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 ۱۰ 

Abstract ۱۱ 

Bayesian Network (BN) has been increasingly exploited to improve different aspects of Human ۱۲ 

Reliability Analysis (HRA), resulting in a new generation of HRA techniques, known as BN-HRA models. ۱۳ 

However, validating and evaluating the accuracy of BN-HRA models is still a challenging task. In this ۱٤ 

study, we have assessed and compared the performance of some of well-known BN-HRA techniques ۱٥ 

using human performance data obtained from an offshore evacuation simulation. Based on the role of ۱٦ 

data in quantifying the BN-HRA models, three categories of BN-HRA models have been considered: (i) ۱۷ 

BN-CREAM and BN-SPARH, which are based on predefined rules (rule-based methods), (ii) Bayesian ۱۸ 

Parameter Learning (BPL), which is entirely based on the available data (data-based method), and (iii) ۱۹ 

BN-SLIM model which is based on both the available data and the predefined rules (hybrid method). ۲۰ 

The results of the present study show that the data-based methods, i.e., BN-SLIM and BPL, in general ۲۱ 

outperform the rule-based methods. Cross-validation analysis further demonstrates the superiority of ۲۲ 

BN-SLIM over BPL, particularly in case of data scarcity.  ۲۳ 

 ۲٤ 

Keywords ۲٥ 

Human reliability assessment; k-fold cross validation; BN-CREAM; BN-SPARH; BN-SLIM; Bayesian ۲٦ 

parameter learning.  ۲۷ 
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1. Introduction ۲۹ 

Human factor is one of the main causes of technological accidents, causing environmental damage, ۳۰ 

major capital losses, and noticeable death toll [1-3]. Human Reliability Analysis (HRA) methods such as ۳۱ 

CREAM [4], SLIM [5], and SPAR-H [6] have been developed to identify potential human errors and ۳۲ 

estimate their occurrence probability in the operation of complex systems and processes. An integral ۳۳ 

part of HRA methods is assessing the performance shaping factors (PSFs), which characterize the ۳٤ 

context and human aspects of human failure events [7]. HRA methods provide instructions for ۳٥ 

calculating the conditional Human Error Probability (HEP) during a task in a particular context [8]. On ۳٦ 

the other hand, a nominal HEP of a given task is the probability of human error when the impact of ۳۷ 

different contexts on human performance is not considered [9].  ۳۸ 

The conventional HRA methods have some limitations such as being highly subjective [8, 10, 11], ۳۹ 

lacking a causal mechanism to link PSFs to the operator performance [12, 13], ineffective in ٤۰ 

incorporating multiple data sources [10, 14], being deterministic and thus not fully capable of handling ٤۱ 

uncertainties [8, 10, 15, 16], and not easily compatible with system safety assessment models [8, 13]. ٤۲ 

To mitigate these shortcomings some researchers have employed Bayesian network (BN) to enhance ٤۳ 

and extend the conventional HRA models [10]. ٤٤ 

BN has been introduced as a significant element in the third generation of HRA methods – a generation ٤٥ 

with more insight into HRA data [14, 17]. BN can effectively model the causal relationships between ٤٦ 

PSFs and respective human failure events while considering dependencies among the PSFs. BN’s ability ٤۷ 

in combining different sources of information allows the development of HRA models with a stronger ٤۸ 

basis in cognitive theory and empirical data [8]. Moreover, BN is able to handle uncertainty primarily ٤۹ 

by assigning prior probability distributions to the PSFs and by updating these priors as new information ٥۰ 

becomes available, leading to more objective results [18]. BN has also been employed to assess the ٥۱ 

PSFs and quantify their joint impact on HEP based on expert judgment and empirical data [12, 19, 20]. ٥۲ 

The integration of BN with the conventional HRA methods has lead to what are generally known as ٥۳ 

BN-HRA methods, such as BN-SPARH [8], BN-CREAM [16], and BN-SLIM [15]. The causal framework of ٥٤ 

BN-HRA methods can provide a proactive approach for preventing human errors under different ٥٥ 

contextual conditions [15]. Moreover, BN-HRA methods are able to work with perfect, partial or very ٥٦ 

little information on the PSFs [8]. Both conventional HRA methods [21–24] and BN-HRA methods [8, ٥۷ 

10, 13, 15, 16] have been widely used in system safety and risk assessment for assessing and reducing ٥۸ 

HEPs. However, despite the obvious advantages of BN-HRA methods over their conventional ٥۹ 

counterparts, studies on the performance and accuracy of BN-HRA methods have been very limited ٦۰ 
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(e.g., [10]), particularly using empirical and simulation data (e.g. [25, 26]). The lack of comparative ٦۱ 

studies, in turn, may leave the impression that since the BN-HRA methods are built on BN would all ٦۲ 

result in more or less the same HEP for a given task. Therefore, the present study can be considered ٦۳ 

as an attempt to provide more insight into the performance of some BN-HRA methods using the ٦٤ 

simulation data generated in an offshore evacuation virtual environment [27]. ٦٥ 

For the sake of clarity, in the present study we have considered four BN-HRA methods and categorized ٦٦ 

them into three groups based on the role of data in developing the required conditional probability ٦۷ 

tables needed to quantify the BN models. The first group includes the BN-CREAM [16] and BN-SPARH ٦۸ 

[8] which use predefined relationships and cognitive theories to calculate the probabilities. The second ٦۹ 

group includes a BN which uses the maximum likelihood estimation [28] for calculating the conditional ۷۰ 

probabilities merely based on the available data. The third group includes a refined version of the BN-۷۱ 

SLIM [15], which can be considered as a hybrid model that uses both the available data and the ۷۲ 

predefined relationships of the original SLIM to calculate the conditional probabilities. It is also worth ۷۳ 

noting that to perform a quantitative comparison among the foregoing BN-HRA methods, it was ۷٤ 

inevitable to make assumptions and adjustments both to the BN-HRA methods and the dataset, ۷٥ 

resulting in the customized BN-HRA models in the present study (These adjustments will be further ۷٦ 

discussed in the respective sections.). As such, the results of the present study should not be ۷۷ 

generalized as the results of the original BN-HRA methods. ۷۸ 

The rest of the paper is organized as follows: Section 2 briefly revisits the CREAM, SPAR-H and SLIM ۷۹ 

methods. Section 3 recapitulates the basics of BN, Bayesian parameter learning, and the BN versions ۸۰ 

of the foregoing HRA methods. In Section 4, the foregoing methods are applied to the simulation data, ۸۱ 

and their accuracy is evaluated. Section 5 concludes the study. ۸۲ 

2. Human reliability assessment methods ۸۳ 

2.1. SPAR-H  ۸٤ 

The SPAR-H method was developed for the U.S. nuclear regulatory commission to be used in ۸٥ 

probabilistic safety analysis models [6]. This method considers two nominal HEPs (NHEPs) of 0.001 and ۸٦ 

0.0001 for two task types of diagnosis and action, respectively. The model uses eight predefined PSFs ۸۷ 

to represent the performance context and to estimate the conditional HEPs given a particular context. ۸۸ 

The PSFs are “available time”, “stressors”, “complexity”, “experience/training”, “procedures”, ۸۹ 

“ergonomics/HMI”, “fitness for duty” and “work processes”. These PSFs are fixed and should be ۹۰ 

applied to any context regardless of their relevance. Each PSF has a certain number of states each with ۹۱ 

a particular assigned multiplier S [6]. For instance, for the PSF “experience/training”, the sets of states ۹۲ 
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and their corresponding multipliers are States = {High, Nominal, Low, Insufficient information} and S = ۹۳ 

