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Abstract 

The advent of autonomous cars, drones, and ships, the complexity of these systems is 

increasing, challenging risk analysis and risk mitigation, since the incorporation of software 

failures intro traditional risk analysis currently is difficult. Current methods that attempt software 

risk analysis, consider the interaction with hardware and software only superficially. These 

methods are often inconsistent regarding the level of analysis and cover often only selected 

software failures. 

This paper is a follow-up article of Thieme et al. [1] and presents a process for the analysis of 

functional software failures, their propagation, and incorporation of the results in traditional risk 

analysis methods, such as fault trees, and event trees. A functional view on software is taken, 

that allows for integration of software failure modes into risk analysis of the events and effects, 

and a common foundation for communication between risk analysts and domain experts. The 

proposed process can be applied during system development and operation in order to 

analyses the risk level and identify measures for system improvement. A case study focusing 

on a decision support system for an autonomous remotely operated vehicle working on a 

subsea oil and gas production system demonstrates the applicability of the proposed process. 
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Acronyms 

3D Three Dimensional  FTA Fault Tree Analysis 

AM Active mode  MOOS Mission Oriented Operating Suite 

AROV Autonomous Remotely Operated Vehicle  MDb Mission Oriented Operating Suite 
Database 

DFM Dynamic Flowgraph Methodology  OEV Operational Envelope Visualizer 

ET Event Tree  PM Passive Mode 

F Function (in the case study)  SM Sporadic mode 

FFIP Functional failure identification and 
propagation methods 

 SRS Software Requirements 
Specification 

FM Failure Mode (in the case study)  STPA System-Theoretic Process 
Analysis 
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FMEA Failure Mode and Effects Analysis  UI User Input 

FSPA Failure propagation and simulation 
approach 

 US User Screen 

FT Fault Tree  XT Christmas Tree 

 

1 Introduction 

Software is part of advanced technological systems. In the future, autonomous vehicles and 

vessels may be an essential part of the transportation system [2]. Such systems will not be 

accepted by the public or approved by the authorities, if they are not safe. This means that risk 

analysis focusing on hardware, software, human and organizational factors, is necessary.  

Several challenges arise when attempting to analyze the risk contribution from software and 

interactions with hardware and humans. These need to be considered to cover the whole 

spectrum of possible failures [3, 4]. Current methods applied in risk analysis, such as fault 

trees (FT) and event trees (ET), cannot reflect the interaction of complex software intensive 

systems sufficiently [5].Software might be reliable in the sense that it is executing the 

programmed actions correctly. Software behaves deterministically (i.e., software failures will 

always manifest under the same circumstances). However, the software might act reliably in a 

situation where the action might be considered unsafe [6].The objective of this article and the 

accompanying article [1] is to propose a process that may be used to identify hazardous events 

from software and analyze potential propagating effects on the overall system, including the 

hardware. The results from the proposed process in this article may be incorporated into a 

holistic risk analysis during and design and system operation.  

Based on the analysis’ findings necessary modifications and requirements for the software 

system can be identified, during the design, development, use, and modification phases in the 

software life cycle. In addition, it is possible to analyze how the software handles propagating 

failures caused by other components of the system, such as sensors and human operators. 

The case study in this article demonstrates the usability of the process. The case study is an 

example of a software developed through rapid prototyping, to achieve a working solution for 

demonstration purposes. 

This process may be used to support the analysis efforts prescribed in IEC 61508 [7], or the 

industry specific system safety related standards. Specific parts in some international 

standards address software development requirements, for example, IEC 61508 [7] in part 3 

[8], ISO 26262-6, [9], EN 61511-1, [10], and EN 50128, [11]. These standards highlight the 

importance of software failure assessment, for the identification of software safety 

requirements and the software development process. The suggested process can be used to 

analyze the risk and identify potential software and system improvements during the 
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development. Similarly, for the development of systems that contain software that is not 

considered safety related or that are developed to achieve a working solution, the assurance 

processes in [7, 11, 12] may be too time consuming and resource intensive.  

  

This article builds on the background and results from the accompanying article [1], which 

provides a taxonomy for functional failure modes of software and the necessary foundations 

for the process proposed in this article. The process described in this article is qualitative; a 

quantification of risk is not attempted, this is subject to further work. 

A review of the relevant literature for software risk analysis and modeling approaches is 

presented in Section 2. This is followed by the developed and adapted process in Section 3. 

Section 4 exemplifies each step of the process. Sections 5 concludes this article. 

2 Requirements to a Process Incorporating Software in Risk 

Analysis 

A brief overview of current state-of-the-art methods to incorporate software systems into risk 

analysis is given in the accompanying article [1]. The review outlines weaknesses in the current 

methods. The current methods focus either on only specific software failures, e.g., through 

injection in simulations, or they do consider software only superficially, i.e., not consider 

software failure mechanisms in detail, or analyze the effect of a software failure on hardware 

or software. 

The term “software system” is used to describe the whole software program with its algorithms 

and implementation in the hardware. This section presents a proposed set of requirements 

that were used as a guideline for developing the process presented in this article. 

Garrett and Apostolakis [6] identified error forcing contexts, which will lead to software failure. 

They defined three abilities that risk assessment should have: (i) represent all those states of 

the system that are deemed to be hazardous, (ii) model the functional and dynamic behavior 

of the software in terms of transitions between states of the system, and (iii) given a system 

failure event, identify the system states that preceded it. 

Hewett and Seker [13] identified four properties of a risk analysis including software: 

1. Represent structures and (temporal) behaviors of the whole system (together with its 

interactions with external environments); 

2. Support the evolution of software; 

3. Provide modularity and building-block capabilities to cope with scalability issues; 

4. Offer systematic mechanisms to facilitate automated deduction and inference 

reasoning for risk analysis. 
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Chu et al. [14] collected information from an expert panel on risk analysis of software systems. 

They agreed that a method incorporating software risk should account for different types of 

bugs and consider fault tolerant mechanisms and all available information on the software. 

Dependencies between hardware and software need to be included in the analysis. 

In general, risk analysis shall answer three questions: (i) What can go wrong? (ii) How likely is 

it that this will happen? (iii) If it does happen, what are the consequences? [15]. Risk analysis 

is the process to comprehend the nature of risk and to determine the level of risk. These 

definitions and the considerations above give input to the requirements for the process 

incorporating software in risk analyses in Table 1.  

Table 1 Requirements for a process incorporating software in risk analysis, based on input from [6, 13, 14]. 

Requirement Description 

R1 Identify failure modes  The process shall enable the analyst to identify failure modes that 
might lead to unwanted consequences in the context. 

R2 Identify possible failure 
causes 

The risk model developed in the process shall assist in the 
identification of possible failure causes and sources in case of a 
failure. 

R3 Identify consequences 
of failure modes 

The process shall enable the analyst to trace software failure modes 
through risk scenarios leading to adverse consequences. 

R4 Represent functional 
behavior 

The risk model developed in the process shall reflect the functional 
behavior and constraints of the software including different states 
and transition between the states. 

R5 Represent temporal 
behavior 

The risk model developed in the process shall reflect time-related 
behavior, requirements, limitations, and states.  

R6 Represent context of 
use 

The risk model developed in the process shall include required 
contextual and overall constraints, hardware, software, and human 
interactions. 

R7 Be modular The model developed in the process as well as the process shall be 
modular, such that changes in software modules can be reflected. 

R8 Be scalable The risk model developed in the process shall be scalable, such that 
different levels of detail can be addressed and that software 
systems of different sizes can be analyzed. 

R9 Make use of all 
available information 

The process shall use all available information to build and analyze 
the risk model developed in the process. 

R10 Be applicable 
throughout the software 
life cycle 

The process shall be appropriate throughout the lifecycle of the 
software and aide in decision making. 

 

Requirements R6, R7, and R8 address features that a risk analysis process incorporating  

softwareincorporating software should exhibit. Requirement R9 refers to the use of information 

for the process, while R10 shall assure that the process is applicable during the life of the 

software.  

