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Abstract

Complex technical infrastructures are systems of systems characterized by hierarchical structures,

made by thousands of mutually interconnected components performing different functions. Given

their complexity, it is difficult to derive their functional logic using traditional risk and reliability

analysis methods based on engineering knowledge. In this work, we propose to address the problem

in an innovative way that makes use of the large amount of data available from monitoring those

systems. Specifically, we develop a data-driven framework to identify the critical components of a

complex technical infrastructure. The criticality of a component with respect to the safe/failed state

of the infrastructure is assessed considering a feature selection technique which employs Random Forest

(RF) classification and a feature importance score. The proposed data-driven framework is applied to

a nuclear power plant system and a synthetic case study, which mimics the complexity of a technical

infrastructure.

Keywords: Importance measure; Feature selection; Random forest; Complex technical

infrastructure; Auxiliary feedwater system

1. Introduction

Complex Technical Infrastructures (CTIs) are large-scale systems of systems, consisting of numer-

ous mutually interconnected components. The various CTI systems perform different functions, use

technologies from various domains, and are typically designed and built independently [1, 2]. Further-

more, the CTIs are evolving in time due to their continuous development, consolidation and component5

updating plans [3].

The identification of critical components in a CTI is necessary for improving CTI reliability and

availability, while reducing maintenance and operation costs.The traditional approaches for the iden-

tification of critical components in risk assessment and reliability analysis are based on the use of
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Importance Measures (IMs), which quantify the contribution of the components to a measure of sys-10

tem performance, such as system reliability, unreliability, unavailability or risk. Section 1.1 reports a

review about IMs and their use in risk assessment and reliability analysis. Notice that the computation

of IMs requires the knowledge of the functional logic of the system in the form of a structure function,

which is typically difficult to acquire for CTIs due to their complexity and continuous transformations.

On the other hand, recent developments in sensors, signal processing and machine learning have15

opened up opportunities for analysing the large amount of data available to support cost-effective and

robust decision-making for design, operation and maintenance [3, 4, 5, 6].

In this context, the objective of the present work is to develop a data-driven framework based

on the definition of an importance measure which is computed making use of the operational data

monitored on the CTI systems. For this, we consider the problem of classifying the CTI safe/failed20

state from signal measurements and adopt feature selection techniques.

Feature selection is an active research topic in the data mining, machine learning, and pattern

recognition fields [5]. Considering the specific problem of building a classification model based on

an inductive learning method, feature selection can have two objectives [7, 8, 5]: (1) identifying all

relevant signals influencing the model outcome; (2) selecting a subset of signals, which allows developing25

the best performing classification model. Section 1.2 reports a literature review on feature selection

methods and their applications.

In this work, we consider a feature selection method based on the random forest classification

algorithm [9], which focuses on the first objective of ranking and identifying the relevant signals

influencing the model output. The method quantifies the importance of a signal as proportional to the30

amount of uncertainty it allows to reduce when it is used in the classification. The idea behind its use

is that the larger the importance of a signal in the classification of the system state, the more critical

the component monitored by the corresponding signal.

The rankings of the components’ criticalities obtained by the proposed data-driven importance

measure are compared to those obtained by the Birnbaum importance measure on some simple systems,35

which are used to investigate the impact of the number of available data on the robustness of the

ranking. Then, the proposed method is validated on two complex systems: an Auxiliary Feedwater

(AFW) system of a nuclear power plant [10] and a 50-component system whose behavior is simulated

to mimic the complexity of a CTI [11].

1.1. Importance Measures in Risk Assessment and Reliability Analysis40

A relevant outcome of risk assessment and reliability analysis of complex technical systems is the

quantification of the importance of the component failures with respect to the system performance.

Various importance measures have been developed to quantify the criticality of the components from

different perspectives. The concept of IM in a coherent system was first proposed by Birnbaum in 1960s
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[12]. The Birnbaum IM is defined as the partial derivative of the system reliability with respect to the45

component reliability. The extension of the Birnbaum IM to non-coherent systems has been studied in

[13] and [14]. Other importance measures consider the system (minimal) cut sets, i.e., (minimal) sets

of components whose failures lead to system failure. The Fussell-Vesely IM, for example, measures the

component importance as the probability that at least one minimal cut set containing the component

has failed, conditional on the system failure [15].50

Although most of the works on importance measures assess the importance of individual compo-

nents, the study of the importance of group of components is fundamental for common cause failure

analysis [16]. IMs that allow assessing the importance of groups of components include joint reliability

importance [17], Reliability Achievement/Reduction Worth (RAW and RRW) [18], and Differential

IMs (DIM) [19].55

Recent advances bring IMs to broader uses, for example: [20] proposes a dynamic IM for degrading

components, which is useful to address the component reassignment problem; [21] proposes a dynamic

IM for time-dependent systems; [22] extends IMs to multi-state systems; [23] calibrates IMs to consider

system maintenance cost and the economic dependence among components. For more details on IMs,

the interested reader can refer to the review works [24, 25, 26, 27].60

1.2. Feature Selection Techniques and Applications

Classification problems involve finding a mapping from the input feature space to the output class

space, which minimizes the probability of classification error. In general, feature selection techniques

can have two different objectives [7, 8, 5]:

(1) identification of all relevant signals (which will be referred to as features) related to the model65

output;

(2) identification of the (smallest) subset of features, which allows maximizing the classification accu-

racy of a learning machine.

