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Abstract: In this work, we consider diagnostics of cyber attacks in Cyber-Physical 

Systems (CPSs), based on data analytics. For the first time to authors knowledge, the 

performance of such diagnosis is quantified considering the possible failure of the 

human operator cognitive process in interpreting and understanding the diagnosis 

support tool outcomes. 

A Non-Parametric CUmulative SUM (NP-CUSUM) approach is used for data-

driven diagnostic, and the cognitive process of the human operator who interprets its 

outputs is modelled by a Bayesian Belief Network (BBN). The overall framework is 

applied on the digital controller of the Advanced Lead-cooled Fast Reactor European 

Demonstrator (ALFRED). 
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ABBREVIATIONS 

ALFRED Advanced Lead-cooled Fast Reactor European Demonstrator 

BBN Bayesian Belief Network 

CPD Conditional Probability Distribution 

CPS Cyber-Physical System 

CPT Conditional Probability Table 

CR Control Rod 

DAC Digital-to-Analog Converter 

DoS Denial of Service 

HMI Human-Machine Interface 

I&C Instrumentation and Control 

LSB Least Significant Bit 

MC Monte Carlo 

NP-CUSUM Non-Parametric CUmulative SUM 

NPP Nuclear Power Plant 

PI Proportional-Integral 

PSF Performance Shaping Factor 

SG Steam Generator 

SISO Single Input Single Output 

 

NOMENCLATURE 

PTh Thermal power 

hCR Height of control rods 

TL,hot Coolant core outlet temperature 

TL,cold Coolant SG outlet temperature 

Г Coolant mass flow rate 

Tfeed Feedwater SG inlet temperature 

Tsteam Steam SG outlet temperature 

pSG SG pressure 

Gwater Feedwater mass flow rate 

Gatt Attemperator mass flow rate 

kv Turbine admission valve coefficient 

PMech Mechanical power 

t Time 

tR Accident time 

tM Mission time 
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dt Sensor measuring time interval 

y Variable (safety parameter) 

yref Reference value of controller set point value of y 

ysensor(t) Sensor measurement 

yF,sensor(t) Sensor false measurement 

yfeed(t) Measurement received by the computing (feeding) subsystem 

ymonitor(t) Measurement received by the monitoring subsystem 

δy(t) Sensor measuring error 

qy(t) Converter quantization error 

a Accidental scenario 

b Bias factor 

Y(t) Redundant channel measure, Y = yfeed and ymonitor 

SY(t) Score function-based statistic of the collected Y(t), SY(t) = ( )feed

yS t  

and ( )monitor

yS t  

hy Positive threshold 

τY Time to alarm, τY = 
feed

y  and 
monitor

y  

ΔτY Delay difference between 
feed

y  and 
monitor

y  

ref

y  Reference delay difference 

εy NP-CUSUM tuning parameter 

𝑛𝑝
𝛼 α-th parent node, α=1, 2, …, 7 

𝑆𝑝
𝛼,𝛾

 γ-th state of α-th parent node, γ=1, 2 or 3 

𝑝(𝑆𝑝
𝛼,𝛾
) Probability of the occurrence of 𝑆𝑝

𝛼,𝛾
 

𝑛𝑐
𝛽

 β-th child node, β=1, 2, …, 5 

𝑆𝑐
𝛽,𝛾

 γ-th state of β-th child node, γ=1, 2 or 3 

𝑝 (𝑆𝑐
𝛽,𝛾

) Probability of the occurrence of 𝑆𝑐
𝛽,𝛾

 

i NP-CUSUM online assignment 

j Real accidental event 

k Operator diagnostic cognitive decision 

𝑝(𝑗|𝑖) Probability of occurrence of an accidental event j, conditional on its 

online assignment i 

𝑝(𝑘|𝑗, 𝑖) Conditional probability of k, conditional on the combination (j,i) 

𝑝(𝑗, 𝑘|𝑖) Conditional probability of the operator diagnostic cognitive decision 

is k whose real event is j, when interpreting the online outcome i 

picorrect Probability of correct diagnostic conditional on the online 

assignment i 

,

ce 
 Elements at the anchor CPT of 𝑛𝑐

𝛽
, θ=anchor for selected anchors 



4 
 

with empirical distributions ( ) ( )( ), anchor , anchor
,

c c
N u e e

   


= =

 , and 

θ=other for the other elements whose missing mean and standard 

deviation values shall be linearly interpolated 
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1. INTRODUCTION 

Cyber-Physical Systems (CPSs) feature a tight combination of (and coordination 

between) the physical process that runs in the system and the cyber domain that, by 

high automation level, real-time monitors, dynamically controls and supports decision-

making during system operations [1-3]. 

Despite the benefits of CPSs, such as increased functionality, expanded capability 

and improved flexibility, the concern exists that their operation can be compromised 

not only by failures but also by attacks [4-6], that can be both physical or cyber. 

Attacks depend on many factors (e.g., attacker profile, skills, motivation, etc.), 

which makes it difficult for defenders to anticipate and diagnose attack scenarios [4, 7, 

8]. This is particularly true for cyber attacks, which are the focus of this work, since the 

majority of game-theoretic models assume that the defender moves first (e.g. designing 

a system, as in this work), and that the attacker moves after [9-13]. However, this means 

that an attacker can maximize the objective (of his/her malevolent act) and cyber attacks 

might be disguised from random failures, rendering the recovery difficult [14, 15]. 

Data-driven methods (e.g., the Sequential Probability Ratio Test (SPRT) [16, 17], 

the Cumulative Sum (CUSUM) chart [14, 18, 19], the Exponentially Weighted Moving 

Average (EWMA) inspection scheme [20]) have been proposed for the analysis of 

deviations in the observations from nominal values for diagnosing component 

stochastic failures. Machine learning techniques, including supervised learning (e.g., 

Support Vector Machine (SVM) [21], Neural Network (NN) [22]), unsupervised 

learning [23] and reinforcement learning (e.g., Q-learning [24, 25]), have also been 

proposed for such diagnosing task  [26, 27]. 

Practically, the outcomes of the diagnosis are made available to operators via 

digital Human-Machine Interfaces (HMIs). The operator is requested to interpret these 

outcomes and take decisions on what to do or not do for responding to the effects 

induced by the diagnosed failures  [28-30]. The human cognition process for assessing 

the system state based on the interpretation of the diagnostic outcomes can improve the 

diagnostic performance or worsen it  [28, 29, 31-34]. This has been analyzed considered 
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in the literature, using expert judgment [35, 36] and artificial intelligence [37, 38]. 

Methods and algorithms have been developed also for diagnosing cyber attacks 

[14, 39, 40]. In this work, without loss of generality, a Non-Parametric CUmulative 

SUM (NP-CUSUM) method (a sequential anomaly detection technique proposed in the 

literature for detecting parameter changes in physical systems [14, 41, 42]) is adopted 

for components failures [43, 44] and cyber attacks [14, 45-47], and the human operator 

cognition process that interprets the monitoring/detection outcomes for situation 

assessment (i.e., the operator develops his/her mental representation of the specific 

current situation), and response planning (i.e., the operator takes decisions for dealing 

with the assessed situation) [29, 30, 48] is originally modelled by a Bayesian Belief 

Network (BBN). Specifically, a BBN typically used for structuring expert knowledge, 

understanding and cognition errors related to component stochastic failures diagnosis 

[28, 30, 31, 49-53] is here originally tailored for modelling the human operator 

cognitive process for interpreting of the diagnostic outcomes originated from cyber 

attacks. 