{0.5, 1, 3, 1}. Having the state of each PSF identified, Eq. (1) is used to estimate the HEP if the number ۹٤ 

of negative PSFs (PSFs with a multiplier greater than 1) is less than three; otherwise Eq. (2) is used. 𝑆𝑆𝑖𝑖 ۹٥ 

is the multiplier of the i-th PSF (i = 1, …, 8).  ۹٦ 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁∏ 𝑆𝑆𝑖𝑖8
1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(∏ 𝑆𝑆𝑖𝑖−1)+18
1

          (1) ۹۷ 

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑁𝑁𝐻𝐻𝐻𝐻𝐻𝐻∏ 𝑆𝑆𝑖𝑖8
1           (2) ۹۸ 

2.2. CREAM ۹۹ 

CREAM was developed by Hollnagel [4] to be used in the general applications of HRA. This method ۱۰۰  

represents a contextual control model and defines four categories for the control mode, namely: ۱۰۱  

scrambled, opportunistic, tactical and strategic, which are ordered ascendingly with regard to the ۱۰۲  

degree of control. The control modes are related to different HEP intervals as presented in Table 1.  ۱۰۳  

 ۱۰٤  

Table 1. Control modes and probability intervals in CREAM [4] ۱۰٥  

Control Modes HEP intervals 
Strategic 5.0 E-06 < HEP < 0.01 
Tactical 0.001 < HEP < 0.1 
Opportunistic 0.01 < HEP < 0.5 
Scramble 0.1 < HEP < 1.0 

 ۱۰٦  
 ۱۰۷  
In the original CREAM, nine Common Performance Conditions (CPCs) or PSFs are defined to describe ۱۰۸  

the context. The nine PSFs are “adequacy of organization”, “working conditions”, “adequacy of man-۱۰۹  

machine interface and operational support”, “availability of procedures and plans”, “number of ۱۱۰  

simultaneous goals”, “available time”, “time of day”, “adequacy of training and experience”, and “crew ۱۱۱  

collaboration quality”. Each PSF has a number of determined states with the negative, positive or ۱۱۲  

neutral effects on performance probability. For instance, for “Adequacy of training and experience”, ۱۱۳  

the sets of the states and their effects are States = {Adequate with high experience, Adequate with ۱۱٤  

limited experience, Inadequate} and Effect = {Positive, Neutral, Negative}.  ۱۱٥  

According to the number of positive and negative effects of the PSFs and using the basic diagram of ۱۱٦  

CREAM, the likely control mode of an operator is determined. CREAM uses Table 2 to reflect on how ۱۱۷  

the effects of PSFs on human performance would change (from neutral to positive or negative) due to ۱۱۸  

the dependencies among the PSFs [4]. For example, according to Table 2, the ratio (2/3) in the third ۱۱۹  

row indicates that if at least two out of the three PSFs “Working conditions”, “Adequacy of MMI and ۱۲۰  
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operational support” and “Availability of procedure and plans” have negative effects, the neutral effect ۱۲۱  

of “Number of simultaneous goals” changes to negative as well. ۱۲۲  

 ۱۲۳  

Table 2. Rules for adjusting the effects of PSFs in CREAM [4]. ۱۲٤  

PSF The effect depends on the following PSFs 

Working 
conditions (4/5) 

Adequacy of 
organization 

Adequacy of MMI 
and operational 
support 

Available 
time 

Time of day 
Adequacy of 
training and 
experience 

Number of 
simultaneous 
goals (2/3) 

Working 
conditions 

Adequacy of MMI 
and operational 
support  

Availability of 
procedure 
and plans 

 
 

Available time 
(4/5) 

Working 
conditions 

Adequacy of MMI 
and operational 
support 

Availability of 
procedure 
and plans 

Number of 
simultaneous 
goals 

Time of day 

Crew 
collaboration 
quality (2/2) 

Adequacy of 
organization 

Adequacy of 
training and 
experience 

 
 

 
 

 ۱۲٥  

2.3. SLIM ۱۲٦  

SLIM is a flexible technique to estimate HEP during task execution [5]. It is a decision analysis approach ۱۲۷  

in which the success likelihood index (SLI) of an error is calculated under the combined effects of the ۱۲۸  

PSFs. A wide range of PSFs can be considered in the SLIM, enabling it to be used in different industries ۱۲۹  

and contexts [29–31]. Although SLIM heavily relies on expert judgment, it could be quite practical ۱۳۰  

where data on human error is insufficient. For a given task, the SLI is calculated by Eq. (3). The rate (𝑅𝑅𝑖𝑖) ۱۳۱  

shows the extent to which the PSFi is desirable for executing the task while the weight (𝑊𝑊𝑖𝑖) shows the ۱۳۲  

relative importance of the PSFi to the task.  ۱۳۳  

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝑊𝑊𝑖𝑖𝑅𝑅𝑖𝑖𝑁𝑁
𝑖𝑖=1           (3) ۱۳٤  

To estimate the HEP in executing the task, the logarithmic relationship can be used to calibrate the SLI ۱۳٥  

as: ۱۳٦  

𝑆𝑆𝐿𝐿𝐿𝐿(𝐻𝐻𝐻𝐻𝐻𝐻) = 𝑎𝑎𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑏𝑏          (4) ۱۳۷  

where the constant parameters a and b can be determined by two tasks for which the amounts of ۱۳۸  

HEPs and the corresponding SLIs are already known using, for instance, historical data or expert ۱۳۹  
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judgment. In the conventional SLIM all the input parameters (the weights, rates, and the constants a ۱٤۰  

and b) are determined by experts, introducing degrees of epistemic uncertainty into the analysis. ۱٤۱  

3. BN versions of HRA methods ۱٤۲  

3.1. Bayesian Network and Bayesian Parameter Learning ۱٤۳  

𝐵𝐵𝑁𝑁 = (𝐺𝐺,𝜃𝜃) is a graphical model for probabilistic inference. G is the graphical structure in which the ۱٤٤  

nodes display the random variables X = {x1, x2, …, xn}, and the directed arcs represent the dependencies ۱٤٥  

among the random variables; 𝜃𝜃 is the set of network parameters presented as the conditional ۱٤٦  

probability tables (CPTs) of the nodes [32]. BN satisfies the Markov condition in that the variables ۱٤۷  

(nodes) in the graph are independent of their non-descendants given their parents. As such, the joint ۱٤۸  

probability distribution of the random variables can be presented as the product of the conditional ۱٤۹  

probabilities of the nodes given their immediate parents as:  ۱٥۰  

𝐻𝐻(𝑋𝑋) = ∏ 𝐻𝐻(𝑥𝑥𝑖𝑖|𝐻𝐻𝑎𝑎(𝑥𝑥𝑖𝑖))𝑛𝑛
𝑖𝑖=1           (5) ۱٥۱  

where 𝐻𝐻𝑎𝑎(𝑥𝑥𝑖𝑖) is the parent set of node𝑥𝑥𝑖𝑖, and 𝐻𝐻(𝑥𝑥𝑖𝑖|𝐻𝐻𝑎𝑎(𝑥𝑥𝑖𝑖)) = 𝜃𝜃𝑖𝑖 is the network parameter used to ۱٥۲  

populate the CPT of node 𝑥𝑥𝑖𝑖. These parameters can be elicited from experts or be learned from data. ۱٥۳  

Using the Bayes' theorem, BN is able to update the prior probabilities of the nodes by observing new ۱٥٤  

evidence (E), as presented in Eq. (6). The main application of probability updating is in sensitivity ۱٥٥  

analysis [33]. In the context of HRA, the evidence can be observation of human error in a task, an ۱٥٦  

occurrence of incidents in an operation, or new information about the performance context.  ۱٥۷  