The requirements may be addressed using a functional perspective on the software, which 

makes it scalable and suitable for failure mode analysis [14, 16]. The discussion, Section 5, 

uses these requirements to highlight the features of the proposed process in comparison to 

existing methods and processes. 
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3 Process for Incorporating Software in Risk Analysis 

Figure 1 summarizes the steps in the proposed process in this article and sets it in the context 

of the generic risk management framework presented by ISO 31000. Steps 2 to 4 are the main 

novel contributions from this article and the accompanying article [1]. The sections detail each 

of the steps, as indicated in the figure. Communication between different stakeholders, 

especially between software engineers and risk analysts, is of utmost importance to apply the 

proposed process successfully. 

 

 

Figure 1 Steps in the proposed process to incorporate software failure in risk analysis and the corresponding 
steps in the ISO 31000 risk management framework. Abbreviation: Sec. – Section. 

 

Figure 2 shows the proposed process in relation to a generic system life cycle. The outcome 

of the process is updated and refined through the life cycle phases. The lifecycle is not specific 

for software or software development, since the process is applicable through the lifetime of 

the system and useable during the operational phase of the system. Analysis results are fed 

back in the life cycle phase activities, providing input to the software and system development 

process. This input may then be used to support the activities outlined in IEC 61508 [7] or the 

industry specific standards. The analysis is then updated with new information from the 

engineering process through Step 7. The software development activities in the lifecycle 
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phases may be following the waterfall model, an agile development, or any other structured 

development process. 

 

 

Figure 2 The steps in the proposed process to incorporate software failure in risk analysis in a systems lifecycle. 
The system life cycle was adapted from [17]. Broken lines with arrows indicate transfer of input. 

 

3.1 Step 1: Define the Scope of the Analysis 

The definition of the scope includes an overall description of the software, its purpose, 

application area, and operational context. Risk analysis is system and context specific, and the 

analysis should reflect this. The operational context describes which interactions the program 

has with its environment, such as other software programs, servers, humans, or sensors. Every 

interaction or output that is different from the expected interaction or output is a failure of the 

software. Only with the context, it is possible to analyze which failures will cause negative 

consequences. 

The phase of the software in its life cycle determines the level of detail of the risk analysis. The 

level of detail of the risk analysis needs to be defined. Available documentation for the 

software, such as the software requirements specification (SRS) (according to IEEE 830 [18]), 

the system requirements specification, the software development documentation, or the 

verification and validation documentation, needs to be identified and used in the analysis 

process. Software engineers should be involved in the process and development of the 

functional software model to avoid ambiguity and increase understanding of the software 

system. 
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3.2 Step 2: Decompose Software and Build Functional Software Model 

A functional decomposition of the software system is the first step towards building the 

functional software model. The functional decomposition and the description of functions is 

necessary in order to collect and arrange the necessary information for the next steps. The 

functional analysis standard EN14514 [16] may assist in the decomposition. The 

accompanying article (Thieme et al. [1]) provides more information on functional 

decomposition and the description of the functions. 

The functional decomposition is used to build the functional software model, which graphically 

represents the collected information. The functional software model visualizes the interactions 

between the functions and assists the analysts in maintaining an overview of the functions and 

their relationships. The connections between the functional elements are constructed 

according to the information on inputs, outputs, and associated conditions. 

Figure 3 summarizes the symbols used for building the model. Two types of connectors are 

used in the functional software model. Transfer of information refers to the connection of 

functions through common data (i.e., the input and output). The second type, functional 

dependency, describes the influence of functions on other functions that are not related 

through the exchange of data. This could be functional calls or prerequisite functions. The 

software boundary is used as a visual cue to differentiate the external interfaces from the 

software functions. 

 

Figure 3 Modeling elements to represent the software functionality. 

 

The information collected in the functional software model and the associated information on 

the functions assist in the analysis of the interaction failure modes (Step 3) and the analysis of 

the propagation behavior (Step 4). The description within the blocks needs to be coherent 

throughout the model to facilitate these steps. An example of a model is shown in the case 

study in Section 4. 
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3.3 Step 3: Identify and Assess Failure Modes for the Functions 

This step is central to the proposed process since potential failure modes are identified for 

each function. These function-specific failure modes are propagated in the next step to analyze 

the effect of each individual failure mode. 

The accompanying article [1] presents the failure mode taxonomy used in this present article. 

In general, a failure mode is the manner in which an item fails [19], and they are context specific 

[20]. There are four categories in the taxonomy: functional, interaction, timing-related, and 

value-related failure modes. The failure mode taxonomy in [1] [1] suits the functional view of 

software adopted in this article. 

Functional failure modes are the failure modes that relate to a failure of functionality, e.g., 

operations are not executed, or extra, unintended functionalities are executed. Interaction 

failure modes between software functions reflect a failure of transition between software 

functions, for example, a faulty order of function executions. Timing related failure modes 

describe the execution of a function at the wrong point of time, with respect to the requirements. 

The value related failure modes similarly refer to the failure of an output value. Value here may 

be a numerical value, a character or a symbol. 

The analysts need to assess which failure modes are applicable to the software functions. 

Each identified failure mode needs to have a unique identifier to make it traceable in further 

analysis. Each failure mode should be described according to the chosen level of analysis. 

The analysis should consider the complete information to give meaning to the failure modes. 

Especially functional and non-functional requirements and constraints need to be included in 

these considerations. 

3.4 Step 4: Propagate Functional Failure Modes through the Software 

System 

The output and hence the effect of each failure mode on the external interfaces needs to be 

analyzed with respect to the overall system functionality and the context. The critical aspect in 

this step is how the failure modes interact with the external interface through the propagation 

behavior. The analyst needs to assign an effect in a meaningful manner to the propagated 

failures. The failure modes are propagated until all reachable interfaces are affected. The 

importance of considering failure propagation is explained in the accompanying article [1].  

Generally, the propagation of the effects resulting from the failure modes highly depends on 

the software functions and its overall function. The effect of control loops and reiterations within 

the software should be considered. The propagation should be reiterated at least once for 

feedback loops, such that the effect of these becomes visible. Faults in the feedback may not 

be apparent upon their occurrence, since the failure may occur after the feedback is used. 
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Hence, the influence on the software functions that use the feedback, needs to be assessed. 

Additional iterations may be necessary. Fault detection and correction mechanisms need to 

be considered while analyzing the failure propagation behavior. 

Table 2 summarizes the propagation behaviors of the failure modes through a software 

system. The first column summarizes the failure modes. The second column is labeled refined 

failure mode. Refined failure modes describe the failure mode in more detail and reflect a 

higher level of detail of the analysis. The third column describes the propagation behavior of 

the failure mode. The column Ref. describes the source from which the propagation behavior 

was derived. In this case, 1 refers to Wei [21] and 2 refers to the authors’ identified propagation 

behavior. 

Value-related failures affect subsequent functions by providing an incorrect value. The effect 

depends on the functionality and the process in the subsequent functions. In most cases, the 

value failure will lead to an incorrect value failure. Effectively, decisions and output to the 

external interfaces will be affected by these incorrect values and/or dependent function calls. 

The propagation and hence the overall effect on the external interfaces isare highly dependent 

on the software purpose. 

Functional failure modes mainly propagate similarly to value-related failure modes. 

Propagation of interaction failure modes depends on the function process and interactions. Not 

calling or skipping functions will mostly propagate as the failure modes no value or output 

provided too late. In most cases, the failure modes related to external files will propagate as 

the no value failure mode. 

For timing-related failures modes, three cases are differentiated [21]: no fault tolerance 

mechanisms with respect to timing (T1), watchdog timers or similar (T2), and failure recovery 

mechanisms with respect to timing (T3). In the case of T1, these failures will propagate directly 

through the software functions. In the case of T2, the software will either abort or exhibit a safe 

behavior. Safe behavior refers to a standard functional call or usage of a safe standard value. 

