
Yu, Q, Liu, K, Chang, C-H and Yang, Z

 Realising advanced risk assessment of vessel traffic flows near offshore wind
farms

http://researchonline.ljmu.ac.uk/id/eprint/13299/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Yu, Q, Liu, K, Chang, C-H and Yang, Z (2020) Realising advanced risk 
assessment of vessel traffic flows near offshore wind farms. Reliability 
Engineering & System Safety, 203. ISSN 0951-8320 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Risk assessment of the collisions between vessels and wind turbines 

Abstract: 

Offshore wind farms (OWFs) are relatively new installations at sea. Accident records related to vessel 

collisions with OWFs are insufficient to support a full quantitative risk analysis using traditional 

probabilistic approaches. This paper aims to develop a semi-qualitative risk model to assess the vessel-

turbine collision risks by incorporating Bayesian networks (BN) with evidential reasoning (ER) 

approaches. First, a BN is trained based on Automatic Identification Systems (AIS) data to characterise 

real vessel traffic flows, including the detailed information and relationships between traffic flow 

parameters. Secondly, through synthesising expert judgements by ER, five risk factors influencing the 

probability and consequence of vessel-turbine collisions are identified (incl. the associated conditional 

probabilities) in the established BN. Finally, the updated BN with ER input is tested through ten real 

scenarios and validated by processing a validity framework. This paper pioneers the use of multi-data-

driven BNs to characterise traffic flows and assess vessel-turbine collision risk for navigational safety 

assurance near OWFs. The research findings provide empirical evidence of using ER to supplement 

BN subjective data to advance its applications in risk analysis. 

Keywords: AIS data, offshore wind farm, Bayesian network, maritime safety, maritime risk, evidential 

reasoning, ship collision 

1. Introduction 

The increasing demand of green energy promotes the construction of offshore wind farms (OWFs). 

The growing OWFs affect navigational safety, as they are often installed in the waters near shores, 

where established shipping routes with intensive traffic exist (Yu et al., 2020). A new OWF installation 

will affect vessel traffic flows during the period of its construction. Its operations and maintenance 

will also increase navigational complexity, causing the possible collisions between vessels and 

offshore wind turbines (V-T collision) with a consequence of the potential damage on vessel/turbine 

structures, oil leakage, sinking of vessels or collapse of OWF turbines (Presencia and Shafiee, 2018; 

Wu et al., 2018). To deal with such risks, it is essential to conduct risk assessment and to simulate the 

interactions between vessel traffic flows and OWF activities. However, the historical data (e.g. 

collision accidents) in this field is scanty (Mehdi and Schröder-Hinrichs, 2016), which makes it 

difficult to use classical quantitative risk analysis (QRA) methods. Information from other sources 

such as automatic identification system (AIS) and expert judgement had been used to complement 

accident data in maritime risk analysis previously. They include the estimation of a collision 

probability based on AIS data (Mujeeb-Ahmed et al., 2018), the degree of impact of OWF installations 



on ship routes (Yu et al., 2020), and the severity of V-T collisions by subjective risk models (Staid and 

Guikema, 2015). Although showing attractiveness, using indirect data sources to evaluate V-T 

collision still reveals some problems in their practical applications. For instance, processing AIS data 

with statistical analysis is very time-consuming, it requires complex data cleansing and classification 

process to reduce the uncertainty in AIS data. The subjective risk models are arguable given that it is 

difficult to establish a bias-free correlation among risk influential factors (RIFs) purely using expert 

judgements (Hooper et al., 2017; Presencia and Shafiee, 2018). As a result, a generic approach that 

can rapidly process data and develop a reliable risk model based on multiple data sources relating to 

ship traffic flow and possible collisions with OWFs is required with urgency.  

To overcome the abovementioned difficulties, this study proposes a hybrid risk analysis approach (i.e. 

BaLER) to tackle V-T collision risk and to provide the relevant empirical evidence. The BaLER 

approach firstly aids to construct a data-driven Bayesian network (BN) from AIS data to characterise 

the navigation environments of the traffic flows in the vicinity of OWFs. Next, subjective judgements 

are used to identify the RIFs and evaluate the V-T collision risk under different environments. 

Evidential reasoning (ER) is used to synthesise the subjective evaluations from multiple experts and 

the aggregated data is transformed into conditional probability tables (CPTs) by applying a rule-based 

approach (Yang et al., 2009b). After the development of the baseline model with multiple data sources, 

BaLER helps analyse and prioritise the risk levels of different scenarios involving V-T collision 

possibilities, identify the key RIFs through sensitivity analysis, and conduct a ratio analysis to generate 

useful insights and rich implications for V-T collision avoidance. By doing this, one new feature of 

this hybrid approach is to combine AIS data and subjective judgements in a complementary way for 

the new formulation of a multi-data-driven BN-based risk analysis method. Another new contribution 

is to train maritime risk BNs with AIS data by using a target-free data learning approach. 

The remainder of this paper is organised as follows. Section 2 reviews the current challenges in the 

maritime and offshore risk analysis, with a focus on the use of a Bayesian approach. In Section 3, a 

hybrid risk analysis approach is developed by combining a BN for model training and ER for expert 

judgement synthesis. In Section 4, BaLER is applied to model the V-T collision to draw empirical 

evidence to support a multi-data-driven BN in maritime risk analysis. In Section 5, a series of cases 

are undertaken with a baseline model to find useful research implications of identifying the critical 

situations in the V-T collision risk. In Section 6, the BN is validated and finally, the conclusion is 

drawn in Section 7. 



2. Literature review 

2.1 Risk definitions 

In the risk field, various types of risk definitions are proposed and each of them computes risk from 

different perspectives. One of the most formal and well-established definition to describe risk (R) is to 

multiply probability of risk (P) and consequence of severity (C), i.e. 𝑅 = 𝑃 × 𝐶 (Rausand, 2013).  

However, risk is a complex and interdisciplinary concept with a variety of variables involved in 

addition to the probability and consequence, such as uncertainty, exposure and scenarios (Aven, 2012). 

To better describe risk, Kaplan and Garrick (1981) quantify risk with a risk triplet, which defines risk 

by three variables (i.e. 𝑅 = (𝑃, 𝐶, 𝑆)), where S is explained as under a specific scenario. Aven (2012) 

suggests that a subjective risk assessment should also consider limitations of background knowledge 

(BK), and defines risk as 𝑅 = (𝑃, 𝐶, 𝑈, 𝐵𝐾), where U represents uncertainty of data.  

In line with Bayes risk theory, Lindley (1970) and Singpurwalla (2006) suggest risk is a problem that 

should be measured by considering evidence and observations. Different from probability risk theory, 

variables of prior probability and conditional probability are used in the Bayes risk theory to 

demonstrate a frequentist probability. Thus, risk can be revised to a model with a set of subjective prior 

evidence and conditional probabilities, reflecting risk is a dynamic concept under different conditions 

when different evidence is introduced into the probability model.  

In this paper, we use the risk parameters by Aven (2012) to develop our model in which both P and C 

are considered in the BN directly while the U is addressed by CPTs in BN and BK is described by 

incompleteness in ER. To accommodate both objective and subjective data in the same framework, 

risk measures for C and P are expressed well established linguistics terms which are often used to 

define subjective risks.  

2.2 Challenges on data in OWF risk analysis 

Newly built offshore installations have several potential impacts on wildlife, natural environment and 

navigational safety (Kim et al., 2018). Their impact on V-T collisions is a major issue among the 

navigational effects of OWFs (Petersen, 2015). Previous research works were carried out for V-T 

collision consequence analyses and V-T collision mechanisms (e.g., Dai et al., 2013; Bela et al., 2017; 

Presencia and Shafiee, 2018). However, the difficulty of identifying risk situations is highlighted as 

data of V-T collision accidents is scanty and hard to access (Presencia and Shafiee, 2018).  

An alternative way of analysing the risk is to characterise traffic flows by using statistical analysis or 

geometrical analysis based on AIS data. Several studies used AIS data to assess the impact of offshore 



installations on vessel traffic in different regions, such as Thames Estuary (Rawson and Rogers, 2015), 

the Penghu waterway (Chang et al., 2014) and the south coast of Busan (Mujeeb-Ahmed et al., 2018). 

Yu et al. (2020) compared the vessel traffic flows before and after OWF installations in the China 

southern coast to examine the degree of impact of these new installations. A framework, including AIS 

data filtering, mixture-Gaussian-based traffic flow modelling approach and traffic flow statistical 

analysis models, was applied to analyse the AIS data collected before and after the OWF installations. 

