade malicious attacks. The proposed restoration 

planning model aims to reestablish connectivity between supply and demand nodes in a disrupted area 

by repairing damaged components over a fixed planning horizon, so that the interruption of services at 

the demand nodes is minimized and system resilience is maximized. Disruptions are modeled by the 

removal of a subset of arcs,     , and a subset of nodes      from the network. The arcs and 

nodes in sets    and    become non-operational immediately after the disruption, and system 

performance deteriorates to the minimum level. Successively, system restoration is planned and 

initiated for ensuring system service by scheduling the individual repair tasks. The planning horizon 
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for restoration is divided into discrete time periods, i.e.,      , and     identifies the planning 

instant. The evolution of system performance versus time, i.e. the restoration curve, typically 

quantifies the level of system resilience following disruptions [10, 14, 24]. Resilience can be measured 

by the cumulative system service that is restored during the restoration horizon, normalized by the 

expected cumulative system functionality supposing that the system has not been affected by 

disruption during this time period [10, 39]: 

     
∑ [         ] 

   

∑ [          ] 
   

      (2) 

where       denotes the targeted system performance if not affected by the disruption, and it is 

assumed to remain invariant in this study for simplicity. Duration   is defined as the timespan 

necessary to restore the system functionality to the same level as the original system. The restoration 

horizon evolves in discrete time periods; therefore, Eq. (2) contains the summation operator. Note that 

     is in the range of [   ] since            always hold during the restoration process. Then, the 

system resilience loss is defined as             .  

The restoration of a damaged component           , can be performed by variable allocations of 

resources   , and consequently the repair duration, i.e. the time to repair,    is a function of such 

allocation, i.e.         . As exemplified in Figure 1, the repair duration is measured in man-hour 

units defined as the amount of work performed by the average worker during one hour. The higher the 

number of crews allocated per hour, the shorter repair time for the damaged component, and    shows 

a saturation point at which further allocating repair crews does not expedite the repair process. 

Moreover, there is a minimum amount of resources required for initiating the repair process of a 

damaged component. The relationship          can vary across different components. In practice, 

this information can be obtained from the historical repair data of the considered CI system. 
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Figure 1.  Repair time as a function of the number of allocated repair resources per hour. 

In this study, the multi-modal restoration of the damaged component   is represented by pairs of repair 

duration and allocated resources, i.e.   ̃ 
    

                  , for each discrete repair mode 

 , where    is the number of modes in which the repair task of   can be implemented. System 

operators tend to allocate more resources, e.g. repair crews and equipment, to accelerate the restoration 

of those components which are deemed as critical for the recovery of system functionality. Multiple 

alternatives usually exist for executing the repair activity based on the combination of the repair modes 

to which resources are allocated. 

The repair time  ̃ 
  for the repair mode        of component   is a stochastic quantity and is 

modeled by a random variable that may follow diverse probability distributions. Following the most 

common choice for the probability distribution of activity time [40], the time to repair is Weibull 

distributed: 

  ̃ 
          {

  

  
(
 

  
)
    

        
         

                                               

  (3) 

where    is the shape parameter and    is the scale parameter,         . For the multi-modal repair 

activity   ̃ 
    

  , the assignment of external repair resources to a damaged component leads to a 

reduction of the expected repair time of the component [25]. Hence, the mean time to repair (MTTR) 

of component   can be expressed as a function of the allocated resources   
 : 

     
    

       
        

   (4) 

where   is the gamma function and   
       

    represents the mean of a Weibull random variable, 

and      can be any non-increasing function of   
  which account for the decreasing repair efficiency 
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as more resources are allocated to the repair task. In this study,      (  
      

   )     
 

   
   , 

where   
    and   

    are the upper and lower bounds of the expected time to repair for component   

and   is the saturation parameter, reflecting the fact that each extra unit of repair resources allocated to 

mode   has a smaller effect than the previous one due to the decreasing efficiency of recovery 

activities when the concentration of forces grows. Without loss of generality, any other appropriate 

relationship can be used to model the saturation of the repair efficiency. Classic parameter estimation 

techniques such as maximum likelihood and bayesian methods can be applied for calibrating the 

parameters of the Weibull distribution for the component recovery times, i.e., Eq. (3), and of the 

relation function, i.e., Eq. (4), based on the historical statistics of the component recovery process.. 