A further novelty of the work consists in the overall framework of analysis, shown 

in Fig. 1, structured to capitalize the information made available by monitoring a CPS 

affected by cyber attacks and/or component stochastic failures for diagnosing the 

occurring events by a data-driven diagnostic tool, such as NP-CUSUM, where 

considering the human operator cognitive process in the interpretation of the diagnostic 

outcomes that influence the operator decision. 

 

 
Fig. 1 Overall framework 

 

A case study is considered, concerning stochastic components failures and cyber 

attacks that can occur in the digital Instrumentation and Control (I&C) system of the 
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Advanced Lead Fast Reactor European Demonstrator (ALFRED) [54]. An object-

oriented simulator previously developed [55, 56], comprising a multi-loop 

Proportional-Integral (PI) controller [57], is utilized for simulating the ALFRED 

dynamic response to failures and cyber attacks. Data are fed to the NP-CUSUM 

algorithm [15], and the diagnostic outcomes are interpreted by operators, whose 

cognitive process is modelled by BBN. 

The rest of the paper is organized as follows. Section 2 presents the main 

characteristics of the ALFRED reactor with its digital I&C system, the MC engine for 

injection of components failures and cyber breaches, and the NP-CUSUM technique. 

The operator cognitive process modelled by BBN is presented in Section 3. Section 4 

presents the results and Section 5 concludes the paper. 

 

2. THE ADVANCED LEAD-COOLED FAST REACTOR EUROPEAN 

DEMONSTRATOR 

 

2.1 The Reactor and the digital I&C system 

ALFRED is a small-size (300 MW) pool-type fast reactor, cooled by molten lead 

[54]. During operation, Control Rods (CRs) height hCR is adjusted for thermal power 

(PTh) regulation, reactivity swing compensation during the cycle, and scram for safe 

shutdown when necessary [58]. 

At full power nominal conditions, the dynamics processing of the primary and 

secondary cooling systems is controlled by a multi-loop PI (Proportional and Integral) 

control scheme (see Fig. 2). Such decentralized control scheme allows simplicity of 

implementation and robustness to malfunctioning of the single control loops [55, 56]. 

Both feedback and feedforward digital control schemes are used (see Fig. 2 shadowed 

part). The PI-based feedback control configuration employs four SISO (Single Input 

Single Output) control loops independent of each other. 
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Fig. 2. ALFRED reactor control scheme 

 

The control system aims at keeping the controlled variables at the steady state 

values, which give the optimal working conditions at full power nominal conditions. 

For example, it is expected that the coolant (i.e., lead) flow coming from the cold pool 

enters the core at temperature TL,cold  equal to 400 
oC, controlled by the TL,cold-PI3-Gwater 

control loop of Fig. 2. 

The parameters specification at full power nominal conditions are reported in 

Table 1. 

 

Table 1 ALFRED parameters values at full power nominal conditions 

Parameter Parameter Description Value Unit 

PTh Thermal power 300·106 W 
hCR Height of control rods 12.3 cm 
TL,hot Coolant core outlet temperature 480 oC 
TL,cold Coolant Steam Generator (SG) outlet temperature 400 oC 
Г Coolant mass flow rate 25984 kg·s-1 
Tfeed Feedwater SG inlet temperature 335 oC 
Tsteam Steam SG outlet temperature 450 oC 
pSG SG pressure 180·105 Pa 
Gwater Feedwater mass flow rate 192 kg·s-1 
Gatt Attemperator mass flow rate 0.5 kg·s-1 
kv Turbine admission valve coefficient 1 - 
PMech Mechanical power 146·106 W 

 

Redundancy is commonly applied to sensors and signal processing units of a 



9 
 

digital I&C system [59]. In the ALFRED digital control scheme, redundancy has been 

used to design each independent SISO loop. 

Fig. 3 shows an example of the redundant design scheme of the TL,cold-PI3-Gwater 

control loop. The real values of the coolant SG outlet temperature TL,cold(t) are measured 

by a sensor. After collected and converted to quantized (discretized) values by a data 

acquisition system, the measurements are duplicated by two identical digital-to-analog 

converters (DACs) to Subsystem 1 for computing (feeding) and 2 for monitoring, 

respectively. The received measurements of Subsystem 1 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡)  are fed to the 

computational unit PI3, whereas those of Subsystem 2 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡)  are taken as 

redundant data, for detecting anomalous conditions. 

 

 

Fig. 3 The redundancy design of the TL,cold-PI3-Gwater control loop 

 

Measurements are realistically considered to be affected by two types of errors [60, 

61]: measurement errors (assumed distributed according to a normal distribution) and 

quantization errors (which are rooted in the DACs and are assumed uniformly 

distributed between −1/2 and +1/2 Least Significant Bit (LSB)). For simplicity, but 

without loss of realism, Table 2 lists the reference values of the controlled variables, the 

distributions of sensor measurement errors and the quantization errors that each control 

loop is subjected to. 
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Table 2 List of reference parameters for safety variables 

Variable, y Reference value, yref, at 
full power nominal 
conditions 

Sensor measuring error 
δy(t) 

Converters quantization 
error qy(t) 

Tsteam (oC) 450 N(0,1) [-0.05, +0.05] 
pSG (Pa) 180·105 N(0,0.1) ·105 [-0.01,+0.01]·105 
TL,cold (oC) 400 N(0,1) [-0.05, +0.05] 
PTh (W) 300·106 N(0,0.5) ·106 [-0.05,+0.05]·106 

 

In Fig. 4, measurements from the four control loops of the ALFRED are shown, 

on a time horizon tM equal to 1000s: the values of the variables are kept approximately 

at their nominal values, at full power nominal conditions, with some measurement 

errors (white noise) and quantization errors. 

 

 

Fig. 4. Measurements from the four control loops of ALFRED at full power nominal conditions 

(star values for computing subsystem and triangle values for monitoring subsystem): (a) Steam SG 

outlet temperature; (b) SG pressure; (c) Coolant SG outlet temperature; and (d) Thermal power 

 

2.2 Failures and cyber breaches 

Both stochastic failures and cyber attacks can compromise the functionality of the 

ALFRED digital I&C system. Even if cyber attacks are different from components 

stochastic failures, they can lead to similar consequences on the system physical 

processes (e.g., both a stochastic failure and a cyber attack can result in sensor 

performance degradation [62, 63]). 

To model failures and cyber attacks, a MC sampling scheme is integrated with the 

ALFRED model for injecting stochastic failures of sensors and cyber breaches, at 
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uniform random times tR along the mission time tM and of random magnitudes (see [15] 

for future details). 

The occurrence of a sensor failure at random time tR results in an altered sensor 

measurement ysensor(t), that can potentially lead the ALFRED to accidents [64-66]. 