𝐻𝐻(𝑋𝑋|𝐻𝐻) = 𝑁𝑁(𝑁𝑁|𝑋𝑋)𝑁𝑁(𝑋𝑋)
𝑁𝑁(𝑁𝑁)

= 𝑁𝑁(𝑋𝑋,𝑁𝑁)
∑ 𝑁𝑁(𝑋𝑋,𝑁𝑁)𝑋𝑋

        (6) ۱٥۸  

The BN parameters can be estimated via parameter learning algorithms, e.g., the maximum likelihood ۱٥۹  

estimation. Given a dataset 𝐷𝐷 = {𝑋𝑋1,𝑋𝑋2, . . . ,𝑋𝑋𝑚𝑚} which contains complete observations of the states ۱٦۰  

of the BN variables 𝑋𝑋𝑗𝑗 = {𝑥𝑥1
𝑗𝑗 , 𝑥𝑥2

𝑗𝑗 , . . . , 𝑥𝑥𝑛𝑛
𝑗𝑗}, the network parameters 𝜃𝜃 can be estimated by maximizing ۱٦۱  

the likelihood or log-likelihood of the dataset as [28, 34]:  ۱٦۲  

𝑆𝑆𝐿𝐿𝐿𝐿_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝐿𝐿𝐿𝐿𝑜𝑜(𝐷𝐷;𝐺𝐺, 𝜃𝜃) = 𝑆𝑆𝐿𝐿𝐿𝐿(𝐻𝐻(𝐷𝐷|𝜃𝜃)) = 𝑆𝑆𝐿𝐿𝐿𝐿∏ 𝐻𝐻(𝑥𝑥1
𝑗𝑗 , 𝑥𝑥2

𝑗𝑗 , . . . , 𝑥𝑥𝑛𝑛
𝑗𝑗 |𝜃𝜃)𝑚𝑚

𝑗𝑗=1 =۱٦۳  

𝑆𝑆𝐿𝐿𝐿𝐿∏ ∏ 𝐻𝐻(𝑥𝑥𝑖𝑖
𝑗𝑗|𝐻𝐻𝑎𝑎(𝑥𝑥𝑖𝑖

𝑗𝑗)) =𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑗𝑗=1 𝑆𝑆𝐿𝐿𝐿𝐿∏ ∏ 𝜃𝜃𝑖𝑖

𝑗𝑗 =𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑗𝑗=1 ∑ ∑ 𝑆𝑆𝐿𝐿𝐿𝐿𝑛𝑛

𝑖𝑖
𝑚𝑚
𝑗𝑗 𝜃𝜃𝑖𝑖

𝑗𝑗     (7) ۱٦٤  

3.2. BN-SPARH ۱٦٥  

Groth and Sliwer [8] proposed that using BN would make HRA models more compatible with the HRA ۱٦٦  

practitioners’ perspective. They illustrated how BN-SPARH can be useful for causal and evidential ۱٦۷  

reasoning with perfect, partial or no information on the PSFs states. The main steps for developing the ۱٦۸  

BN-SPARH can be summarized as: ۱٦۹  
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Building the BN-SPARH structure: BN-SPARH has a simple structure with 9 nodes; eight nodes to ۱۷۰  

represent the eight PSFs and one node to represent the HEP. The states of the PSF nodes are the same ۱۷۱  

as the states defined in the conventional SPAR-H method [6]; however, the “Insufficient information” ۱۷۲  

state is excluded because even in the absence of sufficient information (non-informative) prior ۱۷۳  

probability distributions can still be assigned to the PSF nodes of the BN. The HEP node has two states: ۱۷٤  

human error occurs (HEP = Yes) and human error does not occur (HEP = No). The causal arc between ۱۷٥  

a PSF node and the HEP node illustrates the conditional dependence of the latter on the former. ۱۷٦  

Quantifying BN-SPARH: Using the predefined mathematical relationships given in Eqs. (1) and (2), the ۱۷۷  

CPT of the HEP node can be populated. However, in case of “Available time = Inadequate” or “Fitness ۱۷۸  

for duty = Unfit” the conditional HEP would be equal to 1 (i.e., we are certain that HEP = Yes). The ۱۷۹  

probability mass function of the states of each PSF is identified using the available data and/or experts’ ۱۸۰  

knowledge.  ۱۸۱  

3.3. BN-CREAM ۱۸۲  

Kim et al. [16] developed the BN-CREAM so that the uncertainty associated with the states of the PSFs ۱۸۳  

can be modeled using probability distributions. To better handle the uncertainties, Yang et al. [35] and ۱۸٤  

Zou et al. [36] proposed fuzzy BN-CREAM, which are beyond the scope of the present study. The BN-۱۸٥  

CREAM can be developed through the following steps: ۱۸٦  

Determining the primary effect of each PSF: For each PSF, there is a node that represents the states ۱۸۷  

of the PSF and is connected to another node for modeling the primary effect of the states of that PSF ۱۸۸  

on the performance reliability. To demonstrate how to relate the states of a PSF to their effects, the ۱۸۹  

CPT of node “Effect of crew collaboration quality” has been presented in Table 3. ۱۹۰  

 ۱۹۱  

Table 3. CPT of node “Effect of crew collaboration quality”. ۱۹۲  

Expected effect 
States 

Very 
efficient 

Efficient Inefficient Deficient 

Positive 1 0 0 0 

Neutral 0 1 1 0 

Negative 0 0 0 1 

 ۱۹۳  

Adjusting the PSFs’ effects: Considering the dependencies among the four PSFs (Table 2), the adjusted ۱۹٤  

effects of the PSFs are considered by assigning four specific nodes. The CPTs of these nodes are filled ۱۹٥  
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using the rule presented in Section 2.2. For the sake of clarity, Table 4 reports parts of the CPT of node ۱۹٦  

“Adjusted crew collaboration quality”.  ۱۹۷  

 ۱۹۸  

Table 4. Parts of the CPT of node “Adjusted crew collaboration quality” ۱۹۹  

Crew 
collaboration 
quality 

Adequacy of 
organization 

Adequacy of training 
and experience 

Adjusted crew collaboration 
quality 

Positive Neutral Negative 

Neutral 
 

Positive 

Positive 0 1 0 

Neutral 0 1 0 

Negative 0 1 0 

Neutral 

Positive 0 1 0 

Neutral 0 1 0 

Negative 0 1 0 

Negative 

Positive 0 1 0 

Neutral 0 1 0 

Negative 0 0 1 

 ۲۰۰  

Determining the control mode: Given the effects of all the 9 PSFs, the CPT of node “control mode” can ۲۰۱  

be determined by employing the rules defined in the conventional CREAM. Due to the massive size of ۲۰۲  

the CPT of this node (size of 37 × 22), in some studies the nine PSFs are divided into 3 groups to reduce ۲۰۳  

the calculation load [16, 36]. ۲۰٤  

Calculating HEP: Although the HEP estimation is not included in the BN-CREAM proposed by Kim et al. ۲۰٥  

[16], adding the HEP node with the two states of “HEP = Yes” and “HEP = No” can facilitate the ۲۰٦  

calculation of the HEP. The CPT of the HEP node can be filled in with the mean values of the HEP ۲۰۷  

intervals.  ۲۰۸  

Using the mean values of probability intervals is a common practice in probabilistic safety assessment ۲۰۹  

[37] although some information may be lost using this approach. Another alternative would be using ۲۱۰  