Moreover, in the case of a detected failure, T3 refers to software that will execute actions that 

will reduce the negative effects of the failure mode [21]. 

If data-rate failures are considered, then the design of the data transfer system becomes 

relevant [21]. In the sporadic mode (SM), the data receiving function is activated by the 

available data. Data can be transferred in a passive mode (PM), and the data receiving 

software functions check all events and data available in the associated buffer. In active mode 

(AM), the buffer pushes out old data when it is full, and the software function has yet not 

handled the data. A polling system specifically requests data as soon as the software function 

requires input [21]. 
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Table 2 Propagation behaviors for each failure mode. Propagation behaviors for timing and value-related failure modes were adapted from Wei [21] (marked with 1 in the Ref. 
column). Other failure mode propagation mechanisms are based on the authors’ assessment (marked with 2). Refined failure modes refer to special cases of failure modes. 

Reference 3 refers to Wei et al. [22] who in particular analyzed the propagation behavior of timing related failure modes. 

Failure mode Refined failure mode Propagation behavior Ref. 

Function failure modes 

Omission of a function/missing operation  Propagates as incorrect value failure mode or no value failure mode. 2 

Incorrect functionality  Propagates as incorrect value failure mode. 2 

Additional functionality  
Propagates as incorrect value failure mode (e.g., for outputs that shall not be manipulated). 
Can also propagate as output provided spuriously failure mode. 

2 

No voting  Propagates as no value failure mode. 2 

Incorrect voting  Propagates as incorrect value failure mode (for the voting result). 2 

Failure in failure handling  Detected failure are not handled, and the failure propagates as no value failure mode. 2 

Interaction failure modes 

Diverted/incorrect functional call  Failure mode propagates in different ways, depending on the function (i.e., no value, 
incorrect value, or output provided spuriously). 

2 

No call of next function  The program stalls, it propagates as failure modes: no value, or output not provided in time.  2 

No priority for concurrent functions  Output is propagated with output provided too late failure mode. 2 

Incorrect priority for concurrent functions  Output is propagated with output provided too late failure mode. 2 

Communication protocol dependent 
failure modes 

 These failure modes include the generic failure modes and propagate accordingly. 2 

Unexpected interaction with input-output 
boards 

 Propagates as output provided spuriously. 2 

Failure of interaction with external files or 
databases 

Wrong name Propagates as no value failure mode. 2 

 Invalid name/extension Propagates as no value failure mode. 2 

 File/ database does not 
exist 

Propagates as no value failure mode. 2 

 File/ database is open 
Writing: propagates as no value failure mode 
Reading: might not propagate or propagates as no value failure mode. 

2 

 Wrong/invalid file format Propagates as no value failure mode. 2 
 File head contains error Propagates as no value failure mode. 2 
 File ending contains error Propagates as no value failure mode. 2 
 Wrong file length Propagates as no value failure mode. 2 
 File/database is empty Propagates like too many elements in data array/structure. 2 

 Wrong file/database 
contents 

Propagates as no value failure mode. 2 

Timing-related failure modes 
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Failure mode Refined failure mode Propagation behavior Ref. 

Output provided Too early T11: No output is registered, propagates as no value failure mode. 1, 3 

  T22: Failure is detected, and the software aborts the operation. 1, 3 

  
T33: Failure is masked; the premature value is stored in a buffer and available for further 
operation. 

1, 3 

 Too late T1: Fault propagates as delayed output by the same time as the initial delay. 1, 3 

  T2: Delay is detected if it is longer than the programmed interval, software aborts operation. 1, 3 

  
T3: If the delay is longer than the specified interval a standard value/behavior is used that is 
propagated as incorrect value failure mode. 

1, 3 

 Spuriously 
No output is registered, propagates as no value failure mode. Alternatively, a spurious action 
is triggered that will propagate as too early failure mode. 

2 

 Out of sequence No output is registered, propagates as no value failure mode. 2 

 Not in time See output provided too late, where, for T1, the output is not provided in time. 2 

Output rate failure Too fast SM4: Propagates as too early failure mode. 1 

  AM5 (drop new data) or PM6, within affordable rate: Propagates as too early failure mode. 1 

  
AM (drop new data) or PM, faster than affordable rate: Buffer fills too fast, loss of data 
propagates as incorrect value failure mode. If buffer handles events, these events are lost, 
and the system does not react accordingly. 

1 

  
AM: push out old data: The output propagates as incorrect value failure mode, since the 
value that is assumed to be read is different from the assumed value. 

1 

 Too slow PM: Output rate is the input rate. The too slow failure is propagated. 1 

  AM: Old values stored in the buffer are used, propagates as incorrect value failure mode. 1 

  PS: Output rate is the input rate. Too slow failure mode is propagated. 1 

 Inconsistent Propagates as incorrect value failure mode, pairing values from different times. 2 

 Desynchronized Propagates as incorrect value failure mode, taking the value from the synchronization delay. 1 

Duration Too long Duration of a measurement: Output is propagated as too high value failure mode. 1, 3 

  
Duration of detecting a presence: Signal is recognized multiple times, propagates as too high 
failure. 

1, 3 

 Too short Duration of a measurement: Output is propagated as too low value failure mode. 1, 3 

  
Duration of detecting a presence: Signal is not recognized, program does not execute the 
command, propagates as output not provided in time failure mode. 

1,3 

                                                
1No failure detection mechanism with respect to timing 
2Failure detection mechanism,  
3Failure detection and recovery mechanisms,  
4Sporadic mode. 
5Active mode, PM – passive mode 
6Passive mode 
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Failure mode Refined failure mode Propagation behavior Ref. 

Recurrent functions scheduled 
incorrectly 

 Propagates as output provided spuriously or output not provided in time failure modes. 2 

Value-related failure modes 

No value  
Either the next function waits for the value, propagating as too late failure mode, or a 
predefined value is used, propagating as incorrect value. 

2 

Incorrect value Too high 
The value failure propagates through the software, assuming that the value is correct. The 
value will lead to wrong computational results and this wrong information will be used during 
further evaluation. If the computed result falls out of the expected or allowable range, the 
value will propagate as out of range failure mode. 

1, 2 
 Too low 

 Opposite/inverse value 

 Value is 0 (zero) 

Value out of range Datatype allowable range Value is adjusted to fit in the range and will propagate as incorrect value failure mode. 1 

 Application allowable range Value is adjusted to the closest allowable value of the range and propagates as incorrect 
value failure mode with this value. 

1 

Redundant/frozen value  Value propagates with the value as incorrect value. 2 

Noisy value/precision error  Depending on magnitude, will lead to an incorrect value failure mode and propagate as such. 2 

Value with wrong datatype  Depending on the type of the conversion, different propagation mechanisms were identified. 
The failure mode might not influence the value and be masked, leading to a loss of precision 
or incorrect value failure modes. If failure detection mechanisms can detect the failure, the 
operation will be aborted, and the software will continue as specified. For a detailed list of 
datatype errors, see Wei [21]. 

1 

Non-numerical value Not a number (NaN) Corresponds to an undefined value conversion; hence, it will propagate according to the 
propagation mechanisms for value with wrong datatype. 

2 

 Infinite Will propagate as incorrect value out of range failure mode. 
2 

 Negative infinite 

Elements in a data array/structure  Too many Elements come from different components. Error not propagated, additional input neglected. 1 

 Elements come from one component, are read in fixed format, and are added to the end. 
Error not propagated, additional input neglected. 

1 

 Elements come from one component, are read in fixed format, and are inserted in the data 
array/structure. Incorrect value failure mode propagation from the element of insertion. 

1 

 Elements come from one component, are read in unfixed format, and are added at the end 
of the data array/structure. Incorrect value failure mode propagation of the last element. 

1 

 Too few Elements come from one component, are read in unfixed format, and are inserted the data 
array/structure. Incorrect value failure mode propagation of the remaining elements. 