Therefore, if y(t) is the real value of the controlled variable y at time t, δy(t) is the 

nominal measuring error (distributed according to a normal distribution N(0,σ)), and 

yF,sensor(t) is the datastream (false measurement) when the sensor that measures y(t) has 

failed (due to bias, drift, wider noise or freezing [15, 64, 67]): 

 ( )
( ) ( )

( ),

, , normal

, , sensor failure

y Rsensor

F sensor

R

y t t t t
y t

y t t t

+ 
= 



 (1) 

Without loss of generality, we consider the diagnosis of the health state of the 

TL,cold-PI3-Gwater control loop of Fig. 3 (all the discussion remains valid for any other 

control loop of the I&C system). Stochastic failures of the TL,cold sensor cause the 

measurements 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑠𝑒𝑛𝑠𝑜𝑟(𝑡) to differ from the real values that should be measured in the 

physical system due to bias, drift, wider noise and freezing [15]. Alternatively, a Denial 

of Service (DoS) attack can cause the blocking of a legitimate packet traffic and its 

substitution by a malicious packet traffic, preventing the controllers from receiving 

legitimate measurements and mimicking the stochastic sensor failures. Fig. 5 shows the 

schematics of a DoS attack, in which the computing unit is fed by a malicious packet 

traffic, whereas a legitimate packet traffic is fed to the monitoring unit [14, 68-72]. 

 

 
Fig. 5 Schematics of DoS attacks 

 

2.3 The NP-CUSUM algorithm for data-driven diagnostic 

Data-driven diagnostic capability based on the NP-CUSUM algorithm [14, 15] is 
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embedded into the control loops, for distinguishing the sensor failures from the DoS 

attacks. As explained in [15], the diagnostic involves two main functions: (i) reception 

of measurements by the controllers and feeding to the NP-CUSUM algorithm, which 

has been (offline) trained on different system behaviors for setting its parameters; and 

(ii) use of the trained algorithm and rules for discriminate recognition of failures and 

cyber attacks. With respect to the TL,cold-PI3-Gwater control loop, without loss of 

generality: 

(i) The redundant Subsystems 1 and 2 collect the measurements of 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑠𝑒𝑛𝑠𝑜𝑟(𝑡) at 

each successive time dt, namely, 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) and 𝑇𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡), respectively, and 

the NP-CUSUM algorithm calculates the score function-based statistics 

𝑆𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) and 𝑆𝑇𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡) of the collected measurements, to check whether 

they exceed the offline determined threshold ℎ𝑇𝐿,𝑐𝑜𝑙𝑑: if yes, record the time(s) 

to alarm 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑

 or/and 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟 and proceed with the rule-based diagnostics. 

(ii) If both 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑

  and 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟  are recorded (because both 𝑆𝑇𝐿,𝑐𝑜𝑙𝑑

𝑓𝑒𝑒𝑑 (𝑡)  and 

𝑆𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡)  have exceeded the threshold), calculate the difference ∆𝜏𝑇𝐿,𝑐𝑜𝑙𝑑  

between the times to alarm, 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑

 and 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟: 

 
, , ,L cold L cold L coldT

feed monitor
T T   = −  (2) 

and compare it with a predefined reference difference Γ𝑇𝐿,𝑐𝑜𝑙𝑑
𝑟𝑒𝑓

 for rule-based 

decision making: 

 If ∆𝜏𝑇𝐿,𝑐𝑜𝑙𝑑 ≤ Γ𝑇𝐿,𝑐𝑜𝑙𝑑
𝑟𝑒𝑓

, classify the event as “TL,cold sensor failure”; 

 If ∆𝜏𝑇𝐿,𝑐𝑜𝑙𝑑 > Γ𝑇𝐿,𝑐𝑜𝑙𝑑
𝑟𝑒𝑓

, classify the event as “DoS attack”. 

Notice that the NP-CUSUM algorithm requires that its parameters 𝜀𝑇𝐿,𝑐𝑜𝑙𝑑, ℎ𝑇𝐿,𝑐𝑜𝑙𝑑  

and Γ𝑇𝐿,𝑐𝑜𝑙𝑑
𝑟𝑒𝑓

 are customized to the different system behaviors, to guarantee the capability 

of discriminating between failures and cyber attacks in the TL,cold-PI3-Gwater control loop 

(see [15] for future details). For illustration purpose, Fig. 6 plots 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡)  and 



13 
 

𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡) when a bias failure is injected at time tR = 630s, with a bias factor b equal 

to 7.569oC, leading to 𝑇𝐿,𝑐𝑜𝑙𝑑
𝐹,𝑠𝑒𝑛𝑠𝑜𝑟(𝑡) = 𝑇𝐿,𝑐𝑜𝑙𝑑(𝑡) + 𝑏 + 𝛿𝑇𝐿,𝑐𝑜𝑙𝑑(𝑡) , where 𝑡 ≥ 𝑡𝑅 . As 

shown in Fig. 6(a), the 𝑇𝐿,𝑐𝑜𝑙𝑑 sensor bias failure deviates both measurements 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) 

and 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡) from the real values of the physical system 𝑇𝐿,𝑐𝑜𝑙𝑑(𝑡). Fig. 6 shows 

that the bias results in a very quick response of both statistics 𝑆𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡)  and 

𝑆𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡), evaluated on the measurements 𝑇𝐿,𝑐𝑜𝑙𝑑

𝑓𝑒𝑒𝑑 (𝑡) and 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡). Indeed, both 

statistics reach quickly the threshold 
,L coldTh   (dotted line) and the difference ∆𝜏𝑇𝐿,𝑐𝑜𝑙𝑑   

between the times to alarm 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑

 and 𝜏𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟 turns out to be actually equal to zero 

(i.e., less than Γ𝑇𝐿,𝑐𝑜𝑙𝑑
𝑟𝑒𝑓

  equal to 9s) (see Fig. 6(b)), allowing for the (correct) 

identification of the event as a sensor failure mode and not as a cyber attack. 

 

 

Fig. 6 TL,cold sensor bias failure mode: (a) the received measurements 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) and 𝑇𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡) 

of feed and monitor Subsystems in which the bias occurs at time tR equal to 630s; (b) the 

corresponding NP-CUSUM statistics 𝑆𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) and 𝑆𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡)  for diagnosing the bias failure 

 

Contrarily, Fig. 7(a) shows a cyber attack to the computing unit, mimicking a bias 

failure mode at tR=630s (with b again equal to 7.569
oC): this leads 𝑇𝐿,𝑐𝑜𝑙𝑑

𝑓𝑒𝑒𝑑 (𝑡) to deviate 

from 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡)  (that, indeed, is the legitimate 𝑇𝐿,𝑐𝑜𝑙𝑑

𝑠𝑒𝑛𝑠𝑜𝑟(𝑡)  measured by the TL,cold 
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sensor). The different values between the malicious and the legitimate measurements, 

then, lead to a time to alarm difference ∆𝜏𝑇𝐿,𝑐𝑜𝑙𝑑   equal to 66s (larger than Γ𝑇𝐿,𝑐𝑜𝑙𝑑
𝑟𝑒𝑓

 ) 

between the threshold exceedance of 𝑆𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡)  and 𝑆𝑇𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡)  (see Fig. 7(b)), 

allowing for a (correct) identification of the event as a cyber attack. 

