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Abstract

In recent research, the major focus on reliability-redundancy allocation problems has been on the possi-

bility of using more efficient and effective algorithms to improve convergence speed and solution accuracy

of the optimization model. But the model of reliability-redundancy allocation itself has not been inves-

tigated further. In this paper, we try to simplify the optimization model of the reliability-redundancy

allocation problem by using the theory of survival signature. To achieve this, the information of the struc-

ture of a system is summarized by the survival signature. The reliability-redundancy allocation problem

is formulated as an optimization problem with the objective of maximizing system reliability under some

constraints. A new adaptive penalty function is proposed to transfer the constraint optimization problem

to an unconstraint one. Then a heuristic algorithm called stochastic fractal search is applied to solve the

unconstraint optimization. Moreover, the (joint) structure importance is used to measure the relative

importance of components to concretely allocate the redundancy level of each component. The proposed

method only needs to calculate the survival signature once, reduces the dimension of the optimization

problem and provides insight into system reliability-redundancy allocation.

Keywords: System reliability, Survival signature, Reliability optimization, Redundancy allocation.

1. Introduction

Rapid progress in science and technology in recent years has made today’s engineering systems more

and more powerful and complex. However, uncertainty and risk of system failure in high-tech industrial

processes have increased due to high operating speeds, large loads and severe working conditions. Fur-

thermore, system failures (e.g. breakdown of a nuclear power plant, malfunction of an air traffic control

system or miscommunication in internet systems) are resulting in greater economic losses and more sig-

nificant effects on society than ever before. As a consequence, it becomes even more important to perform
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system reliability optimization in order to ensure safe and reliable operation of the system to get a good

balance between costs and risks in engineering practice.

Generally, there are two approaches that can be used to optimize system reliability. The first way is

increasing component reliability (reliability allocation), the second way is using redundant components

in parallel (redundancy allocation). Unfortunately, these two approaches do not always yield competitive

results. For example, reliability allocation may incur large costs to improve the system reliability only

a little because of difficulties in design, verification, and production. As for redundancy allocation, it

not only increases costs, but also adds undesirable extra volume and weight to the system. To overcome

these problems, the reliability-redundancy allocation problem (RRAP) has been considered [1, 2].

The RRAP is usually formulated as a non-linear optimization problem, which determines the relia-

bilities and the redundancy levels of components to maximize system reliability under design constraints

on, for example cost, volume, or weight. RRAP presents a powerful and attractive method for system

reliability optimization, however at the same time, it is known as one of the most challenging problems

in the area of reliability optimization due to its high dimension and complexity. Numerous techniques,

especially intelligent optimization algorithms, have been suggested to solve the optimization model arising

in RRAP in recent years. For example, artificial bee colony algorithms [3–5], cuckoo search algorithms

[6, 7], article swarm optimization methods [8–11], genetic algorithms [2, 12–14] and simulation optimiza-

tion methods [15] were subsequently reported in the literature. In addition, Ha and Kuo [16] presented

a branch-and-bound approach to solve RRAP based on a search space elimination of disjoint sets in a

solution space. Caserta and Voß [17] proposed a new solution approach by transforming RRAP into

a multiple-choice knapsack problem. Muhuri et al. [18] proposed a novel formulation of RRAP with

fuzzy uncertainty. In [19–21], cold-standby strategies for redundant components are used to model the

RRAP. Chatwattanasiri et al. [22] studied RRAP with uncertain stress-based component reliability. Feiz-

abadi and Jahromi [23] proposed a new model for reliability optimization of series-parallel systems with

nonhomogeneous components.

As is clear from the literature, the major focus of recent research has been on the development of more

efficient and effective algorithms for solving the constraint optimization problem for RRAPs. However,

the model of RRAP itself has not been simplified or improved further. The aim of the present work is

to develop a new and efficient approach for RRAP using the survival signature [24, 25]. The rest of this

paper is organized as follows. Section 2 gives a brief description of the theory of survival signature for

reliability analysis of systems with redundant components in parallel, followed by the formulation of a

constraint optimization model for RRAP in Section 3. In Section 4, a new adaptive penalty function

is proposed to transfer the constraint optimization to an unconstraint one and stochastic fractal search

(SFS) is applied to solve the unconstraint optimization problem. The (joint) structural importance is

proposed to concretely allocate the redundancy level of each component in Section 5 and the validity and
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effectiveness of the proposed approaches are illustrated in Section 6 by two numerical examples. Finally,

Section 7 presents the conclusions of the paper and some ideas for related future work.