Feature selection approaches fall into the three categories of wrapper, embedded and filter methods.

Wrapper methods select an optimal subset of features using the learning machine itself, i.e., the learning70

machine is wrapped within the search algorithm, which aims at identifying the feature subset providing

the ‘best’ classification performance. For wrappers, the analyst needs to specify the learning machine

to be used, the searching engine and the classification performance criteria. Assuming the availability

of p features, an exhaustive search among all possible combinations requires the training and testing

for performance evaluation of 2p learning machines, which is an NP-hard problem [28]. Commonly75

used suboptimal searching strategies include forward selection, which starts with a small number of

features and adds features until the learning machine performance is decreased, backward selection,

which starts with all features and removes features until the performance is decreased [29], and genetic
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algorithms [30]. Wrapper methods are intrinsically designed to meet objective (2), whereas their use

for objective (1) can have limitations, since they may not select signals correlated to the output, whose80

information content is redundant with that of other selected signals.

Embedded methods perform feature selection as part of the learning machine training. Although

the learning machine to be used needs to be specified by the user, and can have an impact on the

feature selection results, embedded methods meet objective (1) since they allow ranking signals using

importance indicators obtained during the training procedure, such as the node importance in decision85

trees [31, 32] and the regression coefficients in the Least Absolute Shrinkage and Selection Operator

(LASSO) [33, 34].

Filter methods rank the features according to their statistical association (e.g., mutual information)

with the response. Since filter methods are independent from the learning machine, they allow meeting

objective (1), although the obtained feature ranking can depend on the choice of the adopted measure90

of relevance between input signals and output. Commonly used filters include Pearson correlation

ratio [35], the FOCUS algorithm [36] and the Relief algorithm [37].

As the feature selection literature is vast and rapidly growing, we refer to the works of [4, 6, 5] for

broader views on the subject.

The remainder of this paper is as follows. Section 2 provides the problem setting, the data-driven95

framework, the proposed data-driven importance measure and the method for critical component

identification. Section 3 presents the results of the applications to simple and complex systems. Section

4 summarises the main findings of the work.

2. Methodology

Section 2.1 will illustrate the problem setting, whereas Section 2.2 will describe the proposed data-100

driven framework.

2.1. Problem Setting

We consider a CTI made by p components Cj , whose degradation to failure process is monitored

by signals Xj ∈ R, j = 1 . . . p. For the sake of notation simplicity, we assume that the j-th signal

monitors the j-th component. The set of all monitoring signals is represented by the random vector105

X = (X1, . . . Xp) ∈ X ,X ⊆ Rp and the overall CTI safe(0)/failed(1) state as Y ∈ Y with Y = {0, 1}.

A large amount of data Data = {(xi, yi)}ntotal
i=1 is collected during the CTI operation, containing the

measurements xi = (xi1, . . . , x
i
p) of the p signals and the corresponding safe(0)/failed(1) states yi of

the CTI at time i. The objective of the present work is to develop a data-driven framework to identify

the critical components of the CTI.110
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2.2. The Proposed Framework

The basic idea behind the proposed framework is to measure the contribution of the components

to the CTI safe/failed state by introducing a data-driven IM. To this aim, we consider the use of a

feature selection technique for the identification of the subset X? = (Xr1 , . . . , Xrq ) of all monitoring

signals X relevant to infer the CTI safe/failed state Y .115

In this work, embedded feature selection methods are preferred to wrapper methods since they

allow identifying all the relevant signals related to the system state, whereas wrapper methods do not

select signals – although relevant to the output – whose information content is redundant with that

of other already selected signals. Consider, for example, a system whose failure requires the failure

of components C1 and C2, and in which component C2 belongs to a safety system activated only in120

the case of failure of C1: a wrapper feature selection method would select only monitoring signal X1

of C1, which is sufficient to reproduce the system state, whereas an embedded method, similarly to

importance measures in reliability and risk analysis, would select both signals X1 of C1 and X2 of C1.

The proposed data-driven framework for critical component identification is shown in Figure 1.

In Step 1, a large amount of Data = {(xi, yi)}ntotal
i=1 containing the signal measurements xi and the125

corresponding CTI state yi is collected during the CTI operation. In Step 2, a classification model

based on the random forest algorithm is developed using as training data the subset Datatrain formed

by ntrain instances randomly sampled from Data. The model classifies the CTI safe/failed state Y on

the basis of the monitoring signals, i.e., Y = T (X; Θ), being Θ the vector of the model parameters.