 

 

Fig. 7 Cyber attack to the computing unit mimicking a bias failure mode: (a) the received 

measurements 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) and 𝑇𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡) of feed and monitor Subsystems in which the cyber 

attack occurs at time tR equal to 630s; (b) the corresponding NP-CUSUM statistics 𝑆𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) and 

𝑆𝐿,𝑐𝑜𝑙𝑑
𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡) for diagnosing the cyber attack 

 

3. PERFORMANCE OF THE DIAGNOSTIC TOOL 

The NP-CUSUM-based diagnostic is eventually interpreted by human operators, 

for decision-making on the action to take. The overall performance of the procedure 

depends on both the capability and the human operator interpretation of the diagnostic 

outcomes. The human cognition process for diagnostic interpretation is here modelled 

by BBN to structure the expert knowledge and the dependences among human factors 

described by Performance Shaping Factors (PSFs) [28, 30, 31, 49-53]. 

 

3.1 Human operator cognition BBN 

The operator cognitive process for interpreting the diagnostic outcomes can be 

divided into three successive phases [29, 30, 48, 73, 74], namely: (1) 
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monitoring/detection (i.e., the operator observes the real-time information collected 

from the HMIs), (2) situation assessment (i.e., the operator develops his/her mental 

representation of the specific current situation) and (3) response planning (i.e., the 

operator takes decisions for counteracting the current situation).  

When an online diagnostic outcome arrives, the operator develops his/her 

cognition relying on both the current understanding of the system conditions and its 

mental representation founded on his/her formal education, system-specific training, 

and operational experience, namely, the knowledge base available to the operator [75]. 

The operator current understanding of the real-time system observations influences 

his/her performance in all three phases (1), (2) and (3), whereas the mental 

representation responding to the specific diagnostic outcome affects his/her 

performance at phases (2) and (3). Besides, context variables, such as the system 

situation level, the human mental level and the human stress level, may impede the 

operator from completing the diagnostic task [30, 53, 76], as sketched in Fig. 8. 

 

 

Fig. 8 The operator cognitive activity in diagnosing anomalies 

 

To model this, the BBN of Fig. 9 contains the PSFs [30, 77] “Work process”, 

“Diagnosis experience/training” and “Fitness of duty” (related to the operator 
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diagnostic knowledge base and pertaining to the human mental model), “Available 

diagnosis time”, “Diagnosis complexity” (dependent on the states of “Diagnosis 

procedure” and “HMI”) and “System situation level” (related to the operator 

understanding of the real-time system observations and, thus, identified as 

characteristics of the human stress model), “HMI” and “Indication of condition” 

(related to the system current conditions and, thus, belonging to “System situation 

level”). Note that the PSF “Indication of condition” is specifically introduced here for 

the first time, for accounting the possible failure of the human operator cognitive 

process in the interpretation of the data-driven diagnostic outcomes (component failures 

or cyber attacks). 

Throughout the process, the operator performance is affected by his/her mental 

and stress levels depending on the diagnostic outcomes received that reflect the system 

situation [30, 53, 76]. Table 3 lists the PSFs with the respective levels and descriptions, 

whereas Fig. 9 shows the BBN model that structures, based on expert judgment [51, 

78], the relationships (indicated by the arcs) among the PSFs parent nodes 𝑛𝑝
𝛼, α=1, 

2, … , 7, and the child nodes 𝑛𝑐
𝛽
, β=1, 2, … , 5, representing the operator cognitive 

activity, finally, determining the diagnosed state of the system as state in normal 

condition, under cyber attack or failed due to sensor failures.  

In the BBN model, each node represents a random variable associated with 

discrete states, labeled as 𝑆𝑝
𝛼,𝛾

 (for parent node) and 𝑆𝑐
𝛽,𝛾

 (for child node), hereby γ=1, 

2, 3 (see Fig. 9). The parent nodes 𝑛𝑝
𝛼 , α=1, 2, … , 6, are assigned with marginal 

probability distributions, 𝑝(𝑆𝑝
𝛼,𝛾

|𝑗) (∑ 𝑝(𝑆𝑝
𝛼,𝛾

|𝑗)3
𝛾=1 = 1), conditional on the operator 

experience to different accidental events j (i.e., sensor failure (j=a), cyber attack (j=b), 

or normal condition (including missed alarm) (j=c)). The NP-CUSUM data-driven 

diagnostic provides the operator with the current specific indication of condition (i.e., 

𝑆𝑝
7,𝛾

= 𝑖, i.e., sensor failure (i=a), cyber attack (i=b), or normal condition (including 

missed alarm) (i=c)), such that the marginal distribution of 𝑛7
𝛼  is assigned to be 

𝑝(𝑆𝑝
7,𝛾

= 𝑖) = 1  and 𝑝(𝑆𝑝
7,𝛾

≠ 𝑖) = 0 , given for a specific data-driven diagnostic 
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outcome i. The relationships between nodes, namely, the probabilities of the states of 

the child nodes for each possible combination of its parent(s) states, are described in 

the form of Conditional Probability Distributions (CPDs). The CPDs for each child 

node are distributed in the Conditional Probability Tables (CPTs). 

Once the marginal probability distributions 𝑝(𝑆𝑝
𝛼,𝛾
|𝑗), α=1, 2, …, 6, γ=1, 2, 3, and 

the CPTs of the child nodes are assigned, the BBN model of Fig. 9 allows calculating 

the conditional probabilities 𝑝(𝑆𝑐
1,𝛾

= 𝑘|𝑗, 𝑖)  (hereafter referred to 𝑝(𝑘|𝑗, 𝑖) ) of the 

operator diagnosing the event k to finalize as sensor failure (k=a), cyber attack (k=b), 

or normal condition (including missed alarm) (k=c), conditional on the combination (j,i) 

between the NP-CUSUM assignment i and the real accidental event j. 

As discussed in [15], the NP-CUSUM algorithm may suffer from either a large 

false alarm rate, if the threshold is set too small (type I error), or a high missed alarm 

rate, if the threshold is set too large (type II error). The operator may rectify the 

misclassification of the data-driven diagnostic with 𝑝(𝑘 = 𝑗|𝑗, 𝑖 ≠ 𝑗), or erroneously 

respond to a correct data-driven diagnostic with 𝑝(𝑘 ≠ 𝑗|𝑗, 𝑖 = 𝑗) [48, 79]. 
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Fig. 9 The BBN model describing the human operator cognition process for final diagnostic 
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Table 3 PSFs affecting the human operator cognition 

Child node, 𝑛𝑐
𝛽

  with states 𝑆𝑐
𝛽,𝛾

, β= Parent nodes, 𝑛𝑝
𝛼 , α= States, 𝑆𝑝

𝛼,𝛾
 Descriptions 

(1) Human 
cognition 
beliefs 

(2) Human mental level (1) Work process Good; 
Normal; 
Poor. 

The way to diagnose anomalies, e.g., coordination and communication between 
operators, management support, strategy handling given situations, and 
corrective action programs, etc. [80-82]. 

(2) Diagnosis 
experience/ training 

High; 
Normal; 
Low. 

The operator knowledge base, experience and training related to the diagnostic 
task [82]. 

(3) Fitness of duty Normal; 
Degraded; 
Unfit. 

The operator physical and mental fitness to perform the diagnosis task at the 
time [80, 82]. 