The results quantitatively characterised the impacts of the OWFs on marine traffic flows and showed 

that the impacts were diverse based on various factors (e.g. ship type categories, season). It provided 

useful insights on vessel traffic characteristics nearby the OWFs and identified the important factors 

that had significant impact on vessel-turbine collision risk. Mujeeb-Ahmed et al. (2018) used a 

geometric causation probability model to estimate the collision probabilities with respect to vessels 

under different categories, and then evaluated the collision risk based on statistical results of traffic 

flows. The obtained results did not show any statistically significant increase in the frequency of V-T 

collisions. Copping et al. (2016) compared the likelihoods of commercial vessel accidents in existing 

shipping routes from historical AIS data, and proposed the routes in the presence of wind farms along 

the Atlantic coast using a numerical simulation model. Although these studies provide insightful 

findings on the OWF impacts on traffic flows, the drawbacks of using AIS data are also revealed. For 

instance, statistical analysis is inefficient and the geometric causation probability model is unable to 

give precise results since the causation probabilities are general and may not suitable to modelling a 

specific navigational environment.  

Subjective data is an alternative resource to overcome the above shortcomings by supplementing the 

risk evaluation through experience (e.g. expert judgements). A multiple data-driven risk model can be 

presented through hierarchy or network techniques (e.g. BNs) by modelling the interrelationships 

among variables (e.g., Dai et al., 2013; Staid and Guikema, 2015). When using subjective data, 

uncertainties and personal biases should be tackled appropriately by applying rational aggregation and 

conversion approaches (e.g. ER) (Yang et al., 2009b).  

2.3 Use of BNs in maritime and offshore risk analysis 

BNs are widely used in maritime safety studies because of their visualisation and capability of realising 

bi-directional (i.e. forward prediction and backward diagnosis) risk analysis. Furthermore, BNs can 

accommodate both objective and subjective data to form conditional probabilities to describe the 

interdependency among the nodes (i.e. risk factors) in the networks (Yang et al., 2018a). The 

application of a BN in risk analysis normally includes the following steps: (i) determining RIFs in a 



BN; (ii) constructing a qualitative graphical network; (iii) inputting the quantitative dependencies 

among the variables; and (iv) computing the results of risk assessment. Serval studies have applied 

BNs in maritime risk assessment (e.g. Trucco et al., 2008; Zhang et al., 2013; Montewka et al., 2014; 

Wu et al., 2017; Bye and Aalberg, 2018; Wang and Yang, 2018). For the development of BN models, 

some studies construct BN from hierarchical structures (e.g. Sotiralis et al., 2016; Afenyo et al., 2017) 

and prove that BNs are superior as they combine multiple state variables and aggregate probabilistic 

values from interdependent variables to better present the uncertainty in data. There are also some 

studies of quantifying maritime risk via BNs, such as ship-ship collision risks and oil spill from tankers 

(Goerlandt and Montewka, 2015), marine transportation in arctic waters (Khan et al., 2018; Baksh et 

al., 2018), influential variable analysis on ship collision (Hänninen et al., 2012), human errors on 

different ship accidents (Antão and Soares, 2019) and decision making in transportation policy 

(Ulengin et al., 2007).  

It is revealed that in many of the aforementioned studies, developing BNs from subjective/objective 

data requires a large amount of information on prior probabilities and conditional probabilities. The 

size of CPTs will exponentially increase when the network becomes larger and more complex (Zhang 

et al., 2013). Therefore, BNs have been combined with other approaches (e.g. fuzzy logic) for 

advancing risk modelling ability to tackle uncertainty in data (e.g. Yang and Wang, 2015; Zhou et al., 

2018; Wan et al., 2019).  

2.4 Data-based Bayesian learning approaches 

Bayesian learning approaches are introduced to reduce the high requirement on prior probabilities on 

constructing BNs from data and improve the reliability of the structure. To train BNs from objective 

data, the approaches often use one of two Bayesian classifier theories: the dependency analysis theory 

or the search and score theory. The dependency analysis theory is developed by Spirtes and Glymour 

(1991), and it evaluates the dependency of each variable in data and defines relationships on the basis 

of dependency values. However, it is difficult to use this theory to design a BN structure with a small 

amount of data when an extensive independency relation test is carried out (Singh and Valtorta, 1995). 

In contrast, the Bayes-based search and score approach proposed by Cooper and Herskovits (1992) is 

relatively common, involving many applications such as tree-augmented naive Bayes, the Bayesian 

search (K2) and the augmented naive Bayes approaches (Friedman et al., 1997). This approach 

explains how to identify a BN structure from the candidates that can best represent the causality and 

dependency by scoring all possible structures.  

A Bayesian learning approach is considered as a well-established tool for the BN construction in risk 



assessment that can fill the gap between modelling and reality. Wang and Yang (2018) used different 

Bayesian learning approaches to develop BNs from data of 229 maritime accidents in Chinese waters 

and compared the obtained BNs that trained with different Bayesian learning approaches. Yang et al. 

(2018b) used a tree-augmented naive Bayesian learning approach to train a BN from a set of port state 

control records, the obtained BN was then analysed to support port control decision making. When 

applying the Bayesian learning approaches to maritime safety assessment, they normally require the 

input data to be associated with a specific target factor (e.g. risk degree, collision risk) and some of the 

learned dependencies in a BN structure may be inconsistent with reality and require subjective 

modifications based on the user’s knowledge.  

3. Methodology 

This paper proposes a novel model to investigate the collisions between ships and offshore wind 

turbines by taking into account the relevant factors such as traffic flow information (e.g. number of 

passing ships, ship types, traffic density), ship characteristics (e.g. ship speed, ship size, time), ships’ 

passing distances, safety area of OWFs and seasons.     

For the abovementioned propose, this section describes a new data-driven BN approach (BaLER) for 

V-T collision risk analysis. The first step is to train a data-driven BN from historical AIS data to 

characterise traffic flows by using a target free Bayesian learning approach. In the second step, the 

obtained BN is supplemented with new risk nodes (i.e. collision probability, collision consequence 

and collision risk) involving subjective prior probabilities that are obtained by using an ER approach 

to synthesise judgements from multiple experts. Meanwhile, the nodes in the BN are prioritised with 

the aid of sensitivity analysis. In the last step, the evaluations are used to prioritise the risk under 

different navigation environments, and critical situations are identified through an advanced ratio 

analysis. Figure 1 shows a flowchart consisting of all the necessary steps in BaLER. 

3.1 Constructing a data-driven BN from AIS data 

3.1.1 Acquiring, filtering and classifying AIS data 

AIS data provides a considerable amount of information on traffic flows and can be obtained from 

various sources such as maritime authorities or commercial companies. To train a BN with AIS data, 

the data should be filtered to ensure their integrity. Ten variables are obtained from the AIS data, 

including ‘ship category’, ‘length’, ‘beam’, ‘depth’, ‘displacement’, ‘speed’, ‘course’ ‘season’, 

‘day/night’ and ‘minimum passing distance’, in which the first seven variables are directly acquired 

from the data; ‘season’ and ‘day/night’ are converted from the raw AIS data; and ‘minimum passing 

distance’ is calculated by a closed point approach, which is introduced by Yu et al. (2020).  



 

Figure 1. Framework of the BaLER approach in V-T collision risk analysis  

Meanwhile, a set of linguistic states is assigned, with reference to previous studies, domain expert 

experience and/or relevant regulations/practice, to each variable in the AIS data to transform 

continuous data into a discrete mode.  

3.1.2 Learning a BN from AIS data 

In a BN, relationships among variables are qualitatively described by directional arc and quantitatively 

defined by conditional probabilities. Generally, the relationships are defined based on background 

knowledge. It is difficult to avoid biases and uncertainties exist in subjective judgements (Pitchforth 

and Mengersen, 2013). To overcome this issue, this study applies a machine learning approach to 

develop a data-driven BN based on the collected AIS data to model vessel traffic flows near OWFs. A 

Bayes-based learning approach is carried out to generate a network that both directional arc and 

conditional probabilities are determined from the collected data. A Bayesian searching approach (BSA) 

determines the relationships between variables (qualitative relationships) and a ‘Bayes estimator’ 

calculates conditional probabilities among variables (quantitative relationships) (Cooper & Herskovits, 

1992; Ma et al., 2016). 