Dempster-Shafer theory to handle probability intervals [38], which could increase the accuracy of the ۲۱۱  

calculated HEP yet at the expense of a more complicated analysis, which is beyond the scope of the ۲۱۲  

present study. ۲۱۳  

 ۲۱٤  

3.4. BN-SLIM ۲۱٥  
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Abrishami et al. [15] developed BN-SLIM and demonstrated that it outperforms the conventional SLIM ۲۱٦  

by considering the probability distribution of PSFs, by considering the dependencies among the HEPs, ۲۱۷  

and by identifying the critical PSFs and PSF rates using the probability updating feature of the BN. To ۲۱۸  

develop the BN-SLIM the following steps should be taken: ۲۱۹  

Building the BN-SLIM structure: According to the conventional SLIM, the total effect of contributing ۲۲۰  

PSFs on the HEP is modeled through the SLI variable. Thus, two functions are needed for estimating ۲۲۱  

the HEP: One for calculating the SLI given a set of N PSFs, and the other for calculating the HEP given ۲۲۲  

the SLI. Thus, a BN with N + 2 nodes would be required, N nodes for representing the PSFs and 2 nodes ۲۲۳  

for representing the SLI and the HEP. ۲۲٤  

Each PSF node has several states to represent its rates. Thus, the number of the states of the SLI node ۲۲٥  

is equal to the number of possible combinations of the rates (states) of the PSFs nodes. For example, ۲۲٦  

consider a case with two PSFs, PSF1 and PSF2, each with two rates of 3 (indicating a poor state) and 7 ۲۲۷  

(indicating a good state) and respective weights of 0.2 and 0.8. As a result, the SLI node would have ۲۲۸  

four states as 𝑆𝑆𝑆𝑆𝑆𝑆 = 0.2 × {3, 7} + 0.8 × {3, 7} = {3.0, 3.8, 6.2, 7.0}. The SLI node should be the only ۲۲۹  

parent of the HEP node, which in turn would have two states, human error occurs (HEP = Yes) and ۲۳۰  

human error does not occur (HEP = No). ۲۳۱  

BN-SLIM quantification: To quantify the effects of the PSFs nodes, CPTs should be assigned to the SLI ۲۳۲  

and HEP nodes. The CPT of the SLI node shows which combination of the PSF rates would result in ۲۳۳  

which state (value) of the SLI. To build the CPT of  the HEP node, the conditional error probability is ۲۳٤  

assigned via direct application of the logarithmic formula in Eq. (4). For example, P(HEP = Yes | SLI = ۲۳٥  

3.8) = 10−(3.8𝑎𝑎+𝑏𝑏) where a and b are determined based on expert knowledge and/or available data. ۲۳٦  

4. Comparing the performance of BN-HRA models ۲۳۷  

4.1. Case study ۲۳۸  

In this study, we use the simulation data of human performance during offshore emergency evacuation ۲۳۹  

generated in a virtual environment [27]. The dataset contains 129 observations with six binary ۲٤۰  

variables. Each record contains three dependent variables associated with three PSFs and three ۲٤۱  

independent variables associated with three possible responses of the test participants (each response ۲٤۲  

is considered as a possible human failure). According to the designed experiment, “Training”, ۲٤۳  

“Visibility”, and “Complexity” are selected as the three PSFs as in Table 5. The three executive tasks in ۲٤٤  

the evacuation process are defined as “Evacuation”, “Backtracking” and “Exposure to hazard” [27]. The ۲٤٥  

definitions of these tasks are presented in Table 6. If the time of “Evacuation” or “Backtracking” takes ۲٤٦  

longer than a benchmark time, or if the “Exposure to hazard” leads to injury, a human failure is ۲٤۷  

supposed to have occurred. ۲٤۸  
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 ۲٤۹  

Table 5. Description of the PSFs [27]. ۲٥۰  

PSF Description State 
Visibility It refers to the amount of ambient light 

available while performing a specific task. 
The amount of light is believed to affect the 
visibility of the evacuees and hence their 
performance. 

High: performing a task in daytime  

Low: performing a task at night 

Complexity It refers to how difficult it is to perform the 
task in a given context. Complexity considers 
both the task and the environment in which 
the task is to be performed. The more 
difficult the task to perform the greater the 
likelihood of human error.  

Low: if there is no hazard or obstacle 
on the available routes to the 
lifeboat station. 

High: if several routes are blocked 
with hazards such as jet fire, pool 
fire, and heavy smoke  

Training It refers to the type of training provided to 
the evacuees (participants in the virtual 
experiment).  

Active: learning to navigate to the 
lifeboat platform by freely exploring 
the environment. 

Active - passive: learning to navigate 
to the lifeboat platform by watching 
three training videos hosted by an 
avatar who described a specific 
predetermined path. The participant 
can imitate the routes taken by the 
avatar after each video. 

 ۲٥۱  

Table 6. Tasks description [27]. ۲٥۲  

Task Description 
Evacuation Time to evacuation refers to the time taken by the participant to 

reach the lifeboat platform from the starting position. 

Backtracking Backtracking time is the time spent by the participant to go back 
the way they had come. In an ideal case, the participant should 
not spend time in backtracking unless the route followed is 
blocked, in which case they might have to backtrack to find an 
alternative route.  

Exposure to hazard Depending on the type of hazard and time spent close enough to 
the hazard, the participant could be injured or not. 

 ۲٥۳  

Tables 7 and 8 present the data-derived relative frequencies of the PSF states and the relative failure ۲٥٤  

frequencies of the tasks. The relative failure frequency of each task has been considered as the ۲٥٥  

objective HEP of that task in the present study. ۲٥٦  
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 ۲٥۷  

Table 7. Data-derived relative frequencies of the states of PSFs [27]. ۲٥۸  

Visibility Training Complexity 
State Frequency State Frequency State Frequency 
High 0.67 Active 0.51 Low 0.67 
Low 0.33 Active-Passive  0.49 High 0.33 

 ۲٥۹  

Table 8. Data-derived relative failure frequencies of the tasks [27]. ۲٦۰  

Evacuation Backtracking Exposure to hazard 
State Frequency State Frequency State Frequency 

Time of 
evacuation < 
benchmark 
time (HEP = 
No) 

0.37 Time of 
backtracking < 
benchmark time 
(HEP = No)  

0.26 No exposure to 
hazard (HEP = No) 

0.83 

Time of 
evacuation > 
benchmark 
time (HEP = 
Yes) 

0.63 Time of 
backtracking > 
benchmark time 
(HEP = Yes) 

0.74 First or second-
degree burn or 
death (HEP = Yes) 

0.17 

 ۲٦۱  

4.2. Applying BN-HRA models  ۲٦۲  

In the present study, the BN-HRA models are categorized into three groups with regard to the role of ۲٦۳  

data in calculating the conditional dependency of the HEP node on the PSF nodes. It should be noted ۲٦٤  

that in all the three categories the prior probabilities of the root nodes (i.e., PSFs) are identified using ۲٦٥  

the available data. ۲٦٦  

• Rule-based models: BN-SPARH and BN-CREAM estimate the HEP using the predefined rules ۲٦۷  

given in the original SPAR-H and CREAM. For example, the probabilities to populate the CPTs ۲٦۸  

of the BN-SPARH can be calculated using Eqs.(1) and (2) regardless of the available data. In ۲٦۹  

other words, the CPT of the HEP node in a rule-based model remains the same for any task in ۲۷۰  

a specific context since the available data does not play a role in quantifying the relationship ۲۷۱  

between the PSFs and the HEP. ۲۷۲  

• Data-based model: It refers to a BN model in which the CPT of the HEP node given the PSFs ۲۷۳  

are solely estimated based on the available data using parameter learning algorithms. ۲۷٤  

• Hybrid model: As is the case in the BN-SLIM, the relationship between the HEP node and the ۲۷٥  

PSFs is given by Eqs. (3) and (4), i.e., the rule-based part of the modeling. The probability ۲۷٦  

distribution of the rates and weights of the PSFs in Eq.(3) and the constant parameters in Eq.(4) ۲۷۷  
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are determined based on the available data, i.e., the data-based part of modeling. This makes ۲۷۸  

the BN-SLIM a semi-rule-based semi-data-based technique, or a hybrid technique.  ۲۷۹  

The main features of the three categories are summarized in Table 9.  ۲۸۰  

Table 9. Main features of rule-based, data-based, and hybrid BN-HRA methods in the present study. ۲۸۱  

Model 
Examples Flexible set of 

PSFs?  