(3) System 
situation level 

/ (4) Available diagnosis 
time 

Extra; 
Normal; 
Inadequate. 

The operator available time to diagnose an abnormal event [82]. 

(5) Diagnosis 
complexity 

(5) Diagnosis procedure Available; 
Normal; 
Incomplete. 

The existence of feasible procedures for the diagnosis and response planning 
tasks [82, 83]. 

(6) Human-Machine 
Interface (HMI) 

Good; 
Normal; 
Misleading. 

The availability of real-time physical information from Human-Machine 
Interfaces (HMIs) for the operator to carry out the diagnostic task [82]. 

(4) Human stress level (6) HMI Good; 
Normal; 
Misleading. 

The availability of real-time physical information from HMIs for the operator to 
carry out the diagnostic task [82]. 

(7) Indication of 
condition 

i=a; 
i=b; 
i=c. 

The clarity of the data-driven diagnostic indications that assist the operator in 
diagnosing the anomaly [84]. 

Note:  

α= 1, 2, 3, 4, 5, 6 or 7 for parent nodes; 

β = 1, 2, 3, 4 or 5 for child nodes; 

γ = 1, 2 or 3 for all the nodes; 
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3.2 Overall diagnostic performance 

With reference to a recorded event j, the human operator correctly diagnoses the 

event when his/her assignment k is consistent with j, even if the data-driven diagnostic 

indicates a misclassified system state i. Vice versa, if the operator indication k is not 

consistent with the event j, an incorrect diagnostic of the accidental event is made by 

the operator, regardless of the correctness of the data-driven assignment i.  

Table 4 summarizes all possible human operator assignments k of the event j, with 

respect to the different data-driven diagnostic assignments i. In the Table, conditional 

on the assignment i, the correct diagnostic of the event is tagged by the symbol “√” (see 

Column 4), with a conditional probability equal to 𝑝(𝑗, 𝑘 = 𝑗|𝑖), where i, j, k = a, b or 

c (see Column 5), whereas, the incorrect diagnostic of the event is tagged by the symbol 

“×”, with a conditional probability equal to 𝑝(𝑗, 𝑘 ≠ 𝑗|𝑖), where i, j, k = a, b or c (see 

Column 5). 

In the end, only the consistency of the human operator assignment k with the event 

j gives a correct diagnostic: then, the probability of correct diagnostic 𝑝correct
𝑖  , 

conditional on the data-driven diagnostic i, is obtained by summing the probabilities of 

the occurrences tagged by “√” in Table 4. 

 𝑝correct
𝑖 = ∑ 𝑝(𝑗, 𝑘 = 𝑗|𝑖)

𝑐

𝑗=𝑘=𝑎

 (3) 

According to the chain rule of conditional probability [85], Eq. (3) can change to: 

 𝑝correct
𝑖 = ∑ 𝑝(𝑘 = 𝑗|𝑗, 𝑖) ∙ 𝑝(𝑗|𝑖)

𝑐

𝑗=𝑘=𝑎

 (4) 

where 𝑝(𝑗|𝑖) is the probability that the event is j, when the data-driven diagnostic is i 

(i.e., the probability of correct diagnosis of the data-driven algorithm if 𝑗 = 𝑖). This 

represents the performance of the data-driven diagnostic, which, as discussed in [15], 

can be empirically estimated from Nv tests of (unknown) failures and cyber attacks. On 

the other hand, 𝑝(𝑘 = 𝑗|𝑗, 𝑖)  is the ability of the operator to interpret the diagnostic 

outcome i and correctly assign his/her diagnostic k consistent with the occurred event 

j, i.e., k=j. 
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Table 4 All possible diagnostic assignments 

Data-driven 
diagnostic, i 

Human operator 
assignment, k 

Event, j Tag Conditional probability 

Sensor failure (a) a a √ p(j=a, k=a | i=a) 

b × p(j=b, k=a | i=a) 

c × p(j=c, k=a | i=a) 

b a × p(j=a, k=b | i=a) 

b √ p(j=b, k=b | i=a) 

c × p(j=c, k=b | i=a) 

c a × p(j=a, k=c | i=a) 

b × p(j=b, k=c | i=a) 

c √ p(j=c, k=c | i=a) 

Cyber attack (b) a a √ p(j=a, k=a | i=b) 

b × p(j=b, k=a | i=b) 

c × p(j=c, k=a | i=b) 

b a × p(j=a, k=b | i=b) 

b √ p(j=b, k=b | i=b) 

c × p(j=c, k=b | i=b) 

c a × p(j=a, k=c | i=b) 

b × p(j=b, k=c | i=b) 

c √ p(j=c, k=c | i=b) 

Normal condition 
(no indication) (c) 

a a √ p(j=a, k=a | i=c) 

b × p(j=b, k=a | i=c) 

c × p(j=c, k=a | i=c) 

b a × p(j=a, k=b | i=c) 

b √ p(j=b, k=b | i=c) 

c × p(j=c, k=b | i=c) 

c a × p(j=a, k=c | i=c) 

b × p(j=b, k=c | i=c) 

c √ p(j=c, k=c | i=c) 

Notes:  
1) hereafter “a” refers to “sensor failure”, “b” refers to “cyber attack”, and “c” refers to “normal condition” 

(including missed alarm); 
2) “√” refers to correct diagnostic, and “×” refers to incorrect diagnostic. 

 

To practically calculate the overall performance 𝑝correct
𝑖  for different data-driven 

diagnostic i, a general MC approach (sketched in Fig. 10) is proposed in line with [52, 

86] for populating the CPTs at the child nodes of the operator BBN. We proceed as 

follows: 

At the m-th MC run, m = 1, 2, …, Nm: 

(1) Set the distributions of PSFs for each event j = a, b or c (see Appendix A), i.e., 

the operator knowledge and experience, relative to the class of events j; 

(2) Set i = a, b or c, and the evidence of the parent node 𝑠𝑝
7,𝛾
 as equal to i, i.e., 

𝑝(𝑠𝑝
7,𝛾

= 𝑖) = 1 and 𝑝(𝑠𝑝
7,𝛾

≠ 𝑖) = 0; 
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(3) Sample the CPDs (i.e., 𝑝𝑚(𝑠𝑝
𝛼,𝛾

), the conditional probability of the states 𝑠𝑝
7,𝛾
) 

of the parent nodes 𝑛𝑝
𝛼, α = 1, 2, 3, 4, 5, 6, from the related distributions;  

(4) Populate the CPTs of the child nodes 𝑛𝑐
𝛽
  by use of the five-step functional 

interpolation method [52, 86]: 

(4a) Sample the mean and standard deviation values ( 𝑢(𝑒𝑐
𝛽,𝜃

)  or/and 

𝜎(𝑒𝑐
𝛽,𝜃

), where 𝑒𝑐
𝛽,𝜃=anchor

 are the selected anchors at the anchor CPT 

of the child node 𝑛𝑐
𝛽
, from the expert-judged distributions (see Appendix 

B); 

(4b) Linearly interpolate the missing mean and standard deviation values 

(𝑢(𝑒𝑐
𝛽,other

)  or/and 𝜎(𝑒𝑐
𝛽,other

) ) of the other elements at the anchor 

CPT of 𝑛𝑐
𝛽
 and then: 