BSA is applied to train a network structure as it requires no pre-definition of any target factor before 



training (Cooper & Herskovits, 1992). As the AIS data only record ships’ dynamic/static states, it does 

not contain a target factor, thus a target free learning approach can best fit the requirements. BSA 

evaluates all possible belief network structures based on a database under the conditions of ‘how likely 

the case is to occur if a system uses a specific structure’ and ‘how the dependencies are described with 

the given structure and evidence’. In this study, this approach is explained within the context of vessel 

traffic flows. Assuming AIS data provides a variable set X that contains m discrete variables 𝑥𝑖 (𝑖 ∈

𝑚) to describe traffic flows characteristics. Let a variable 𝑥𝑖 has 𝑛 possible states as (𝑣𝑖
1, 𝑣𝑖

2 , … , 𝑣𝑖
𝑛), 

a AIS database D contains N records, each of which contains a value assignment for each variable in 

X. There are h possible BN structures (𝐵1, 𝐵2, … , 𝐵ℎ) that describe interrelationships between traffic 

flow variables, and each structure represents a unique interrelation between variables that are identified 

from the AIS database D. In a specific 𝐵𝑐 (𝑐 ∈ ℎ), 𝑥𝑖 has a set of parent nodes, which can be presented 

with a list of variables as 𝑙 . There is a total of 𝑟 instantiations in the l and the jth (𝑗 ∈ 𝑟) unique 

instantiation relative to D is 𝑙𝑗. Then we define 𝑁𝑖𝑗𝑘  (𝑘 ∈ 𝑛) to be the number of records in D in which 

variables 𝑥𝑖 has the value 𝑣𝑖
𝑘 and l is instantiated as 𝑙𝑗. Meanwhile, the sum of 𝑁𝑖𝑗𝑘  (𝑘 ∈ 𝑛)  is defined 

as 𝑁𝑖𝑗 = ∑ 𝑁𝑖𝑗𝑘
𝑛
𝑘=1 . After defining the above parameters, BSA calculates the likelihood 𝑃(𝐵𝑐|𝐷) for 

𝐵𝑐 in the D by using Eq. (1) and (2): 

𝑃(𝐵𝑐|𝐷) =
𝑃(𝐵𝑐, 𝐷)

∑ 𝑃(𝐵𝑐, 𝐷)ℎ
𝑐=1

 (1) 

where 

𝑃(𝐵𝑐, 𝐷) = 𝑃(𝐵𝑐) ∏ ∏
(𝑛 − 1)!

(𝑁𝑖𝑗 + 𝑛 − 1)!

𝑟

𝑗=1

∏ 𝑁𝑖𝑗𝑘!

𝑛

𝑘=1

𝑚

𝑖=1

 (2) 

and 𝑃(𝐵𝑐) is a constant prior probability for each 𝐵𝑐. In this way, the structure that obtains the highest 

score is selected to be the most likely BN structure1. 

The CPT of each node can be calculated when the most likely 𝐵𝑐  is selected. Assuming that the 

conditional probabilities 𝑂𝑖𝑗𝑘  for 𝑣𝑖
𝑘  in 𝑥𝑖  are consistent with the Dirichlet distribution, a ‘Bayes 

estimator’ E can be used to calculate 𝑂𝑖𝑗𝑘  for 𝑣𝑖
𝑘  under 𝐵𝑐  and 𝑙𝑗  in D. This gives the following 

equation (Cooper and Herskovits 1992): 

𝐸(𝑂𝑖𝑗𝑘|𝐷, 𝐵𝑐) =
𝑁𝑖𝑗𝑘 + 1

𝑁𝑖𝑗 + 𝑛
 (3) 

where 𝐸(𝑂𝑖𝑗𝑘|𝐷, 𝐵𝑐)  is the estimator value for 𝑂𝑖𝑗𝑘 . By using a table to combine all 

 
1 A numerical example is provide in Appendix A for its demonstration.  



𝐸(𝑂𝑖𝑗𝑘|𝐷, 𝐵𝑐) (𝑘 = 1, 2, … , 𝑛) under 𝐵𝑐 in D, a CPT for 𝑥𝑖 is obtained.  

3.1.3 Validating the data-driven BN 

A new data-driven BN requires a certain level of validation to ensure its reliability and soundness. This 

is important and desirable when a BN is generated from data learning. The validation of a BN can be 

carried out by comparing the simulation results from the BN with the real AIS data. Additionally, 

evaluations by domain experts can also provide a reasonable amount of confidence in the validity of a 

data-driven BN. 

3.2 Supplementing the BN with subjective judgements 

Subjective information (e.g. expert judgement) is introduced into the data-driven BN to supplement 

risk evaluations. For this purpose, necessary steps are carried out, including: (i) identifying the RIFs 

from the variables in the BN, (ii) introducing new risk nodes into the BN and assigning their linguistic 

states, (iii) acquiring and aggregating subjective information relating to the evaluation of the risk under 

different navigation situations, (iv) transforming the aggregated results into CPTs and developing a 

multiple-data-driven and BN-based risk model, (v) validating the risk model and (vi) analysing 

sensitivity of the key nodes (RIFs) in the obtained model. 

3.2.1 Identifying the RIFs  

In order to make an overall risk assessment on navigation environments meanwhile reduce the size of 

variables in the risk model, RIFs of collision risk are identified from the variables in the data-driven 

BN. Identification of the RIFs is very dependent on the field of model applications. For example, the 

vessel width is an important variable influencing vessel-bridge collisions, but not for V-T collisions. 

The identifications normally use information from expert judgements and/or previous studies to 

identify high-impact variables and these variables are selected as RIFs. Previous studies on relative 

ship accidents (e.g. grounding, collision) are first used to identify preliminary RIFs in this study. Then, 

domain experts are invited to evaluate the importance of the RIFs within the context of V-T collision 

and insignificant RIFs are eliminated. 

3.2.2 Introducing new risk nodes 

Three subjective variables are introduced into the data-driven BN, including two intermediate nodes 

(i.e. collision probability and collision consequence) and their child node (i.e., collision risk). 

Psychological research suggests 4-7 grades for exercising effective expert judgements (Guilford, 1954; 

Sii et al., 2001). 5 and 7 linguistic terms are widely used in maritime subjective risk analysis (e.g. Yang 

et al., 2009; Goerlandt and Montewka, 2014; Yang and Wang, 2015; Wu et al., 2018). 7 grades will 



significantly increase the requirement of prior probability configuration, and hence a set of 5 grade 

linguistic states are assigned to three risk nodes as follows. The linguistic grades for the collision 

probability are ‘very low’, ‘low’, ‘average’, ‘frequent’ and ‘highly frequent’; whereas those for the 

consequences are defined as ‘negligible’, ‘marginal’, ‘moderate’, ‘critical’ and ‘catastrophic’ (Yang 

and Wang, 2015). The collision risk is described by ‘very low risk’, ‘low risk’, ‘average’, ‘high risk’ 

and ‘very high risk’.  

The variables that are selected as the RIFs are connected with two intermediate nodes as the parent 

nodes by considering their diverse impact on collision probability, consequence or both. 

3.2.3 Aggregating the judgements from multiple experts using ER 

After identifying the RIFs and introducing the subjective risk nodes, a certain navigation environment 

can be expressed with the RIFs by combining a specific linguistic state in each RIF. Two lists that 

cover all the state combinations are firstly developed for the purposes of traversing overall navigation 

environment and then used to collect the judgements of probability and consequence under each 

navigation environment from domain experts. An ER approach is employed to aggregate the 

judgements as it provides an alternative way of handling the uncertainty by converting both 

quantitative and qualitative information into the concept of degree of belief, so that the information 

can be systematically and consistently aggregated and modelled using a belief structure (Yang et al., 

2009b).  The latest ER algorithm for evidence aggregation is developed and presented in Yang and Xu 

(2002). Comparing with other aggregation mathematical/behavioural approaches (e.g. Delphi, linear 

opinion pool method), the ER approach shows the following advantages: 1) it can aggregate data when 

prior-knowledge is unavailable; 2) it is capable of dealing with uncertain data during aggregation; 3) 

the data’s importance can be considered by assigning relevant important weight to data; 4) the 

aggregated results can be presented in a more precise way that contains states and relative assignment 

values (Zhang et al., 2013). 

3.2.4 Transforming the aggregated result into conditional probabilities 

The aggregated results are converted into CPTs by using a rule-based approach, which is an approach 

that describes causality between IF and THEN parts in a rule. In this approach, a defined rule is used 

to convert p attendance attributes {𝐴1, 𝐴2 , … , 𝐴𝑝} (IF part) into q states {𝐶1, 𝐶2, … , 𝐶𝑞} (THEN part) by 

assigning a belief degree 𝛽𝑠  (𝑠 = 1,2 … , 𝑞) to 𝐶𝑠  (𝑠 ∈ 𝑞)   For example, the wth conventional IF-

THEN rule 𝑅𝑤 in a rule-based set can be expressed as: 

𝑅𝑤: IF 𝐴1
𝑤  and 𝐴2

𝑤  and … and 𝐴𝑝
𝑤 , THEN {(𝛽1

𝑤 , 𝐶1), (𝛽2
𝑤 , 𝐶2), … , (𝛽𝑞

𝑤 , 𝐶𝑞)}.  