2. System reliability analysis using the survival signature

Consider a system withK ≥ 2 types of components, withmk components of type k, for k = 1, 2, . . . ,K,

and
∑K
k=1mk = m. Assume that the random failure times of components of different types are fully

independent, while components of the same type have exchangeable failure times. The probability that

the system functions given that precisely lk ∈ {0, 1, . . . ,mk} of its type k components function, for

k = 1, 2, . . . ,K, is [24, 25]:

Φ(l1, l2, . . . , lK) =

[
K∏
k=1

(
mk

lk

)−1
]
×
∑
X∈S

φ(X) (1)

where vector X = [X1, . . . , Xm]T represents the states of all components and φ(X) is called the structure

function of the system; S denotes the set of all possible state vectors for which precisely lk components

of type k function; Φ(l1, l2, . . . , lK) is called survival signature.

The probability that the system functions at time t is

Rs(r1, . . . , rK) = Pr(Ts > t) =

m1∑
l1=0

. . .

mK∑
lK=0

[
Φ(l1, . . . , lK)

K∏
k=1

(
mk

lk

)
Fmk−lk
k (t)(1− Fk(t))lk

]
(2)

where rk = 1− Fk(t) is the reliability of components of type k at time t for k = 1, 2, . . . ,K; Fk(t) is the

cumulative distribution function for the failure time of components of type k.

Reliability of a system can be significantly improved by adding the same type of components as

redundancy to each type of components. Therefore, redundancy allocation is a direct way of enhancing

system reliability. In this case, the system reliability is

Rs(r1, . . . , rK , n1, . . . , nK) =

m1∑
l1=0

. . .

mK∑
lK=0

[
Φ(l1, . . . , lK)

K∏
k=1

(
mk

lk

)
F
nk(mk−lk)
k (t)(1− Fnk

k (t))lk

]
(3)

where nk is the redundancy level of components of type k. For example, if we add a parallel compnent

to each component of type k, the parallel level of type k components would become nk = 2.

From Equation (3), we see that the survival signature does not change with redundancy of components

if the same level of redundancy is applied to all the components of the same type; this is a key aspect

of the two-step heuristic procedure presented in this paper. The survival signature only needs to be

calculated once which makes it efficient and easy to implement in RRAP.

3. Optimization model for RRAP

The aim of RRAP is to maximize the reliability of a system during its life cycle t ∈[0, T ], where T

is assumed to be fixed, through component reliability improvement and component redundancy under
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constraints of component cost, weight, volume, etc. Since the reliability of a system is decreasing as time

t increases to T , the optimization model of the RRAP can be represented as follows:

min f(u) = −Rs(r1, . . . , rK , n1, . . . , nK)

s.t. g1(u) = Cs(r1, . . . , rK , n1, . . . , nK)− C ≤ 0

g2(u) = Vs(n1, . . . , nK)− V ≤ 0

g3(u) = Ws(n1, . . . , nK)−W ≤ 0

1 ≤ nk ≤ nk,max, k = 1, 2, . . . ,K (4)

where u = [r1, . . . , rK , n1, . . . , nK ]T is the vector of design variables; K is the number of types of com-

ponents in the system; rk is the reliability of components of type k at time t = T ; nk is the number of

redundant components of type k in parallel; nk,max is the maximum number of components of type k

which can be in parallel; the objective function Rs(·) is the reliability of the system at time t = T as

shown in Equation (3); Cs(·), Vs(·) and Ws(·) are the cost, volume and weight functions of the system;

C, V and W are the upper limits on the cost, volume and weight of the system, respectively.

We assume that the cost of a component of type k is a decreasing function of the failure rate λk of

the component [3–10]

c(λk) = αkλ
−βk

k (5)

where αk > 0 and 0 < βk < 1 are constants representing the inherent characteristics of the component.

