
The faster the better: On the shortest paths role for
near real-time decision making of water utilities

Carlo Giudiciannia,∗, Manuel Herrerab, Armando Di Nardoa,c, Gabriele Olivad,
Antonio Scalac
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Abstract

Near real-time monitoring and control of critical infrastructure is essential for
the operation and management of cities in a world that is, today, more complex
and interconnected than ever. Such an infrastructure can be represented as
complex networks an some of their related indices and statistics, many of them
based on the shortest paths, play a pivotal role in the decision making for public
services such as internet, energy or water. Particularly, the literature has shown
that shortest paths are key for resilience and criticality assessment in a water
distribution systems (WDS). This paper proposes a procedure to speed-up the
computation of shortest paths in a WDS, as it can straightforwardly benefit
any critical infrastructure. The proposal is based on a reduced dimension of
a complex network representing any critical infrastructure. Despite the conse-
quent decrease in the number of all possible paths in the network, the main
advantage and novelty of this proposal is to continue finding the exact solution
for the shortest paths. Experimental results show that the procedure brings
a computational-time reduction consistently over 50% and up to 90% in some
cases. In addition, the paper reveals how the use of shortest paths benefits
WDS operation and management, as well as playing a key role in near real-time
contamination detection and leakage control.
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1. Introduction

Modern society is strongly dependent on infrastructure systems (i.e. trans-
portation, power grids, telecommunications, water systems), which support
cities growth and economic prosperity. These infrastructures continually face
natural and man-made threats that cause economic and social disruption, lead-5

ing their operators to continuously work on improving safety and security and,
eventually, on speeding up mitigation actions. Today, reliability and perfor-
mance assessment, continuous operation, monitoring and protection of critical
infrastructures are national priorities for countries worldwide [1]. They repre-
sent an interdisciplinary challenge encompassing environmental, water, electric-10

ity and urban planning issues. Furthermore, as cities increase in their size, these
infrastructures are getting larger and tangled, showing a complex behaviour due
to the high degree of inter-dependency among them. As a consequence, the
management of such infrastructures is becoming an arduous task to address, as
this involves the development of new, agile tools and methodologies to support15

their decision making process. Water distribution systems (WDS) are among
the most important critical infrastructures in a city. They guarantee the sup-
ply of drinking and industrial water to metropolitan areas and, therefore, their
operation and management are of crucial importance to ensure social welfare,
and resilience to any disruption that may place at risk the health of a city20

inhabitants. WDSs face two major vulnerabilities:

• Contamination: WDSs are vulnerable to malicious and intentional attacks
since they are made up of thousands of exposed elements. In general,
water can be easily polluted by chemical or biological contaminants, which
spread all over the system by flowing and potentially have a dramatic25

impact on the population health [2].

• Leakages: WDSs are constituted by aged buried pipelines which are easily
eroded by the environment. In addition, the daily pressure variability
strongly stresses water pipes. These factors lead to failure and burst of
pipes, causing leakages and wasting water [3, 4].30

The downside in the management of such infrastructures is that the under-
lying details of the physics involved in their functioning complicates the analysis
to a relevant extent, making it difficult to achieve useful insights in reasonable
time [5]. Complexity science has proven to be a particularly adequate tool for
a timely and agile analysis and management for WDSs [6, 7](and, in a general35

context, for critical infrastructures [8]). A complex system approach is suitable
especially in the case of limited information about the infrastructure [9, 10]. In
particular, a complex network representation allows to abstract the model away
from the high degree of physical details and to focus only on a number of key
aspects, in a manageable way [11, 12].40

An essential tool in complex network analysis is the computation of the short-
est paths. Centrality based algorithms, measuring the relative importance of
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the network nodes, and community detection procedures, finding topologically-
related nodes, are instances of methods relying in the shortest paths. This pa-
per proposes a strategy to efficiently compute shortest paths, named multiscale45

shortest path (MS-SP). This is based on a dimension-reduction process, starting
from the common scenario of a network already divided into communities. Such
a network is modified to obtain a novel, dual representation of it with reduced
complexity (in terms of the number of nodes and edges). This representation is
named multiscale network and is equivalent to the original network in terms of50

computing the shortest paths.
An antecedent of this paper can be found on the work of [13] which pro-

vides a valid approximation to the shortest path problem for social networks.
In such a work, the authors propose a combined process for community de-
tection and network reduction by collapsing communities into nodes of a new55

network. Although such an algorithm had a scope similar to the work presented
in this paper, the main innovation herein is that the network reduction process
is based on the so-called landmark nodes. That is, the algorithm identifies a
subset of key nodes that lie at the boundary of the communities and transforms
the community into hyper-links connecting such boundary nodes, rather than60

collapsing the communities in single nodes. As a result, the network collapses
into a reduced-size graph were boundary nodes are interconnected by edges that
are weighted in a suitable manner to guarantee that the minimum path between
two nodes in the original network can be computed in terms of the minimum
path between the boundary nodes that are closest to the source and destination,65

respectively.
A major advantage of adopting the proposed MS-SP, with respect to other

network reduction procedures, is that it takes into account all the connectivity
information. Hence, it is possible to compute the exact value of any shortest
path when the collapsed network layout is in use. This is not possible for tradi-70

tional network reduction methods which normally collapse clustered areas into
hyper-nodes. Actually, by collapsing the clusters in single nodes, the internal
distance between boundary nodes cannot be taken into account, and the value
of shortest path between two points is always an approximation. Furthermore,
the proposed process of size reduction allows to get a more faithful representa-75

tion of the original network by keeping all the landmark elements. As it will be
subsequently discussed, this feature is the starting point for the creation of a
novel management tool for WDSs.