The classification performance of T (·; Θ) is evaluated on the subset Datatest = Data \ Datatrain130

and if the classification accuracy is satisfactory, Step 3 is performed, otherwise more data in Step 1

should be collected. Section 2.2.1 will describe the RF classification model. In Step 3, an embedded

feature selection method based on RF classification is applied. The obtained importance scores of

features Xj , j = 1 . . . p, are taken as the importance measures of the corresponding Cj components,

DDIM(Cj), j = 1 . . . p. The feature selection method, the data-driven importance measure and its135

theoretical interpretation are discussed in Sections 2.2.2, 2.2.3 and 2.2.4, respectively. Finally, in Step

4, the components are ranked according to the computed data-driven importance measure.
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1. Data collection

Collect Data = {(xi, yi)}ntotal
i=1 and ran-

domly split Data into Datatrain and Datatest.

2. RF Classifier Training

(Section 2.2.1)

Train the RF classifier T (·; Θ) us-

ing Datatrain, and compute false and

missed alarm rates of T (·; Θ) on Datatest.

Are T (:,Θ) false alarm rate < hfalse and

missed alarm rate < hmissed ?

3. Data-Driven Impor-

tance Measure Computation

(Sections 2.2.2 and 2.2.3)

Compute DDIM(Cj) using Eqs. (2), (3) and (4)

4. Component Ranking

Rank components according to DDIM(Cj) , j = 1 . . . p.

no

yes

Figure 1: The proposed data-driven framework for critical component identification.

2.2.1. Random Forest Classifier Development

Tree-based models approximate an unknown mapping g via recursive binary partitioning of the

feature space into sets of hyperrectangles. The random forest algorithm builds multiple decision trees

and merges them to achieve more accurate and stable predictions. A random forest for classification is

a collection of ntree randomized classification trees, which are constructed based on the following steps:

1) ntree bootstrap samples Dt, t = 1 . . . ntree are drawn from the dataset Datatrain; 2) an unpruned

decision tree T (·; Θt) with parameters Θt is grown for each bootstrap sample Dt by choosing at each

node the best splitting feature from a random subset of size mtry of all the p features. Once the random

forest T (·; Θ = (Θ1, . . . ,Θntree
)) is built, the classification is made by aggregating the classification

provided by the ntree trees using the majority vote rule. In this work, the RF parameters ntree

and mtry are set according to the indications in [38, 8, 39]. Specifically, the value of ntree is fixed
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larger than 100 and mtry = max{2, b√pc}. The classifier T (·; Θt) is built using the ntrain = ntotal/2

instances of Datatrain. To evaluate whether the classifier provides a good empirical approximation

of the system safe/failed state, out-of-sample classification performances are computed on the ntest =

ntotal/2 instances of Datatest. Specifically, we consider two metrics of false and missed alarm rates:

False Alarm Rate =
FP

FP + TN
, Missed Alarm Rate =

FN

TP + FN
, (1)

where TP denotes the number of positive instances (yi = 1) correctly classified, FN the number of

positive instances incorrectly classified, FP the number of negative instances (yi = 0), incorrectly140

classified, and TN the number of negative instances correctly classified.

The setting of the thresholds, hfalse and hmissed (Figure 1) depends on the characteristics of the dataset,

such as the total number of instances ntotal and the unbalanced rate between safe and failed data. In

this work, both thresholds have been set equal to 10−2 to guarantee that accurate classifiers are used

to compute the importance measure.145

2.2.2. Random Forest-based Feature Selection

[40] define the importance of a feature Xj as the increase in misclassification error when the

values of that feature are permuted while the others remain unchanged. Such feature importance is

estimated via an ‘Out-Of-Bag’ (OOB) procedure, where the misclassification errors are calculated on

data not used for growing the tree. Specifically, the misclassification error of each tree, denoted by150

E(T (·; Θt),DOOB
t ), is evaluated on the OOB data DOOB

t not included in the bootstrap sample used

for constructing T (·; Θt); then, the dataset DOOB,j
t is built by permuting the values of feature Xj in

DOOB
t and the misclassification error E(T (·; Θt),DOOB,j

t ) of the tree T (·; Θt) is computed. Notice that

feature Xj in DOOB
t is characterised by the same distribution of DOOB,j

t , although its relation with

the output and the other features is completely modified by the permutation. The misclassification155

error E(T (·; Θt),D) of the tree T (·; Θt) on the dataset D = {(xi, yi)}nD
i=1 is defined by

E (T (·; Θt),D) =
1

nD

∑
i:(xi,yi)∈D

1
(
yi 6= T (xi; Θt)

)
, (2)

where 1(·) denotes the indicator function. The importance score of feature Xj is obtained by averaging

the differences in OOB errors before and after the permutation of values of signal Xj in the dataset

over all the trees fo the random forest:

VI (Xj) =
1

ntree

ntree∑
t=1

(
E(T (·; Θt),DOOB,j

t )− E(T (·; Θt),DOOB
t )

)
, j = 1 . . . p. (3)

Since repeating multiple times the random permutation of the same feature leads to different

datasets, which generates different VI (Xj) values, the bootstratp technique [41] has been used to com-

pute confidence intervals of VI (Xj). The use of permutation schemes for importance score computation

has been investigated in [42, 43].160
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When facing imbalanced datasets, sampling or weighting strategies are typically used to improve

the classification accuracy [44]. In case of sampling, DOOB
t and DOOB,j

t should be properly modified

in Eq. (3) to consider the oversampling of the minority class or the undersampling of the majority

class, whereas in case of weighting, the sum in Eq. (3) should become a weighted sum.

Alternative definitions of feature importance scores have been provided by [45, 46] and [39]. In165

[39], instead of the mean decrease in accuracy, the mean decrease in impurity measured by the Gini

importance is used to evaluate the importance of a feature. In [45], the definition of importance score is

based on the computation of the error E(T ∗i(·; Θt),D∗OOB,j
t ) of a new model T ∗i built using all the data

DOOB
t except those measured by Xj . This definition requires the development of a dedicated RF model

to assess the importance of each component, which can be time-consuming and does not measure how170

individual models rely on Xj [47]. The various definitions of RF importance scores reflect modellers’

difference perspectives on the meaning of feature importance. Reference [42] points out that the RF

permutation importance in Eq. (3) is a relatively reliable indicator for categorical features. Since this

is the case in this work, we restrict our attention to the permutation-based importance score.

It has also been shown that, although random forest classification does not require the independence175

among features, correlations among features may induce bias in the evaluation of feature importance

[46]. For more discussion on RF-based importance measures, we refer to the works of [43, 48, 46, 49, 47].

2.2.3. Data-Driven Importance Measure Definition

The data-driven importance measure (DDIM) of component Cj is defined equal to the importance

score of the corresponding component Cj :

DDIM(Cj) := V I(Xj). (4)

2.2.4. DDIM Interpretation

Roughly speaking, the term:

1

ntree

ntree∑
t=1

E(T (·; Θt),DOOB,j
t )

in Eq. (3), can be seen as an in-sample approximation of the expected error E[Y 6= T (X
′

j ; Θ)], of the

RF model using the random vector X
′

j = (X1, . . . , X
′

j , . . . , Xp), where X
′

j is an independent copy1 of

Xj and the term:

1

ntree

ntree∑
t=1

E(T (·; Θt),DOOB
t )

1’X
′
j is an independent copy of Xj ’ means that the distribution of X

′
j is the same as the distribution of Xj , and that

X
′
j and Xj are independent.
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is an in-sample approximation of the same model error on the original random vector E [Y 6= T (X; Θ)].

Therefore, VI (Xj) computed using Eq. (3) can be seen as an estimate of the difference, VI∗ (Xj), of

expected errors of the RF classification model:

VI∗ (Xj) = E[Y 6= T (X
′

j ; Θ)]− E [Y 6= T (X; Θ)] . (5)

Then, assuming that T (·; Θ) is a ‘perfect’ classifier, which implies that ∀X, T (X; Θ) = Y and

E [Y 6= T (X; Θ)] = 0, Eq. (5) becomes:

VI∗ (Xj) = E
[
Y 6= T (X1, . . . , X

′

j , . . . , Xp)
]
. (6)

Therefore, VI∗(Xj) is related to the quality of classification on the system state when the knowledge180

on the state of component Cj is non-informative. With respect to the DDIM, Eq. (6) becomes

DDIM∗(Cj) := V I∗(Xj) = E
[
Y 6= T (X1, . . . , X

′

j , . . . , Xp)
]

(7)

= P
[
Y 6= T (X1, . . . , X

′

j , . . . , Xp)
]
. (8)

According to Eq. (8), we can interpret the DDIM of Component Cj as the probability of misclassifying

the system state when the knowledge on component Cj becomes non-informative, i.e., the state of the

component is taken from a component of the same type operating in another virtual twin system.

3. Case Studies185

In all the case studies considered in this work, we assume that the monitoring signals Xj , j = 1 . . . , p

are binary variables directly indicating the safe(0)/failed(1) state of the corresponding components.

Although in a general case it is not always possible to directly know the component states, we expect

that a fault diagnostic system able to infer the component state from monitoring signals can be built.

Then, the outcome of the fault diagnostic system can be used as signal Xj .190

The open-source R package randomForest [39] with the default parameter values is used to

compute the importance scores and conduct the experiments. The number of trees is set equal to

ntree = 500 and the number of candidate features at each node where a tree is grown is set equal to

mtry = max{2, b√pc}. The use of default setting of the RF parameters has been verified by repeating

the experiments with different combinations of ntree and mtry, without obtaining a relevant improve-195

ment of the classification accuracy. Appendix A provides further details on the influence of the RF

parameters on the classification accuracy and importance measure computation.