We assume that the values of αk and βk would be provided by manufacturers. If the failure time of the

component follows the exponential distribution, then cost of the component can be written as:

c(rk) = αk

(
− T

ln(rk)

)βk

(6)

where T is the recognized operating time of the system and rk is the reliability of components of type k

at time T . Using the above equations, the total cost function of the system can be determined as

Cs(r1, . . . , rK , n1, . . . , nK) =

K∑
k=1

c(rk)(mknk+exp(mknk/4)) =

K∑
k=1

[
αk

(
− T

ln(rk)

)βk

(mknk + exp(mknk/4))

]
(7)

where mk is the number of components of type k in the original system; nk is the redundancy level of

components of type k; exp(mknk/4) is a term reflecting the cost of interconnecting parallel elements.

Additionally, let vk and wk be the total volume and weight of a component (including the hardware

for interconnecting it) of type k. Then the volume and weight of the system can be evaluated using

Equations (8) and (9), respectively

Vs(n1, . . . , nK) =

K∑
k=1

mkvknk (8)
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Ws(n1, . . . , nK) =

K∑
k=1

mkwknk (9)

We have assumed here that the volumes and weights are not functions of the component reliabilities.

4. Adaptive penalty function-based solution of RRAP

Generally, a traditional numerical algorithm like exhaustive search is rarely expected to yield the

optimal solution to a RRAP due to its complex constraints. Moreover, since the size of the search space

increases while solving high-dimensional optimization problems, classical optimization algorithms may

encounter serious speed deficiencies. Therefore, heuristic algorithms (e.g. genetic algorithm, bee colony

algorithm or cuckoo search) are often used to solve RRAPs.

One of the most popular and intuitive constraint handling techniques is the penalty function method

[26, 27]. In this method, a penalty function is used to penalize infeasible solutions, while feasible solutions

are simply evaluated based on the original objective function. In order to do that, the optimization

problem defined in Equation (4) can be rewritten as an object function of the constraint, as follows

fp(u) = f(u) +

p∑
i=1

higi(u) (10)

here p = 3 is the number of constraint functions, u is a set of design variables, fp(u) is the penalized

objective function, f(u) is the original objective function as shown in Equation (4), gi(u) is the ith

constraint function, hi is the ith penalty parameter.

Obviously, the penalty parameters in Equation (10) have strong influence on the solution of the

optimization model because they determine the levels of the penalties added to the objective function.

For example, if penalty parameters are too large, the penalty function becomes ‘ill-conditioned’, making

the optimization goal difficult to achieve. However, if the penalty parameters are too small, the penalty

function does not have significant effects on the solution. That is to say the constraint violation does not

contribute a high cost to the penalty function. Therefore, a key point for a penalty function method for

solving constraint optimization is the selection of proper penalty parameters. Unfortunately, it is difficult

because a suitable value of the penalty parameter depends on the solution of the problem.

In this section, an adaptive penalty function strategy is proposed to solve constrained optimization

problems using heuristic algorithms. In the proposed adaptive penalty approach, the solution group is

separated into feasible and infeasible sets. In the feasible set, all of the constraints are satisfied, whereas

infeasible points fail to meet at least one of the constraints. A penalty function is used to penalize the

infeasible solutions, while feasible solutions are simply evaluated based on the original objective function

fp(u) = hff(u) + (1− hf )
1

p

p∑
i=1

yi(u) (11)
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where u = [r1, . . . , rK , n1, . . . , nK ] is the vector of design variables, f(u) is the original object function

of the constraint optimization, hf is the ratio between the feasible constraints and the total number of

constraints. yi(u), i = 1, 2, . . . , p, is the normalized constraint function which is defined as

yi(u) =

0, if gi(u) ≤ 0

|gi(u)| , otherwise

(12)

where gi(·) is the ith constraint.