Appendix A and Appendix B provide formal proofs to validate the speed of
the proposed calculation of the shortest routes. This validation is also tested on80

two utility networks confirming its high operational performance. In addition to
the aforementioned computational advantages, the dimension-reduction process
also leads to a novel, dual representation of a WDS (or another networked
infrastructure) where it is even possible to obtain a visualisation of the shortest
paths. On top of these outcomes, the paper also shows the benefits on the85

use of the shortest paths for a water utility near real-time decision making.
In particular, the paper presents a strategy to simplify the water quality sensor
placement problem (contamination) and a graphical tool to optimise an adaptive
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dynamic reconfiguration of district metered areas to efficiently address leakage
control procedures.90

2. Theoretical framework for a faster shortest paths algorithm

The networked asset connectivity of a critical infrastructure can be rep-
resented as a graph. In graphs representing real world systems, or complex
networks, the connections between the nodes are often not homogenous and it
is necessary to associate weights to the graph edges to better represent such a95

graph. A weighted graph is defined by G = {V,E,W}, having a finite number n
of nodes vi ∈ V with i ∈ {1, . . . , n} and edges (vi, vj) ∈ E ⊂ V × V from node
vi to node vj . For each edge (vi, vj) ∈ E we denote by wij ∈ W the associated
weight. A graph is said to be undirected if (vi, vj) ∈ E whenever (vj , vi) ∈ E,
and it is said to be directed otherwise. In the following we will consider undi-100

rected graphs. For undirected graphs, we assume the weights satisfy wij = wji
for all (vi, vj) ∈ E. Let the weighted adjacency matrix of a graph G = {V,E,W}
be the n×n matrix A with the same structure as G, i.e., such that Aij = wij if
(vi, vj) ∈ E and Aij = 0, otherwise. In the case of undirected graphs, matrix A
is symmetric. A path over a graph G = {V,E,W}, starting from a node vi ∈ V105

and ending in a node vj ∈ V , is a subset of links in E that connect vi and vj ; the
length of the path is the sum of the weights associated to the links in the path.
A minimum path that connects vi and vj is the path from vi to vj of minimum
length. An undirected graph is connected if for each pair of nodes vi, vj ∈ V
there is a path over G that connects them.110

2.1. Antecedents

A main part of the paper focuses on the novel development of an efficient
algorithm to compute the shortest paths in a complex network. There are
previous work in the literature sharing a similar objective. In this regard, it
highlights the work of [14], encompassing an extensive survey of various heuristic115

shortest path (SP) algorithms developed in the last years. It is worth to mention
the interesting strategy adopted for practitioners and applied researchers to
exploit network’s domain-specific information. This is the case of traffic systems
researchers adopting the natural hierarchies of the roads to significantly speed up
the SP computational time [15, 16]. Overall, there are two widely investigated120

strategies for approximate the SP computation in large-scale complex networks.
One of them is the landmark − based method. This requires to pre-compute
the shortest paths between special nodes (landmark nodes) and all the other
nodes in the network, saving these distances in a database. The shortest-path
between two nodes is, then, approximated by combining those distances stored125

in the database [17, 18]. The other one is a topology − based approach. This
strategy lies in the structure of networks and their partition into discrete areas
[19, 20]. In this regard, [21] propose an approximated landmark-based method
for point-to-point distance estimation in large-scale networks, also adding the
partitioning variant. The landmark set is selected for each network area and the130
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shortest paths consequently saved in a database. The authors also demonstrated
that selecting the optimal set of landmark nodes is an NP-hard problem. The
proposal herein can be seen as a combination of both landmark and topology
based approaches.

2.2. Shortest path algorithm135

A widely known and applied algorithm to compute the shortest path between
two nodes is Dijkstra’s shortest paths algorithm (D-SP) [22]. D-SP can be
summarised as follows. Given a weighted graph G = {V,E,W} with |V | = n
nodes, a start node vs and a goal node vg, the algorithm keeps track of three
variables for each node:140

• visited(vi) which is equal to one if the node has already been visited
during the algorithm and is zero otherwise;

• distance(vi) which is the current estimate for the distance of node vi
from the start node vs;

• parent(vi) which is the identifier of the node immediately before node vi145

in the path connecting vs and vi.

The algorithm also keeps track of the node currently being examined, which is
referred to as v∗.

During the initialisation phase, the algorithm sets visited(vs) = 1 and
visited(vi) = 0, for all vi ∈ V \ {vs}. Moreover, it sets distance(vs) = 0150

and distance(vi) = ∞, for all vi ∈ V \ {vs}. Finally, the algorithm selects
parent(vi) = ∅ for all vi ∈ V and sets v∗ = vs. Then, the main cycle of the
algorithm is executed; such a main cycle is composed of the following conceptual
steps:

Step 1 For all neighbours vi of v∗ such that visited(vi) = 0 set the distance of
node vi from vs as the minimum between the previous estimate and the
sum of the distance of v∗ from vs and the weight of the link w∗ i connecting
v∗ and vi, i.e.,

distance(vi) = min {distance(vi), distance(v∗) + w∗ i} ;

moreover, if the distance is updated for node vi the algorithm keeps track
of the fact that the minimum path from vs to vi features the edge (v∗, vi)
by setting

parent(vi) = v∗.

Step 2 Set visited(v∗) = 1155

Step 3 If visited(vt) = 1 then stop, the algorithm is terminated.
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Step 4 Otherwise, select the node with minimum current distance among the not
visited ones as the new current node, i.e.,

v∗ = vj , where j = arg min
i |visited(vi)=0

{distance(vi)}

and go back to Step 3.

Note that a straightforward application of the above algorithm yields a com-
putational complexity O(|V |2) where |V | is the number of nodes in the graph;
moreover, when the graph is particularly sparse, i.e., when |E| � |V |(|V |−1)/2,160

where |E| is the number of edges, it is possible to reduce complexity by using
an implementation that relies on data structures such as the so-called Fibonacci
heaps [23].