In the next Sections 3.1, 3.2 and 3.3, the proposed DDIM is applied to case studies of increasing

complexity with respect to the number of components in the system. Section 3.1 considers some simple200

systems and investigates the robustness of the DDIM with respect to the quantity of data. Sections
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3.2 and 3.3 present the application to complex systems such as the auxiliary feedwater system of a

nuclear pressurized water reactor [10] and a synthetic case study which mimics the complexity of a

real CTI, respectively.

In Sections 3.1 and 3.2, the rankings obtained by using the DDIM are compared with the corre-

sponding rankings obtained by using the Birnbaum IM [12], which is defined by:

IMB(Cj) =
∂R(r1, . . . , rp)

∂rj
, (9)

where R(·) denotes the system reliability function and rj denotes the reliability of component Cj .

Under assumptions of independence among component failures and binary safe(0)/failed(1) state Xj ,

IMB(Cj) is:

IMB(Cj) = E [φ(X1, . . . , Xj = 0, . . . , Xp)− φ(X1, . . . , Xj = 1, . . . , Xp)] , (10)

where φ denotes the system structure function. Notice that for CTIs such as the one considered in205

Section 3.3, the structure functions are typically not known, and, therefore, Birnbaum IM cannot be

computed.

3.1. Simple Systems

We consider the simple systems shown in Figure 2.

(a) 2-component series system (b) 2-component parallel system (c) 3-component system

Figure 2: Simple systems

For the 2-component series system (Figure 2(a)), different cases characterized by components A210

and B unavailabilities in the range [0.01, 0.2] have been considered. In each case, a training and a

test datasets, Datatrain and Datatest, formed by ntrain = ntest = 5× 104 instances, respectively, have

been simulated by randomly sampling components A and B safe(0)/failed(1) states (Xi
A, X

i
B) and

computing the corresponding system state yi using the system structure function. Notice that, the

simulated data allows to build a RF classifier, which does not make any error in the classification of the215

system state. For comparison, we compute the Birnbaum IMs, IMB(A) and IMB(B) for the considered

systems. The obtained importance measures are shown in Figure 3. We observe that DDIM behaves

very similar to the Birnbaum IM.

The above experiment has been repeated for the 2-component parallel system (Figure 2 (b)). Figure

4 shows that DDIM provides the same ranking of the two components as the Birnbaum importance220
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Figure 3: Difference between the Birnbaum IM of components A and B, IMB(A)− IMB(B) (left), and difference between

the data-driven IM of components A and B, DDIM(A) − DDIM(B) (right), for the 2-component series system. The

black line divides the upper zone where DDIM(A) ≥ DDIM(B) from the bottom zone where DDIM(A) < DDIM(B).
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Figure 4: Difference between the Birnbaum importance measure of components A and B, IMB(A) − IMB(B) (left),

and difference between the data-driven importance measure of components A and B, DDIM(A) − DDIM(B), the 2-

component parallel system. The black line divides the upper zone where DDIM(A) < DDIM(B) from the bottom zone

where DDIM(A) ≥ DDIM(B).

measure. When, the differences between the importance measures of the two components are considered

(Figure 4), then, it is interesting to observe that, whereas the maximum difference of the Birnbaum

importance measure is obtained when one component has the largest unavailability and the other

the smallest, the maximum difference of the DDIM is in correspondence of the unavailability of a

component equal to 0.2 (maximum considered value) and the unavailability of the other equal to 0.1.225

This is due to the fact that DDIM(Cj) measures the importance of a component according to its

contribution to the classification error, which depends from the unavailabilities of both components,
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whereas the Birnbaum IM depends only on the unavailability of the other component.
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Figure 5: Birnbaum IMB and DDIM importance measures for the 3-component system with unavailabilities of compo-

nents A, B and C equal to 0.015, 0.01, and 0.095, respectively.

We consider the 3-component system of Figure 2(c) with the unavailabilities of components A,

B and C equal to 0.015, 0.01 and 0.095, respectively [50]. The training and test datasets, Datatrain230

and Datatest, of sizes ntrain = ntest = 104, respectively, are used to compute DDIM(A), DDIM(B)

and DDIM(C). The out-of-sample classification performance is satisfactory with no misclassification.

Figure 5 shows that the proposed data-driven importance measure clearly identifies component C as

the most critical, which is consistent with the ranking of the Birnbaum importance measure. This

3-component system is used to investigate the following two practical issues.235

Does the dataset contain sufficient information for estimating DDIM and ranking the components?