Ability to calculate 

distinct HEPs? 
How to populate CPTs?  

Rule-

based 

BN-

SPARH;  

BN-

CREAM 

No No 
Using predefined rules; available 

data do not play a role 

Data-

based 

BN 
Yes Yes 

Using Bayesian parameter 

learning algorithms 

Hybrid 
BN-SLIM 

Yes Yes 
Using predefined rules and 

available data  

 ۲۸۲  

It should be noted that BN-SPARH has the potential to be upgraded to a hybrid model if the weights of ۲۸۳  

its PSFs can be evaluated using the data and then be accommodated in the mathematical relationship ۲۸٤  

between PSFs and HEP (i.e., Eqs. (1) and (2)). However, this topic is beyond the scope of the present ۲۸٥  

study and can be investigated in a separate work. To evaluate the validity and accuracy of the foregoing ۲۸٦  

models, the observed relative frequency of the HEP of each task, i.e., the objective HEP, is compared ۲۸۷  

with the corresponding HEPs estimated by the BN-HRA methods. ۲۸۸  

4.2.1. Rule-based models: BN-SPARH and BN-CREAM ۲۸۹  

The PSFs defined in the dataset of Musharraf et al. [27] – herein, dataset PSFs – are different from the ۲۹۰  

PSFs defined in the original SPAR-H and CREAM – herein, model PSFs. As such, the model PSFs which ۲۹۱  

are the closest in meaning and context to the dataset PSFs should first be identified. For instance, ۲۹۲  

“Visibility” (Table 5), which is a dataset PSF, has been related to “Work condition” and “Ergonomic”, ۲۹۳  

which are the model PSFs in CREAM and SPAR-H, respectively.  ۲۹٤  

The corresponding PSFs to “Training”, “Visibility” and “Complexity” are listed in Tables 10 and 11 for ۲۹٥  

BN-CREAM and BN-SPARH, respectively [4, 6]. Using the data, the probabilities (relative frequencies) ۲۹٦  

of the states of these three PSFs are calculated. However, due to the lack of simulation data about the ۲۹۷  
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rest of the PSFs, equal probabilities have been assigned to their states in both BN-SPARH and BN-۲۹۸  

CREAM.  ۲۹۹  

 ۳۰۰  

Table 10. Probability distribution of the rates of the PSFs in BN-CREAM. Corresponding dataset PSFs ۳۰۱  
are mentioned in the brackets.  ۳۰۲  

PSF State Probability 
Adequacy of training and 
experience (Training) 

Inadequate 0 
Adequate with low experience 0.49 
Adequate with high experience 0.51 

Working condition 
(Visibility) 

Incompatible  0.33 
Compatible 0.67 
Advantageous 0 

Number of simultaneous 
goals (Complexity) 

Fewer than the actual capacity 0 
Matching current capacity 0.67 
More than the actual capacity 0.33 

 ۳۰۳  

Table 11. Probability distribution of the rates of PSFs in BN-SPARH. Corresponding dataset PSFs are ۳۰٤  
mentioned in the brackets.  ۳۰٥  

PSF State Probability 
Experience /Training Low 0.00 

Nominal 0.49 
High 0.51 

Ergonomic (Visibility) Missing 0.00 
Poor 0.33 
Nominal 0.00 
Good 0.67 

Complexity Nominal 0.67 
Moderate 0.00 
High 0.33 

 ۳۰٦  

It is worth noting that if the available information is not enough, the conventional SPAR-H considers ۳۰۷  

the nominal states of the PSFs; it is also able to assign a probability distribution to the states [8], which ۳۰۸  

is the case in the present study. The resulting BN-CREAM and BN-SPARH for the backtracking task are ۳۰۹  

displayed in Figures 1 and 2, respectively. The models have been generated using AgenaRisk software ۳۱۰  

[39]. Since the context of the three tasks is the same, and all the tasks are of action type, the BN-۳۱۱  

CREAM and BN-SPARH both result in the identical HEPs for all the three tasks. That is why the modeling ۳۱۲  

has been performed only for “Backtracking”. ۳۱۳  
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It should be noted that both SPAR-H and CREAM (and their BN versions) are built on the predefined ۳۱٤  

sets of PSFs which cannot be changed regardless of their relevance to the context of interest. ۳۱٥  

Therefore, if some PSFs are eliminated, the defined rules in CREAM and SPAR-H become futile. The BN-۳۱٦  

SPARH and BN-CREAM also inherit this limitation in which all the predefined PSFs, whether relevant or ۳۱۷  

irrelevant to the dataset, would be required to calculate the CPTs of the models.  ۳۱۸  

One way to minimize the impact of irrelevant PSFs on the calculated HEP is to keep all the model PSFs ۳۱۹  

but assign equal probabilities to the states of the PSFs which are deemed irrelevant to the dataset ۳۲۰  

PSFs. This modeling technique is expected to reduce the impact of irrelevant PSFs because equal state ۳۲۱  

probabilities of a PSF node would result in the minimum amount of mutual information between the ۳۲۲  

PSF node and the HEP node [40]. ۳۲۳  
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 ۳۲٤  

Figure 1. BN-CREAM model for predicting the HEP of “Backtracking”. The HEPs of “Evacuation” and ۳۲٥  
“Exposure to hazard” would be the same.   ۳۲٦  
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 ۳۲۷  

Figure 2. BN-SPARH model for predicting the HEP of “Backtracking”. The HEPs of “Evacuation” and ۳۲۸  
“Exposure to hazard” would be the same.  ۳۲۹  

 ۳۳۰  

4.2.2. Hybrid model: BN-SLIM ۳۳۱  

For building the BN-SLIM in the present study, we used the simulation data to calculate the probability ۳۳۲  

of the rates of the PSFs, the weights of the PSFs with respect to each task, and also the parameters a ۳۳۳  

and b in Eq (4). Due to the binary nature of the variables in the simulation data, two rates of 3 and 7 ۳۳٤  

are considered as the worst and the best states of the PSFs. Table 12 presents the data-derived ۳۳٥  

probabilities (relative frequencies) of the rates of the PSFs. To measure the strength of the causal ۳۳٦  

relationship between a PSF and a task failure, Jaccard coefficient [41] in Eq. (8) can be used: ۳۳۷  

 ۳۳۸  

Table 12. Probability distribution of the PSFs rates in BN-SLIM. ۳۳۹  

PSF Rate Probability 
Training 7 0.51 

3 0.49 
Visibility 7 0.67 

3 0.33 
Complexity 7 0.67 

3 0.33 

 ۳٤۰  

𝐽𝐽(𝑦𝑦, 𝑧𝑧) = 𝑒𝑒+ℎ
𝑒𝑒+𝑓𝑓+𝑔𝑔+ℎ

         (8) ۳٤۱  
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where for the binary variables y (e.g., a PSF) and z (e.g., the task), e represents the number of ۳٤۲  

observations where y and z are equal to 1; f represents the number of observations where y is 0 and z ۳٤۳  

is 1; g represents the number of observations where y is 1 and z is 0; h represents the number of ۳٤٤  

observations where both y and z are 0. The calculated Jaccard coefficient and the normalized weights ۳٤٥  

of the PSFs are listed in Table 13. ۳٤٦  

 ۳٤۷  

Table 13. Jaccard coefficient and normalized weights of the PSFs derived from the data. ۳٤۸  