In the wth rule, 𝑅𝑤, the IF part is a set of linguistic inputs 𝐴𝑤 = {𝐴1
𝑤 , 𝐴2

𝑤 , … , 𝐴𝑝
𝑤}. Under this situation, 

a set of belief degrees is assigned to the THEN part as {(𝛽1
𝑤 , 𝐶1), (𝛽2

𝑤 , 𝐶2), … , (𝛽𝑞
𝑤 , 𝐶𝑞)}  for the 

description of how each 𝐶𝑠 (𝑠 = 1,2 … , 𝑞) is believed to be the result of 𝛽𝑠 in the 𝑅𝑤, in which the 𝛽𝑠 

can be assigned with experience or by using converting methods (e.g. equivalent influential method 

(Yang et al., 2009a)). Combining all rules of R, a multiple-input and multiple-output rule-based set 

can be developed. 

In this study, three CPTs are established. Two CPTs to intermediate nodes (probability and 

consequence) are developed by converting the aggregated results with the rule-based approach and 

one CPT to the final node (collision risk) is obtained by combining risk influence from probability and 

consequence. Therefore, a multiple-data-driven BN risk model is developed by introducing the CPTs 

into BN. 

3.3 Analysing the results 

The risk degrees under different navigation environments are prioritised with utility values, in which 

the results of probability distributions from a node in the BN are converted into crisp values CR by 

using an utility function below (Wang and Yang 2018): 

𝐶𝑅 = ∑ 𝑃𝑧

𝑡

𝑧=1

𝑈𝑧 (4) 

where t is the number of the linguistic variables that a node has. 𝑃𝑧 is the belief degree to the zth 

linguistic variable of the target node (i.e. collision risk) in the BN . 𝑈𝑧 is the synthesised utility value 

that assigned to the zth linguistic variable. A linear distribution of utility values (from 1 the lowest and 

9 the highest) is used to assign the values of the linguistic states (e.g. Yang et al., 2018a; Wan et al., 

2019). Using the Equation 4, outputs from the risk model are converted into a crisp value to which the 

results are prioritised by ranking their CR values, where a high CR value represents a high collision 

risk level. 

To realise a comprehensive risk assessment, a ratio analysis is introduced to incorporate the BN risk 

result of a specific navigation scenario and the proportion of the scenario occurred in reality (based on 

the AIS data). The analysis uses a ratio value (RV) to represent the ratio of a particular navigation 

environment situation in the AIS database. By combining the ratio and collision risk of each navigation 

environments, a navigation situation with a high CR and a high RV is defined as a critical situation.  

3.4 Validation 

The BN-based risk model requires validation to check whether the model is robust and results are 



reliable. This validation is especially important when subjective judgements are involved in generating 

conclusions. As claimed by Graham (1995), ‘any determination that a risk has been “verified” is itself 

a judgement that is made on the basis of standards of proof that are to some extent arbitrary, disputable 

and subjective’. Most of the state-of-art validation approaches are based on a comparison between 

models and reality. However, It is difficult to apply contrast validation approaches for BN validity as 

the non-observable parameters in BN (e.g. collision risk) are presented as chance, not an observation 

value.   

Therefore, uncertainty-sensitivity validation is often used to test a new BN risk model as it provides 

reasonable confidence on results. For this purpose, Aven and Heide (2009) distinguish the difference 

between frequency-based and Bayesian approaches to see the extent to which risk analysis meets the 

requirements of reliability and validity, and introduce some important principles and procedures to 

validate different risk models. Yang et al. (2009b) and Jones et al. (2010) suggest BNs should satisfy 

certain axioms in uncertainty-sensitivity analysis. For instance, 1) A slight increase or decrease in the 

prior probabilities of each parent node should cause a relative change in the posterior probability of 

the child/target node (e.g. collision risk). 2) Given the variation of subjective probability distributions 

of each parent node, the influence magnitude from these parent nodes to the child/target node values 

should reflect the weights of the parent nodes. 3) The total influence magnitudes of the combination 

of the probability variations from φ attributes (evidence) on the values should be always greater than 

the one from the set of 𝜑 − 𝜔 (𝜔 ∈ 𝜑) parent nodes. Pitchforth and Mengersen (2013) reviewed 

previous validity approaches and grouped the approaches into five types, while the complexity of 

validating a no-objective-data-based BN is discussed to show the needs of a novel framework for BN 

validation. Based on previous studies, Pitchforth and Mengersen proposed a psychometrics framework 

to validate BNs that is developed based on expert elicitations. The framework contained seven types 

of validity, which are nomological, face, content, concurrent, convergent, discriminant and predictive 

validity. This framework has been applied to validate the BNs in maritime risk assessment (e.g. 

Goerlandt and Montewka, 2014; Wang and Yang, 2018; Valdez et al., 2019). 

In this study, our BNs are tested through multiple approaches to present their reliability and validity. 

First, a case study is undertaken to assess ten real scenarios using the proposed BN. Collision risk for 

each scenario is calculated and prioritised, while the obtained results are compared with direct 

intuitional judgements from domain experts to prove that the results are consistent with experience. 

Secondly, the BN is validated through a panel of experts to ensure it is consistent with their knowledge 

and experience. Experts are asked to provide judgements on whether the BN structure and the used 

nodes are sound. Thirdly, content validity is conducted through an entropy approach, which expresses 



the information uncertainties between the target variable and other variables by computing the entropy 

reduction using a nonlinear function (Yang et al., 2018a). Since the objective of this study is to evaluate 

the collision risk, which is assigned as the target node. A higher entropy reduction value represents a 

higher importance of the associated variables. At last, the BN is tested by a sensitivity analysis to 

identify the essential navigational condition that has the highest collision risk in the investigated waters. 

For this purpose, every conditional and prior probability in the BN needs to be systematically changed 

from the lowest to highest in turn while locking the evidence of the others. It is time-consuming and 

difficult to manually process a test in a BN of many nodes and states, therefore, we used the GeNIe 

software to simulate all the possible scenarios and process this sensitivity analysis.  

4. Applying BaLER in V-T collision analysis 

4.1 Collecting and processing AIS data 

An OWF located off the south coast of China is selected as a real investigation case in this study. To 

train a data-driven BN, AIS data in the vicinity of the OWF is collected from the China Maritime 

Safety Authority. It includes four weeks data in each season in 2017, with total 638 records of vessels’ 

trajectories. After filtering the incomplete records, 590 records are retained for BN training.  

The states of variables are defined on the basis of supporting evidence to provide the best descriptions 

of traffic flow characteristics (see Table 1). Such evidence is further explained against each RIF in the 

ensuing section. 

(1) Ship categories: The categorisation in the AIS system is used to define states of ship categories, 

which include: (i) ‘general cargo vessel’, (i.e. bulkers, general cargo ships and containers); (ii) ‘oil 

and gas tanker’, (i.e. oil tankers, LNG/LPG gas tankers, chemical tankers and other liquid and gas 

tankers); (iii) ‘supply vessel’, (i.e. tugs, maintenance ships, construction ships, OWF supply ships and 

other service ships); and (iv) ‘fishing vessel’. Ferries and passenger ships are not included in this study, 

as there are no records in the database. 

(2) Minimum passing distance: The states of the minimum passing distance refers to the UK 

recommendation MGN 543 (Maritime and Coastguard Agency, 2016). It defines the minimum passing 

distance into three states, including (i) ‘intolerable’ (ships passing at a distance of less than 0.5 nm); 

(ii) ‘tolerable’ (passing distance between 0.5 and 3.5 nm); and (iii) ‘broadly acceptable’ (ships passing 

the OWF at a distance greater than 3.5 nm). 

 (3) Season and day/night time: the states of ‘season’ and ‘day/night’ are defined based on the local 

best practices. Four states of season are defined as spring (March, April and May), summer (June, July 



and August), autumn (September, October and November) and winter (December, January and 

February). In addition, day is defined from 8 am to 8 pm while night is defined from 8pm to 8am of 

the next day.  

(4) Courses: the only shipping route near the OWF is the Nanri one, where the northbound traffics are 

the courses from 305° to 125° and the southbound are the courses from 125° to 305°. 

(5) Others: the states for ‘length’, ‘beam’, ‘depth’, ‘displacement’, and ‘speed’ are first defined by 

analysing the state distributions of each variable in the database and then amended with reference to 

the local best practices to ensure that the states are reasonable (e.g. Yu et. al., 2020, Wu et. al., 2019). 