Once the penalty function of the RRAP is established, any efficient heuristic algorithm can be easily

applied to solve the optimization problem. In this paper, the stochastic fractal search (SFS), which

was recently proposed by Salimi [27], is used to solve the reliability optimization problem. The basic

concept of SFS is founded on the property of an entity (object or quantity) for exploring an area. The

fractal theories define the mathematical model of diffusing a particle and self-similarity of the patterns in

nature, such as trees, snowflakes, animal coloration patterns, crystals, Romanesco broccoli, lungs, river

networks, blood vessels and DNA. As shown in Figure 1, the diffusing process and the updating process

are the two main processes in the SFS and the basic principles of the proposed method are as follows:

(1) Randomly generate a certain number of initial solutions. (2) Evaluate the values of objective and

constraint functions and establish the penalized objective function according to Equations (11) and (12).

(3) Gaussian walk is applied to let all the points roam around their current positions to exploit the

problem search space in the diffusion process. (4) Change each point to a better position through two

updating procedures: the first procedure is performed on each individual point and the second procedure

considers the position of other components in the group. (5) Repeat the procedures until the stopping

criterion is satisfied. For more information about SFS, we refer to [26, 27].

We can get the optimal reliability and optimal redundancy levels for each type of components by

solving the constraint optimization model for RRAP. Then the number of redundant components should

be added to components of type k in parallel can be obtained as follows

na,k = (nk − 1)mk (13)

where mk is the number of components of type k in the original system; nk is the redundancy level of

components of type k. During the evolution process, the integer variable nk is treated as a real variable.

Therefore, na,k should be transformed to the nearest integer value. Moreover, if na,k is an integer

multiple of mk, every component of type k can actually get nk − 1 components in parallel. Otherwise,

extra components can be added to the components with higher structural importance to improve the

system reliability as efficiently as possible. For example, if there are three components of type k and

four components should be added to this type of components, every component of type k could add

one component in parallel, and the extra one could be further added to the component with the highest
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Figure 1: Procedure for optimization for RRAP

structural importance. This procedure may not provide the actual optimal solution, but we propose it as

a sensible heuristic solution which can be applied to ease system due to its relatively easy computational

requirements.

5. Determine the redundant level of each component

Reliability importance can be used to prioritize components in a system by quantitively measuring

their importance level in contributing to system reliability [28–30]. In this section, the reliability impor-

tance is chosen as the criterion to determine the redundancy level of each component in the system, given

that the redundancy level of each type of components has been determined by solving the optimization

problem in Equation (4). Generally, importance measures can be divided into three classes, which are

structural importance, reliability importance and lifetime importance. Structural importance measures

the relative importance of components with respect to their positions. Reliability importance and lifetime

importance depend on both the structure of the system and the reliabilities of the components. Since the

redundancy level of each type of components has been determined in Section 4, structural importance is

reasonable to allocate the redundancy of components of the same type.
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The structural importance of a component depends on the number of states in which the component

is critical, The structural importance of component i, denoted by ISi , can be defined as[31]:

ISi = E
[
φ(1i,x

i)− φ(0i,x
i)
]

=
1

2m−1

∑
Ω

[
φ(1i,x

i)− φ(0i,x
i)
]

(14)

where φ(·) is the structure function of the system as shown in Section 2; Ω is the ensemble of all the

possible combinations of up and down states of the m components, whose cardinality is 2m−1; (1i,x
i)

and (0i,x
i) represent the component vector when component i is in state 1 and 0, respectively.

The marginal structural importance (MSI), defined in Equation (14), can be used to measure the

effect of a single component on the system’s performance. However, MSI does not provide all information

on how components affect the system reliability. In particular, MSI gives very little information about

how the component reliabilities affect each other. Therefore, if more than one components have the same

MSI, the joint reliability importance which measures how multiple components in the system interact in

contribution to the system performance can be used to find the best combination. The joint structural

importance of n components is similarly defined as [32–34]:

ISi1,...,in =
1

2m

∑
Ω

{
φ(1i1,...,in ,x

i1,...,in) + I1(n)φ(0i1,...,in ,x
i1,...,in) +

∑
Ω

[
I2(vi1,...,in)φ(vi1,...,in ,x

i1,...,in)
]}

(15)

where

I1(n) =

1, if n is even

−1, if n is odd

(16)

I2(vi1,...,in) =

1, if n and the sum of xi1,...,in have the same parity

−1, otherwise

(17)

1i1,...,in = {1i1 , . . . , 1in} and 0i1,...,in = {0i1 , . . . , 0in} represent the states that components i1, i2, . . . , in

are working and failed, respectively. vi1,...,in is used to enumerate the possible states of the components

i1, i2, . . . , in, except for the cases that all of them are working or failed. Such as, for n = 2, vi1,i2

specifies {1i1 , 0i2}, and {0i1 , 1i2}. (1i1,...,in ,x
i1,...,in), (0i1,...,in ,x

i1,...,in) and (vi1,...,in ,x
i1,...,in) represent

the component vectors when component i1, i2, . . . , in is in state 1i1,...,in , 0i1,...,in and vi1,...,in , respectively.