A common practice to assess the uncertainty of the estimate of data-driven approaches is to compute

the associated confidence interval. In practical cases, where only a dataset with finite observations is

available, bootstratp or jackknife are typically employed [41]. Figure 6 shows the bootstrap confidence

intervals associated with DDIM estimates for the 3-component system (unavailabilities of components240

A,B and C equal to 0.2, 0.3 and 0.1, respectively), using 30 bootstrap replicates. When a training

dataset of size ntrain = 50 is used, it is not possible to rank the data-driven criticality of components

A and B, whereas, when the training dataset size increases, the overlapping among the confidence

intervals decreases. For example, when the training sample size increases to ntrain = 1361, the ranking

becomes clear.245
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Figure 6: DDIM for the 3-component system when the number of instances increases from 50 to 3000.
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Figure 7: Birnbaum IMB and DDIM importance measures for the 3-component system with unavailability of component

C varying in the interval [0.01, 0.018].

When do DDIM and Birnbaum IMB disagree? To investigate the conditions under which the

ranking provided by the DDIM differs from the one provided by Birnbaum IM, the following experiment

has been performed. The unavailabilities of components A and B have been set equal to 0.1 and 0.2,

respectively, whereas the unavailability of component C has been varied in the interval [0.01, 0.018].

The boxplot in Figure 7 (b) shows the obtained DDIM and IMB using a training dataset of size250

ntrain = 104 and performing 30 macro-replicates of the experiment. Since the unavailabilities of

components A and B are fixed, IMB(C) remains unchanged although the unavailability of component

C varies. On the other side, DDIM(C) increases as the unavailability of component C increases, and

DDIM ranks component C as less critical than components A and B when its unavailability is smaller

than 0.012. This is due to the fact that DDIM measures the importance of a component with respect to255
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its contribution to the classification error. In this case, the system has two minimal cut sets: {C} and

{A,B}. Therefore, when the unavailability of component C becomes smaller than the product of the

unavailabilities of components A and B, the impact on the classification error of permuting the states

of component C in the dataset is reduced since the correct knowledge of the states of components A

and B allows classifying the majority of the system states in the dataset.260

3.2. The Auxiliary Feedwater System in a Pressurized Water Reactor Plant

We consider the auxiliary feedwater system of a nuclear pressurized water reactor, whose reliability

block diagram is shown in Figure 8 [10]. All p = 14 components are in standby during plant operation

S/G
#11 A D

C
)

E

FS/G
#12 B

G1

I

J

G2

H K

L

M

N

Figure 8: The reliability block diagram of the auxiliary feedwater system [10].

in normal condition and can randomly fail. The failure time of component Cj is assumed to be

exponentially distributed with constant failure intensity λj (h−1). Components are periodically tested265

at intervals T (h), and the average test and repair durations are Tt,j(h) and TR,j(h), respectively.

The specific parameters defining the testing policy are taken from [10] and reported in Table 1. The

safe/failed states of the components have been simulated and the corresponding system state obtained

by using the system structure function. The obtained training dataset is formed by ntrain = 9 × 104

instances, and 30 macro-replicates are used to obtain the confidence intervals. The estimated data-270

driven IMs and the analytically computed Birnbaum IMs are shown in Figure 9.
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Table 1: Characteristics of an auxiliary feedwater system

Component

name

Failure

intensity λj (h−1)

Average test

duration Tt,j (h)

Average repair

time TR,j (h)

Test

interval T (h)

A 1× 10−7 2 5 720

B 1× 10−7 2 5 720

C 1× 10−6 2 10 720

D 1× 10−6 2 10 720

E 1× 10−6 2 10 720

F 1× 10−6 2 10 720

G 1× 10−7 2 15 720

H 1× 10−7 2 24 720

I 1× 10−4 4 36 720

J 1× 10−4 4 36 720

K 1× 10−5 4 24 720

L 1× 10−7 2 10 720

M 1× 10−4 2 10 720

N 1× 10−7 2 5 720
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Figure 9: Birnbaum IMB and DDIM importance measures of the AFW system components.

Both importance measures recognize component N remarkably more important than the other

components and component L as the second most important. The importance of components A, B, C,

D, E, F, I, J, K are negligible for both methods. The main difference among the two rankings involves

component M, which is considered more important by the DDIM (third position in the ranking) than275
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by the IMB (fifth position in the ranking). Notice that the Birnbaum IM measures the criticality of

a component as the increase of the CTI unreliability when the component state switches from safe

to failed, while DDIM assesses the component criticality considering the error in the classification of

the system state when the component state is taken from a virtual twin system. The difference in

the criticality ranking of component M is due to the fact that it is characterised by the largest failure280

intensity among the system components. Therefore, its replacement with a component taken from a

virtual twin system is causing a change of the instances to be classified in much more cases than what

is occurring for other components characterised by smaller failure intensities, for which the probability

that the component is in the safe state in both the real and the virtual twin systems is very large.