2.3. Multiscale Shortest Path (MS-SP) algorithm

Given a graph G = {V,E,W}, the proposed approach to calculate the short-165

est path from a node vs to a node vt is based on a dimension reduction procedure.
To this end, the network is decomposed into clusters and the nodes/edges in
each cluster are collapsed in a way that guarantees that the shortest path com-
puted over the resulting graph corresponds to the one representing the original
graph. These clusters are formed by grouping elements with similar character-170

istics or with a higher connection density than that external to the community.
Network community detection algorithms [24] can be used in case the initial
clustering of the network is not available. This is the case of the Louvain algo-
rithm [25] which has been adopted in this paper to deal with the preliminary
part of the process. The choice of Louvain algorithm is due to its properties of175

computational efficiency and scalability that make it suitable even for large-size
networks. Actually, Louvain uses an iterative process to improve the scalability
of the overall community detection based on modularity optimisation [26]. It is
known that it runs in time O(|E|), where |E| is the number of the graph edges
[27]. Let’s consider that we apply the Louvain clustering algorithm to a graph,180

G, decomposing the set of nodes V into q disjoint sets V1, . . . , Vq, each of them
corresponding to a cluster.

In the following, we denote by Ei the set of edges in the original edge set E
that connect nodes in the same cluster, i.e.,

Ei = {(va, vb) ∈ E | va, vb ∈ Vi};

moreover, we define

Êij = {(va, vb) ∈ E |va ∈ Vi and vb ∈ Vj}

and
Eij = Êij

⋃
Êji.

Finally, we define the set of boundary nodes V bi ⊆ Vi as the set of nodes in Vi
that belong to at least one edge in Eij for some j ∈ {1, . . . , q} \ {i}, i.e.

V bi = {va ∈ Vi | ∃(va, vb) ∈ E, vb 6∈ Vi}.
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In other words, Eij is the set of edges that connect nodes in Vi and nodes in
Vj , and it holds Eij = Eji. Specifically, by running the clustering procedure
described above, the network is decomposed into q clusters. The dimension
reduction strategy consists in the construction of a graph

G̃ = {Ṽ , Ẽ, W̃},

where Ṽ includes the set of boundary nodes and the start and goal nodes, i.e.,

Ṽ = {vs, vt}
q⋃
i=1

V bi .

As for the edge set Ẽ, we have that

Ẽ = Ẽin

⋃
Ẽout,

where Ẽout is the union of the edges connecting boundary nodes, i.e.,

Ẽout =
⋃

i,j∈{1,...,q}

Eij

and Ẽin is the union of sets Ẽiin of edges that directly connect the boundary
nodes in the i-th cluster. Note that, if the start or goal nodes are in the i-th
cluster, then the start or goal nodes are considered as a boundary node.185

With respect to the graph weights, we select w̃ab = wab whenever (va, vb) ∈
Ẽout, while for each pair of boundary nodes va, vb that belong to the same cluster
i (including the start or goal node if they belong to cluster i), we compute
the minimum path piab between va and vb over the subgraph of G induced by
considering just the nodes Vi in the i-th cluster and we set the weight as the
length of the path piab, i.e.,

wab =
∑

(vh,vk)∈piab

whk.

At this point, the algorithm finds the minimum path between nodes vs and
vt by computing the minimum path between vs and vt over G̃. Note that, by
keeping track of the minimum paths involving boundary nodes in each cluster
(treating vs and vt as boundary nodes), we are able to reconstruct the minimum

path over G in terms of the minimum path over G̃.190

The algorithm is graphically explained by Figure 1 in which there are 3
groups: the upper-left cluster contains three boundary nodes (and the start
node), the right cluster has three boundary nodes and the lower cluster has two
boundary nodes (plus the target node). As a result of the decomposition, we

obtain a network with |Ṽ | = 10 nodes (i.e., the boundary nodes plus the start195

and goal) and |Ẽ| = 16 edges; in particular, the four edges connecting nodes in
different clusters are kept, while for each pair of boundary (or start/goal) nodes
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in each cluster a new link is added, whose weights correspond to the length of
the minimum path, computed over the subgraph induced by the nodes in the
cluster. The minimum path is computed over G̃. Proofs of the correctness and200

time complexity of the proposed algorithm are reported in Appendix Appendix
A and Appendix B, respectively.

Summarising, the main novelties of the proposed dimension reduction pro-
cess are:

• the choice of an optimal number of clusters from a topological point of205

view (according to the relationship found in [28]);

• the idea of collapsing clusters in a subset of landmark nodes;

• the choice of the landmark nodes as the boundary nodes of each clusters;

• the idea of linking landmark nodes internally with link weighted with
shortest path values and externally with boundary links defined by the210

clustering process.

(a) Original network showing key ele-
ments (b) MS network showing key elements

Figure 1: Graphical explanation of the dimension reduction process for computing the SP
algorithm
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Algorithm 1: Multiscale shortest paths, MS-SP, procedure

1 Input: Original WDS network, G; with |V | = n nodes. DMA division
into q groups of nodes, V = {V1, . . . Vq}. Boundary nodes set
V b = {V b1 , . . . V bq }.

Output: Shortest paths between all the nodes of the original WDS
network.

Data: DMA membership per each node of the original WDS network.
/* Shortest paths, SP, computed by Dijkstra’s algorithm */

2 Let G̃ an MS network
3 for h ∈ {1, . . . , n} do
4 vbh ← minSP (vh, V

b(vh) | vh ∈ V (vh))
/* vbh boundary node in the DMA of vh, V (vh), closer to vh */

5 for i, j ∈ {1, . . . , n}, i 6= j do
6 Let vi the initial node and vj the sink node
7 Check DMA membership: vi ∈ V (vi) and vj ∈ V (vj)
8 if V (vi) = V (vj) then
9 return SP (vi, vj)

10 else
11 if vi ∧ vj ∈ V b then

12 return SP (vi, vj) ≡ SP ((vi, vj) | G̃)

13 else
14 if vi ∈ V b ∧ vj /∈ V b then

/* Connect boundary node vi to boundary node vbj */

/* Connect boundary node vbj to node vj */

15 return SP ((vi, v
b
j) | G̃) + SP (vbj , vj)

16 else
17 if vi /∈ V b ∧ vj ∈ V b then

/* Connect node vi to boundary node vbi */

/* Connect boundary node vbi to boundary node vj */

18 return SP (vi, v
b
i ) + SP ((vbi , vj) | G̃)