As a specific example, the joint structural importance of two components is

ISi1,i2 =
1

2m

∑
Ω

{
φ(1i1 , 1i2 ,x

i1,i2) + φ(0i1 , 0i2 ,x
i1,i2)− φ(0i1 , 1i2 ,x

i1,i2)− φ(1i1 , 0i2 ,x
i1,i2)

}
(18)

where (1i1 , 1i2 ,x
i1,i2) represents that components i1 and i2 are in working states and the meanings for

(0i1 , 0i2 ,x
i1,i2), (0i1 , 1i2 ,x

i1,i2) and (1i1 , 0i2 ,x
i1,i2) are as described in the previous paragraph.
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Figure 2: 8-unit structure system

6. Numerical example

Example 1. Consider the system shown in Figure 2. This system consistes of 8 components which can be

divided into 3 types, namely T1, T2 and T3. The life cycle of the system is T = 1500 hours. It is assumed

that the failure time of all the components follows an exponential distribution, and the reliabilities of the

components at time t = 1500 hour, are given in Table 1. The cost, weight and volume parameters of the

components are listed in Table 2. The cost, weight and volume of the system can be obtained from the

parameters shown in Table 2, and the values are 910, 72 and 79, respectively. If the weight and volume

of the system could be increased to 100 and 120 (the cost cannot be increased,the proposed approach can

be applied to improve the reliability of the system.

Table 1: Distribution information of components

Component Type Component No. rk

1 1, 2, 3 0.9241

2 4,5,7 0.8725

3 6,8 0.9105

Table 2: Constraint parameters for the 8-unit system

Type αi βi wi vi

1 6× 10−5 1.5 4 3

2 8× 10−5 1.5 8 10

3 4× 10−5 1.5 18 20

The survival signature of the system can be obtained using Equation (1). All the results are shown

in Table 3 and rows with Φ(l1, l2, l3) = 0 are omitted since these factors do not have any impact on the

reliability of the system. Then we can obtain the reliability of the system at t ∈ [0, 1500] using Equation

(2) and the distribution information of the components listed in Table 1. The reliability of the system

at time t ∈ [0, 1500] is depicted as the black solid line (RSys) in Figure 4, the reliability of the system at

the end of its life cycle (t = 1500) is 0.9556.
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Figure 3: Reliability block diagram of the optimized system in example 1
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Table 3: Survival signature of the 8-unit system

l1 l2 l3 Φ(l1, l2, l3) l1 l2 l3 Φ(l1, l2, l3)

1 1 2 2/9 2 3 0 1

1 2 0 2/9 2 3 1 1

1 2 1 2/9 2 3 2 1

1 2 2 4/9 3 1 2 2/3

1 3 0 2/3 3 2 0 2/3

1 3 1 2/3 3 2 1 2/3

1 3 2 2/3 3 2 2 1

2 1 2 2/3 3 3 0 1

2 2 0 2/3 3 3 1 1

2 2 1 2/3 3 3 2 1

2 2 2 1

The proposed adaptive penalty approach is applied to solve the RRAP. 253 iterations are needed to

get a converged result. The result shows that in order to obtain the maximum system reliability under

the constraints, the reliability of components at time t = 1500 needs to be changed to 0.8047, 0.8363 and

0.8913, and the redundancy level of each type of component should to be 1.77, 1.78 and 1, respectively.

The reliability of the system under these conditions is shown as the dash-dotted line (ROpt) in Figure 4 .