1 

 Elements come from different components. Propagates as too late failure mode. 1 

 Elements come from one component. Propagation as no value failure mode. 1 

 Data in wrong order For the elements that are wrongly ordered the failure mode will propagate as incorrect value 
failure mode. Value with wrong datatype failure modes might also be relevant. 

2 

 Data in reversed order The failure mode will propagate as incorrect value failure mode, with the correct reversed 
values. Value with wrong datatype failure modes might also be relevant. 

2 
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Failure mode Refined failure mode Propagation behavior Ref. 

 Enumerated value incorrect If the value lies within the range of the array/structure, it will be propagated as incorrect value 
failure mode. If falls out of the range it will lead to a program crash or will be handled by the 
failure detection mechanism. 

2 

Correct value is validated as incorrect  Correct values are rejected. Propagated as too late, or output not provided in time (c.f. timing 
failure modes). 

2 

Incorrect value is validated as correct  Incorrect value is propagated as incorrect value failure mode. 2 

Data is not validated  Propagated as too late, or output not provided in time (c.f. timing failure modes or software 
aborts). 

2 
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3.5 Step 5: Incorporate Failures and Propagated Effects in Risk Analysis 

This step incorporates the propagating effects that were identified in Step 4. These effects may 

be implemented, for example in FTs, or ETs. 

Steps 4 and 5 are closely connected. Some iterations may be necessary to identify the relevant 

effects on the external interfaces that need to be incorporated in the risk analysis. 

The software failure mode effect on the external interfaces needs to be viewed in the context 

of use with other technical sub-systems and/or operator actions [23, 24]. Human operator 

actions may lead to software failures, but they may also recover the system from software 

failure. 

In addition to failures in the software, failures might arise in the interfaces of the software [3]. 

This might be faulty measurements from sensors, incorrectly entered data from human 

operators, or incorrectly implemented database queries. Applying the failure mode propagation 

behavior may be used to analyze the effect of an interface failure on the software system and 

consequently on the other external interfaces. This is not discussed further here and is subject 

to further work. 

Quantification could be derived through expert judgment or software reliability models. 

However, the quantification of the identified failure modes and the propagated failure effects 

on the external interfaces is out of scope of this article and will not be discussed further. 

3.6 Step 6: Suggest Improvement Measures 

Risk analysis is used to determine the risk level of an activity and propose mitigating measures 

in case of high levels of risk. Measures to improve the software system are (among others) to 

specify additional software functionality, redesign the software system, or specify additional 

safety and functional requirements for the software system. Risk analysis may also reveal the 

need for changes to hardware and to external interfaces with the human operator (supervisor). 

In general, in risk analysis should be used in the design phase of systems, so that necessary 

changes can be specified and implemented in an early phase of development. The same 

applies to the process proposed in this article; software failures need to be included along with 

hardware failures and human error as early as possible in the system development phase. 

The process may be applied to existing technological systems to estimate and include the risk 

contribution from the software system to the overall risk level. In contrast to hardware systems, 

software failure modes that are successfully removed from the software system will not reoccur 

under the same circumstances. Software updates that address identified failure modes and 

effects on the external interfaces need to be tested and verified. 
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The software system should be tested, validated, and verified before it is used in operation to 

demonstrate compliance with the requirements. The results from the presented process to 

incorporate software in risk analysis could be used to generate test cases to ensure that critical 

failure modes will not occur. A formal software development process as laid out in 

ISO/IEC/IEEE 12207:2008 [25] and ISO/IEC/IEEE 15288:2015 [26] may assist in improving 

the software. 

3.7 Step 7: Update the Analysis 

In accordance with the risk management standard ISO31000 [27], risk analyses need to be 

updated regularly. The identification of failure modes and the associated risk analysis might 

make it necessary to update the functional software model. There might be changes in the 

context of use, change of interfaces, implementation of new functions, or implementation of 

failure identification and correction mechanisms. 

3.8 Discussion 

One important aspect for incorporating software in risk analysis of the proposed process is the 

propagation of identified functional software failure modes to identify their effects on external 

interfaces. The propagation behavior was partly adopted from the literature [21] and extended. 

Wei [21] defined propagation behavior for less failure modes than the accompanying article [1] 

covers. Therefore, this present article defines the propagation behavior for the failure modes 

from [1] that have not been covered previously. 

The propagation behavior allows for a consistent analysis of the software behavior if a 

functional software failure mode occurs. The purpose of the proposed process is to highlight 

possible weaknesses in the software and hardware system as a basis for improving the SRS, 

system specification and focus testing and verification efforts on critical aspects of the software 

system. This implies that a software project in an early phase should consider all failure modes 

and therefore will be aware of possible failure modes and associated propagated effects on 

the external interfaces. 

Table 3 assesses the proposed process to incorporate software in risk analysis against the 

requirements that are presented in Table 1. All requirements are fulfilled except R5 and R7. 

Since the process is considering timing-related failure modes, R5 is only partly fulfilled. 

However, only through incorporation of the process in dynamic risk analysis is it truly possible 

to capture the full implications of timing-related failure modes in risk analysis [28]. 

Requirement 7, which is not fulfilled, addresses the quantification of the likelihood of software 

failure modes and their associated effects on the external interfaces. This is subject to further 

work. A software tool may facilitate the process of analyzing the effect of propagating failure 

modes, their integration, and quantification in risk analysis. 
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Table 3 Assessment of the proposed process to incorporate software in risk analysis against the criteria from 
Table 1. 

Requirement Fulfillment Comment 

R1 Identify failure 
modes  

Yes Individual functional failure modes are identified for each 
function. The first part of this article identifies a 
comprehensive and coherent set of functional software 
failure modes. 

R2 Identify possible 
failure causes 

Yes Failure causes can be found in the interfaces in the software 
itself or failure in the hardware support. The accompanying 
article outlines possible failure causes [1]. 

R3 Identify 
consequences of 
failure modes 

Yes Through consequent application of the failure mode 
propagation behavior, the consequences of software failure 
modes can be identified. The effects on the external 
interfaces can be integrated into risk analyses. 

R4 Represent 
functional 
behavior 

Yes The functional behavior of the software system is explicitly 
modeled and represented through the functions. 

R5 Represent 
temporal 
behavior 

Partly The temporal behavior is included in the model through 
timing constraints, requirements, and timing-related failure 
modes.  

R6 Represent 
context of use 

Yes The context of use of the software is represented by 
including external interfaces in the functional software 
model, considering the overall requirements, and using 
context-specific failure modes for a certain situation. 

R7 Be modular Yes The functional software model is modular through the 
functional decomposition. Each function is represented as 
its own module. 

R8 Be scalable Yes The process for incorporating software in risk analysis is 
scalable. It can be used for large and small software 
systems. The interactions between the functions are known 
and hence can be modeled. The process can focus on 
different levels of detail and functional decomposition. 

R9 Make use of all 
available 
information 

Yes The functional software model uses and reflects all the 
information that is collected in the SRS and other 
documentation.  

R10 Be applicable 
throughout 
software life 
cycle 

Yes Through the scalability and modularity, the process can be 
applied at different phases of development. Especially in the 
operation phase, the modularity makes it easy to adapt the 
model to changes.  

 

The proposed process in this article allows for identification of functional failure modes, failure 

consequences (through the propagation), and failure causes, which addresses R1 to R3. The 

process allows for representing the context and functional behavior (R4 and R6). Failure 

modes are identified for the functional behavior. The effects of the functional failure modes 

may be integrated in risk analysis, thus integrating it in the context. 

The proposed process is modular and scalable (R7 and R8), which originates from the 

functional approach. The functional approach also allows using the proposed process in 

different life cycle phases (R10). The process makes use of all available information, building 

the functional software model and assessing failure modes based on that information. 

Generally, the proposed process requires a good understanding of the software to be analyzed 

and the software development process. It is necessary that the risk analyst and software 
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developers work together and develop a common understanding of both the software and risk 

analysis, such that ambiguities can be avoided. 