(4c) Assign the normal distribution 𝑁 (𝑢(𝑒𝑐
𝛽,𝜃

), 𝜎(𝑒𝑐
𝛽,𝜃

))  to the θ-th 

element of the β-th child node 𝑛𝑐
𝛽
 CPT, β=1, 2, … , 5, and assign the 

states 𝑠𝑐
𝛽,𝛾

  of the child node 𝑛𝑐
𝛽
  with the 𝑁 (𝑢(𝑒𝑐

𝛽,𝜃
), 𝜎(𝑒𝑐

𝛽,𝜃
))  pdf 

values at the 𝑠𝑐
𝛽,𝛾

 states anchor values (i.e., γ assigned equal to 1, 2 (and 

3), respectively (see Appendix B)), being the conditional probability 

scales of 𝑠𝑐
𝛽,𝛾

 in 𝑒𝑐
𝛽,𝜃

, i.e., 𝜂(𝑠𝑐
𝛽,𝛾

|𝑒𝑐
𝛽,𝜃

); 

(4d) Normalize ∑ 𝜂(𝑠𝑐
𝛽,𝛾

|𝑒𝑐
𝛽,𝜃

)𝛾  to 1, leading the scale values to being the 

conditional probabilities of the 𝑠𝑐
𝛽,𝛾

 states, i.e., 𝑝(𝑠𝑐
𝛽,𝛾

|𝑒𝑐
𝛽,𝜃

), in the θ-th 

element of the child node 𝑛𝑐
𝛽
 CPT; 

(4e) Collect the CPDs of all the elements and, build the CPTs for the 𝑛𝑐
𝛽
 child 

node; 

(5) Quantify the BBN model with the sampled CPDs of parent nodes and CPTs of 

child nodes, and estimate the operator correct diagnostic probability 
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𝑝𝑚(𝑘 = 𝑗|𝑗, 𝑖)  conditional on the combination (j,i) with current assigned 

values of j and i; 

(6) Repeat steps (1) to (5), and collect the estimates of ( )| ,mp k j j i=  for the nine 

combinations (j,i): (a,a), (a,b), (a,c), (b,a), (b,b), (b,c), (c,a), (c,b) and (c,c); 

(7) Feed 𝑝𝑚(𝑘 = 𝑗|𝑗, 𝑖)  and the tested 𝑝(𝑗|𝑖)  values to Eq. (4), to obtain the 

estimates of the performance 𝑝correct,𝑚
𝑖  , with respect to the different data-

driven diagnostic indications i. 

Repeat steps (1) to (7) for Nm times, and obtain the confidence intervals of the 

𝑝correct
𝑖 , with respect to different data-driven diagnostic i. 
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Set j=a and, assign the respective distributions to PSFs nαp, α = 

1,2,3,4,5,6 

Collect the estimates of pm(k=j | j, i) of all the combinations (j, i)

i   c?

j   c?

i=i+1, i.e., 

i=b or c

Set i=a and, p(s7,γ
p=i)=1 in the BBN model

j = j+1, i.e., 

j=b or c

Obtain the confidence intervals of pi
correct with respect to different i

YES

YES

NO

NO

Sample the CPDs of nαp, α = 1,2,3,4,5,6 

YES

NO

Set m=1 and, start the MC simulation

Interpolate μ(eβ,θ
c) and σ(eβ,θ

c) on the other elements of the anchor 

CPTs

m=m+1
Normalize Σγ[η(sβ,γ

c|e
β,θ

c)] to 1, leading the scale values to being 

the conditional probabilities of sβ,γ
c, p(sβ,γ

c|e
β,θ

c)

Build the CPT of each child node by recording the CPDs of the 

elements

Sample the anchor values μ(eβ,θ
c) and σ(eβ,θ

c) of the nβc anchor 

CPT, β=1,2,3,4,5

Assign the θ-th element of β-th child node CPT with normal 

distributions N(μ(eβ,θ
c), σ(eβ,θ

c)) 

Quantify the BBN model and get pm(k=j | j, i)

m > Nm?

Estimates of pi
correct with respect to different i

Assign the sβ,γ
c states with the N(μ(eβ,θ

c), σ(eβ,θ
c)) pdf values at their 

anchor values γ equal to 1, 2 (and 3), being the conditional 

probability scales of sβ,γ
c in eβ,θ

c,η(sβ,γ
c|e

β,θ
c)

The measurement Tsensor
L,cold(t) is taken at time t

The measurement is sent to the redundant channel that is fed with 

Tfeed
L,cold(t) and Tmonitor

L,cold(t)

ΔτTL,cold   Γ
ref

TL,cold

YES

NO

Calculate the NP-CUSUM 

statistics Sfeed
L,cold(t) at time t

Sfeed
L,cold(t)   hTL,cold ?

YES

Set the alarm time τfeed
TL,cold = t

NO

τy
monitor    t ?

YES

NO

Set τy
feed=tM

Calculate the delay difference ΔτTL,cold = |τfeed
TL,cold - τ

monitor
TL,cold|

Calculate the NP-CUSUM 

statistics Smonitor
L,cold(t) at time t

Smonitor
L,cold(t)   hTL,cold ?

YES

Set the alarm time τmonitor
TL,cold 

= t

NO

TL,cold sensor failure i=a DoS attack i=b

τy
feed   t ?

YES

NO

Set τy
monitor=tM StopStop

t = tM ? t = tM ?

YES

NO

YES

NO

Continue

Continue

NP-CUSUM approach for data-driven diagnostic

Set test υ=1, and identify the event attribute j=a, b or c

Normal condition (no 

indication) i=c

Data-driven diagnostic of test υ 

as i=a, b or c

υ > Nυ ?

YES

NO

Estimate p(j|i) from a total of Nv tests of different 

scenarios, where j, i=a, b or c

υ=υ+1

MC approach for the assessment of overall performance p
i
correct

Initialize time at t=0, and start the data-driven diagnostic  

START

 

Fig. 10 The flowchart for estimating the diagnostic performance 
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4. RESULTS 

We generated 389 TL,cold transients due to sensor failures, 392 transients due to 

DoS attacks and 219 transients of normal operation scenarios out of a total of Nv = 1000 

tests scenarios of ALFRED evolution. At each test scenario j, the NP-CUSUM-based 

diagnostic algorithm is applied to both 𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡)  and 𝑇𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡)  to calculate 

𝑆𝑇𝐿,𝑐𝑜𝑙𝑑
𝑓𝑒𝑒𝑑 (𝑡) and 𝑆𝑇𝐿,𝑐𝑜𝑙𝑑

𝑚𝑜𝑛𝑖𝑡𝑜𝑟(𝑡), respectively, with the NP-CUSUM parameters randomly 

sampled from their distributions listed in Table 5. 