19 else
20 if vi /∈ V b ∧ vj /∈ V b then

/* Connect node vi to boundary node vbi */

/* Connect boundary node vbi to boundary node vbj */

/* Connect boundary node vbj to node vj */

21 return SP (vi, v
b
i ) + SP ((vbi , v

b
j) | G̃) + SP (vbj , vj)

3. Experimental validation of the MS-SP procedure

Urban utilities such as water, gas, or electric power networks can be mod-
elled as quasi-planar graphs (e.g., edges forming vertices wherever two edges215
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cross) with spatially organised weighted edges G = {V,E,W}. In the case of
water distribution systems the set V of n vertices/nodes encompasses junctions,
water sources and demand points. The set E of m edges/links includes pipes,
pump stations, and valves. Eventually, W is a function that assigns a weight
to each edge quantifying the physical characteristics (diameter, length, rough-220

ness, material and age). A complex network can capture and -dynamically and
distributedly- store all this information, making it possible to capture the inher-
ent heterogeneity of a WDS. This is achieved by labelling the complex network
elements in relation to their function in the system and weighting them by their
importance, accessibility, and physical characteristics. The findings of this pa-225

per can be straightforwardly applied to a weighted graph adding the natural
WDS heterogeneity to the shortest paths calculation.

In particular, WDSs are strongly constrained by their geographical embed-
ding [28] in that connections between distant nodes are unlikely to be found,
due to physical and economic constraints.230

3.1. Study cases

MS-SP is firstly tested on the real medium-size Colorado Springs (US) [29]
water utility - which currently serves a population of about 370,000 inhabitants.
Figure 2(a) shows its network layout. This encompasses 1,782 junctions and 4
reservoirs (n = 1,786 nodes), 1,985 pipes, 6 pumps and 4 valves (m = 1995235

links). Figure 2(b) is a dual representation of Figure 2(a). Figure 2(b) clearly
demonstrates the size reduction of the Colorado water network after its transfor-
mation into a MS network. This naturally highlights both highly interconnected
network areas and bottleneck links, which are likely related to vulnerable parts
of the WDS. Colorado Springs is one of the benchmark water networks, widely240

used by the urban hydraulics community. This has an added value for the sake
of the reproductibility of this paper proposal.

The second case-study corresponds to the large-scale water utility which
serves the Spanish city of Alcalá de Henares (Spain). It counts on a population
of 201,000 inhabitants. The water distribution network model (see Figure 3(a))245

encompasses 11,473 junctions, 3 reservoirs (n = 11,476 nodes), and 12,454 pipes,
(m = 12,454 links). Figure 3(b) shows the corresponding MS network layout.

3.2. Results

This subsection introduces results corresponding to the topological analysis
of the original water network and the MS network for both study cases. A250

description of relevant topological metrics, used to get these results, is reported
in Appendix C.

Table 1 enumerates the main topological metrics computed for both case
studies on the original and the MS network. The total number of links mb

for the MS network is equal to the sum of the boundary links mex and the255

internal hyper-links min. The size problem reduction is evident on nodes (from
n = 1, 786 to nb = 33 for Colorado and from n = 11, 476 to nb = 114 for Alcalá)
and also on links (from m = 1992 to mb = 83 for Colorado and from m = 12.454
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(a) Water network layout of Colorado Springs

(b) Multiscale water network of Colorado Springs

Figure 2: Multiscale dimension reduction for Colorado Springs water network

to mb = 596 for Alcalá). The average node degree K strongly increases for the
both the MS network (from K = 2.23 to K = 5.03 for Colorado and from260

K = 2.17 to K = 10.46 for Alcalá).

Table 1: Topological characteristics of the original water network and the MS network layout
for Colorado Springs and Alcalá de Henares

Metric Colorado Colorado-MS Alcalá Alcalá-MS
n or nb 1786 33 11,476 114
m or mb 1995 83 12,454 596

K 2.23 5.03 2.17 10.46
q 0.0012 0.1571 0.0002 0.0933
D 69 8 163 9
l 25.94 3.15 64.88 3.87
λ2 0.00053 0.23512 0.00009 0.15884
∆λ 0.1293 0.1735 0.0957 0.0587

The dimension reduction working with the MS network makes the network
density increases up to 2 orders of magnitude (from q = 0.001 to q = 0.157
for Colorado and from q = 0.0002 to q = 0.0933 for Alcalá). This augmented
inter-connectivity is also reflected by the two spectral metrics measuring the265

robustness of network. The algebraic connectivity and the spectral gap also
increase when moving from the original to the MS network, as it is shown in
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(a) Water network layout of Alcalá

(b) Multiscale water network of Alcalá

Figure 3: Multiscale dimension reduction for Alcalá water network

Table 1. Still, the increasing link density does not represent a serious issue given
the sparsity of the original network topology. The new the topological metrics
for the MS network reflect a shift in its structure. The dual network repre-270

sentation can be seen now as a low interconnected small-world cluster (whose
links are the internal hyper-links). In fact, after the size reduction due to the
application of the MS-SP algorithm, each cluster of the MS network becomes
into a fully connected layout, weakly linked to other clusters through out the
boundary links. The typical small-world behaviour is also confirmed by the275

low value of communication metrics such as the diameter and the average path
length, which scale approximately with log(n). This is a common feature of
small-world network topologies as it is possible to see in Table 1.

Simulation results with respect to the computation of the shortest paths both
for Colorado and Alcalá water utilities, are reported in Table 2 and Table 3.280

A suitable number of clusters C is taken in both cases to optimise the overall
connectivity of the partitioned network, according to the relationship Copt ∝
n0.28 reported in [28], where Copt is the optimal number of clusters from a
topological point of view. As a result, the number of clusters for Colorado is set
to C = 8, while C = 13 for Alcalá’s network. Up to 10 paths are generated by285

connecting random pairs of source and target to validate the proposed MS-SP
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Table 2: Simulation results for the Colorado Springs water network

Pairs D-SP value MS-SP value D-SP time MS-SP time Red. time
[-] [-] [s] [s] [%]

1 13 13 0.0010 0.0001 90.0
2 21 21 0.0015 0.0005 66.6
3 29 29 0.0022 0.0006 72.6
4 33 33 0.0026 0.0007 72.9
5 38 38 0.0032 0.0004 87.4
6 41 41 0.0033 0.0006 81.7
7 52 52 0.0043 0.0007 83.6
8 56 56 0.0036 0.0005 85.8
9 60 60 0.0041 0.0006 85.2
10 66 66 0.0039 0.0004 89.6

algorithm. For each pair, the shortest path is computed by running the code 10
times and averaging the computational time.