The presented process is not the first to attempt to identify and incorporate software failures 

into risk analysis. Wei et al. [29] applied failure modes and identified their effects in a simulation 

environment. Wei et al. [29] only applied selected failure modes to some of the software 

functions. Their approach requires that the full software is available. However, not all the 

information that might be available from the software development process is incorporated. 

Hence, the approach by Wei et al. [29] does not completely fulfill the requirements R7, R9, and 

R10. 

The presented process in this article differs significantly from a software failure mode and effect 

analysis (FMEA). In most cases, FMEA assesses the effect of a failure mode based on 

discussion and knowledge of the analysts, and not all available information is used (R9). 

Moreover, FMEA is most suitable for risk analysis in the design phases of a system (R10, [19]), 

more detailed analyses may require more sophisticated risk analysis techniques. The method 

is based on simple checklists and focuses only on components or subsystems. The bottom up 

analysis is does not allow for assessment of interactions.  

The suggested process for incorporating software in risk analysis focuses on the software and 

its interactions with external interfaces and implementation of relevant failure events in risk 

analysis. This is different from other methods and processes, such as system-theoretic 

process analysis (STPA, [30-32]) or the dynamic flowgraph method (DFM, [33-35]), which 

focus on the identification of hazardous events. In addition, DFM does not provide mechanisms 

for identifying failure causes (R2). 

Li et al. [20] and Li [36] take as similar approach to the analysis of functional failure as in this 

article. Selected identified failure modes in the software are directly implemented in FT and 

ET, or ESD. No failure propagation is conducted (R3), which may exclude some consequences 

from the considerations. Although timing failure modes are considered, the analysis is rather 

static with only FT and ESD (R5). 

The functional failure identification and propagation methods (FFIP, [37-39]) and the failure 

propagation and simulation approach (FPSA, [39]) are developed to assess the system 

behavior in case of one or multiple faults. Software and hardware interaction are the focus. 

Several models, such as state space models and function flow models are used to assess the 

propagation. The FPSA module allows for simulation of the model to identify time dependent 

relationships and delayed failure effects. The model fulfills all the requirements outlined above. 

However, failures need to be identified by the analysts and failure propagation behavior needs 

to be defined specifically for each function.  
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4 Case Study 

This section exemplifies the process to incorporate the impact of software failures in risk 

analysis on a software-based decision support tool with risk relevant implications. Each step 

of the proposed process will be addressed, except Step 7. A complete analysis of the software 

system would be too extensive for this article. Hence, only selected aspects of the case study 

object will be presented in detail. The case study is deliberately kept simple with respect to 

decomposition to make the process better traceable and understandable for the reader. Steps 

2 and 3 are briefly presented in the case study of the accompanying article [1]. 

4.1 Step 1: Define the Scope of the Analysis 

Hegde et al. [40, 41] presented collision avoidance rules based on envelopes for an 

autonomous remotely operated vehicle (AROV). They implemented the set of traffic rules in a 

software tool to provide decision support in AROV operations, the underwater operational 

envelope visualizer (OEV). Since the software provides decision support with respect to the 

safe operation of the AROV, it is desirable that the tool does not increase the level of risk. 

AROV may collide with the underwater infrastructure, the seabed and other underwater 

vehicles [42]. A collision may lead to loss of the AROV, damages to the subsea structure and 

damages to the environment caused through the damages to the subsea structure. 

The aim of the underwater OEV software is to increase the situation awareness of the human 

operator to detect collisions and avoid collision with subsea obstacles [42]. The control system 

of the AROV and the physical components of the AROV are not part of the analysis, except 

for the qualitative fault tree analysis in Section 4.5. 

Ph.D. candidates at the Norwegian University of Science and Technology developed the 

underwater OEV for demonstration purposes in the research project Next Generation 

Inspection, Maintenance and Repair operations. The developers adopted a rapid prototyping 

approach, where the software was specified, written, tested and reiterated several times. This 

presented process is applied at a later iteration, to identify additional improvement measures 

for the software. The main developer is a co-author of this article and provided necessary 

information and input for the analysis. The process described in this and the accompanying 

article was applied to use a structured process to identify risk relevant software failure modes 

and consequently improve the software during the next iteration. It is to be noted that the 

approach presented in this article is programming language independent. It is developed in an 

academic setting, and therefore not following the lifecycle processes of software, as laid out , 

for example, in ISO/IEC/IEEE 12207:2017 [25] or ISO/IEC/IEEE 15288:2015 [26]. 
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4.1.1 Context for the analysis 

The underwater OEV by Hegde et al. [40, 41] has four aims: visualize the detection of static 

obstacles using safety envelopes, suggest a change of course based on safe traffic rules if an 

obstacle is detected, provide three-dimensional (3D) orientation and position visualization, and 

visualize the traversed path in time and space.  

The underwater OEV is designed for the operation of AROVs, which are unmanned underwater 

vehicles that operate mostly autonomously. The aim of the underwater OEV is to aid the human 

supervisor during different underwater intervention scenarios. Unlike traditional collision 

avoidance system, which are reactive safety system, the underwater OEV can be categorized 

as a decision support system. The OEV follows two main assumptions: (i) the size and position 

of all detected obstacles are known and (ii) the exact position of the AROV is known. To ensure 

easy interface with different software modules within the project, the underwater OEV was 

developed in Python 2.7 programming language. The required functions were identified during 

the early development phase. A rapid prototyping and testing approach were used to create 

the first working version of the underwater OEV, which was later continuously improved. The 

user interface was created with Qt creator and was converted to python code. The renderer of 

the 3D model uses the Visualization Toolkit library. The plots are realized with the Matplotlib 

library. 

AROVs will be required to approach subsea production systems to inspect, maintain or repair 

it during subsea inspection and repair operations. For the analysis, a transit of the AROV from 

a subsea garage to a working site in an underwater oil and gas production facility is assumed. 

The AROV moves with velocity of 1.5 m/s. The distance from the center of the AROV to the 

outer envelope is 2.5 m. During the transit, the AROV passes another subsea structure. 

Figure 4 summarizes the system architecture and the mission test setup. In the bottom half of 

the figure, the AROV flies close to a mock Christmas tree (XT, a subsea valve array). The 

position of the mock XT is predetermined. A collision detection algorithm utilizes the position 

of the obstacle and the AROV and detects the collisions areas if the AROV is on collision 

course with the XT. The position of the AROV is obtained by the Qualisys motion sensors and 

forwarded to the Mission Oriented Operating Suite (MOOS) middle-ware. 
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Figure 4 Test set up of the underwater OEV showing the AROV with the environment on the bottom half of the 
illustration and the system architecture on the top half of the illustration. Adapted from [41]. Abbreviations. XT - 

Christmas Tree 

 

The upper part of Figure 4 shows the system architecture. The underwater OEV is one of the 

three modules accessible to AROV supervisors through visualization screens. The underwater 

OEV receives its input from an external interface. The MOOS database provides position, 

attitude, and collision data. In addition, MOOS is a middleware developed to access the 

mission-related parameters [43]. The MOOS database collects, and stores data produced by 

the AROV and associated software. The data can be requested from the AROV components 

that need parts of the data. The underwater OEV produces outputs. It sends requests to the 

MOOS database for position, orientation, and identified collision candidates, and it visualizes 

the 3D model, position plots, and status messages regarding recommended actions to the 

human operator via a screen. 

Figure 5 shows the user interface of the underwater OEV. The operator and the AROV can 

utilize the information from the collision detection algorithm to identify the area sensitive to 

collisions given the position of the known obstacle. The green blocks in Figure 5 signify safe 
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areas and red blocks signify unsafe areas/ collision candidates. Depending on the collision 

candidates, the user/ AROV is suggested as an appropriate collision avoidance maneuver. 

The user also has access to the real-time orientation of the underwater vehicle through the 

visualization. For the analyzed scenario, shown in Figure 5, the expected recommendation of 

the underwater OEV is to execute an evasive maneuver to the left of the structure to keep a 

safe distance from the obstacle. The human operator could also take direct control of the 

AROV using the control joysticks. Although the underwater OEV is a conceptual development, 

it is assumed that it is part of the human-machine interface of the human operator with the 

AROV and hence can assist in the operation. 