The total amount of repair resource units that can be allocated to the restoration activities at each time 

period   is denoted by  ̃ ,    , which is usually uncertain at the moment of planning the restoration, 

i.e. at    . Therefore, the prediction of  ̃  for     should be made by the decision maker at     

and it is usually based on expert judgement and past experience. In this work, the prediction is 

provided in terms of the minimum, the most-likely and the maximum values of  ̃ . Based on the 

aforementioned representation, the triangular probability distribution is a natural and relatively simple 

description of the uncertainty associated with the subjective estimation made by the decision maker: 

  ̃ 
     

    
    

   

{
 
 

 
 

      
  

   
    

     
    

  
       

      
 

    
    

   
    

     
    

  
       

      
 

 (5) 

where   
 ,   

 ,   
  are the minimum, most-likely and maximum values of  ̃ , respectively, which are 

estimated by system operators.  

In summary, for a disrupted CI system             , given (i) a set of repair execution modes 

       for each damaged component        , and (ii) a set of uncertainty characterized by 

activity duration  ̃ 
    ̃ 

          and (iii) by total available repair resources  ̃    ̃ 
     

    
    

  , 

the multi-mode CIRPP attempts to determine the optimum combination of repair modes and the 

associated starting time under each uncertainty realization which minimizes the expected interruption 

of services at all the demand nodes and maximize the resilience of the system.  
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The multi-mode CIRPP involves determining a repair mode for each failed component, independently 

of uncertainty scenario, and assigning a starting time to each repair activity under each scenario. The 

decision process in the CIRPP is a stage-wise scheduling of repair activities subject to resources 

constraints at each time according to selected execution modes. As the (static) mode selection 

variables are common to all uncertainty scenarios and do not depend on observed values of random 

parameters  ̃ 
  and  ̃ , the problem can be viewed as a two-stage stochastic programming with 

recourse in which the variables related to the repair mode are determined in the first stage and the 

repair activities are scheduled in the second stage based on the first-stage decisions. 

3. TWO-STAGE STOCHASTIC PROGRAMMING FORMULATION 

The stochastic multi-mode CIRPP model employs the following notation. 

A. Indexes, parameters and sets 

       An undirected graph   comprising a set of nodes   connected by a set of links   

representing the original network system before the disruption. 

         The sets of supply, transshipment and demand nodes, respectively,            

   The set of identified damaged links after a disruption,      

   The set of identified damaged nodes after a disruption,      

  The total number of time periods in the restoration planning 

  
    The capacity of line     

 ̅   The supply capacity in supply node      at time   

 ̅   The demand at node      at time   

   The number of mode for repairing damaged line      

   The number of mode for repairing damaged node      

  
  The number of repair resources allocated to a damaged line      under mode   

     

  
  The number of repair resources allocated to a damaged node      under mode 

       

 ̃ 
  The time duration expected to repair a damaged line      under mode        

 ̃ 
  The time duration expected to repair a failed node      under mode        

 ̃  The total amount of repair resource units that can be allocated to restoration activity at 

time   

  Index of nodes,     

  Index of lines,     

  Index of nodes and lines,         

  Index of repair model 

  Index of the uncertainty scenario which is defined as a realization of all the uncertain 
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parameters 

B. Decision variables 

  
  Whether or not a damaged component         is selected to be repaired under mode   

     Whether or not a damaged component         is assigned to repair capacity at time   

under scenario   

     Whether or not a failed node        or a failed arc        is being processed by 

repair crews at time   under scenario   

     Operational state (functional/failed) of node       or arc       at time   under 

scenario   

     The amount of flow passing through arc     at time   under scenario   

     The amount of generated flow at node      at time   under scenario   

      The amount of unsatisfied demand at node      at time   under scenario   

 

The problem is formulated as a two-stage stochastic programming with recourse. The general 

formulation of a two-stage stochastic linear program with recourse is [32]: 

   
 

        [         ] 

s.t.          

(6) 

where   is the cost vector,   [  
    

 ] is the first-stage decision variable vector,   is the coefficient 

matrix of the first stage variables,   is the right hand side vector and   is the domain of variable  . 