Table 3: Simulation results for the Alcalá water network

Pairs D-SP value MS-SP value D-SP time MS-SP time Red. time
[-] [-] [s] [s] [%]

1 32 32 0.0007 0.0003 50.2
2 40 40 0.0019 0.0004 80.5
3 53 53 0.0032 0.0005 84.7
4 60 60 0.0041 0.0006 85.1
5 72 72 0.0027 0.0004 84.4
6 88 88 0.0098 0.0010 90.1
7 94 94 0.0102 0.0015 85.3
8 102 102 0.0129 0.0011 91.6
9 115 115 0.0094 0.0015 82.5
10 116 116 0.0097 0.0017 91.9

MS-SP algorithm provides the exact value of the shortest path between each
pairs of randomly generated source and target nodes. This represents a clear290

advantage with respect to previous methodologies whom provide approximated
results. Table 2 and Table 3 clearly state the D-SP and the MS-SP provide the
same results (difference is equal to zero).

Figure 4: Computational time for D-SP and MS-SP algorithms, for Colorado water network
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Figure 5: Computational time for D-SP and MS-SP algorithms, for Alcalá water network

The computational time for D-SP algorithm grows with the distance between
source and target nodes, as it is expected. However, computational times for295

MS-SP show to be a plateau value of an order of magnitude smaller than that
D-SP method. This is clearly shown in Figures 4 and 5 (with the results on Col-
orado and Alcalá utility networks). Table 2 shows the difference in percentage
between the D-SP and the proposed MS-SP computational time for Colorado.
The difference on time varies from 66% to 90%. Table 3 shows the difference in300

percentage between the D-SP and the proposed MS-SP computational time for
Alcalá. This difference on time varies from 50% to 92%. Both differences on
computational time stand as a conspicuous time reduction for computing the
shortest path.

The MS-SP algorithm is implemented in Python 3.6. All the simulations305

run on a Linux Xubuntu 18.04 PC with 2.13 GHz Intel R© CoreTM i3 CPU
m330 64 GB of memory and 4.00 GB of RAM.

4. Shortest paths role for water systems management

Two novel applications of the shortest path algorithm for the monitoring
and management of WDSs have been tested on Parete (Italy) water utility. This310

WDS currently supplies to a population around 11,000 inhabitants. Figure 6(a)
shows its network layout. This encompasses 182 junctions and 2 reservoirs with
fixed head of 110 m a.s.l. (n = 184 nodes), and 282 pipes (m = 282 links). The
main trunks highlighted in red. The hydraulic analyses have been carried out
by using the U.S. Environmental Protection Agency free software, EPANET315

[30], and considering a day of maximum consumption in the year, when the
total demand at nodes ranges from 7.6 L/s at nighttime to 77.2 L/s both in the
morning and midday peaks. The average water demand is 36.3 L/s.

4.1. Contamination detection

The most efficient action to enhance the security of a WDS against the effects320

of a contamination intrusion lies in installing a water quality sensor network
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[31]. This represents a proactive, cost-effective and reliable strategy, allowing an
assessment of the system water quality and an early detection of its potentially
dangerous conditions. From practical and economic points of view, securing the
entire network by placing sensors all over the system is not feasible, conditioned325

to the budget availability. Therefore, sensors should be placed in locations that
maximise the capability of detecting contamination [32]. Water utilities have
to face the issue of identifying the most suitable locations for sensor placement.
In this regard, the optimal sensor placement problem is still an open challenge
for researchers and practitioners, given its associated computational burden330

because of considering all possible contamination events along with the WDS
complexity. It has been proven by [33] that the optimal sensor placement in a
network represents a NP-hard combinatorial optimisation problem.

During the Battle of the Water Sensor Networks [34], several future research
directions were identified. Among them, there highlight the following two:335

• For a big-sized WDS the adopted event matrix represents only a small
portion of the entire space of possible contaminant injection events. As a
consequence, the generation of different event matrices will likely produce
different solutions. The research challenge is to define procedures for which
a rare subset from the entire set of contamination events can be computed340

(events with a small probability to occur, but with an extreme impact).

• Equal likelihood of threat and need for protection have been employed for
all the elements of a WDS. There are needed novel tools for identifying
areas of higher risk of threat and areas of greater need of protection.

The purpose of the current analysis is to provide a tool, based on the topo-345

logical properties of the graph associated to WDSs, which allow to a priori
define the most critical nodes (which can trigger the most extreme impacts) to
consider for the design of an efficient water quality sensor system. Accordingly,
it will be possible to reduce the computational burden, as well as, simplify the
management by prioritising the protection to such areas, and consequently re-350

ducing the costs. In fact, the challenge of sensor placement is usually addressed
by considering a set of contamination scenarios; each of them defined by the
time when and the location where the contamination starts. However, in the
literature, the creation of such scenarios consider all the WDS assets having a
similar importance in terms of contamination spreading. The current shortest-355

paths based framework can be used as a decision-support system to ascertain
the most critical scenarios to consider further. This will benefit the deployment
of more effective preventive maintenance plans facing possible contamination
events and more efficient strategies of system monitor and control.

The relationship between the shortest path of each node from the sources360

(reservoirs) and the node criticality level (as the downstream contaminated area
extension if a contamination event would start from the node itself) has been
investigated. The shortest path from the two reservoirs has been calculated for
each node and the smallest result has been assigned as a feature to the referring
node. Figure 6(b) shows the corresponding heatmap for the Parete WDS. In this365
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(a) Water network layout of
Parete. Main trunks high-
lighted in red.

(b) Minimum shortest path of
each node from the reservoirs.