For example, traffic flows after OWF installations are analysed and results present that the average 

passing speed is 8.53 knots. A large amount of ship speeds are concentrated in the range 6-12 knots 

and they are defined as middle speeds. Speeds between 2 and 6 knots are defined as low, larger than 

12 knots as high and less than 2 knots as drifting speeds. In a similar way, distributions of other 

variables including the length, beam, depth and displacement are also analysed to classify their states. 

The states for each variable are provided to experts (see Table 3) to check if they are consistent with 

their experience. As results, the states of length are defined as: 1) length less than 80 metres; 2) between 

80-120 metres and 3) 120 metres and over. The states of beam are 1) less than 10 metres; 2) between 

10-20 metres; 3) between 20-30 metres and 4) 30 metres and over. The states of depth are 1) less than 

3 metres; 2) between 3-6 metres; 3) between 6-9 metres and 4) 9 metres and over. The states of 

displacement (gross tonnes) are 1) very small (less than 2 tonnes); 2) small (300 to 3,000 tonnes); 3) 

average (3,000-10,000 tonnes) and large (10,000 tonnes and over). 

Table 1. State definitions of the variables 

Variables 
Short 
form 

states 

Ship 
category 

Sc 
General cargo 
vessel 

Oil and gas tanker Fishing vessel Service vessel 

Length L Less than 80 m 80 to 120 m 120 m and over - 

Beam B Less than 10 m 10 to 20 m 20 to 30 m 30 m and over 

Depth D Less than 3 m 3 to 6 m 6 to 9 m 9 m and over 

Displacement T 
Very small (less 
than 300 tons) 

Small  
(300 to 3,000 tons) 

Average 
(3,000 to 10,000 
tons) 

Large  
(10,000 tons and over) 

Speed V 
Drifting 
(less than 2 
knots) 

Low 
(2 to 6 knots) 

Middle 
(6 to 12 knots) 

High 
(12 knots and over) 

Course C 
Northbound  
(305° to 125°) 

Southbound  
(125° to 305°) 

- - 



Season Se 
Spring  
(March, April and 
May) 

Summer  
(June, July and 
August) 

Autumn  
(September, 
October and 
November) 

Winter  
(December, January and 
February) 

Day/night D/N 
Day  
(8am-8pm) 

Night  
(8pm-8am (next 
day)) 

- - 

Minimum 
passing 
distance 

MPD 
Intolerable  
(less than 0.5 nm) 

Tolerable 
(between 0.5 and 
3.5 nm) 

Broadly 
acceptable  
(greater than 3.5 
nm) 

- 

 

4.2 Learning and validating a data-driven BN 

A Bayesian software application (GeNIe) is applied to train the BN from the purified and classified 

AIS data (i.e. 590 sets) by deploying the BSA as the BN learning approach. We set the constant prior 

probabilities for all structures with the same value of 1 as there is no background knowledge input. 

The training report of the data-driven BN (i.e. original BN) is shown in Figure 2. 

 

Figure 2. Training report for the BN structure 

To ensure the dependencies among the nodes reflect real traffic flow characteristics, we validate the 

original BN by removing unrealistic links between nodes. For example, there is no direct causal 

relationship between ‘beam’ and ‘minimum passing distance’ and the interrelationship between 

‘day/night’ and ‘minimum passing distance’ is very weak as the conditional probabilities of the states 

between these two nodes do not show any significant difference. As a result, the amended BN structure 

is given in Figure 3.  



 

Figure 3. Fine-tuned data-driven BN structure  

The fine-tuned data-driven BN is then tested by the local AIS data for its validation. The BN shows 

the following consistencies: (i) the number of oil and gas tankers makes up the highest proportion 

(43%), which well reflects the reality; (ii) approximately 67% of vessels pass the OWF areas at a 

‘tolerable’ distance (from 0.5 nm to 3.5 nm), approximately 18% of vessels pass with a distance less 

than 0.5 nm, and the rest of vessels pass at a broadly acceptable distance (more than 3.5 nm). This is 

consistent with the local vessel traffic records; (iii) the number of fishing vessels in summer (16% of 

the total fishing vessels in the database) is the least among four seasons as the local fishing prohibited 

season is between May and October. As results, the data-driven BN is partially verified as the findings 

from the BN marginal probability analysis are in harmony with the real statistics. In addition, the 

advantage of visualising traffic flow characteristics by using BN is also presented. 

To further validate the BN model, the K-fold cross validation method is applied. Detailed descriptions 

of the method are found in Hastie et al. (2009), and James et al. (2013). To demonstrate its application 

in this study, an example of  the node of ‘ship category’ is used for illustration through 590 AIS records. 

Suggested by Hastie et al. (2009), we set the fold count as 10 and the folding seed as 0 (meaning to 

divide the data into 10 parts and no random assignment of records to different folds). As results, the 

total accuracy for the node of ‘ship category’ is 77.12%, with 71.67% (ship category=general), 83% 

(ship category=oil and gas tanker), 94.55% (ship category=fishing vessel) and 50% (ship 

category=service vessel) respectively. A ROC (receiver operating characteristic) curve for ‘ship 

category=oil and gas tanker’ is presented in Figure 4a) to demonstrate the accuracy of the BN. It 

shows the AUC (area under curve) value in the ROC curve is 0.87 (AUC is excellent within the range 

of (0.85 to 0.95)). A calibration curve is also given in Figure 4b) to present the accuracy of model 



predictions. By comparing the output probability (horizontal axis) to the actually observed frequencies 

in the data (vertical axis), the curve in Figure 4 b) is consist with the dim diagonal line, in which every 

output prediction is precisely equal to the data. Therefore, the test proves the robustness of the model. 

 

Figure 4: a) Receiver operating characteristic (ROC) curve and b) calibration curve for ship category 

is stated as ‘general’. 

 

4.3 Identifying RIFs 

To identify the relevant RIFs, 15 previous studies regarding ship and offshore collisions are reviewed 

(see Table 2). Among the studies, the variables of ‘ship category’, ‘displacement’, ‘speed’, ‘minimum 

passing distance’ and ‘season’ are selected as they are frequently mentioned in the previous studies 

(more than three times).  They will be used as the parent nodes of the two intermediate nodes of 

likelihood and consequence. The remainder that include ‘length’, ‘beam’, ‘draught’, ‘course’ and 

‘day/night’ are defined as sub-influential factors (SIFs) and retained in the BN.  
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Next, the RIFs are divided into likelihood and/or consequence groups based on their individual features, 

in which ‘ship category’, ‘season’ and ‘minimum passing distance’ are grouped as the RIFs that affect 

the V-T collision probability (e.g. Ellis et al., 2008; Mujeeb-Ahmed et al., 2018; Yu et al., 2020), and 

‘ship category’, ‘speed’ and ‘displacement’ are the RIFs for collision consequences (e.g. Biehl, 2006; 

Dai et al., 2013).  

Three additional nodes are introduced into the BN structure, including two intermediate nodes of 

collision probabilities and collision consequences and one final node of collision risk. As a result, the 

structure for the multi-data-driven BN-based risk model for V-T collision is established and shown in 

Figure 5. 

 

Figure 5. General structure for the V-T collision BN model 

4.4 Subjective data acquiring and aggregating 

A panel of three experts are invited to provide judgements of the risk of collision under different 

navigation environments, includes a captain of the China National Offshore Oil Corporation company 

who sails frequently in the waters near the investigated OWF, a chief officer of an OWF maintenance 

company who is responsible for the maintenance and operation of several OWF projects in the same 



area, and a fishing ship captain, running a ship to fish in the area for decades (see Table 3). Given a 

relatively small number of OWFs near main shipping routes, the experts of good experience on 

navigational safety passing OWFs are very limited. In this case study, it is even worse given that the 

OWF was only established in Year 2017. Despite the huge effort from the authors, only three experts 

are qualified by taking into account their experience and knowledge to provide valuable data. However, 

the experts presents different groups of stakeholders who are closely working in relative fields to 

ensure the quality of the obtained subjective database. In addition, the confidence of the data quality 

comes from the high consistency among their judgements (see Table 4). Furthermore, the good result 

from the sensitive analysis in the validation part proves the quality of the data from the experts. 

Table 3. Detailed information on the invited experts 

Expert 

No. 

Type of ship 

worked on 
Position Age Gender Education  

Years of 
working 

experience 

Type of experience 

Expert 

1 

Merchant 

vessel 
Captain 48 Male 

Bachelor’s 

degree 
25 

Has worked as a captain on an oil tanker for 

seven years and on a bulker ship for 12 years. 