The function           is the second-stage value function (or recourse function) defined as [41]: 

          {

   
    

         

                   

      

}       (7) 

where      [                              ] is the second-stage decision variable vector and   is its 

domain,      is the recourse penalty coefficient,       is the coefficient matrix of the first stage 

variables in the second stage problem’s constraints (called technology matrix), and      is the 

coefficient matrix of the second stage variables in the constraints (called recourse matrix);      is a 

realization of random parameters [ ̃ 
   ̃ ], indexed by  , and   is the scenario index set. The second-

stage problem in Eq. (7), wherein decisions are made after the uncertainty on  ̃ 
  and  ̃  is cleared, is 

referred to as the recourse problem. 

Specifically, the stochastic programming model of the CIRPP with the objective of minimizing the 

expected system resilience loss, i.e. maximizing resilience, is: 
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            ̃    (8) 

s.t.  

∑     
          

 ∑     
          

                 (9) 

∑     
          

 ∑     
          

              (10) 

∑     
          

 ∑     
          

        ̅              (11) 

            ̅              (12) 

 ̅                  ̅              (13) 

                     
                             

              (14) 

∑   
 

  

   

                  (15) 

∑    

 

   

 ∑   
 

  

   

                   (16) 

          ∑    

 

   

                     (17) 

                                  (18) 

∑     

 

 ∑    

 

 ∑ [             ]

 

                   (19) 

∑    

 

 ∑    
   

 

  

   

                   (20) 

∑     ∑   
   

 

  

          

          (21) 

                               (22) 

  
                              (23) 

                                         (24) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14 

 

The system resilience loss under each scenario in the objective function (8) is calculated by Eqs. (1) 

and (2). Constraints (9)-(14) are the constraints for the operation of general infrastructure network 

systems, i.e. constraints (9)-(11) guarantee the flow balance at generation, transship and demand nodes, 

respectively, constraints (12) ensure that the flow generated at a supply node does not exceed its 

capacity if it is operational, constraints (13) ensure that the amount of flow delivered to a demand node 

does not exceed the requested demand, and constraints (14) force the arc flows to comply with  

capacities taking into account that a flow can exist only if the arc and its ending nodes are functional. 

Furthermore, constraints (15)-(21) capture the relationships among the restoration scheduling 

decisions. Constraints (15) ensure that only one repair mode is chosen for each damaged component. 

Constraints (16) state that if a damaged component is selected to be repaired, then a repair resource 

must be assigned to it. Constraints (17) enforce that a damaged component assigned to a repair crew is 

either under repair or functional, i.e. its restoration is completed. Constraints (18) ensure that restored 

components do not fail again over the planning horizon. Constraints (19) states that components are 

immediately available as soon as the repair workforce completes the task. Moreover, constraints (20) 

ensure that once the restoration of a component is started, it continues at least for the estimated time to 

repair duration for the chosen repair mode. Constraints (21) limit the use of available repair resources 

at each time unit. Finally, constraints (22)-(24) describe the binary nature of the decision variables. 

The above CIRPP model (8)-(24) is most applicable to single-commodity infrastructure systems which 

include, for instance, power, water/waste water, natural gas, and supply chain systems. It conveniently 

extended to multi-commodity systems by adding different indexes to the network flow variables 

representing different types of commodities, e.g., models in [23], [42] and [43], and by accounting for 

additional constraints of multi-commodity systems such as the interdependency among the flows of 

different commodities [38]. 

4. SOLUTION METHODOLOGY 

A. Scenario Generation and Reduction  

Owing to the presence of continuous random variables, i.e. Weibull-distributed repair times for each 

damaged component and triangular-distributed repair resources at each time step, the stochastic 
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parameter vector of the proposed model   has an infinite support. To obtain a solution to the problem, 

the stochastic parameter vector   needs a discrete representation which restricts the possible outcomes 

to a finite set. In this study, Latin hypercube sampling [44] is applied to replace   via a scenario tree 

approximation which builds a finite and large set of uncertainty scenarios,  , over which a discrete 

probability distribution   is defined. The Latin hypercube sampling guarantees that the whole range of 

the random variables is spanned. For a sample size of  , the Latin hypercube sampling technique 

selects   different values of the random variables by dividing their range into   disjoint intervals. 

Then,   scenarios are built by shuffling and pairing these values; the probability of each scenario is 

   .  