Equation (13) is used to calculate the number of components that should be added to each type of

components (na,k). Since the integer variable nk is treated as a real variable, na,k should be rounded

to the nearest integer value. And the results show that 2, 2 and 0 components need to be added to

the first, second and third types of components, respectively. Finally, as recommended in Section 5, the

redundancy level of each component could be determined by the importance level of it in contributing to

system reliability.

Structural importance analysis of the system is performed to prioritize components in the system and

the results are shown in Table 4. From the results we can learn that, for the first type of component

(T1), the structural importance of component 1 is equal to that of component 2, and both of them are

greater than the structural importance of component 3 (IS1 = IS2 > IS3 ). Therefore, we may be wise to

add a component to component 1 and to component 2 in parallel.

Table 4: structural importance of the 8-unit system

IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS4,7 IS5,7

0.2344 0.2344 0.0781 0.2344 0.2344 0.3750 0.1250 0.1250 0.2813 0.2813
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For the second type of component (T2), the structural importance of component 4 is equal to that of

component 5, and both of them are smaller than the structural importance of component 7 (IS7 > IS4 =

IS5 ). So we could add a component to component 7 and the other component may need to be added to

component 4 or 5. Since IS4 = IS5 , whether it has to be added to component 4 or 5 is determined by the

joint structural importance IS4,7 and IS5,7. As shown in Table 4, since IS4,7 = IS5,7, we can add a component

to any of them.

Table 5: System reliability and constraint values of the optimized system in example 1

Reliability Cost Weight Volume

Optimized 0.9870 910 96 105

Rounding 0.9821 859 96 105

The reliability block diagram of the optimized system is illustrated in Figure 3, components 1+, 2+,

5+ and 7+ are the newly added components. The reliability, cost, volume and weight of the optimized

system are calculated. All the results are compared in Table 5. In this case, the reliability of the system is

shown as the dashed line (ROpt,Rou) in Figure 4. The reliability of the system at time t=1500 is improved

to 0.9821 and all constraints are satisfied. From the results, we can learn that the proposed approach has

been successfully implemented.

For comparison, the traditional reliability-redundancy allocation model, which is a 16-dimension opti-

mization problem for this example, is applied to allocate the reliability of the system. If the SFS approach

and the proposed adaptive penalty method are also used to solve the optimization model, 299 iterations

are needed for convergence of the optimization algorithm. Therefore, the proposed method model requires

fewer iterations. It shows that the proposed procedure effectively reduces the computational complexity

of RRAP.

Because the components of the same type follow the same distribution, their reliability is set to be

equal during the optimization process. Then the dimension of the RRAP is reduced to 11. The optimum

reliability of these three types of components is obtained as follows: r1=0.7696, r2=0.8530, r3=0.7823.

The redundancy levels of components 1-8 are 3, 1, 1, 2, 1, 1, 2 and 1, respectively. The reliability of the

system at time t=1500 is 0.9844 which is a little higher than the result obtained by the proposed method.

However the cost of this plan is 913 which is slightly higher than the allowable value (910).

Example 2. In this example, a 15-unit system as shown in Figure 5 is used to demonstrate the application

of the proposed method for system reliability optimization for a complex structure system with different

types of components. The failure times of all the components are considered to follow exponential

distributions, and the types of the components are listed in Table 6. Moreover, the cost, weight and

volume parameters of the components are listed in Table 7. The life cycle of the system is designed to
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Figure 5: 15-unit structure system

be T = 2500 hours. The upper limits on the cost, volume and weight of the system are 400, 100 and 120,

respectively.

Table 6: Types of components

Type 1 2 3 4

Component No. 1, 2, 3, 4 5, 6, 7, 8, 12, 13 9, 10 11, 14, 15

Table 7: Constraint parameters for the 15-unit system

Type αi βi wi vi

1 1.2× 10−5 1.3 10 9

2 1× 10−5 1.3 3 2

3 6× 10−6 1.3 8 7

4 3× 10−6 1.3 4 2

The proposed approach is applied to allocate the reliability and redundancy levels of the components.

Convergence is reached after 272 iterations. For maximum benefit, the reliabilities of the four types of

components need to be 0.9560, 0.9247, 0.9642 and 0.9666 at time t = 2500, respectively. Moreover, 1, 3,

1 and 1 components should be added to the four types of components in parallel, respectively.