(c) For each node, number of
downstream nodes that would
be contaminated if a contamina-
tion started from the node itself.

Figure 6: Water distribution network of Parete.

way, nodes are automatically split into two subsets (as many as the number of
reservoirs), depending on whether the minimum shortest path is associated with
one reservoir or with the other. The idea lies in the low number of reservoirs,
or system inlets, which typically are in a WDS. Hence, it is possible to define
a limited number of reference points, with a proper and well defined hydraulic370

function, for the calculation of shortest paths. Other system inlets are water
tanks. Once water tanks are identified in a WDS, the framework proposed
herein can be directly applied.

The water quality module of the EPANET software has been used to trace
the flow originated from a node to the rest of the system and, consequently, the375

spreading of a potential contamination that moves along with the water flow.
This has been done for the all nodes of the network, and the total number of
reached (affected) nodes has been calculated. This number has been assigned as
a feature to the referring node. Figure 6(c) shows the corresponding heatmap for
the Parete WDS. By looking at the Figure 6(b) and Figure 6(c) an asymmetric380

correspondence can be detected; closer is the node to the reservoir, higher the
number of affected downstream nodes, and vice-versa.

The minimum shortest path has been normalised with respect to the graph
diameter D = 20 (see Appendix Appendix C for the definition), and the total
number of affected nodes has been normalised with respect to the total number385

of nodes composing the network (n = 184 nodes). Figure 7 shows this relation-
ship. Dots with red shades and dots with purple shades refer to nodes for which
the minimum shortest path comes from reservoir ID-184 (red rhombus) and ID-
183 (purple rhombus), respectively. Star shape stands for nodes belonging to
the main trunks.390

A closer look to Figure 7 provides a number of insights:

• The relationship is well fitted by a linear trend, confirming the strong
correlation between the topology and the hydraulic behaviour of the WDS.
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Figure 7: Relationship between the normalised shortest path from the reservoir and the
normalised number of contaminated nodes

• Two clearly different trends can be spotted for the two subsets of nodes
(referring reservoirs), allowing to define two areas of different protection395

level.

• The global most critical area is closer to reservoir ID-183 (contamination
events starting from nodes far from it less than 20% of D will affect roughly
the 80% of the nodes composing the WDS).

• For each subset, the most critical nodes are closer to the referring reservoir400

(smaller the corresponding shortest path is, greater the number of nodes it
will affect). This allows to define nodes requiring higher level of protection.
Furthermore, critical nodes can belong to the main trunks, but, they can
also be regular demand nodes.

Another application of shortest path algorithms within a contamination con-405

text, come from the fact that it is often not possible to run hydraulic simulations
on a WDS. This is due to lack of specific information about the water system.
A topological approach for placement of water quality sensors represents an ef-
ficient strategy. This makes possible to disregard the hydraulic calibration of
the models and to reduce the computational complexity of further procedures.410

For instance, the analysis can be restricted to just nodes closer to the reservoirs
according to their minimum shortest path (whether they belong to the main
trunks or not). The proposed approach defines the most critical spreader in
a water network, by linking a topological-based information to hydraulic be-
haviour of the system. Despite the current approach only takes into account415
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the network layout for the shortest paths computation, it is clear that the pro-
cedure can be straightforwardly extended to consider geometric and hydraulic
characteristics of the system assets (e.g. weighting the network by the corre-
sponding pipe diameters, lengths, and roughness or demand and pressure for
junctions), when additional information is available. In this way, it is possible420

to take into account the hydraulics of the system. This would enrich the find-
ings on the relationship between shortest paths and the most critical nodes of a
WDS, leading to a more explainable and plausible identification of them besides
to gain model explainability and, consequently, trust from water utilities.

4.2. Leakage control425

An appealing by-product of the proposed algorithm comes associated with
the small-world property of the MS layout that preserves essential information
about the original system while it leads to a significant network size reduction.
This is key for addressing WDS partitioning into district metered areas (DMA)
and it is one of the most useful management strategies for water utilities [35].430

A DMA partition (also known as a WDS sectorisation) splits the system into
smaller, monitored districts connected one to another by pipes equipped with
gate-valves and/or flow-meters. This helps water companies to perform man-
agement and maintenance operations related to pressure and leakage control.
Despite the multiple benefits of this management strategy, a permanent WDS435

sectorisation typically needs to close a large number of boundary pipes, leading
to a general pressure drop at the WDS consumption points and, consequently,
to an inefficient supply. Overall, the reason is that the more partitioned the
network the more dissipated the supply energy. In addition, lower water pres-
sures at the end user may deteriorate the hydraulic performance and reliability440

of the system. The definition of an optimal DMA configuration, that balances
the aforementioned positive aspects towards a more resilient system, is still a
challenge for water utilities and engineering practitioners.

The MS network implicitly takes into account the WDS structural knowl-
edge, thanks to the shift to a low-interconnected small-world-clusters structure445

but inheriting key information of the original system. For instance, the aggrega-
tion phase this structural knowledge comes from a pairwise must-link (boundary
links) and cannot link (internal links) constraints to be respected at each step
of clustering by means of a semi-supervised approach [36]. This ensures the
possibility to exploit the devices already installed for the original sectorisation,450

a rapid and cost-effective reconfiguration and management of the system, and
finally a computational complexity reduction of the design procedure. As a
consequence, the topological properties of the MS network ensures that the
semi-supervised clustering algorithm, applied for the definition of new clusters,
provides a solution in which the novel set of boundary links is a subset of the455

boundary links of the original cluster layout. On top of this, an initial step of
network community detection (for WDS which are not already partitioned into
DMAs) splits a network in such a way that each cluster comprises assets densely
connected to each other; along with a low connectivity to items belonging to
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(a) Original district layout (b) MS for original district