The computational tractability of the stochastic optimization model is achieved by reducing the 

number of scenarios while still preserving the essential features of the original sampling set. In other 

words, we seek a reduced scenario set that yields an optimum solution whose value is close to the 

solution of the original optimization problem. Consider the uniform discrete probability distribution   

over the sampled scenario set  , the scenario reduction problem amounts to determining a scenario 

subset      of cardinality    and assigning new probabilities    to the reduced scenarios such that 

[32]: 

            
 

{
 

 

∑               

   
     

                       ∑        

     

         ∑       

   

           

}
 

 

 

(25) 

where          is called Kantorovich distance and is the most common probability distance used in 

stochastic programming,    and     represent the probabilities of scenarios   and    in sets   and    

according to probability distributions   and   , respectively, and         is a nonnegative, continuous, 

symmetric function, often referred to as cost function and is represented by a norm defined in the 

scenario space. Further details about Kantorovich distance can be found in [45]. 

The above problem can be solved through diverse techniques; in this paper, the fast forward selection 

algorithm is selected because the reduced sets defined by this heuristic algorithm perform well in 
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practice [46, 47]. The development and application of the fast forward selection algorithm are detailed 

in [32] and in [46]. 

In summary, the infinite support of the stochastic parameter vector of the proposed model   is firstly 

reduced to a sample size of   by Latin hypercube sampling and then to a computationally tractable 

number of scenarios,         , using the fast forward selection algorithm. The scenario reduction 

process implements the fast forward selection method and ensures that the reduced scenario set has the 

closest probability distance with the original sample space by solving the Kantorovich distance 

problem (25). Therefore, the reduced scenario set has the theoretical guarantee to be an unbiased 

representation of the original probability distribution.  

B. Tailored Benders Decomposition Strategy 

By sampling the scenario tree and reducing it to a tractable number of scenarios, the proposed 

stochastic programming is converted to its deterministic mixed-integer programming equivalence. As 

a result of this, a Benders’ decomposition method can be applied to its solution which offers an 

efficient strategy for large-scale MIP. As opposed to the original problem, the relaxed master problem 

(RMP) and the Benders’ subproblem (SP) in the Benders’ decomposition are much more tractable. 

This section proposes a tailored Benders decomposition algorithm for the effective solution of the 

CIRPP (8)-(24). 

In the classic Benders decomposition framework [48], an original MIP problem is transformed into an 

RMP and an SP that are iteratively solved and the solution of one problem is given as input to the 

other, until the optimal solution is achieved. At each iteration, there are two types of cuts that can be 

generated based on the solution of the SP and then are added to the RMP: i) The first type is optimality 

cuts that attempt to increase the lower bound of the minimization problem (or the upper bound of the 

maximization problem), which is obtained from the RMP. ii) The second type of cuts is feasibility cuts, 

which are used to remove the RMP solutions that are not feasible in the SP. Instead of using only one 

SP at each iteration, a set of subproblems are formulated and solved, one for each of the   scenarios. 

Thus, multiple cuts can be generated and added into the RMP at each iteration. showed that, By doing 

so, the computational performance of the algorithm improves [31]. Given an instance of the binary 
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decision vector  ̅  [ ̅ 
   ̅     ̅      ̅  ], the SP associated with problem (8)-(24) under scenario   is 

formulated as: 

SP( ̅ )  

   ∑ ∑      

    

 

   

 (26) 

s.t. (9)-(14) for one specific scenario   and        ̅   (27) 

Since SP( ̅ ) (26)-(27) is a pure linear program, the strong duality theory holds, and its dual problem, 

called dual subproblem DSP( ̅ ), can be compactly written as:  

DSP( ̅ )  

        ̅     (28) 

s.t.      (29) 

where   is the right-hand side vector of (27),   is the left-hand side coefficient matrix of (27),    is 

the dual variable vector corresponding to constraint (27) and   represents the dual feasible region to 

SP( ̅ ). The set of extreme points of   is denoted as        , and the set of extreme rays of   is 

denoted as       . In the iterative Benders decomposition, the RMP is formulated as follows: 

RMP  

   
 

∑    

 

 (30) 

s.t.   