Has experience in passing the area near the 

OWF under study  

Expert 

2 
Service vessel 

Chief 

officer 
41 Male 

Master’s 

degree 
13 

Has worked as a chief officer of an OWF 

maintenance vessel for three years and 

previously worked as a ship officer on a 

container vessel 

Expert 

3 
Fishing vessel Captain 38 Male 

College 

degree 
16 

Has worked as the captain of a fishing vessel 
with 16 years of experience of fishing near the 

OWF areas 

 

A survey that covers all navigation environments is designed from two risk dimensions (collision 

probabilities and collision consequences) is designed to collected experts’ judgements about impact 

magnitudes in terms of the RIFs. The obtained subjective probabilities are derived from the experts’ 

background knowledge and expressed by specific linguistic states with a belief structure. For example, 

a question is designed as ‘what is the collision probability if a general cargo vessel passes water areas 

with an intolerable distance in spring’, and a judgement of the collision probability is {0.8(average), 

0.2(frequent)}. The judgements for all possible state combinations that represent different navigation 

environments are collected and shown with tables. The judgement results for the collision probability 

is shown in Table 4. 

Table 4. Judgement results for the probability of a collision 

No. Categories Season MPD1 

Expert 1 Expert 2 Expert 3 

VL L A F HF VL L A F HF VL L A F HF 

1 

General 

cargo 

vessel 

Spring Intolerable   0.8 0.2   0.4 0.3 0.3     0.8  



The acquired judgements are aggregated through an ER to appropriately cope with the uncertainty in 

their judgements (subjective data). In the first step of using ER, we assign a weight to each expert 

based on their background. The weights can be generated referring to the criteria in Lavasani (2010) 

and the information in Table 3, and the weights for the three experts are 0.405, 0.333 and 0.262, 

respectively. Then an ER’s associated computing software Intelligent Decision System program, is 

used to combine the judgements. The aggregated results of collision probability and consequence are 

shown in Table 5 and Table 6, respectively. 

Table 5. Aggregated results for the probability of collision 

No. 

Antecedent attributes (Input) Consequence severity (Output) 

Categories Season MPD Very 

low 
Low Average Frequent 

Highly 

frequent 
Unknown 

1 
General 

cargo vessel  
Spring Intolerable  0.12 0.46 0.39  0.04 

2 
General 

cargo vessel  
Spring Tolerable  0.37 0.60 0.04    

3 
General 

cargo vessel  
Spring 

Broadly 

acceptable 
0.67 0.33     

… … … … … … … … … … 

… … … … … … … … … … 

… … … … … … … … … … 

46 
Service 

vessel  
Winter Intolerable    0.66 0.32 0.02 

47 
Service 

vessel  
Winter Tolerable  0.20 0.62 0.18    

48 
Service 

vessel  
Winter 

Broadly 

acceptable 
0.68 0.32     

 

Table 6. Aggregated results for the consequences 

Antecedent attributes (Input) Consequence severity (Output)  

2 

General 

cargo 
vessel 

Spring Tolerable  0.4 0.5 0.1   0.5 0.5    0.2 0.8    

3 

General 

cargo 

vessel 

Spring 
Broadly 
acceptable 

0.6 0.4    0.8 0.2    0.5 0.5    

4 
General 
cargo 

vessel 

Summer Intolerable   0.6 0.3 0.1    1     0.8 0.2 

… … … … … … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … … … … … 

… … … … … … … … … … … … … … … … … … … 

45 
Service 

vessel 
Autumn 

Broadly 

acceptable 
0.6 0.4    1     0.2 0.8    

46 
Service 

vessel 
Winter Intolerable    0.5 0.5    0.8 0.1    0.6 0.4 

47 
Service 

vessel 
Winter Tolerable  0.5 0.5   0.8 0.2     0.9 0.1   

48 
Service 

vessel 
Winter 

Broadly 

acceptable 
0.5 0.5    1     0.5 0.5    

 



Rule 

no. 
Categories Displacement Speed Negligible Marginal Moderate Critical Catastrophic Unknown 

1 
Service 

vessel 
Very small Drifting 0.75 0.25     

2 
Service 

vessel 
Very small Low 0.50 0.33 0.17    

3 
Service 
vessel 

Very small Middle 0.50 0.15 0.08 0.25  0.02 

… … … … … … … … … … 

… … … … … … … … … … 

… … … … … … … … … … 

62 
Oil and 

gas vessel 
Large Low  0.17 0.17  0.67  

63 
Oil and 

gas vessel 
Large Middle   0.08 0.25 0.59 0.08 

64 
Oil and 

gas vessel 
Large High     1.00  

 

The incompleteness (i.e. uncertainty in data) of their judgement is remained in the aggregated results 

(see the “Unknown” in Table 5 Table 6).  The “worst-case scenario” concept in risk science is applied 

to assign the unknown values to the state of ‘highly frequent’ in Table 5 and to the state of ‘catastrophic’ 

in Table 6, respectively. Therefore, the CPTs for two intermediate nodes are established2. 

The CPT for the final node synthesises the influence from collision probability and collision 

consequence by using an equivalent influential method to conduct a rule-based set. The obtained CPT 

for the final node is given in Table 7. 

Table 7. Conditional probability of collision risk 

Rule 

No. 

Antecedent attributes (Input) Collision risk (Output) 

Probability 
Consequence 

severity 
Very low risk Low risk Average High risk Very high risk 

1 Very low Negligible 1     

2 Very low Marginal 0.5 0.5    

3 Very low Moderate 0.5  0.5   

… … … … … … … … 

… … … … … … … … 

… … … … … … … … 

23 
High 

frequent 
Moderate   0.5  0.5 

24 
High 

frequent 
Critical    0.5 0.5 

25 
High 
frequent 

Catastrophic     1 

 

By introducing the above information into the BN structure (Figure 5), a multi-data-driven BN-based 

risk model for the evaluation of the V-T collision is developed and presented in Figure 6. 

 
2 The unknown belief degree can be assigned to different grades based on the best scenarios or average scenarios. The 
results can be used to compare the analysis of the worst case scenario (e.g. Yang et al. 2011).  



 

Figure 6. Results of the multi-data-driven BN 

4.5 Risk ranking 

To prioritise the risk, a set of utility values is assigned to the two intermediate nodes as 

𝑈𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 {1, (𝑣𝑒𝑟𝑦 𝑙𝑜𝑤);  3, (𝑙𝑜𝑤); 5, (𝑎𝑣𝑒𝑟𝑎𝑔𝑒); 7, (𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡); 9, (ℎ𝑖𝑔ℎ𝑙𝑦 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑡)}  and 

𝑈𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑛𝑒𝑐𝑒 {1, (𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒);  3, (𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙); 5, (𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒); 7, (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙); 9, (𝑐𝑎𝑡𝑎𝑠𝑡𝑟𝑜𝑝ℎ𝑖𝑐)} 

(Wang and Yang, 2018). By synthesising the above assignments, the utility values of the states of the 

final node (i.e. collision risk) are calculated as follows: 𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(𝑣𝑒𝑟𝑦 𝑙𝑜𝑤) =×

𝑈𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑣𝑒𝑟𝑦 𝑙𝑜𝑤) × 𝑈𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒) = 1 × 1 = 1 , 𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(𝑙𝑜𝑤) =

9 , 𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = 25 , 𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘) = 49  and 

𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘) = 81. Meanwhile, the crisp values are used as threshold values to 

define different risk levels and the obtained result can be associated with the five risk levels by linear 

calculation (Yang et. al., 2009b).  

By applying Equation 4, the general baseline results of (13% (VHR), 10% (HR), 29% (A), 23% (LR) 

and 25% (VLR)) of the final node (from Figure 6) is converted into a crisp value of 𝐶𝑅 = 0.13 × 81 +

0.10 × 49 + 0.29 × 25 + 0.23 × 9 + 0.25 × 1 = 25 . The general V-T collision risk in the study 

areas is evaluated as 100% of average situation (𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) = 25). 



5. Application of the proposed BN for V-T collision risk analysis 

5.1 Case description 

To select the most representative cases in terms of traffic flow characteristic, information from AIS 

data and expert experience are both used in a combined manner. For example, the obtained BN (see 

Figure 6) shows oil and gas tankers and general cargo vessels are two main ship types given an oil 

dock is located near the studied waters. They are naturally selected as the main objects to assess the 

collision risk. Furthermore, the invited experts supplement that the fishing vessels and OWF service 

vessels are risky given that they often approach to the wind turbines in a much closer distance than 

other ships. Therefore, we select general cargo vessels, oil tankers, fishing vessels and service vessels 

involving ten cases (Table 8) to develop our scenarios as the reflection to the reality. 