 

Table 5 Parameters of the NP-CUSUM algorithm 

Parameter Description Distribution Unit 

εTL,cold The NP-CUSUM tuning parameter U(2,5)·105 - 

hTL,cold The NP-CUSUM positive threshold U(3.8,4.0) - 

ΓTL,cold
ref  The reference delay difference between τTL,cold

feed  and τTL,cold
monitor U(8,9) s 

 

Table 6 collects the number of the data-driven diagnostic outputs, and lists the 

estimates of 𝑝(𝑗|𝑖): the data-driven diagnostic classifies the Nv tests into 386 sensor 

failures (a), 386 DoS attacks (b) and 228 normal condition (c), resulting in probabilities 

of correct assignment 𝑝(𝑗 = 𝑖|𝑖) equal to 0.9611, 0.9819 and 0.8772, respectively. It is 

worth noting that 𝑝(𝑗 = 𝑐|𝑖 = 𝑐)  is smaller than 𝑝(𝑗 = 𝑎|𝑖 = 𝑎)  and 𝑝(𝑗 = 𝑏|𝑖 = 𝑏) , 

because the NP-CUSUM algorithm suffers of a relatively high missed alarm rate when 

the occurring events negligibly affect the controlled variables and the system 

functionality. 

 

Table 6 Performance of the NP-CUSUM diagnostic 

NP-CUSUM 
diagnostic i 

Number of 
events 

Correctness p(j | i) Probability 

TL,cold sensor 
failure (a) 

386 Correct p(j=a | i=a) 371/386 (0.961) 
Misclassfication of cyber attack  p(j=b | i=a)      1/386 
Misclassfication of normal condition  p(j=c | i=a)   14/386 

DoS attack (b) 386 Misclassfication of component failure p(j=a | i=b)      2/386 
Correct p(j=b | i=b) 379/386 (0.982) 
Misclassfication of normal condition  p(j=c | i=b)      5/386 

normal 
condition (c) 

228 Misclassfication of component failure p(j=a | i=c)   16/228 
Misclassfication of cyber attack  p(j=b | i=c)   12/228 
Correct p(j=c | i=c) 200/228 (0.877) 

 

The operator cognitive errors in interpreting the diagnostic outcomes have been 
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calculated as discussed in Section 3.2, by running the operator cognition BBN of Fig. 

9: the correct diagnostic probability 𝑝correct
𝑖 , given data-driven diagnostic i (=a, b or c) 

is calculated according to Eq. (4), after Nm=1000 runs, along with the double-sided 95% 

confidence intervals of 𝑝correct
𝑖  . As shown in Fig. 11, the mean values of 𝑝correct

𝑖  

(circles in Fig. 11) turn out to be equal to 0.966, 0.923 and 0.943, with respect to the 

different data-driven diagnostic i (i.e., TL,cold sensor failures (a), DoS attacks (b) and 

normal conditions including missed alarms (c), respectively). 

 

 

Fig. 11 Estimates of the double-sided 95% confidence intervals of the correct diagnostic 

probabilities 

 

The results of Fig. 11 show that the mean values of 𝑝correct
𝑎  (equal to 0.966) and 

𝑝correct
𝑐  (equal to 0.943) are respectively larger than 𝑝(𝑗 = 𝑎|𝑖 = 𝑎) (equal to 0.961) 

and 𝑝(𝑗 = 𝑐|𝑖 = 𝑐) (equal to 0.877) (stars in Fig. 11). This shows that in these cases the 

operator expertise increases the performance of the data-driven algorithm by correcting 

events that were misclassified by the NP-CUSUM. The confidence interval of 𝑝correct
𝑏  

turns out to be large and its mean value (equal to 0.923) turns out to be smaller than the 

performance of the data-driven diagnostic tool (𝑝(𝑗 = 𝑏|𝑖 = 𝑏) equal to 0.982 labeled 

as star in Fig. 11). Conversely, this shows that, in this case, the lack of operators 

experience in correctly interpreting the NP-CUSUM outcome results in mistaking the 

diagnostic and in worsening the diagnosis performance with respect to cyber attacks. 

Furthermore, we have repeated the analysis by running Nm=1000 runs of the BBN, 
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assuming a fully skilled operator with respect to diagnosing cyber attack events, i.e., 

𝑝(𝑠𝑝
2,1|𝑖 = 𝑏) = 1. Double-sided 95% confidence intervals of the correct diagnostic 

probabilities 𝑝correct
𝑖  with respect to the different data-driven diagnostics i (i.e., a, b and 

c, respectively) are shown in solid lines in Fig. 11: the confidence interval of 𝑝correct
𝑏  

turns out to be narrower and its mean value (equal to 0.988) (diamond in Fig. 11) turns 

out to be larger than the performance of the data-driven diagnostic (equal to 0.982), as 

expected. 

 

5. CONCLUSIONS 

In this study, we have proposed a framework for the discrimination analysis of 

cyber attacks and component failures in Cyber-Physical Systems (CPSs). The 

framework combines, for the first time, a data-driven diagnostic approach (Non-

Parametric CUmulative SUM (NP-CUSUM), in this case) with a Bayesian Belief 

Network (BBN) that is originally tailored to model the human operator cognition 

process of interpreting the diagnostic outcomes. The BBN is used to structure the expert 

knowledge and other factors (in particular, the indication of the data-driven diagnostic 

outcomes) that influence the human cognition process for diagnostic. 

In the application, the work contributes to the process of enabling the interaction 

between data-driven diagnostic systems and human operators actions for supporting 

operator decisions with respect to cyber attacks in CPSs, with the aim of reducing false 

alarms, missed alarms, or misclassifications of cyber attacks as components failures, 

and vice versa. 

We have illustrated the work considering the digital Instrumentation and Control 

(I&C) system of the Advanced Lead-cooled Fast Reactor European Demonstrator 

(ALFRED). The results of the case study show that the proposed diagnostic approach 

is capable of identifying most of the generated failure/attack scenarios, with low 

frequency of misclassifications, and that, in the case considered, the operator increases 

the diagnosis performance for sensors failures, but not for cyber attacks. The results 

persuasively demonstrate that cyber attacks are less diagnosable compared to 
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components failures. 

A simplistic assumption is done that cyber attacks occur at random times from the 

viewpoint of the defender; in reality, attacker is likely to launch cyber attacks at 

preferred times when his/her objectives can be maximized and the investment 

minimized. This challenges the diagnostic task, and therefore, with due caution, future 

work will regard the role of the attacker decision making (e.g., based on a cost benefit 

analysis) for choosing the optimal time of attack. 

 

APPENDIX A 

With respect to the events of sensor failure (j = a) and normal conditions (including 

missed alarms, j = c), the probability distributions of the PSF states 𝑝(𝑠𝑝
𝛼,𝛾
|𝑗) , 𝛼 =

1, 2,⋯ , 6 , 𝛾 = 1, 2, 3 , are taken as uniform (see Table A1), according to expert 

judgment, whose mean values are given [87]. Under DoS attack events (j = b), the 

operator is assumed to be less experienced (𝑛𝑝
2 ) and the diagnosis procedure (𝑛𝑝

5 ) 

relatively incomplete, such that the probability distributions 𝑝(𝑠𝑝
2,𝛾
|𝑗 = 𝑏)  and 

𝑝(𝑠𝑝
5,𝛾
|𝑗 = 𝑏) result in those in the last column of Table A1. 