           ̅ 
            (31) 

          ̅ 
            (32) 

(15)-(24) (33) 

where    is the probability associated with scenario   and    is new introduced slack variables; In (31) 

we have  ̅ 
         , for     , and (31) defines the set of currently available Benders optimality 

cuts, and it is obtained via solving the DSP( ̅ ) for all the scenarios     in the previous iterations; In 

(32) we have  ̅ 
        , for     , and (32) defines the set of currently available Benders 

feasibility cut. At a given iteration of the Benders decomposition, RMP is solved first to obtain the 

optimal solutions of  ̅ 
 . Then, the optimal solutions of  ̅ 

  are used to solve DSP( ̅ 
 ) and generate the 
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optimal solutions (or the extreme ray if DSP( ̅ 
 ) is unbounded) of the dual variables  ̅ 

  and a new 

optimality cut in the form of (31) (or feasibility cuts in the form of (32)) to include into the RMP for 

each scenario    . The objective of the RMP provides a lower bound to the optimal solution of the 

original problem (8)-(24), and the probability-weighted sum of DSP( ̅ 
 ), i.e. ∑    (    ̅ 

 ) ̅ 
 , for 

all the scenarios provides an upper bound. 

For the proposed CIRPP model, it can be observed that: 

Proposition 1. For a given binary variable vector  ̅  [ ̅ 
   ̅     ̅      ̅  ]  which satisfy the 

constraints (15)-(24), the Benders’ primal subproblem SP(  ̅ ) (26)-(27) is always feasible and 

bounded, i.e.    , and the dual subproblem DSP( ̅ ) (28)-(29) is always feasible and bounded and 

it has at least one optimum solution. 

Proposition 1 is easily proven by noticing that the solution characterized by all network flow variables 

(         ) equal to 0 and by demand shedding equal to the overall demand (       ̅  ) is always 

feasible. This property circumvents the need to generate feasibility cuts in the decomposition 

procedure, therefore only optimality cuts are generated and added to the RMP in each iteration, and 

the convergence of the algorithm is accelerated. 

The detailed procedure of the proposed Benders decomposition procedure encompasses the following 

steps: 

Benders decomposition algorithm 

Step 0.            , iteration counter     

Step 1.   Solve the RMP (30)(31)(33) to obtain its optimal solution   ̅   ̅  ,    ∑    ̅   

Step 2.   For each     

Solve the DSP  ̅   (28)-(29), obtain its optimal solution  ̅  and objective value 

     ̅   ̅  

End for 

   ∑        ̅   ̅    

Step 3.   If         (where   is a predefined tolerance) then stop. Otherwise,  

(a) Add a total number of     Benders optimality cut            ̅ 
       to the 

RMP (30)(31)(33) 
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(b)       

Go to Step 1. 

 

The RMP (30)-(33) is a mixed integer nonlinear programming owing to the products of binary 

variables, i.e.                    and       
 , in constraints (14) and (21) of the original CIRPP. 

According to [49], both nonlinearities can be conveniently replaced by equivalent linear expressions 

by introducing two sets of binary variables      and     
  which satisfy the constraints: 

            ,             ,                  (34) 

                                   (35) 

    
           

    
           (36) 

    
         

            . (37) 

The new binary variables      and     
  replace the products of                    and       

 , 

respectively, in the original RMP formulation (30)-(33). Therefore, the RMP becomes a mixed-integer 

linear programming that can be efficiently solved by available off-the-shelf branch-and-cut software, 

e.g. CPLEX [50]. 

5. CASE STUDY 

The proposed CIRPP is exemplified with reference to a test infrastructure network based on the British 

high-voltage electrical power transmission system [51, 52]. The original power system includes 400kV 

and 275kV transmission levels, and the reduced representative network comprises 29 nodes and 99 

lines, as shown in Figure 2. The network operation data can be found in [52]. For ease of 

representation, this analysis considers constant generation capacities and load levels, and only 

transmission lines can be damaged following a disruption. The number of repair crews is the limited 

resource allocated to repair damaged lines. Without loss of generality, the shape parameters of the 

Weibull distribution of the repair time for all components are assumed to be equal to 5, with which the 

Weibull distribution is generally a symmetric and bell-shaped curve. Each damaged line can be 

repaired in two modes, i.e.           , with one or two allocated repair crews, i.e.,   
    or 2, 

and the associated expected repair times are   
             and   

           , respectively. 
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As suggested in [53], the MTTR for transmission line restoration is around 10 hours under the 

assumption of normal repair workforce. 