PSFs 

Jaccard coefficient Normalized weight 

Evacuation Backtracking 
Exposure 

to 
hazard 

Evacuation Backtracking 
Exposure 

to 
hazard 

Training 0.55 0.42 0.58 0.34 0.33 0.30 
Visibility 0.53 0.35 0.52 0.32 0.28 0.27 

Complexity 0.55 0.49 0.84 0.34 0.39 0.43 
 ۳٤۹  

The two constant parameters in Eq. (4) are calculated considering the highest and the lowest SLI values ۳٥۰  

and their corresponding HEP (frequency) for each task. The SLI values and their corresponding HEPs ۳٥۱  

are presented in Table 14. Due to no observed error for the “Exposure to a hazard” in the dataset, the ۳٥۲  

lowest HEP of this task is assumed to be as 1.0 E-06. Unlike the BN-SPARH and BN-CREAM, the BN-۳٥۳  

SLIM does not result in the same HEPs for all the tasks as, despite the same PSFs, the weights of the ۳٥٤  

PSFs differ from task to task. The developed BN-SLIM is depicted in Figure 3. ۳٥٥  

 ۳٥٦  

Table 14. The Lowest and highest SLI values and their corresponding relative error frequencies ۳٥۷  
(objective HEPs) estimated directly from the simulation data. ۳٥۸  

SLI values 
Relative error frequencies 

Evacuation Backtracking Exposure to 
hazard 

7 0.55 0.59 1.0 E -06 
4.30 0.91 - - 
4.11 - 0.95 - 
4.07 - - 0.67 

 ۳٥۹  
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 ۳٦۰  

Figure3. BN-SLIM model for predicting the HEP of “Backtracking”, “Evacuation” and “Exposure to ۳٦۱  

hazard”.  ۳٦۲  

4.2.3. Data-based model: Bayesian parameter learning ۳٦۳  

To develop the data-based model for estimating the HEPs, the structure of the BN (Figure 4) is built ۳٦٤  

with six nodes associated with the three PSFs and the three tasks. Having the structure of the BN ۳٦٥  

determined, the network’s conditional probabilities can be calculated from the dataset using the ۳٦٦  

parameter learning algorithms embedded in AgenaRisk software [39]. ۳٦۷  

 ۳٦۸  
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 ۳٦۹  

Figure 4. Developed BN via the learning parameter algorithm (BPL model). ۳۷۰  

 ۳۷۱  

4.3. Results ۳۷۲  

To evaluate the validity and accuracy of the models in the present study, in Figures 5-7 the HEPs ۳۷۳  

estimated by the models are compared with the corresponding objective HEPs (data-derived relative ۳۷٤  

error frequencies).  ۳۷٥  

As can be seen in Figure 5, the BPL model and BN-SPARH predict the HEP of “Evacuation” as 0.58 and ۳۷٦  

0.57, respectively, which are close to the objective HEP of 0.63. The BN-SLIM with the HEP of 0.77 ۳۷۷  

seems to have slightly overestimated the HEP of “Evacuation” while the HEP of 0.13 estimated by the ۳۷۸  

BN-CREAM is too far from the objective HEP. As can be seen in Figure 6, with an objective HEP of 0.74 ۳۷۹  

for the “Backtracking”, the BPL model provides a relatively more accurate estimation (HEP = 0.7) than ۳۸۰  

the BN-SLIM (HEP = 0.81). However, the estimations of the BN-SPARH (HEP = 0.57) and BN-CREAM ۳۸۱  

(HEP = 0.13) remarkably differ from the objective HEP.  ۳۸۲  

As illustrated in Figure 7, with the objective HEP of 0.18 for “Exposure to hazard”, the BPL model and ۳۸۳  

the BN-SLIM both result in a very close HEP of 0.17. The BN-CREAM results in the most accurate HEP ۳۸٤  

(0.13) for this task than the other two tasks, while there is a huge gap between the result of the BN-۳۸٥  

SPARH (HEP = 0.57) and the objective HEP of 0.18 for this task. ۳۸٦  

 ۳۸۷  
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 ۳۸۸  

Figure 5. Comparison between the model HEPs and the objective HEP for “Evacuation”. ۳۸۹  

 ۳۹۰  

 ۳۹۱  

Figure 6. Comparison between the model HEPs and the objective HEP for “Backtracking”. ۳۹۲  

 ۳۹۳  

 ۳۹٤  

Figure 7. Comparison between the model HEPs and the objective HEP for “Exposure to hazard”. ۳۹٥  
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To make a better view of the models' accuracy and validity, we have introduced the Overall ۳۹٦  

Performance Accuracy (OPA) as a performance indicator of the models by measuring the Euclidean ۳۹۷  

distance between the model HEPs and the objective HEPs. Considering the foregoing three tasks, the ۳۹۸  

distance between the objective 𝐻𝐻𝐻𝐻𝐻𝐻 = (𝐻𝐻𝐻𝐻𝐻𝐻1,𝐻𝐻𝐻𝐻𝐻𝐻2,𝐻𝐻𝐻𝐻𝐻𝐻3) and the model 𝐻𝐻𝐻𝐻𝐻𝐻� =۳۹۹  

�𝐻𝐻𝐻𝐻𝐻𝐻�1,𝐻𝐻𝐻𝐻𝐻𝐻�2,𝐻𝐻𝐻𝐻𝐻𝐻�3� can be calculated for each BN-HRA model as: ٤۰۰  

𝑂𝑂𝐻𝐻𝑂𝑂𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒𝑚𝑚 = �∑ (𝐻𝐻𝐻𝐻𝐻𝐻𝑖𝑖 − 𝐻𝐻𝐻𝐻𝐻𝐻�𝑖𝑖)23
𝑖𝑖=1         (9) ٤۰۱  

where i = 1, 2, 3 denotes the three tasks of “Evacuation”, “Backtracking”, and “Exposure to hazard”. A ٤۰۲  

lower value of OPA represents a more accurate model estimation. For instance, using the number in ٤۰۳  

Figures 5-7, the OPA of the BN-SLIM can be calculated as:  ٤۰٤  

𝑂𝑂𝐻𝐻𝑂𝑂𝐵𝐵𝑁𝑁−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �(0.63 − 0.77)2�����������
𝑁𝑁𝐸𝐸𝑎𝑎𝐸𝐸𝐸𝐸𝑎𝑎𝐸𝐸𝑖𝑖𝑚𝑚𝑛𝑛

+ (0.74 − 0.81)2�����������
𝐵𝐵𝑎𝑎𝐸𝐸𝐵𝐵𝐸𝐸𝐵𝐵𝑎𝑎𝐸𝐸𝐵𝐵𝑖𝑖𝑛𝑛𝑔𝑔

+ (0.18 − 0.17)2�����������
𝑁𝑁𝐸𝐸𝐸𝐸𝑚𝑚𝐸𝐸𝐸𝐸𝐵𝐵𝑒𝑒 𝐸𝐸𝑚𝑚 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝐵𝐵𝑚𝑚

= 0.157 ٤۰٥  

The OPAs of the models are presented in Table 15. The comparison between the OPA values shows ٤۰٦  

that BPL model with an OPA of 0.065 has a better performance in predicting the HEPs than other BN-٤۰۷  