(c) MS for new district (d) New district layout

Figure 8: Dynamic district aggregation/disaggregation through the MS layout

other clusters or DMAs. Therefore, the new cluster layout will certainly cross460

the former boundary links and will not split the original DMAs.
The MS network, then, provides a dual solution for DMA partitioning that

can be used dynamically, depending on the spatio-temporal variability of a WDS
functioning conditions (ageing pipes, demographic increase, and water resource
scarcity) and extraordinary conditions (unplanned demand peaks, insufficient465

pumping, short storage capacity, pipe breaks) that compromise the system per-
formance. The MS dual solution can operate as an adaptive/dynamic DMA
approach providing aggregation/disaggregation of districts according to specific
ongoing conditions. The resulting MS-based DMAs are a top-down/bottom-up
dynamic WDS partitioning that is able to work towards a smart and efficient470

water infrastructure management in response to unplanned and/or abnormal
functioning conditions. For example, the initial smaller DMAs could be dynam-
ically: a) aggregated (grouped) into bigger areas to improve network resilience
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and pressure management, and to ensure water quality; and b) periodically dis-
aggregated according to any specific objective such as leakage monitoring at475

night. The hydraulic performance and resilience to failure of a WDS are pre-
served for each network configuration; and the system energy and water quality
related disadvantages of a closed, DMA topology are eliminated without losing
the possibility to gain the benefits on control and operation associated with a
WDS partitioned into DMAs.480

Figure 8 represents a visual explanation of the fundamentals behind MS
network for DMA reconfiguration and dynamic management. First, the current
clustering/DMA layout of the WDS is detected (Figure 8(a)). Then, the corre-
sponding MS network is built (Figure 8(b)). The boundary nodes of each cluster
are highlighted by their corresponding district colour, the boundary links are in485

bold black line, and the internal links are in thin dashed grey line. Boundary
links represent the connectivity between different clusters, while internal links
stand for the internal connectivity of each cluster. The internal connectivity
is approached according to the shortest path connecting each pair of boundary
nodes belonging to the same cluster. Figure 8(c) shows how the original DMAs490

are subsequently aggregated in an MS network by applying a clustering algo-
rithm. The new DMA configuration is finally defined at 8(d). Overall, Figure 8
shows the importance of the dual, multiscale representation introduced in this
paper. In addition, the computation of shortest paths play a key role to ap-
proach how densely connected is each DMA and the general WDS layout. This495

eases the process of aggregation and disaggregation of DMAs for their dynamic
management. The importance of the dynamic DMA management for water
utilities resides in to balance system control (in issues such as management of
leakage, contaminant, pressure) while having an optimal, efficient energy use
[37].500

5. Conclusions

This paper proposes a novel method to efficiently solve the shortest path
problem in critical, networked infrastructures. The paper also shows how the
process is specially useful for large-scale systems and near real-time decision
making support. The algorithm is based on a community structure principle,505

which aids to collapse the original network into a set of interconnected, landmark
nodes, through the also novel concept of a multiscale (MS) network. The MS
network is a novel, dual representation, and visualisation method, of a networked
infrastructure that eases to compute an efficient version of the shortest paths
algorithm by a significant reduction of the network dimension.510

The paper also provides a mathematical proof of the proposal and so a for-
mal confirmation of the efficiency of the proposed MS shortest path (MS-SP)
algorithm, in providing the the exact solution for the problem in a significantly
lower computational time than using Dijkstra’s algorithm. In addition, an ex-
perimental validation based on the study cases of two urban water utilities.515

The paradigm of decision making in water distribution systems has been used
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throughout the manuscript showing how shortest paths, and therefore a their
faster version, are key for the water supply operation and management.

The paper closes presenting two applications of the shortest paths for near
real-time operation and management of water utilities. First, it is shown that520

the relationship between the minimum shortest path from reservoirs to water
consumption nodes. This has been used as a basis to analyse the spreading of
a contaminant throughout the system. The paper shows how it is possible to
obtain a surrogate model of the hydraulic simulation analysis on contaminant
spreading by such shortest paths connecting consumption nodes and reservoirs.525

As a consequence, this allows to define, beforehand, critical WDS areas, to
speed-up the water quality monitoring and control, and to reduce the computa-
tional burden of the sensor placement problem. The second application shows
how the MS network allows to simplify and make cost-effective the adaptive,
dynamic reconfiguration of monitored district metered areas according to the530

variability of the system functioning conditions.
Future work will investigate the possibility to extend the proposed MS-SP al-

gorithm to weighted and dynamically informed networks to include asset condi-
tion and network flow characteristics to the shortest paths solution. A weighted
network provides a more accurate approach of the infrastructure it is represent-535

ing. Furthermore, adding information on asset characteristics and conditions
varying over time lead to a dynamic shortest paths computation. This makes
possible, for instance, working with an adaptive definition of district metered
areas for a WDS. A topic that is directly related to dynamic procedures for
sensor placement and for data dimension reduction within a context of efficient540

management and smart monitoring and control. This framework has the poten-
tial to be used also in other public and critical infrastructure besides a WDS,
where network flow/traffic dynamics already is a research avenue. For instance,
finding faster procedures to compute shortest paths, depending on the time of
the day and network status (link congestion awareness, e.g.) is of the higher545

interest in telecommunications systems and transport networks. In addition, it
is foreseen a promising research activity based on shortest paths communicating
multiple, interconnected infrastructures. Such an increased dimensionality of a
complex network, within a system of systems framework, will become of main
importance for the risk and resilience assessment of a critical infrastructure in550

a more than ever interconnected society and services.
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Appendix A. Correctness of the MS-SP algorithm

The following theorem establishes that the path found via the MS-SP algo-
rithm is, indeed, a minimum path.675

Theorem 1. The minimum path between nodes vs and vt over G̃ is equivalent
to the one connecting vs and vt over the original graph G.

Proof 1. Let’s vs and vt belonging to the same cluster in G. Then, by con-
struction, the minimum path found over G̃ corresponds to the one over G. Let’s
assume now that vs and vt belong to different clusters with node sets Vs and Vt.680

By construction, since the clusters are connected only via edges joining boundary
nodes belonging to different clusters, the minimum path joining vs and vt in G
features a path from vs to a node vs′ ∈ Vs, a path from vs′ to a node vt′ ∈ Vt
and path from a node vt′ to vt (note that if vs = vs′ or vt = vt′ the path joining
them is the empty set).685

At this point, we observe that the path connecting vs to any vs′ ∈ Vs and
the path connecting vt to any vt′ ∈ Vt are, by construction, minimum paths;
similarly, the path connecting any vs′ ∈ Vs and vt′ ∈ Vt with (recall that we
assumed s 6= t) is a minimum path. Hence, by construction, the minimum path

found over G̃ corresponds to a minimum path pst = pss′
⋃
ps′t′

⋃
pt′t over the690

original graph, for some vs′ ∈ Vs and vt′ ∈ Vt. The proof is complete.