The considered disruption involves three levels of system failures causing direct damage and loss of 

functionality to 5, 10, 15 transmission lines (            ). These levels of damage reflect the 

magnitude of occurred events, e.g. a power blackout in South Australia on October 27, 2016 was 

caused by severe wind that brought down 6 high-voltage power lines [54]. All the restoration cases are 

analyzed in a 32-h restoration planning horizon, which is divided into four 8-hours shifts. The chosen 

planning horizon ensures that all the failed components can be repaired. The parameters of the 

triangular distribution of the available repair crews during each shift are given in Table 1. The number 

of available repair crews and the associated uncertainty in a shift are always larger or equal to the 

same values during earlier shifts. This assumption takes into account the fact that on-duty repair crews 

are usually available right after the disruption, while all off-duty resources cannot be available 

immediately; rather their number increase with time [55]. The available number of repair crews within 

each shift is assumed to be constant. In order to investigate the benefits of using the stochastic model 

as opposed to the deterministic model that considers only expected values of activity durations, two 

problems are considered for each disruption case: 
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Figure 2.  The test network model of the British electric power transmission system. 

Table 1.  Parameters of the triangular probability distribution of the available repair crews in each shift 

i-th shift   
    

    
  

1 2.0 3.0 4.0 

2 4.0 5.0 6.0 

3 6.0 8.0 10.0 

4 10.0 12.0 14.0 

 

I) Stochastic program problem (SPP): 1000 independent uncertainty scenarios are generated using the 

Latin hypercube sampling method [44]. With the use of the fast forward reduction algorithm [32], the 

number of the uncertainty scenarios is reduced to 5, then, the corresponding equivalent MIPs are 

solved. 

II) Expected value problem (EVP): the deterministic counterpart of the stochastic program is solved, 

which considers only the expected values of the repair parameter, i.e. expected activity durations and 

expected available repair crews in each shift.  

The aim of solving these two problems is to quantify the value of the stochastic solution (VSS), 

defined as the difference between the stochastic solution and the expected value solution [31]. 

Specifically, let           [      ] be the optimum solution value of the SPP where        

represent the objective   ̃    in (8),                       and        [         ] be the 

solution and expected solution value of EVP, then, the difference           is referred to as the 

value of the stochastic solution (VSS) [56]. Furthermore, in this case study, we simply the objective 

function (8) to   ̃    ∑ ∑          

 
    by ignoring all the constant items in Eqs. (1) and (2) in 

order to retain the dimension. 

The restoration problems for different disruption cases are solved using the proposed Benders 

decomposition method, in which the RMP and DSP are solved by CPLEX [50]. Figure 3 shows the 

objective function values, i.e. the cumulative unsatisfied demand (CUD), for all the six instances, i.e. 

SPP and EVP under three disruption cases (            ). The VSS is 0.007 GWh, 0.215 GWh and 

0.386 GWh, for disruption scenarios             , respectively. Given a household consumes 10.4 
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KWh/day electricity in the UK [57], this is equivalent to the daily electricity consumption of around 

673, 20’673 and 37’115 household, respectively. This demonstrates an obvious benefit in using the 

stochastic method over the deterministic one based solely on the expected uncertain parameters.  

 

Figure 3.  Objectives values and VVSs under different disruption cases 

Figure 4 contrasts the restoration curves of the system, i.e. evolution of the system performance level 

with time, under the five reduced uncertainty scenarios S1-S5 in the SPP against the restoration curve 

in the EVP for each of the three disruption cases             . In Figure 4, the negative part of the 

 -axis (Restoration Period   ) indicates a period before the disruption, Restoration Period   

marks the occurrence of the disruption, and the remaining periods time the repair process. The 

performance level in the  -axis represents the percentage of the total demand that can be satisfied. As 

expected, the loss of system performance increases with the number of damaged transmission line, i.e. 

0.37% for       , 3.54% for        , and 5.65% for        . The small loss of system 

performance even in the relatively large disruption         is the result of redundant transmission 

lines that compensate for the offline damaged lines. The behavior of small loss of system functionality 

can be observed more clearly by combining the system restoration curve and the detailed restoration 

schedule, e.g. the curve of EVP solution in Figure 4(b) (diamond-dotted line) and its Gantt chart in 

Figure 5. Repairing only two failed lines, i.e. L22 and L81, leads to a full restoration of the system 

functionality. In terms of the comparison between SPP and EVP solutions, Figure 4 shows that in each 

disruption case, i.e.,             , most of the restoration curves under scenarios S1-S5 in SPP 
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outperform the restoration curve in EVP (diamond-solid lines), and it is more evident for large 

disruptions. 