HRA models. The BN-SLIM stands in the second place which would demonstrate the higher ٤۰۸  

performance of the data-based models in general (BPL model, and to a lesser degree the BN-SLIM) in ٤۰۹  

estimating the HEPs. ٤۱۰  

 ٤۱۱  

Table 15. Comparing the models performance based on their OPA. ٤۱۲  

BN-HRA models BPL model BN-SLIM BN-SPARH BN-CREAM 
OPA 0.065 0.157 0.430 0.790 

 ٤۱۳  

4.4. Evaluation of models’ generalizability ٤۱٤  

Although the accuracy of the BPL model, given a sufficiently large dataset, is better than the other BN-٤۱٥  

HRA models, it is important to evaluate the models accuracy in a more practical condition where the ٤۱٦  

models need to be extended to cases with no or insufficient data.  ٤۱۷  

Cross-validation is a technique used for evaluating the performance of machine learning models. The ٤۱۸  

goal of cross-validation is to test the model's ability in predicting data that was not used in the ٤۱۹  

development of the model so that problems like overfitting [42] can be marked. It also helps gain ٤۲۰  

insight into how reliably the model could be generalized to an independent dataset. K-fold is a popular ٤۲۱  

https://en.wikipedia.org/wiki/Predictive_modelling
https://en.wikipedia.org/wiki/Overfitting
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cross-validation technique when there is limited input data [43]. For example, if 4-fold cross-validation ٤۲۲  

is used, the data set is split into four subsets of equal size; then in each iteration, the model is trained ٤۲۳  

on the three data subsets (train folds) and tested on the remaining fourth subset (test fold) (Figure 8). ٤۲٤  

Repeating this operation for all the subsets, the averaged result may give an estimate of the model’s ٤۲٥  

predictive performance.  ٤۲٦  

 ٤۲۷  

Test fold Train fold

Iteration # 1

Iteration # 2

Iteration # 3

Iteration # 4

Total available data  ٤۲۸  

Figure 8. Four-fold cross-validation. ٤۲۹  

 ٤۳۰  

In the present study, we use the four-fold cross-validation to assess the generalizability of the models. ٤۳۱  

For this purpose, the train and test errors in each iteration can be calculated for a task as: ٤۳۲  

𝐻𝐻𝑗𝑗𝑇𝑇𝑇𝑇 = |𝐻𝐻𝐻𝐻𝐻𝐻�𝑗𝑗
𝑇𝑇𝑇𝑇 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗𝑇𝑇𝑇𝑇|         (10) ٤۳۳  

𝐻𝐻𝑗𝑗𝑇𝑇𝑁𝑁 = |𝐻𝐻𝐻𝐻𝐻𝐻�𝑗𝑗
𝑇𝑇𝑁𝑁 − 𝐻𝐻𝐻𝐻𝐻𝐻𝑗𝑗𝑇𝑇𝑁𝑁|         (11) ٤۳٤  

when 𝐻𝐻𝑗𝑗𝑇𝑇𝑇𝑇  and 𝐻𝐻𝑗𝑗𝑇𝑇𝑁𝑁  are the train error and the test error of the j-th iteration (given a 4-fold validation, ٤۳٥  

j = 1, 2, 3, 4), respectively. For a given task, 𝐻𝐻𝐻𝐻𝐻𝐻�𝑇𝑇𝑇𝑇 and 𝐻𝐻𝐻𝐻𝐻𝐻�𝑇𝑇𝑁𝑁  are the model HEPs of the train and ٤۳٦  

test datasets, respectively, while 𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑇𝑇  and 𝐻𝐻𝐻𝐻𝐻𝐻𝑇𝑇𝑁𝑁  are the relative human error frequencies ٤۳۷  

(objective HEPs) calculated using the train and the test datasets, respectively. So, after four iterations, ٤۳۸  

four pairs of train and test errors are calculated, and the average train error (𝐻𝐻𝑇𝑇𝑇𝑇) and the average test ٤۳۹  

error (𝐻𝐻𝑇𝑇𝑁𝑁) of a model are calculated as: ٤٤۰  

𝐻𝐻𝑇𝑇𝑇𝑇 =
∑ 𝑁𝑁𝑗𝑗

𝑇𝑇𝑇𝑇4
𝑗𝑗=1

4
           (12) ٤٤۱  
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𝐻𝐻𝑇𝑇𝑁𝑁 =
∑ 𝑁𝑁𝑗𝑗

𝑇𝑇𝑇𝑇4
𝑗𝑗=1

4
           (13) ٤٤۲  

Train error is used to identify the extent to which a model fits the train dataset, while the test error is ٤٤۳  

used to ensure that the model is not overfitting [44]. In other words, a large train error illustrates that ٤٤٤  

the model is underfitting and thus unable to predict the HEP accurately. Nevertheless, a small train ٤٤٥  

error may not guarantee the model accuracy unless there is a small difference between the test and ٤٤٦  

the train errors.  ٤٤۷  

It should be noted that the CPTs of the BN-SPARH and the BN-CREAM are constants in all the iterations ٤٤۸  

as these two models are rule-based, and their CPTs are thus defined based on predefined rules not the ٤٤۹  

train or test data. However, the probabilities of the PSFs, as the root nodes of the BN models, would ٤٥۰  

change in each iteration.  ٤٥۱  

To obtain a better insight into the models’ accuracy, the test and train errors of the models for the ٤٥۲  

three tasks are depicted in Figures 9-11. As can be seen in Figure 9, for the “Evacuation”, the BN-٤٥۳  

CREAM has the highest train error (0.48) and thus the lowest accuracy among the models. (It is worth ٤٥٤  

noting that since the train error of the BN-CREAM is already large, there is no point in considering its ٤٥٥  

test error). The large differences between the train and the test errors of the BPL model and the BN-٤٥٦  

SPARH indicate that these models are susceptible to overfitting (i.e., a small train error but a large test ٤٥۷  

error). On the other hand, the BN-SLIM has a small train error (0.09), and there is a small difference ٤٥۸  

between its train and test errors, ruling out the possibility of overfitting. This shows a better ٤٥۹  

performance of the BN-SLIM in predicting the HEP of “Evacuation” compared to the other models. ٤٦۰  

Considering the HEP of the “Backtracking”, Figure 10 illustrates that the BN-CREAM may not be an ٤٦۱  

accurate model since it has the highest train error (0.56) among the models. There is a notable ٤٦۲  

difference between the train and test errors of the BPL model while the difference between the train ٤٦۳  

and test errors of both the BN-SPARH and the BN-SLIM is negligible. This may imply the BN-SPARH and ٤٦٤  

BN-SLIM are more accurate than the BPL model. Furthermore, the smaller train error of the BN-SLIM ٤٦٥  

(0.1) indicates that it is more accurate than the BN-SPARH in estimating the HEP of “Backtracking”. ٤٦٦  

Considering the “Exposure to hazard”, as can be seen in Figure 11, there are no noticeable differences ٤٦۷  

between the train and the test errors of the models. The train error of the BN-SPARH is the highest ٤٦۸  

(0.31) and that of the BN-SLIM is the lowest (0.01), indicating that BN-SLIM is able to calculate the HEP ٤٦۹  

of this task more accurately than the other models.  ٤۷۰  
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   ٤۷۱  

Figure 9. Test and train errors of the BN-HRA models for the “Evacuation”. ٤۷۲  

 ٤۷۳  

   ٤۷٤  

Figure 10. Test and train errors of the BN-HRA models for the “Backtracking”. ٤۷٥  
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  ٤۷٦  