Before evaluating the ten selected real cases, the attributes are classified based on the criteria given in 

Table 1. For instance, the first case is classified as follows: the displacement of the vessel is within the 

range between 300 tonnages to 3000 tonnages, thus is defined as ‘small’; the speed is between 6 knots 

to 12 knots and is defined as ‘middle’; and the minimum passing distance is less than 0.5 nautical miles, 

which is ‘intolerable’. Therefore, the first case can be converted into a set of linguistic variables that 

{Sc=service, T=very small, V=middle, Se=spring and MPD=intolerable}. Similarly, other cases are 

classified. The detail information and classified results for the ten cases are shown in Table 8.  

Table 8. Detailed information on the ten cases 

No. 

Ship categories 

(Sc) 
Displacement (T) Speed (V) Season (Se) 

Expected minimum passing 

distance (MPD) 

attribute 
attribute 

(tons) 
state 

attribute 

(knots) 
state attribute 

attribute 

(nm) 
state 

1 Service 300 Small 7.3 Middle Spring 0.15 Intolerable 

2 General 2846 Very small 5.3 Low Autumn 2.4 Tolerable  

3 Oil & gas 3912 Small 0.3 Drafting Winter 3.71 Broadly acceptable 

4 Fishing 320 Very small 0 Drafting Summer 0.43 Intolerable 

5 General 18467 Large 14 High Summer 0.24 Intolerable 

6 Fishing 692 Very small 10.6 Middle Autumn 1.51 Tolerable  

7 Oil & gas 8552 Middle 11 Middle Winter 1.85 Tolerable 

8 Service 1180 Very small 1.7 Drafting Winter 1.74 Tolerable 

9 Oil & gas 13338 Middle 13 High Summer 0.33 Intolerable 

10 General 8887 Middle 4.8 Low Spring 3.76 Broadly acceptable 

 

5.2 Case evaluation and result prioritisation 

The cases are evaluated with the developed BN based risk model. For example, the information for 

Case 5 is inputted into the BN by locking the nodes as {100%, (Sc=general cargo), 100%, (T= large), 

100%, (V= high), 100%, (Se= summer), 100%, (MPD=intolerable)} (see Figure 7). By inferring the 

collision risk under such a navigation environment, Case 5 generates a result with a distribution in the 



node of ‘collision risk’ as (37% (very high risk), 41% (high risk), 22% (average), 0 (low risk), 0 (very 

low risk)). This result is converted into  a 55.56 CR (between high risk (i.e. 49) and very high risk (i.e. 

81)). The risk of Case 5 can be calculated by a linear function as 𝑅𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑙𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 =

𝐶𝑅−𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘)

𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘)−𝑈𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘(ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘)
=

55.56−49

81−49
= 20.5%  and 𝑅𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑙ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 = 1 −

𝑅𝑖𝑠𝑘 𝑙𝑒𝑣𝑒𝑙𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘 = 79.5%. Therefore, Case 5 is 20.5% very high risk and 79.5% high risk.  

 

Figure 7. Graphical network results for Case 5 

Other cases are also evaluated in a similar way and the evaluation results are prioritised by ranking 

their CRs (see Table 9).  

Table 9. Collision risk analysis results and ranking 

Case no. 

Collision risk distribution 

CR Risk level Ranking 
VHR HR A LR VLR 

1 0.26 0.25 0.14 0.01 0.33 37.47 48% average, 52% high 7 

2 0 0.09 0.17 0.44 0.31 12.71 76.8% low, 23.2% average 3 



3 0.15 0.04 0.08 0.19 0.54 18.33 41.7% low, 58.3% average  5 

4 0.37 0.13 0.1 0.06 0.34 39.6 
39.2% average, 60.8% 

high  
8 

5 0.37 0.41 0.22 0 0 55.56 
79.5% high, 20.5% very 

high  
10 

6 0 0.09 0.17 0.13 0.62 10.22 92.4% low, 7.6% average  2 

7 0.15 0.14 0.19 0.42 0.1 27.61 
89.1% average, 10.9% 

high 
6 

8 0 0.01 0.05 0.27 0.67 4.87 
51.6% very low, 48.4% 

low 
1 

9 0.37 0.31 0.29 0.03 0 52.49 
89.1% high, 10.9% very 

high 
9 

10 0 0.15 0.26 0.23 0.35 16.33 54.2% low, 45.8% average 4 

 

Table 9 ranks the collision risk of the cases in an increasing order of Case 8, Case 6, Case 2, Case 10, 

Case 3, Case 7, Case 1, Case 4, Case 9 and Case 5. Among these cases, Case 8, 6, 2 10 and 3 are under 

the low-risk situations (lower than average threshold value of 25); and high-risk situations include 

Case 7, 1, 4, 9 and 5 (higher than 25).  

From a comparative analysis of the low and high risk cases, the common features of the low-risk cases 

are (i) vessels sailing below high speed; (ii) the minimum passing distance is either ‘tolerable’ or 

‘broadly acceptable’. Meanwhile, all the high-risk cases have the common feature that their minimum 

passing distance is intolerable. This is because that in shipping navigation, if minimum passing 

distance is smaller than certain level, it is treated as an incident. If in the meantime the other factors in 

a favour of occurrence of a collision, the collision accident can occur and (iii) oil and gas tankers have 

high risk than other vessels as they may lead to more serious collision consequences (Goerlandt and 

Montewka, 2015). For example, Case 3 and 7 have broadly acceptable passing distances but their 

collision risks are relevantly higher than other cases.  

Based on the above evaluation results, the vessels in Cases 1, 4, 5 and 9 should immediately change 



course and/or reduce speed to maintain a safe passing distance. The vessels in Cases 3 and 7 should 

take extra collision avoidance operations if the navigation environments are changed. The vessels in 

Cases 2, 6, 8 and 10 could maintain their courses and speed.  

 

5.3 Ratio analysis 

To identify critical situations, a ratio analysis is conducted. We firstly calculate the ratio value (RV) of 

a particular navigation environment situation in the whole set of 590 AIS data, and then analyse the 

critical level for each case by locating the cases in a matrix, which uses CR as the horizontal coordinate 

and the RV as the vertical coordinate. In the matrix, a case with a high CR and a high RV is identified 

as a critical situation. For example, in the obtained AIS database, there are 63 records similar with 

Case 5, and the RV for Case 5 is thus calculated as 𝑅𝑉5 = 63 ÷ 590 = 0.107. Combining with its CR 

of 55.56, Case 5 is identified as a critical situation. 

 

Figure 8. The matrix to identify the critical situations 

As shown in Figure 8, the matrix identifies that Case 5 is the most critical case among others. Case 1, 

4 and 9 are located in the relative dangerous situations as the collision risks (CR) for these cases are 

high. Low risk situations include the rest of six cases, which are Cases 2, 3, 6, 7, 8 and 10.  



6. Validation and discussion  

In this section, the proposed BN model is discussed through various validation steps to present more 

detail information of the model’s reliability and robustness. The implications of the BN model in light 

of the adopted case study results are also further discussed. 

In general, the validity of a BN in a physical phenomenon such as V-T collision could be analysed by 

testing the BN’s fitness with data. However, it is unfeasible for OWF studies due to following reasons: 

on the one hand, the accident reports about V-T collision in OWF waters are insufficient and difficult 

to access, so that performing a test to collect an experimental database would be impractical and limited 

compared to the scope of model scenarios. On the other hand, models from previous studies do not 

specifically consider the traffic flow parameters conditioning to a specific OWF water and hence can 

only provide a rudimentary indication of the variables’ impact. For these reasons, a BN validation 

framework proposed by Pitchforth and Mengersen (2013) is adopted in this study. It contains serval 

conceptual tests to improve the confidence in the BN modelling, including face validity and content 

validity. A face validity tests the performance of a BN translating the construct under investigation 

into an operationalisation, whereas a content validity suggests the extent to which the model can be 

accepted.  

6.1 Face validity  

We first discuss a face validity for the rationality and consistence of the BN with expert experience 

and previous studies. The obtained BN is evaluated by experts who were introduced in Section 4.4. 

Experts agree with the statement that the BN can be considered as an appropriate model for V-T 

collision as it produces rational structure and selects RIFs are consistent with their experience. 

Meanwhile, it is clear from the BN construction that the collected data and approaches are reliable and 

experience from previous studies is reasonably applied that fits well with their knowledge. Therefore, 

the BN is expected to provide reliable evaluations. However, experts suggest some limitations that 

need to be improved in further studies. More AIS data should be used in the BN training process from 

more waters involving OWFs for generating a generic result.  