 

 

Figure 4.  System restoration curves under uncertainty scenarios S1-S5 in SPP and restoration curve in EVP for 

disruption cases (a)       , (b)        , (c)        . 

0 5 10 15 20

0.997

0.998

0.999

1

Restoration Period [h]

P
e

rf
o

rm
a

n
c
e

 L
e

v
e

l

 

 

S1

S2

S3

S4

S5

EVP

(a)

0 5 10 15 20

0.96

0.97

0.98

0.99

1

Restoration Period [h]

P
e

rf
o

rm
a

n
c
e

 L
e

v
e

l

 

 

S1

S2

S3

S4

S5

EVP

(b)

0 5 10 15 20
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

Restoration Period [h]

P
e

rf
o

rm
a

n
c
e

 L
e

v
e

l

 

 

S1

S2

S3

S4

S5

EVP

(c)



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

24 

 

 

Figure 5.  Gantt chart of the detailed restoration process of the EVP solutions for disruption case        . 

 

 

Figure 6.  Gantt chart of the detailed restoration process of the SSP solutions for the disruption case         

and for one of the uncertainty scenarios S2. 

Figure 6 shows the Gantt chart of the detailed restoration of the SSP solutions for the uncertainty 

realization S2 for the disruption case        . By comparing Figure 6 with Figure 5, one can find 

that restoration schedules from SSP and EVP are very different. For example, in EVP, lines L22 and 

L81 are repaired first in mode 1 and 2, respectively, whereas in SSP lines L17 and L81 are repaired 

first both in mode 2. In other words, consideration of stochasticity in system restoration planning 

could result in quite different repair modes and time schedule compared to its deterministic 

counterpart. 

Furthermore, we investigate what is the system functionality loss for the solutions of the EVP under 

each of the five uncertainty scenarios (in terms of the repair duration and available repair crew) other 
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than the expected value scenario. Figure 7 shows the CUDs of the EVP solutions under the uncertainty 

scenarios S1-S5 for the disruption case (a)       , (b)         and (c)        , and they are 

compared with the corresponding CUD of the SPP solutions. Figure 7 demonstrates that the SPP 

solutions result in smaller CUDs than their corresponding EVP solutions in most of the scenarios. 

Only in four cases, i.e., S2, S5 for       , S3 for         and S1 for        , the SPP and the 

EVP solutions entail the same CUDs. These results confirm that applying the EVP solution to each 

scenario considered in the stochastic problem overestimates the expected objective value CUD, 

demonstrating the suboptimality of EVP solutions for the CIRPP under uncertainty. 
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Figure 7.  Comparison of CUDs of EVP solutions and SPP solutions under different uncertainty realizations for 

disruption case (a)       , (b)         and (c)        . 

To study how the solutions of the SPP change under different degrees of uncertainty of the random 

parameters, Figure 8 shows the CUDs and VSSs of the SPP for increasing variances of the Weibull 

distribution of the repair durations for the disruption case        . Larger values of the shape 

parameter   represent lower variances, and the expected values   
  (    

  )     for mode 1 and 

  
  (    

  )    for mode 2, are fixed. The EVP solution value is the same for all the points in 

Figure 8, i.e. CUD     GWh. Figure 8 shows that the objective value CUD (to be minimized) of 

SPP increases as the shape parameter   increases (i.e. the variance decreases), resulting in decreasing 

VSSs. This is not unexpected because when the variance approaches zero, the VSS is also close to 

zero, and the random parameters become deterministic. On the other hand, increasing the variance 

(smaller values of  ) of the Weibull distribution of the repair times results in generally decreases 

CUDs and increases VSSs. In other words, as the uncertainty associated with the system restoration 

planning grows, it is more beneficial to apply the proposed SPP. 

Finally, the computational performance of the proposed solution methodology is studied on a machine 

equipped with 16 GB of RAM memory and a quad-core 3.6 GHz Intel I7-4790 processor. The 

proposed algorithm is implemented using OPL and ILOG script in CPLEX Studio IDE, and CPLEX 

12 solvers [50] are used to solve the linear RMP and DSP problems. The results for increasing 

disruption scenarios, i.e.             , are presented in Table 2. Columns 2 and 3 provide 

information on the problem size, i.e., the number of continuous variables, number of binary variables, 
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and number of constraints. Column 4 shows the number of iterations in the Benders decomposition. 