Figure 11. Test and train errors of the BN-HRA models for the “Exposure to a hazard”. ٤۷۷  

 ٤۷۸  

To identify a model with the best performance with regard to all the three tasks, the OPAs of each ٤۷۹  

model for both the train and the test datasets are computed. The train OPA of a model measures the ٤۸۰  

Euclidean distance between the average HEPs estimated by the model using the train dataset and the ٤۸۱  

average objective HEPs derived from the same train dataset. The test OPA can be calculated in the ٤۸۲  

same way yet using the test dataset instead of the train datasets. By comparing the OPAs of the models ٤۸۳  

and also by comparing the train and test OPAs of a single model, an analyst may get some idea about ٤۸٤  

the performance of the models. For instance, between two models:  ٤۸٥  

• the model with a smaller train OPA generally outperforms the one with a larger train OPA. In ٤۸٦  

other words, the former model better fits the data whereas the latter model relatively ٤۸۷  

underfits the data.  ٤۸۸  

• the model with a smaller difference between its train and test OPAs is preferred over the ٤۸۹  

model with a larger difference. This is because a model with a small train OPA and a large test ٤۹۰  

OPA (i.e., a larger difference between its train and test OPAs) may suffer from overfitting.  ٤۹۱  

As can be seen in Figure 12, the train OPAs of the BN-CREAM (0.74) and the BN-SPARH (0.34) are higher ٤۹۲  

than the train OPAs of the other two models, indicating that the BN-CREAM and the BN-SPARH are not ٤۹۳  

sufficiently accurate for estimating the HEPs using the train data (let alone using the test data which is ٤۹٤  

one-fourth the size of the train data.) The least amount of train OPA for the BPL model may give the ٤۹٥  

impression that it is the most accurate model given a sufficiently large dataset. However, the large ٤۹٦  

difference between its train and test OPAs shows that it is overfitting the train data.  ٤۹۷  
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Figure 12 depicts that the BN-SLIM has relatively a small train OPA (0.13), and there is no considerable ٤۹۸  

difference between its train and test OPAs, indicating a generally better performance of the BN-SLIM. ٤۹۹  

Therefore, considering the performance of the models with regard to the individual tasks (Figures 9-٥۰۰  

11) and the three tasks altogether (Figure 12), the BN-SLIM can be identified as the model with the ٥۰۱  

best performance. ٥۰۲  

 ٥۰۳  

 ٥۰٤  

Figure 12. Models’ OPAs calculated using the train and test data. The BN-CREAM and BN-SPARH have ٥۰٥  

the highest train and test OPAs, indicating their lower performance in estimating the HEP. The BPL ٥۰٦  

model has the lowest train OPA, but the notable difference between its train and test OPAs may ٥۰۷  

imply overfitting. The BN-SLIM has relatively low train and test OPAs, and the slight difference ٥۰۸  

between its train and test OPAs indicates its better performance than the BPL model.  ٥۰۹  

 ٥۱۰  

4.5. Final remarks ٥۱۱  

As discussed before, the predetermined sets of PSFs in the BN-CREAM and the BN-SPARH may include ٥۱۲  

some PSFs irrelevant to the context or dataset of interest. To reduce the impact of irrelevant (or ٥۱۳  

redundant) PSFs on the estimated HEP, in Section 4.2.1 we assigned equal probabilities to the states ٥۱٤  

of such PSFs. However, the inclusion of irrelevant PSFs may to some extent affect the accuracy of the ٥۱٥  

HEPs estimated by the BN-SPARH and BN-CREAM. To illustrate this better, we added a redundant PSF ٥۱٦  
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– the “Available time” – with equal state probabilities as P(rate =7, rate =3) = (0.5, 0.5) to the BN-SLIM1 ٥۱۷  

which resulted in the OPA of the BN-SLIM to increase from 0.157 to 0.373. This experiment may further ٥۱۸  

demonstrate the advantage of the BN-SLIM and the BPL model as the choice of PSFs are more intuitive ٥۱۹  

in these two models (compared to the forced PSFs in the BN-CREAM and BN-SPARH) in accordance ٥۲۰  

with the context of interest.  ٥۲۱  

Furthermore, the BN-CREAM and the BN-SPARH, unlike the BN-SLIM and the BPL model, are not able ٥۲۲  

to differentiate among the HEPs of the tasks within the same context, resulting in the same HEPs for ٥۲۳  

all the tasks. This limitation could result in an overestimation or underestimation of the total HEP ٥۲٤  

depending on whether the tasks are performed sequentially or simultaneously. The BN-SLIM would ٥۲٥  

have also resulted in the same HEPs had it not been able to assign different weights to the PSFs for ٥۲٦  

different tasks.  ٥۲۷  

The foregoing restrictions, i.e., being developed on predefined and unchangeable sets of PSFs and ٥۲۸  

being incapable of considering different weights for the PSFs in different tasks, are in our perspective ٥۲۹  

two of the main reasons for the lower performance of the BN-SPARH and the BN-CREAM in the present ٥۳۰  

study. Nevertheless, before a verdict can be announced on the performance of the BN-HRA methods, ٥۳۱  

further research must be carried out using data of different size and context, especially with the ٥۳۲  

development of data collection systems such as SACADA [45] and HERA [46], and under different ٥۳۳  

assumptions and model modifications.  ٥۳٤  

5. Conclusions ٥۳٥  

In the present study we compared the performance of some selected BN-HRA models using the ٥۳٦  

simulation data of human performance generated in an offshore evacuation virtual experiment. ٥۳۷  

Considering the role of data in establishing the causal links between the PSFs and the HEP, three types ٥۳۸  

of BN-HRA methods were investigated: (i) the rule-based methods of BN-CREAM and BN-SPARH, (ii) ٥۳۹  

the data-based method of Bayesian parameter learning (BPL model), and (iii) the semi-rule-based (or ٥٤۰  

semi-data-based) method of BN-SLIM. The BN-CREAM, the BN-SPARH and to some extent the BN-SLIM ٥٤۱  

use fixed rules (mathematical relationships) to estimate the HEP from the PSFs. The BPL model, on the ٥٤۲  

other hand, relies solely on the available data to derive the correlation between the PSFs and the HEP ٥٤۳  

without any restrictive presumptions. ٥٤٤  

The comparison of the models' overall performance illustrated that data-based methods – the BPL ٥٤٥  

model and the BN-SLIM – are more accurate than the rule-based methods. Furthermore, the k-fold ٥٤٦  

                                                            
1 Note that neither the BN-SLIM nor the BPL model forces the analyst to use a predefined set of PSFs, and can 
consider only the PSFs which are deemed relevant to the context.   
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validation of the methods demonstrated that the BN-SLIM may outperform the BPL model particularly ٥٤۷  

in the absence of complete and sufficiently large databases, which is usually the case. (BPL model is ٥٤۸  

more data sensitive than the BN-SLIM and is thus less accurate under data scarcity). ٥٤۹  

However, it should be noted that the performance of the BN-HRA methods in the present study was ٥٥۰  

compared using a limited dataset and under assumptions and model adjustments. Such assumptions ٥٥۱  

and model modifications (e.g., the selection of PSFs, the use of mean values instead of the probability ٥٥۲  

intervals) were necessary to make the BN-HRA methods applicable to the dataset. Therefore, the ٥٥۳  

performance of the customized BN-HRA methods employed in the current study may not exactly ٥٥٤  

reflect the performance of the original BN-HRA methods. That being said, the outcomes of the present ٥٥٥  

study cannot fully be extended to other contexts and domains unless further studies are conducted ٥٥٦  

using different datasts and assumptions.  ٥٥۷  
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