Appendix B. Time complexity of the MS-SP algorithm

In the following, it is shown the computational cost of the proposed al-
gorithm. It is important to point out that, the core idea of working on a
size-reduced graph does not depend on the chosen clustering algorithm. As695

a consequence, a faster method can be adopted making the proposed MS-SP
algorithm even more convenient from a computational point of view.

Proposition 1. The computational complexity of the proposed approach, in-
cluding the clustering procedure and the construction of the reduced graph G̃, is
equal to

max

{
O(|E|),O(n2

b),O

(
q∑
i=1

|Vi|2|V bi |2
)}

,

where Vi is the set of nodes in the i-th cluster and V bi is the set of boundary
nodes in the i-th cluster and nb =

∑q
i=1 |V bi | is the cardinality of the set of all

boundary nodes identified by applying Louvain algorithm.700
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Proof 2. The computational complexity of the Louvain method is O(|E|). More-
over, once the clusters are formed, we need to scan all the edges to identify the
set of boundary nodes, a procedure that requires O(|E|).

At this point, MS-SP algorithm computes the shortest path over the subgraph
induced by each cluster among each pair of boundary nodes in that cluster; each705

cluster has |Vi| nodes, hence the computation of the shortest path from one node
in the cluster to all other nodes in the cluster requires O(|Vi|2), since each cluster
has O(|V bi |) distinct pairs of boundary nodes, we have that the computational
complexity for each cluster is O(|Vi|2|V bi |2). Since the clusters are q we get
O(
∑q
i=1 |Vi|2|V bi |2).710

To conclude, the application of Dijsktra’s algorithm on the reduced-size net-
work has a complexity O(n2

b); the proof follows since the two operations are done
in series, hence the computational complexity is equal to the largest among the
computational complexities of the above procedures.

Note that the computational complexity of the computation of the minimum715

path, after the graph G̃ has been created is remarkably smaller, is nb � |V | for
real world networks. Similarly, the complexity of the clustering procedure, al-
though being theoretically upper bounded by O(|V |2), is likely to be remarkably
smaller. This specially occurs when the graph is sparse and |E| � |V |(|V |−1)/2,
|V |(|V | − 1)/2 is the number of edges in a complete graph.720

As for the calculation of the minimum paths among the boundary nodes
in the same cluster, we observe that there may be instances where complexity
is above Dijsktra’s algorithm1; however the likelihood of facing such instances
is nearly zero in the case of WDSs and, in general, for graphs that have high
sparsity and modularity. In fact, as discussed in the next remark, for those725

graphs the complexity of the construction of G̃ is likely to be well below the one
of Dijsktra’s Algorithm. This fact is experimentally demonstrated in the next
section.

Remark 1. Note that the complexity of computing the minimum paths locally at
every cluster has a complexity O

(∑q
i=1 |Vi|2|V bi |2

)
. However, when the network

has a clear modular structure, the number q of clusters is likely to be sublinear2

in |V | (e.g., q = |V |γ with γ ∈ (0, 1)). Hence, on average, also the cardinality
|Vi| of the node set of the clusters is likely to be sublinear, i.e.,

|Vi| ≈ n/q = |V |1−γ .

. Moreover, the cardinality of V bi is likely to satisfy |V bi | � |Vi| and, in several
practical cases, can be assumed to be constant for planar graphs and WDSs (see

1Consider for instance the case where the graph is full and is arbitrarily divided into 4
clusters with the same number of nodes; in this extreme case V b

i = Vi and thus the complexity
of the proposed algorithm would be O(|V |4).

2For instance, in [28] it is shown that for real WDSs the optimal number of clusters is
q ≈ n0.3.
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[28]), i.e., |V bi | ≈ O(1). Hence, in practical cases of interest for this paper, we
have

O

(
q∑
i=1

|Vi|2|V bi |2
)
≈ O

(
|V |1+γ

)
< O

(
|V |2

)
.

Remark 2. Note that the construction of G̃ can be slightly modified in order
to be basis for the calculation of all shortest paths. In fact, it is sufficient to730

compute all shortest paths among every node in each cluster (i.e., requiring a
computational complexity O(

∑q
i=1 |Vi|2|Vi|2) = O(

∑q
i=1 |Vi|4)) and storing in-

formation on the paths within each cluster. In this way, the graph G̃ for calculat-
ing a path from any node vs to any node vt can be constructed by considering the
links connecting boundary nodes and those connecting the start and goal nodes735

to the boundary nodes, an operation that requires at most O(|V |) in the worst
case).

Appendix C. Topological metrics

The topological comparison between the original layout and the dual network
for the two study cases presented in Section 3 has been carried out in terms of:740

• Links Density q which is the ratio between the total number m of network
edges and the maximum number of edges m∗ = n(n − 1)/2 of a network
with n nodes:

q =
2m

n(n− 1)
(C.1)

• Average Node Degree K is the average value of the node degree ki (number
of edges concurring in the node) over all nodes n:745

K =
2m

n
(C.2)

• Diameter D is defined as the maximum shortest distance (the maximum
geodesic length) dij between any pair of vertices i to node j (computed as
the number of edges along the shortest path connecting them):

D = max dij (C.3)

• Average Path Length l is the average number of steps along the shortest
paths for all possible pairs of nodes in the network:

l =
2
∑
dij

n(n− 1)
(C.4)

• Algebraic Connectivity λ2 corresponds to the second smallest eigenvalue
of graph Laplacian matrix L750
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• Spectral Gap ∆λ is the difference between the first and second eigenvalue
of the adjacency matrix A.
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