The total time needed to solve the problem is given in Column 5. The problem size, particularly the 

number of binary variables and the number of constraints, increases proportionally with the number of 

damaged lines     , resulting in increasing iterations and total computational time. The computational 

time increases exponentially with the size of the problem, which is a common feature of branch-and-

cut algorithms, like the one used in this work [50] when addressing MIP problems. 

 

Figure 8.  CUDs and VSSs of the SPP under different shape parameters of the Weibull distribution of the repair 

durations, i.e. different levels of uncertainty, for the disruption case        . 

Table 2.  Computational performance of the proposed branch-and-cut algorithm. 

Instance 
Problem size 

# iterations Computational time (s) 
# cont. variables # bin. variables # contraints 

       36331 3250 27946 56 175 

        36341 6500 35251 71 896 

        36351 9750 42556 103 5120 

 

6. CONCLUSIONS 

This paper proposes a two-stage stochastic programming model for CI restoration planning in which 

post-disruption restoration activities occur in a highly dynamic environment and are subject to 

considerable uncertainty. The objective of the model is to minimize the expected loss of performance 

over all possible realizations of the random parameters, and thus to maximize system resilience. In 
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particular, multi-mode restoration activities are introduced, whose tasks can be performed by different 

allocations of resources and whose duration is, therefore, a function of such allocation. The multi-

mode modeling approach offers more flexibility than its single-mode counterparts, and is more 

practical for the operators of CI systems. Continuous random variables are sampled using the Latin 

hypercube technique, and the number of discrete uncertainty scenarios is reduced to a tractable size by 

applying the fast forward selection algorithm. A tailored Benders decomposition algorithm is applied 

to solve the resulting mixed-integer equivalence of the original stochastic CIRPP problem.  

The proposed approach is applied to a network model based on the British electric power transmission 

system. The positive values of VSS for the considered disruption scenarios demonstrates the clear 

benefit of the stochastic method over the deterministic one, which solely employs the expected values 

of the uncertain parameters. The optimum solutions in terms of repair modes and schedules are largely 

impacted when uncertainty is accounted for, which further highlights that deterministic restoration 

processes are suboptimal. Finally, increasing variances of the random parameters in the repair process, 

i.e., higher levels of uncertainty, results in large values of VSS. These results highlight the need of 

utilizing a stochastic model for post-disruption restoration planning for critical infrastructure systems, 

especially when considerable lack of knowledge in decision-making exists. 

Two-stage stochastic programming models have always been known as computationally challenging, 

especially when discrete variables in the second stage problem exist [58, 59]. Hanasusanto et al. [59] 

shows that linear two-stage stochastic programs with fixed recourse are #P-hard even if the random 

problem data is governed by independent uniform distributions. The computational time of the 

proposed algorithm increases exponentially with the problem size and calls for techniques to ensure 

the applicability of the proposed restoration planning problem to large-scale power systems. To this 

aim, the study of efficient solution methodologies for two-stage stochastic programming with discrete 

recourse is an active field of research in mathematical optimization [60]. Scenario reduction 

techniques, e.g., the fast forward section algorithm used in this paper, have proven to be effective 

when the original deterministic optimization model is already large scale. Furthermore, disjunctive 

decomposition [61], can be a promising solution method to test for stochastic CIRPP problems. 
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The proposed stochastic programming model for the CIRPP problem presents a flexible framework 

within which other decision constraints and planning goals can be integrated. For instance, other 

planning considerations might include ad hoc cost models for the repairing of failed components, the 

impact of different priorities of demand nodes, and combination of the construction of new 

components and the repair of failed ones [62]. Moreover, the CIRPP problem in the present study 

assumes that the selection variables of the repair modes of failed elements are determined at the time 

of system planning and cannot be altered henceforth. Relaxation of this assumption to adjustable 

repair mode decisions might be useful in some applications, which makes the problem become a 

computationally more expensive multi-stage stochastic programming [63]. Investigation in this thread 

is open to future work. Finally, it would be interesting in our future research to conduct statistical 

sensitivity analysis of the proposed two-stage stochastic programming (e.g., by adopting so-called 

response surface methodology [64]) when there is incomplete information about the true probability 

measures of the uncertain parameters, which may provide decision-makers with valuable information 

of the obtained optimum solutions with regard to different probability measures of the uncertain 

parameters (i.e., durations of repair tasks and available resource). 
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