Structural importance analysis is performed to determine the redundancy level of each component and

the results are shown in Table 8. As can be seen from the results, for the first type of components (T1),

the structural importance of component 2 is the highest. It is therefore advisable to add a component

to component 2 in parallel. For the second type of components (T2), three components are needed to be

added. Since IS5 > IS6 > IS7 = IS8 = IS12 = IS13, one component should be added to each of components

5 and 6 in parallel, respectively. The only component left is supposed to be added to component 7, 8,

12 or 13 according to their joint structural importance with components 7 and 8. As shown in Table 8,

since IS5,6,12 = IS5,6,13 > IS5,6,7 = IS5,6,8, so we add a component to either component 12 or 13. By using the

same method, we can obtain that for the third and fourth types of components, one component would
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be added to components 10 and 14, respectively. The reliability, cost, volume and weight of the system

are calculated. The reliability of the optimized system at time t=2500 is 0.9997 and all constraints are

satisfied. The reliability of the optimized system at time t, for t ∈ [0, 2500], is depicted in Figure 6.

Table 8: structural importance of the 15-unit system

IS1 IS2 IS3 IS4 IS5 IS6 IS7 IS8 IS12 IS13

0.084 0.187 0.076 0.054 0.143 0.112 0.029 0.029 0.029 0.029

IS9 IS10 IS11 IS14 IS15 IS5,6,7 IS5,6,8 IS5,6,12 IS5,6,13

0.070 0.193 0.070 0.144 0.087 -0.062 -0.062 -0.023 -0.023

Table 9: System reliability and constraint values of the optimized system in example 2

System Reliability Cost Weight Volume

Optimized 0.9989 400 120 94

Rounding 0.9997 384 117 92

If the traditional reliability-redundancy allocation model is applied to allocate the reliability of the

system, a 30-dimension optimization problem should be solved for this example, and 1121 iterations are

needed to obtain the optimal result. This number of iterations is much higher than that is required in the

proposed method. It shows that the proposed procedure effectively reduce the computational complexity

of RRAP.

The reliability of the same type of components is set to be equal during the optimization process. Then

the dimension of the RRAP is reduced to 19. The optimum reliability of the four types of components is

obtained as follows: r1=0.9692, r2=0.7031, r3=0.9759, r4=0.9312. The redundancy levels of components

1-15 are 1, 1, 1, 1, 5, 4, 1, 1, 1, 1, 2, 1, 1, 3 and 1, respectively. The reliability of the system at time t=2500

is 0.9973 which is lower than the result obtained by the proposed method. This example demonstrates

that the proposed approach, combining RRAP and structural importance by using survival signature and

adaptive penalty guided heuristic optimization, is effective and of practical benefit.

7. Discussion

Recently, the theory of survival signature has attracted increasing attention for performing reliability

analysis of larger systems due to its high efficiency and low complexity [35–39]. Specially, in order to

further promote the application of survival signature on system reliability analysis, Reed [40] proposed

an efficient method to compute survival signatures and Aslett [41] created a software package. In this

paper, an efficient method is proposed by using the theory of survival signature to open a new way for
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reliability-redundancy allocation of systems. Once the survival signature of a system is obtained, the

reliability-redundancy allocation of the system could be performed by using the proposed procedure.

Compaired with the traditional method, the dimension of the RRAP is effectively reduced according

to the number of components of the same type in the proposed method. This improvement can effectively

reduce the computational complexity of RRAP. Moreover, a new adaptive penalty function is proposed

to solve the constrained optimization model for RRAP. Survival signature separates the system structure

from its failure distributions, and it only needs to be calculated once. Therefore, as shown in the numerical

examples, the proposed approach is easy to implement in practice and has high computational efficiency.

It should be noted that during the optimization process, because the components of the same type

follow the same distribution, the (joint) structure importance is used to concretely allocate the redundancy

level of each component. Although this approach is reasonable and simple, other importance measures

(e.g. Birnbaum importance, FV reliability importance or global sensitivity measures) and allocation

plans could be explored to see if these may lead to better results. This is a topic of ongoing research

of the authors. In general, however, this paper presents a new and practical method for the RRAP by

integrating the theories of survival signature and (joint) structure importance.
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