3.3. The 50-component System285

We consider a CTI formed by p = 50 components, in which each component can be in five states,

D ∈ {1, 2, 3, 4, 5} corresponding to healthy, partially degraded, degraded, very degraded and failed,

respectively [11]. The components perform transitions among the states at random times. Figure 10

shows the possible stochastic state transitions corresponding to: degradation (from D = 1 to D = 2,

from D = 2 to D = 3 and from D = 3 to D = 4), partial restoration (from D = 4 to D = 3, from290

D = 3 to D = 2 and from D = 2 to D = 1), failure (from D = 4 to D = 5) and complete repair (from

D = 5 to D = 1). Table 2 reports the time-invariant transition rates, λD
′
→D

′′

j of component j from

state D
′

to state D
′′
, D

′ 6= D
′′
. Each component Cj is monitored by a signal Xj directly measuring

its state D.

Figure 10: State transitions of a CTI component.

We assume that the CTI can fail due to two cascading failures:295

(1) Component C11 performs a transition from state 4 to state 5, which can cause an ordered sequence

of events leading to the transitions of components C12, C13, C14, C15 and C16 into state 5 and the

consequent failure of the CTI. The probability of failure propagation between any two components

in the sequence is set to 0.95 and the time necessary for the malfunction propagation follows a

uniform distribution in the interval [1, 20] minutes;300
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Table 2: Transition rates in hours−1

Component Cj Transition rates

j = 1, 2, 3, 6 . . . , 10,

11, 12, 17, 21, 22, 35, 36

λ1→2
j = 0.5 λ2→3

j = 0.02 λ3→4
j = 0.5 λ4→5

j = 0.01

λ2→1
j = 0.5 λ3→2

j = 0.01 λ4→3
j = 0.4 λ5→1

j = 0.2

j = 4, 5, 13, 14, 18, 19, 20, 23,

24, 27, . . . , 34, 38, 39

λ1→2
j = 0.3 λ2→3

j = 0.005 λ3→4
j = 0.4 λ4→5

j = 0.01

λ2→1
j = 0.3 λ3→2

j = 0.01 λ4→3
j = 0.4 λ5→1

j = 0.2

j = 15, 16, 25, 26, 37,

40, . . . , 50

λ1→2
j = 0.4 λ2→3

j = 0.005 λ3→4
j = 0.4 λ4→5

j = 0.01

λ2→1
j = 0.4 λ3→2

j = 0.01 λ4→3
j = 0.4 λ5→1

j = 0.2

(2) Component C21 performs a transition from state 4 to state 5, which can cause an ordered sequence

of events leading to the transitions of components C22, C23, C24, C25 and C26 into the state 5

and the consequent failure of the CTI. The probability of failure propagation between any two

components in the sequence is set to 0.95 and the time necessary for the malfunction propagation

follows a uniform distribution in the interval [1, 30] minutes.305

The CTI critical components are those involved in the two cascading failures, i.e. C11 C12, C13, C14,

C15 ,C16, and C21, C22, C23, C24, C25 , C26.

The CTI behaviour is simulated for 720 days and the multi-state signals Xj , j = 1 . . . 50 assessing

the j-th component degradation state are collected every 2 hours, together with the corresponding

CTI safe(0)/failed(1) state Y . Therefore, a dataset Data = {(xi, yi)}ntotal
i=1 formed by ntotal = 8640310

instances is obtained. The simulated dataset is imbalanced, being the fraction of positive instances

(yi = 1) over the total number ntotal of simulated instances equal to 5.3%.

3.3.1. Importance Measures

The computation of the importance measures is performed using 50% of the ntotal = 8640 instances

of Data. The remaining 50% of instances are used for testing the classification performance. The315

defined RF classifier is characterised by a satisfactory accuracy, being the missed alarm and false

alarm rates equal to 0 and 0.00024, respectively.

Figure 11 shows the estimated DDIMs for the 50-component CTI. The components from the first

cascading chain are coloured in white, and those from the second cascading chain in black. DDIM

correctly assigns the largest importance values to the 12 critical CTI components. Note that the320

proposed DDIM tends to assign larger criticality values to the components at the end of the failure

chains, e.g., C16 and C26, than to those at the beginning. This is due to the fact that the probability

of having a cascading failure given the failure of a component at the end of the chain is larger than

the same probability given a failure of a component at the beginning of the chain. Therefore, from a

feature selection point of view, the state of the component at the end of the chain is more informative.325
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Figure 11: Top 30 components in the 50-component CTI ranked by DDIM. Boxplots are obtained via bootstrapping

with bootstrap size 100.

Figure 12: Top 30 components in the 330-component CTI ranked by DDIM. Boxplots are obtained via bootstrapping

with bootstrap size 100.

To test the stability of the proposed method, a further experiment is performed by adding 280

non-critical components, i.e., components whose failure operation state has no influence on the system

state, to the previous 50-component CTI. Figure 12 shows that DDIM is still able to correctly identify

the 12 critical components. Comparing to the ranking obtained in the previous case without noise

components, the only difference is the order of components C22 and C23, which have very similar330

values of DDIM with overlapping bootstrap confidence intervals, which do not allow ordering them.