It us worth mentioning that, with respect to the MC simulation presented in Section 

3.2, the sampled values from the distributions of 𝑝(𝑠𝑝
𝛼,𝛾
|𝑗), 𝛾 = 1, 2, 3, for each parent 

node 𝑛𝑝
𝛼, given an event j, are normalized to the sum equal to 1 (i.e., ∑ 𝑝(𝑠𝑝

𝛼,𝛾
|𝑗)3

𝛾=1 =

1, given an 𝛼 and a j).  
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Table A1 Identification of probability distributions for the states of PSFs 

Parent nodes, 𝑛𝑝
𝛼 , α= States, 𝑆𝑝

𝛼,𝛾
, γ= 𝑝(𝑠𝑝

𝛼,𝛾
|𝑗), when 

j = a or c 

𝑝(𝑠𝑝
𝛼,𝛾

|𝑗), when j = 

b 

(1) Work process (1) Good U[0.70, 1.00] same as Column 3 
(2) Normal U[0.00, 0.30] same as Column 3 
(3) Poor U[0.00, 0.10] same as Column 3 

(2) Diagnosis 
experience/ training 

(1) High U[0.30, 0.60] U[0.00, 0.20] 
(2) Normal U[0.20, 0.50] U[0.20, 0.50] 
(3) Low U[0.00, 0.30] U[0.50, 0.80] 

(3) Fitness of duty (1) Normal U[0.10, 0.25] same as Column 3 
(2) Degraded U[0.70, 1.00] same as Column 3 
(3) Unfit U[0.00, 0.10] same as Column 3 

(4) Available diagnosis 
time 

(1) Extra U[0.10, 0.30] same as Column 3 
(2) Normal U[0.50, 0.80] same as Column 3 
(3) Inadequate U[0.00, 0.25] same as Column 3 

(5) Diagnosis 
procedure 

(1) Available U[0.30, 0.70] U[0.10, 0.30] 
(2) Normal U[0.20, 0.40] U[0.20, 0.40] 
(3) Incomplete U[0.00, 0.40] U[0.50, 0.70] 

(6) HMI (1) Good; U[0.70, 1.00] same as Column 3 
(2) Normal; U[0.10, 0.25] same as Column 3 
(3) Misleading. U[0.00, 0.05] same as Column 3 

 

APPENDIX B 

As suggested in [52], we build the anchor CPTs for the child nodes 𝑛𝑐
𝛽
 (β = 1, 2, 

3, 4, 5) of the BBN model of Fig. 9, as listed in Tables A2 to A6, respectively. In each 

Table, the anchor elements are shaded with the expert-judged values or/and 

distributions of the means and standard deviations (i.e., 𝑢(𝑒𝑐
𝛽,𝜃=anchor

)  or/and 

𝜎(𝑒𝑐
𝛽,𝜃=anchor

)). It is noticed that the states of the child nodes 𝑠𝑐
𝛽,𝛾

 are assigned with 

the anchor values equal to 1, 2 (and 3) for identifying the corresponding CPD scales 

(i.e., pdf values at the anchor values equal to 1, 2 (and 3)), once the uniform 

distributions at all the elements of the anchor CPTs are generated. 
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Table A2 The anchor CPT of 𝑛𝑐
1 (Human cognition beliefs) 

Human mental level Normal Moderate Bad 
Human stress level Low Moderate High Low Moderate High Low Moderate High 
System 
situation 
level 

Negligible 1.00; 
U[0.20,0.30] 

 U[1.20,1.50]; 
U[0.20,0.40] 

   U[1.20,1.50]; 
U[0.20,0.25] 

 2.00; 
U[0.50,0.70] 

Moderate          
Severe 1.00; 

U[0.20,0.40] 
 U[1.20,1.50]; 

U[0.20,0.50] 
   U[1.20,1.50]; 

U[0.50,0.70] 
 2.00; 

U[0.70,1.00] 

Note: 
1) In each shaded anchor element, the first value/distribution refers to the mean value/distribution and, the second one refers to the standard deviation 

value/distribution; 

2) The 𝑛𝑐
1 states 𝑠𝑐

1,𝛾
, correct (i.e., k=j) and incorrect (i.e., k≠j) diagnostic are assigned with the anchor values 𝛾 equal to 1 and 2, respectively. 

 

Table A3 The anchor CPT of 𝑛𝑐
2 (Human mental level) 

Work process Good Normal Poor 
Experience/training High Normal Low High Normal Low High Normal Low 
Fitness of 
duty 

Normal 1.00; 
U[0.20,0.30] 

 2.00; 
U[0.60,0.80] 

   1.00; 
U[0.40,0.70] 

 2.00; 
U[0.20,0.40] 

Degraded          
Unfit 1.00; 

U[0.20,0.50] 
 2.00; 

U[0.60,0.90] 
   1.00; 

U[0.40,0.70] 
 3.00; 

U[0.20,0.50] 

Note: 
1) In each shaded anchor element, the value refers to the mean value and, the distribution refers to the standard deviation distribution; 

2) The 𝑛𝑐
2 states 𝑠𝑐

2,𝛾
, Normal, Moderate and Bad are assigned with the anchor values 𝛾 equal to 1, 2 and 3, respectively. 

 

 

 

 



31 
 

Table A4 The anchor CPT of 𝑛𝑐
3 (Human stress level) 

Available time Extra Normal Inadequate 
Diagnosis complexity Obvious Normal Complex Obvious Normal Complex Obvious Normal Complex 
System 
situation 
level 

Negligible 1.00; 
U[0.20,0.30] 

 2.00; 
U[0.20,0.40] 

   1.00; 
U[0.50,0.80] 

 3.00; 
U[0.70,1.00] 

Moderate          
Severe 1.00; 

U[0.40,0.70] 
 2.00; 

U[0.50,0.80] 
   2.00; 

U[0.20,0.40] 
 3.00; 

U[0.70,1.00] 

Note: 
1) In each shaded anchor element, the value refers to the mean value and, the distribution refers to the standard deviation distribution; 

2) The 𝑛𝑐
3 states 𝑠𝑐

3,𝛾
, Low, Moderate and High are assigned with the anchor values 𝛾 equal to 1, 2 and 3, respectively. 

Table A5 The anchor CPT of 𝑛𝑐
4 (System situation level) 

Indication of condition i = j (e.g., a) i ≠ j (b) i ≠ j (c) 

HMI Good 1.00; 
U[0.20,0.30] 

2.00; U[0.40,0.60] 

Normal   
Misleading 2.00; 

U[0.40,0.60] 
3.00; U[0.45,0.75] 

Note: 

1) In each shaded anchor element, the value refers to the mean value and, the distribution refers to the standard deviation distribution; 

2) The 𝑛𝑐
4 states 𝑠𝑐

4,𝛾
, Negligible, Moderate and Severe are assigned with the anchor values 𝛾 equal to 1, 2 and 3, respectively. 

Table A6 The anchor CPT of 𝑛𝑐
5 (Diagnosis complexity) 

Diagnosis procedure Available Normal Incomplete 
HMI Good 1.00; 

U[0.20,0.30] 
 2.00; 

U[0.20,0.50] 
Normal    
Misleading 1.00; 

U[0.30,0.60] 
 3.00; 

U[0.30,0.60] 

Note: 

1) In each shaded anchor element, the value refers to the mean value and, the distribution refers to the standard deviation distribution; 

2) The 𝑛𝑐
5 states 𝑠𝑐

5,𝛾
, Obvious, Normal and Complex are assigned with the anchor values 𝛾 equal to 1, 2 and 3, respectively. 
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