 

 

Figure 5 Situation visualization for the case study; the plots on the right hand side are a visual example, not 
representing the current situation. This is what the operator will see during an operation. 

 

The implementation of the safety envelopes in the MOOS database and the AROV control has 

been verified and demonstrated [40, 41]. The traffic rules are assumed to be implemented 

correctly in the underwater OEV. It has been verified that the MOOS database gives expected 

datatypes and outputs in the right format. 

4.1.2 Aim of the risk analysis 

The analysis focuses on how the underwater OEV could contribute to a collision with the 

subsea structure that the AROV shall pass. Based on the above-described situation, the 

possible effects of the software on the external interfaces are analyzed with the failure modes 
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and the propagation behavior. The results of the analysis shall be implemented in qualitative 

FTs to analyze the effect on the overall operation. 

The application of the process shall give input to potential mitigation measures and shall help 

to improve the software during the next update. Other mitigating measures may be to adapt 

the system architecture. It shall also identify additional requirements or functionalities, which 

are necessary to avoid or mitigate the effect of possible failures. 

4.2 Step 2: Decompose Software and Build Functional Software Model 

The software decomposition can be found in the accompanying article [1]. Five functions were 

identified: initialize underwater OEV (F1), obtain data (F2), determine suggested action (F3), 

prepare render information (F4), and display information (F5). 

In the first function, initialize underwater OEV, the program starts, establishes a connection to 

the database, and sets up the window for visualizing the data. In F2, obtain data, the software 

polls for the necessary information that the underwater OEV uses in the subsequent functions. 

The underwater OEV shall poll data from the MOOS database with a frequency of 2 Hz. The 

function is detailed in the accompanying article [1] and shall further serve as an example for 

the process in this article.  

In F3, determine suggested action, information on the collision candidates and their positions 

is used to determine which actions are necessary to avoid a collision and stay at a safe 

distance. In F4, prepare render information, this information and the information on the collision 

candidates is used to highlight the corresponding safety envelope elements and display the 

recommendation. In addition, the 3D model is rendered according to the orientation of the 

AROV to give the human operator an overview of the situation.  

The last function, display information, updates the plots for the position and the 3D model. This 

information is sent to the user screen, where the human operator will see the information and 

use it as aid for operating and monitoring the AROV. 

Figure 6 presents the functional software model for the underwater OEV. It was developed 

from the functional decomposition and the description of the functions. All identified interfaces 

have been included. The program execution loop is represented through the broken line from 

F5 to F2. The diagram supports the analyses of failure modes and failure effect propagation in 

the next two steps. It illustrates the connection of the functions, the flow of information, and the 

dependency of functions. Each line is labeled with the associated output. These are described 

in Table 4. They represent the information that was summarized above. 
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Figure 6 Functional software model of the underwater operational envelope visualizer. Abbreviations: UI – User 
input; MDb – MOOS Database; US - User screen, description of the outputs can be found in Table 7. 

 

Table 4 Description of the outputs of the functions of the underwater OEV, found in Figure 7. 

Abbreviation Name Description 

F2. O5 AROV orientation Vehicle orientation in roll, pitch, and heading of the AROV. 

F2.O6 
AROV operational 
mode 

Mode of operation of the AROV (i.e., remote control, semi-
autonomous, autonomous). 

F2.O7 AROV position 

Local position of the AROV with respect to a local 
reference coordinate system, described in the north, east, 
and down reference frame.  

F2.O8 
Information on 
identified collision 
candidates 

Information on objects that were identified as falling within 
the safety envelopes of the underwater OEV. 

F3.O1 Suggested action 
Suggested action to the AROV operator based on the 
current context. 

F4.O1 Render information Information necessary to update the renderer. 

F5.O1 Screen information 
Visualized information containing the render model, 
suggested action and position plot. 

 

4.3 Step 3: Identify and Assess Failure Modes for the Functions 

As mentioned in the previous section, F2, obtain data, is used as the case study object. The 

accompanying article [1] identified 36 failure modes for that function. The set of identified failure 

modes is incomplete. It focuses on demonstrating how most of the generic failure modes can 
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be applied to the software function. The identified failure modes can be found in the first two 

columns of Table 5 in the next section. The failure mode identification will not be explained 

further here. 

4.4 Step 4: Propagate Functional Failure Modes through the Software 

System 

Table 5 summarizes the effects of applying the failure mode propagation behavior to the 

identified functional failure modes of F2. For the propagation of the failure modes, the 

information collected in Figure 6 is used. Information on the affected functions can be read 

directly from the functional software model (Figure 6). 

In general, functions that are assessed with no effect do not propagated further. No information 

updated or displayed in the column effect on user screen can be interpreted as a crash or a 

hanging of the underwater OEV. The human operator will not receive any information. Some 

selected examples shall clarify the analysis process and provide additionally needed 

information in the following paragraphs. 

The failure mode FM4, incorrect functionality of storing values in the corresponding variables, 

making them unavailable, will result in no output to the subsequent functions. These will not 

be able to produce their required output due to the missing data. Therefore, the user screen 

will not be updated, or any information displayed. 

In FM8, no function call to F3, the software execution is affected in such a way that F4 will be 

executed directly. That means that the render information is prepared and sent further to 

function F5. In this case, F5 will prepare the display data without the suggested action since it 

was not determined. Hence, the user screen will show all information correctly, except the 

suggested action. 

With respect to timing-related failure modes, two examples will be further explained. Output 

provided too late (500 ms): request for AROV orientation (FM14), which is a delay in the 

execution of the functions that succeed F2, occurs. The program will periodically run the 

functions in the specified order. The human operator will experience the delay since the screen 

is not updated in real time but with the delay of 500 ms. 
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Table 5 Propagation behavior applied to the failure modes identified for Function 2 obtain data. The outputs are described in Table 3. 

Failure modes 
Propagation 
through F3 

Propagation 
through F4 

Propagation 
through F5 

Effect on user screen (the external 
interface) 

Function failure modes 

FM1 Omission of “Obtain data”, which is not 
executed. 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

FM2 Omission of requesting data, which means 
that data is not requested. 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

FM3 Omission of converting MDb.O1 to AROV 
orientation data, which means that the 
orientation is note executed. 

No effect 
F4.O1 with wrong 
orientation 

F5.O1 prepared 
with wrong 
orientation 

Rendered model displayed with 
wrong orientation 

FM4 Incorrect functionality of storing values in the 
corresponding variables, making them 
unavailable 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

FM5 Additional functionality while converting 
AROV orientation (e.g., conversion of AROV 
position) 

No effect No effect 
F5.O1 prepared 
with wrong position 

Plots displayed with wrong position 

FM6 Failure in failure handling, no detection that no 
value has been received 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

Interaction failure modes 

FM7 
Incorrect function call, calling F4, skipping F3 F3 not executed 

Updated without 
F3.O1 

F5.O1 prepared 
without suggested 
action 

Information displayed without 
suggested action 

FM8 
No function call to F3 F3 not executed 

Updated without 
F3.O1 

F5.O1 prepared 
without suggested 
action 

Information displayed without 
suggested action 

FM9 
Incorrect priority for functions, call function F4 
before F3 

Executed after 
the renderer is 
updated 

Updated with F3.O1 
with old information 

F5.O1 prepared 
with old suggested 
action 

Information displayed with old 
suggested action 

FM10 Unable to request information from the 
database (communication protocol-
dependent failure) 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