6.2 Content validity  

As the RIFs used in the BN are selected based on previous studies and expert judgements, the 

importance of the RIFs and the rationality of their selection should also be tested to see if the RIFs 

present higher importance than the SIFs. Thus, an entropy approach is performed to identify the most 

informative variables based on the collected multiple. A high entropy value represents a high 

importance, and vice versa (Hänninen and Pentti, 2012). By selecting the final node (i.e. collision risk) 



as the target, the relative importance for all the variables that include RIFs and SIFs are calculated and 

presented in Table 10. 

Table 10. Uncertainties of variables 

Nodes Short form Values 
Relative 

importance 
Rank 

Collision risk (target)  0.161 - - 

RIFs     
Minimum passing distance MPD 0.061 0.379 1 

Displacement T 0.057 0.354 2 

Ship category Sc 0.040 0.248 3 

Season Se 0.023 0.143 4 

Speed V 0.016 0.099 5 

SIFs     
Draught D 0.013 0.081 6 

Course C 0.011 0.068 7 

Day/night D/N 0.008 0.050 8 

Length L 0.001 0.006 9 

Beam B 0.001 0.006 9 

 

From Table 10, the minimum passing distance obtains the highest value of 0.061 thus is defined as the 

key factor in the V-T collision risk, following by displacement, ship category, season, and speed. The 

variables of draught and course have the importance values of 0.013 and 0.011 respectively. Although 

they are allocated as the SIFs, their entropy values are close to the variable of speed (0.016), indicating 

that a ship’s draught and course also have significance impact for C-T collision.  

In MGN 543 (2016), it suggests a ship route should keep an acceptable distance to OWF turbines, and 

should able to distance itself from turbines based on its ship features, crewmembers’ experience, and 

radar reception results, etc. to ensure safety. Thus, the entropy analysis results are consistent with the 

policy. When comparing the results  the previous studies and expert’s experience (e.g. Ellis et al., 2008; 

MGN 543, 2016; Yu et. al., 2020), we also find the good fitness of the RIF selections in this study. In 

addition, the analysis shows some limitations of previous studies. For instance, a couple of SIFs (e.g. 

draught, course) show some impacts to V-T collision but they have not been modelled in previous 

studies. Meanwhile, as the AIS/expert judgement data is scattered, the linguistic states using to 

describe variables have significant impacts on the results. Using appropriate linguistic states for 

variables could reduce data uncertainties and improve model reliability.  

6.3 Sensitivity analysis for implications 

The variable sensitivity in terms of the collision risk is calculated and determined in this section. 

During a sensitivity test, three subjective nodes are selected as target nodes to determine critical 



scenarios. After applying a sensitivity test to the developed model, the top 10 high impact scenarios 

for probability, consequence and collision risk are presented in Figures 9-11, respectively. 

 

Figure 9 Sensitivity analysis results for probability 

 

Figure 10 Sensitivity analysis results for consequence 



 

Figure 11 Sensitivity analysis results for collision risk 

The most critical situations leading to collision risk can be determined based on the multiple data 

sources (i.e. AIS database and experts’ judgements). Figure 9 shows that when the probability of 

collision is highly frequent, the most critical scenario is {SC=service vessel, Se=spring, 

MPD=intolerable}, with a sensitivity value of 0.0014 (0.0183-0.0169), which covers a sensitivity 

range between 0.0169 to 0.0183. Figure 10 reveals that the most critical scenario leading to 

catastrophic consequence is {SC=oil and gas tanker, T=small, V=middle}, with a sensitivity value of 

0.1407, which covers a range between 0.2483 to 0.3890. By considering both the collision probability 

and consequence, Figure 11 demonstrates the most critical scenario is {SC=oil and gas tanker, 

T=small, V=middle} that leads to a very high collision risk, with a sensitivity value of 0.1057 given 

that the sensitivity range is between 0.0976 to 0.2033). 

There are useful implications drawn from the sensitivity analysis. A scenario of a small oil and gas 

tankers passing OWF waters with a middle range speed is the most critical scenario in the studied 

waters. As shown in Figure 6, the ship type of oil and gas tankers counts the highest number in the 

collected AIS data, (e.g. 41% of total ship number in the studied OWF waters). Among these tankers, 

about 68% are small tankers (displacement between 300 tons and 3000 tons), approximate 71% of 

them navigate at a middle speed (between 6 and 12 knots) (see Figure 12). This is due to the fact that 

there is refuelling port near the OWF water as explained by a local maritime administration officer. As 

the collision between tankers and turbines could cause a catastrophic consequence not only financial 

lose but also water pollutions, scenarios concerning tankers require high safety attention accordingly.  



 

Figure 12: Details of oil and gas tankers in the study waters. 

7. Conclusion 

This paper proposes a new BN modelling approach (i.e. BaLER), which pioneers the use of combined 

AIS and subjective data to aid V-T collision-avoidance decision. Following this approach, BSA is first 

applied to visualise traffic flow characteristics. Then, ER aggregates the expert judgements to obtain 

subjective information for risk evaluations. At last, the established IF-THEN rules convert the 

subjective information into CPTs to develop a multiple-data-driven and BN based risk model. 

To provide empirical evidence for the use of the proposed approach, ten real scenarios are simulated 

by using the developed risk model to prioritise their collision risks and analyse the critical situations. 

As a result, among the most critical scenarios is large general cargo vessels passing the OWFs with a 

high speed and an intolerable passing distance. To verify the finding, the BN model is validated 

through various methods including sensitivity analysis, which suggests that the minimum passing 

distance is the key factor in V-T collision risk and the most significant combined critical factor in the 

study waters is the middle-speed small oil and gas tankers. 

The main contributions of this paper are: (i) a multi-data-driven BN-based risk analysis approach is 

proposed to use AIS data and expert experience in BN for maritime risk analysis; (ii) a target-free data 



learning approach is introduced train data-driven BNs using AIS data. It helps enhance the traffic flow 

visualisation and simulation; (iii) the proposed BaLER is a generic BN based approach can be widely 

used in many transport traffic flow related collision risk assessments; and (iv) an application of BaLER 

in an emerging research topic of V-T collision establishes an effective risk model to support collision 

avoidance and decision-making in OWFs.  
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Appendix A  

An illustrative numerical example of the data training BN approach 

Assuming a D containing ten records (N=3) is presented in Table 11. The D contains three variables 

x1, x2 and x3 (m=3).  Let a possible structure B1=(x1→x2→x3), where 𝑃(𝑥1=𝐻) = 5, 𝑃(𝑥1=𝐿) =

5, 𝑃(𝑥2 = 𝐻|𝑥1 = 𝐻) = 4, 𝑃(𝑥2 = 𝐿|𝑥1 = 𝐻) = 1, 𝑃(𝑥2 = 𝐻|𝑥1 = 𝐿) = 1, 𝑃(𝑥2 = 𝐿|𝑥1 = 𝐿) =

4, 𝑃(𝑥3 = 𝐻|𝑥2 = 𝐻) = 5, 𝑃(𝑥3 = 𝐿|𝑥2 = 𝐻) = 0, 𝑃(𝑥3 = 𝐻|𝑥2 = 𝐿) = 1 and 𝑃(𝑥3 = 𝐿|𝑥2 = 𝐿) = 4. 

Table 11: A database example 

No. x1 x2 x3 

1 H L L 

2 H H H 

3 L L H 

4 H H H 

5 L L L 

6 L H H 

7 H H H 

8 L L L 

9 H H H 

10 L L L 

# H=High, L=Low 

 

The likelihood of 𝑃(𝐵1|𝐷) can be calculated as follow: 

𝑃(𝐵1, 𝐷) = 𝑃(𝐵1) ×
(2 − 1)! × 5! × 5!

(10 + 2 − 1)!

(2 − 1)! × 4! × 1!

(5 + 2 − 1)!

(2 − 1)! × 4! × 5!

(5 + 2 − 1)!

(2 − 1)! × 0! × 5!

(5 + 2 − 1)!

(2 − 1)! × 4! × 1!

(5 + 2 − 1)!

= 2.23 × 10−9𝑃(𝐵1) 

In similar way, likelihood for another structure B2=(x1→x2 and x1→x3) is also obtained as 𝑃(𝐵2, 𝐷) =

2.23 × 10−10𝑃(𝐵2). If there are no background knowledge assigned to two structures (i.e. 𝑃(𝐵1) =

𝑃(𝐵2)), likelihood of B1 is 10 times higher than B2, thus the B1 is selected as the network structure to 

represent relationships among variables in D. 
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