Notice that the bootstrap confidence intervals for the 330-component CTI are slightly larger than the

50-component CTI. This observation is consistent with the experiments in Section 3.1, a larger number

of components p to investigate would require a larger number of instances ntrain in order to achieve

the same level of uncertainty.335
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4. Conclusion

This work has addressed the problem of identifying the critical components of a complex technical

infrastructure in the challenging case in which the system structure function is unknown. A data-

driven framework is introduced to allow using the information contained in the available monitoring

data. Component ranking is based on a data-driven importance measure which associates to each340

component the importance score of the associated features. It can be interpreted as the probability of

misclassifying the system state if monitoring data coming from an identical component operating in

a virtual twin system were used. The proposed framework is able to estimate whether the available

monitoring data contain enough information to assess component criticality by observing the accuracy

of the RF classification of the CTI safe/failed state. Also, the use of a bootstrap technique allows345

estimating the confidence intervals associated to the obtained importance measure.

Empirical experiments on simple systems show that the proposed data-driven framework provides

ranking of the components’ importance similar to those obtained by the Birnbaum IM. The applications

to a nuclear power plant system and to a case study which mimics the complexity of a CTI shows

that the most critical components are correctly identified. The obtained results encourage the use of350

data-driven methods for investigating the risk and reliability of CTIs, whose components are normally

monitored.

Future research directions will include the investigation of alternative permutation schemes for feature

importance score computation and the development of a procedure for the selection, from the obtained

data-driven importance measures and component ranking, of the set of critical components for the CTI355

reliability and availability.

Appendix A. Analysis of the Influence of the RF Parameters on the Classification Ac-

curacy and Importance Measure Computation

We consider the case study of Section 3.2 about the auxiliary feedwater system of a nuclear pressur-

ized water reactor. Table A.3 shows the performance of the RF classifier when varying the two key RF

Table A.3: Analysis of the Influence of the RF Parameters on the Classification Accuracy

Experiment RF parameter Classification performance

(a) ntree = 500,mtry = 3 False Alarm Rate = 0,Missed Alarm Rate = 0.014

(b) ntree = 800,mtry = 3 False Alarm Rate = 0,Missed Alarm Rate = 0.016

(c) ntree = 100,mtry = 3 False Alarm Rate = 0,Missed Alarm Rate = 0.015

(d) ntree = 500,mtry = 2 False Alarm Rate = 0,Missed Alarm Rate = 0.050

360

parameters, ntree and mtry. In Experiment (a), default RF parameter values, ntree = 500,mtry = 3,
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are used. In the Experiments (b) and (c), the RF parameter ntree has been varied from the original

value of 500 to 800 and 100, respectively, while keeping the parameter mtry = 3. The obtained results

show that the performance of the RF only slightly decreases (the missed alarm rate increases from

0.014 to 0.016 and 0.015, respectively). In Experiment (d), the RF parameter nmtry has been varied365

from the original value of 3 to 2, while keeping the parameter ntree = 500. This setting has led to a

worsening of the performance (the missed alarm rate increases from 0.014 to 0.050). In all experiments,

the false alarm rate remains zero.

Figure A.13 shows that the ranking of the components is not significantly affected by the parameter

variation.370
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(d) ntree = 500,mtry = 2

Figure A.13: Sensitivity Analysis of the RF Parameters for the auxiliary feedwater system of a nuclear pressurized water

reactor case study in Section 3.2.

The analysis has shown that the performance of the RF classifier is not significantly affected by

variations of the parameters ntree and mtry, and that the component ranking is stable with respect to

the parameter setting.
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Appendix B. Pseudo-code for the Data-driven Importance Measure Computation

Algorithm 1 Pseudo-code for the Data-driven Importance Measure Computation

Require: Datatrain, RF parameters mtry, ntree

1. Train Random Forest

(a) Draw ntree bootstrap samples Dt, t = 1 . . . ntree from the dataset Datatrain.

(b) For t = 1 . . . ntree, grow an unpruned decision tree T (·; Θt) on Dt: at each node, choose

the best splitting feature from a random subset of size mtry of all the p features.

(c) Compute the misclassification error E(T (·; Θt),DOOB
t ) evaluated onDOOB

t = Datatrain\Dt

using

E
(
T (·; Θt),DOOB

)
=

1

nD

∑
i:(xi,yi)∈DOOB,j

1
(
yi 6= T (xi; Θt)

)
, (B.1)

where 1(·) denotes the indicator function.

2. Compute the importance score of feature Xj: VI (Xj)

(a) For j = 1 . . . p, do

i. For t = 1 . . . ntree, obtain the dataset DOOB,j
t by permuting the values of feature Xj

in DOOB
t and calculate E(T (·; Θt),DOOB,j

t ).

ii. Compute:

DDIM(Cj) = VI (Xj) =
1

ntree

ntree∑
t=1

(
E(T (·; Θt),DOOB,j

t )− E(T (·; Θt),DOOB
t )

)
.

(B.2)

Output: DDIM(Cj), j = 1 . . . p
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