FM11 
Request with wrong variable name to the 
database for AROV position  

No effect No effect 
F5.O1 prepared 
without position 
information 

No update of AROV position plot 

Timing-related failure modes 

FM12 Output provided too early: Request for AROV 
orientation 

Output provided 
too early 

Output provided too 
early 

F5.O1 provided too 
early 

Information on screen is updated 
earlier than required 

FM13 Output provided too late: Request for AROV 
orientation 

Output provided 
too late 

Output provided too 
late 

F5.O1 provided too 
late 

Information on screen is updated 
later than required 

FM14 Output provided too late (500 ms): request for 
AROV orientation 

Output provided 
500 ms late 

Output provided 
500 ms late 

F5.O1 provided 
500 ms late 

Information on screen is updated 
500 ms later than required 
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Failure modes 
Propagation 
through F3 

Propagation 
through F4 

Propagation 
through F5 

Effect on user screen (the external 
interface) 

FM15 Output provided spuriously: AROV 
operational mode 

No effect No effect No effect 
Information on screen is incorrectly 
updated 

FM16 Output provided out of sequence: Information 
on identified collision candidates provided 
before AROV position 

No effect No effect No effect 
Information on screen is incorrectly 
updated earlier than required 

FM17 
Output not provided in time: Information on 
identified collision candidates 

Output provided 
too late (delay 
determined by 
delay in F2) 

Output provided too 
late (delay 
determined by delay 
in F2) 

F5.O1 provided too 
late (delay 
determined by 
delay in F2) 

Information on screen is updated 
later than required (delay 
determined by delay in F2)  

FM18 Output rate too fast: Requests to database 
send too fast (within affordable rate) 

Output provided 
too early 

Output provided too 
early 

F5.O1 provided too 
early 

Information on screen is updated 
earlier than required 

 Output rate too fast: Requests to database 
send too fast (out of affordable rate, data 
dropped) 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

FM19 Output rate too slow: Requests to database 
send too slow 

Output provided 
too late 

Output provided too 
late 

F5.O1 provided too 
late 

Information on screen is updated 
later than required 

FM20 
Inconsistent rate for requests  

Output provided 
inconsistently in 
time 

Output provided 
inconsistently in time 

F5.O1 provided 
inconsistently in 
time 

Information on screen is updated 
inconsistently 

Value-related failure modes 

FM21 
No value for AROV position No effect No effect 

F5.O1 is not 
containing an 
position update 

No update of AROV position plot 

FM22 
Incorrect value for AROV position (not further 
defined) 

No effect No effect 
F5.O1 is not 
containing the right 
position 

Plots displayed with wrong position 

FM23 
Incorrect value, too high for AROV 
operational mode = 2 

No effect No effect 

F5.O1 contains 
wrong operational 
mode 
“autonomous” 

Display of information that AROV is 
in autonomous mode 

FM24 
Incorrect value, too low for AROV operational 
mode = 0 

No effect No effect 
F5.O1contains 
wrong operational 
mode “manual” 

Display of information that AROV is 
in manual mode 

FM25 
Incorrect value, too high, AROV orientation 
[0, 0, -15] 

No effect 

Render model 
prepared with wrong 
heading orientation 
(- 15°) 

F5.O1 prepared 
with - 15° wrong 
heading 

Render model displayed with -15° 
wrong heading 

FM26 
Incorrect value, too high, AROV orientation 
[0, 0, -30] 

No effect 

Render model 
prepared with wrong 
heading orientation 
(- 30°) 

F5.O1 prepared 
with - 30° wrong 
heading 

Render model displayed with -30° 
wrong heading 
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Failure modes 
Propagation 
through F3 

Propagation 
through F4 

Propagation 
through F5 

Effect on user screen (the external 
interface) 

FM27 

Incorrect value, zero for AROV position [0,0,0] No effect No effect 

F5.O1 prepared 
with position 
displayed as origin 
of the local 
coordinate system 

AROV position displayed as origin of 
the local coordinate system 

FM28 Value out of application allowable range for 
Information on identified collision candidates 
includes the value 68 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

FM29 

Value out of datatype range for AROV 
operational mode = 2,147,483,648 

No effect No effect 

Operational mode 
adjusted to closest 
allowable value (0), 
F5.O1 prepared 
with wrong 
operational mode 

Display of information that AROV is 
in manual mode 

FM30 
Frozen value for Information on identified 
collision candidates (no collision candidates 
detected) 

F3.O1 = no 
suggested action 

F4.O1 without 
highlighted envelope 
elements 

F5.O1 prepared 
without suggested 
action and without 
highlighted 
envelope elements 

Display of information that no action 
is needed, and no collision 
candidates were detected 

FM31 
Imprecise value for AROV position varying 
more than 1 m 

No effect No effect 
F5.O1 prepared 
with imprecise 
position (+/- 1m) 

AROV position imprecisely displayed 
(+/- 1m) 

FM32 Wrong datatype for AROV operational mode, 
string instead of int 

No effect No effect 
No effect, if the 
value is 1 

No effect 

FM33 
Too many (65) elements, in information on 
identified collision candidates 

No effect, if the 
value is within the 
range 

No effect No effect No effect 

FM34 Too few elements (two elements instead of 
three) in AROV orientation 

No effect No F4.O1 No F5.O1 No information displayed or updated 

FM35 Data in wrong order in AROV position [z, x, y] 
instead of [x, y, z] 

No effect No effect 
F5.O1 prepared 
with wrong position 

Plots displayed with wrong position 

FM36 Incorrect value (no value) for F2.O5-F2.O8 is 
validated as correct and is output 

No F3.O1 No F4.O1 No F5.O1 No information displayed or updated 

Abbreviation: FM – Failure mode, MDb – MOOS database, Functions: F2 – Obtain data, F3 – Determine suggested action, F4 – Prepare render information, 
F5 – Display information 
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In FM16, output provided out of sequence: information on identified collision candidates 

provided before AROV position, there is no effect on the output. The information is stored in 

dedicated variables. Unless the information is stored to the wrong variables, it will not affect 

the output to the external interfaces. 

The failure modes FM23 and FM24, incorrect value, too high, AROV orientation [0, 0, -15]/  

[0, 0, -30], respectively, are a special demonstration of how similar failure modes might affect 

the risk level. In this case, the heading of the vehicle is shifted in the failure mode by -15° and 

-30°, respectively. This failure will affect the model of the AROV being displayed with a wrong 

heading. Incorrect orientation display might have different implications for the human operator. 

Regarding FM28, value out of application allowable range for information on identified collision 

candidates includes the value 68, the failure mode will propagate as no output. The output will 

lead to no output in F3 since the value cannot be interpreted. No mechanisms are in place to 

check whether the value falls in the range. The no output failure mode will propagate to the 

screen, and the human operator will experience it as a hanging or crashing of the program.  

Similarly, FM 34, too few elements, (two elements instead of three), in AROV orientation, will 

lead to no output in Function 4. Function 3 is not affected since it does not use the information 

in the output AROV orientation. In Function 4, the program will read from the array, which only 

has two elements and not the expected three elements. When trying to read the third element, 

the function will not be able to do so and cannot produce an output. The human operator again 

will experience this as hanging or crash. 

4.5 Step 5: Incorporate Failures and Propagated Effects in Risk Analysis 

This section demonstrates how the identified effects on the external interfaces and the safety-

relevant effects can be implemented in the risk analysis. For that purpose, a fault tree analysis 

(FTA) was conducted. The top event for the FT is collision with subsea structure during transit. 

It incorporates human- and software-related events. The developed FT covers only part of the 

complete risk analysis.  

Figure 7 and Figure 8 present the developed FT, which is split into two parts for better 

readability. The effects on the interfaces from the propagated failure modes that relate to the 

display of wrong information are presented in Figure 7. 

The effects on the interfaces from the propagated failure modes that relate to the omission of 

displaying information can be found in Figure 8. Examples are no information displayed or 

updated or no update of AROV position plot. These events are only relevant if the human 

operator needs to rely heavily on the underwater OEV, due to visibility or technical conditions, 

and if the human operator decides to continue the mission, despite the degraded performance 
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of the underwater EOV. Two events in the FTs are undeveloped, these relate to the failure in 

the control system and human operator failure during waypoint planning or implementation. 

The main part of the FT, Figure 7, includes some of the events that relate to a wrong display 

of information or delayed output of information. The AND-Gate 3, for example, contains events 

in which the information is provided too late with respect to the requirements. However, it might 

be possible that the human operator can act beforehand or that the human operator can react 

and avoid a collision. Effects of propagated functional software failure modes that were 

included are information on screen is updated 500 ms later than required, information on 

screen is updated later than required, and information on screen is updated inconsistently. 

Another group of effects of propagated functional software failure modes are those that relate 

to wrong information being displayed, such as position in AND-Gate 4, heading in AND-Gate 2, 

and AROV operational mode being displayed as autonomous operation in AND-Gate 5. Most 

of the events that will lead to a collision require the human operator to be fully trusting the 

information provided by the software, while not using other available information. 

Not all of the identified effects of propagated functional software failure modes are relevant for 

the context. Hence, they were not included in the FTs. For example, information on screen is 

updated earlier than required does not influence the risk in relation to a collision. On the 

contrary, the earlier information is available and updated (an increased update frequency is 

implied) the better it is for the human operator. 

Similarly, display of information that AROV is in manual mode was not included since the 

human operator will act, in this case. This is disregarding the possibility that the human 

operator will not act due to other reasons. Such an event could be potentially found in the 

undeveloped event operator failure during waypoint planning or implementation. 

The event render model displayed with -15° wrong heading was not included in the FT, since 

it is a rather limited change of heading and it falls in the normal variation of the AROV heading 

(e.g., to compensate for external disturbances). A deviation by more than that, in this case -30°, 

is assumed significant, such that the human operator will act, in this case, one that may lead 

to a collision. 

The minimal cut sets should be identified from the fault trees to reveal the most critical events. 

Risk reduction and mitigation efforts should be prioritizing the most critical events from the 

minimal cut set analysis. 
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Figure 7 Main fault tree with the top event collision with subsea structure during transit. The fault tree was developed with the effects from the propagated functional 
software modes. 
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Figure 8 Sub-fault tree for the transfer gate P2 of the fault tree collision with subsea structure during transit. 

 

4.6 Step 6: Suggest Improvement Measures 

Most of the failure modes and their propagation effects on the interfaces of the underwater OEV 

that were identified could be prevented by verifying that the data received is in the correct format 

and expected datatype.  

The most critical software failures are those that lead to a crash or hanging of the software. Most 

of these may be avoided. In the current version of the program, no timing watchdogs or similar 

mechanisms are implemented to ensure that the software will abort after a time without output. By 

defining such requirements and accordingly implementing them, hanging of the program can be 

detected and prevented. Similarly, no mechanisms for checking the validity and of inputs from the 

MOOS database or outputs within the software.  
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In general, the underwater OEV was missing an implemented failure message system to the 

human operators. This should be implemented to assist the human operators in failure detection 

and solutions. Since the case study only covers a limited set of failure modes, no more 

improvement measures will be discussed. 

4.7 Discussion 

The case study was chosen due to its relevance for operation of an AROV and the potential for 

software improvement. Almost all the failure modes can be applied to the case study; hence, it is 

well suited for demonstration. Function 2 of the underwater OEV is described in detail. The 

analysis of other functions of the underwater OEV can be carried out similarly. The identification 

and propagation of software failure modes has been demonstrated. Only a few timing 

requirements are defined; therefore, only a few aspects of the timing-related failure modes could 

be demonstrated.  

Results from the case study show that software functional requirements and fault detection 

mechanisms can be identified to improve the software. This is addressed in the case study in 

Section 4.6. Analyzing the other functions and Function 2 completely could potentially identify 

additional relevant effects on the external interfaces, which should be implemented in the risk 

analysis. Consequently, this will lead to more specific recommendations for improvement of the 

software. 

The example demonstrates that the effects of propagated failure modes on the external interfaces 

can be implemented in a risk analysis, in this case an FTA. The presented FTA uses a simplified 

FT, neglecting failures that might arise independently of the analyzed software. In a full risk 

analysis, these events may need to be considered. For example, the control system of the AROV 

should be analyzed with the proposed process.  

Some challenges are associated with the application of the proposed process to the underwater 

OEV. The software is developed in an academic setting, which does not apply a formal 

development process, as it may be used in the industry. However, it is believed that the example 

is representative for safety-relevant and safety-related software systems and the risk analysis of 

these. The analyzed software is an important support system for the operation of AROV and might 

be implemented in future human-machine interfaces for AROV.  

The programming language chosen in the case study, Python, may be seen critical. It is not a 

recommended programming language for safety related systems [44]. However, the underwater 

OEV does not perform a safety related function as defined in IEC 61508-4 [45]. The underwater 

OEV is a supporting tool for visualization of the systems state that may lead to accidents that may 
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result in severe losses and environmental consequences. In addition, the software was developed 

through a rapid prototyping approach to achieve a working solution. Following the assurance 

processes in, e.g., IEC 61508 [7], would not have been viable. Hence, this example shows also 

that a non-safety-related function may contribute to risk and needs to be incorporated in risk 

analyses.  

The proposed process is cumbersome; thus, only one of the five functions of the underwater OEV 

was analyzed. Analyzing more complex software systems will be time-consuming. However, it will 

benefit the software being analyzed by deriving a comprehensive list of functional failure modes 

and their associated effects on external interfaces. Hence, an automated software tool should be 

developed and used to aid in the process. 

5 Conclusion 

This article presents a process for incorporating software failures in risk analysis, analyzing the 

effects of the propagated failure modes on external interfaces, and incorporating these into the 

risk analysis. The process provides a systematic way to analyze the effects of failure modes on 

the software output and associated external interfaces. The identified effects can be implemented 

in risk analysis and incorporated with human operator, sensor, and computing hardware–related 

failure events. This is an advantage over the current methods for incorporating software in risk 

analyses since a structured process is applied that may produce replicable, traceable and 

understandable results. 

The proposed process may be used in the development phase of the software. It may aid in 

highlighting necessary measures to improve the software and make it safe before the software 

code is finalized and released. The process may be applied to systems that are not per definition 

safety related but that may have implications for the level of risk. In addition, systems that are 

developed through rapid prototyping approaches may benefit from the proposed process, since 

the rapid changes can be easily captured and implemented in the model. The process may be 

applied to existing software systems, which makes it possible to improve existing software 

systems through updates and changes in operation. 

Ten requirements were developed to assess the process for incorporating software in a risk 

analysis. The proposed process fulfills these requirements, except for two. The proposed process 

does not fully capture the dynamics of the software with respect to the context; a dynamic risk 

analysis is required. The proposed process does not provide an approach to quantify the likelihood 

of the identified effects of propagated functional software failure modes on the external interfaces. 
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Relevant software failure effects are context specific and can be implemented directly in a risk 

analysis, via methods, such as FTs and ETs. The case study in this article shows how such a 

venture could be conducted. It is believed that the proposed process can assist in identifying a 

cohesive set of software failure effects on other safety related software systems, hardware 

systems and/ or human users through its external interfaces. Therefore, it is possible to improve 

the safety performance of the overall system.  

In the future, the process should be applied to more complex technical systems, such as 

autonomous ships, to demonstrate its applicability and feasibility. In addition to the expected 

increase in the complexity of each software system, such an analysis will require the analysis of 

different software systems that interact and communicate with each other, e.g., a navigation 

system and a traffic monitoring system.  

The dependencies between different software systems may be analyzed with the proposed 

process, for example a software failure effect may propagate through another software system. 

Future work should also incorporate the software failure effects on the external interfaces with 

human and organizational factors and the complete hardware system. Including these propagation 

behaviors will improve the incorporation of mutual dependencies between software users, 

hardware, and software.  

Further work includes the investigation of failure causes for the failure. Two main causes may lead 

to a software failure; undetected faults in the code or failures of sensor or the computing hardware. 

Further investigation is needed to identify a suitable quantification method. In addition, a software 

tool, facilitating the proposed process in this article, should be developed, to save the analyst time. 
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