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1. Introduction 3 

As modern industrial products are increasingly reliable, the reliability analysis based on the failure 4 

data becomes more challenging, since sufficient sets of failure data are more difficult to obtain due to 5 

limited experiment budget and time [1]. Compared with the failure data obtained by destructive tests, 6 

the degradation data containing extensive reliability information could be easier to obtain by monitoring 7 

sensors. Therefore, studies on system reliability based on degradation processes have been extensively 8 

carried out [2-4].  9 

The performance deterioration widely exists in practice. For example, the wear of mechanical 10 

products [5-6]; the corrosion of sea bridges [7-9]; and the life reduction of batteries [10]. There are 11 

commonly used degradation processes, including the general path process, the Wiener process, the 12 

Gamma process, and the Inverse Gaussian process etc. When the performance of the system deteriorates, 13 

random shocks often occur. For example, there are shocks caused by vibrations during the wear 14 

processes of mechanical systems. Besides, shocks caused by shifting voltages and currents can appear 15 

when the performance of the batteries is getting worse. The extreme shock process, δ-shock process, 16 

cumulative shock process, and m-shock process are commonly used to describe shock processes. More 17 

details about the degradation processes and shock patterns can be found in [5-6, 11-13]. Generally, a 18 

system is supposed to fail mainly due to two failure modes, one is the soft failure caused by the system 19 

degradation, and the other is the hard failure resulting from random shocks. No matter which failure 20 

occurs, it can lead the system to fail. In recent years, based on practical needs of the industry, extensive 21 

studies on competing failure processes have been carried out [15-17]. 22 

Depending on whether the degradation rates and hard failure thresholds change or not, the research 23 

on competing failure processes can be divided into three types. The first type of research mainly focuses 24 

on the reliability analysis with fixed degradation rates and fixed hard failure thresholds. Lei et al. [18] 25 

divided the shocks into three zones, and the shocks can cause the system to degrade only when their 26 

magnitudes are larger than the level of the first zone. An et al. [19] proposed a new reliability model by 27 



3 

 

considering multiple degradation processes, and six kinds of copula functions were used to describe the 1 

dependence among different degradation processes. Fan et al. [20] presented a new reliability method 2 

for the hydraulic control system based on the degradation-shock dependence, in which the arrival rate 3 

of the shock was assumed to change with the degradation level. Song et al. [21] established a reliability 4 

model for the system with multiple components and presented four different patterns based on the effects 5 

of shock magnitudes on shock damages. Song et al. [22] proposed an s-dependent failure model for the 6 

multi-component system. The studies above have significantly extended the work on competing failure 7 

processes. However, in the above work, degradation rates and failure thresholds are considered to be 8 

fixed, which are not appropriate for many practical cases. 9 

The system usually deteriorates at a shifting degradation speed since the degradation rate can be 10 

affected by self-healing, degradation levels, and random shocks. Liu et al. [23] modelled the degradation 11 

rate as a variable that can decrease due to system self-healing. Bian et al. [24-25] considered the 12 

degradation rate to be composed of two parts, one is the independent degradation rate, and the other is 13 

affected by the degradation levels of other components. Similarly, Dao et al. [26] presented that the 14 

degradation levels can directly affect both the degradation states and degradation rates. Shen et al. [27] 15 

established a reliability model for a multi-component system subject to categorized shocks, and the 16 

degradation levels of the shock-sensitive components could cause degradation acceleration to other 17 

components. Dong et al. [28] analyzed the system reliability based on a binary Wiener process, and the 18 

interaction between different degradation characteristics was considered. It was assumed that, when one 19 

of the performance characteristics reached a certain degradation level, the system degenerated to the 20 

next state and the degradation rate changed. However, the studies [24-26, and 28] mainly focused on 21 

modeling multi-component or multi-characteristic systems subject to degradation processes without 22 

considering random shocks. Practically, random shocks can significantly affect the degradation rates of 23 

systems. For example, the structural deterioration of sea bridges accelerates when big shock loads occur, 24 

such as vessel collisions and earthquakes [29]. For such a scenario, Hao and Yang [29] presented a 25 

reliability model for a sea bridge system subject to shifting degradation rates and mixed shock patterns. 26 

Rafiee et al. [30] established a new reliability model with three different shock patterns, and the growth 27 

of the degradation accelerates when the shock load reaches a certain level. Gao et al. [31] modeled the 28 
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degradation as two different processes, the general path process and the Weiner process. Hao et al. [29], 1 

Rafiee et al. [30], and Gao et al. [31] considered the degradation rate of the system to change with the 2 

shock magnitude. The work above has made significant progress in modeling the competing failure 3 

process by considering the degradation rates as variables instead of constants, but the failure thresholds 4 

were assumed as fixed. 5 

In some cases, the failure thresholds are not constants but they are changing dependently with the 6 

degradation-shock processes. Many researchers carried out the research on system reliability based on 7 

changing failure thresholds. Gao et al. [10] proposed a reliability model with abruptly changing soft 8 

failure thresholds based on the fact that the performance of the bus battery changes sharply with the 9 

temperature of different seasons. Wang et al. [32] presented a reliability model for a system experiencing 10 

intensive shocks, and the soft failure threshold was considered to change with the number of shocks. In 11 

addition to changing soft failure thresholds, some researchers focused on shifting hard failure thresholds. 12 

Dong et al. [17] considered the hard failure thresholds to change with the shock levels and analyzed the 13 

reliability of the systems based on three different shock patterns. Hao et al. [33] described the hard 14 

failure threshold as a function of the degradation level, continuously changing over time. Akiyama et al. 15 

[34] proposed a new reliability model for a bridge system by considering the shock resistance ability to 16 

change with an environmental factor, the airborne chloride. In addition to continuously changing hard 17 

failure thresholds, some researchers established reliability models based on discrete hard failure 18 

thresholds. Rafiee et al. [35] presented a new reliability model, in which, the hard failure threshold was 19 

considered to discretely change with the degradation level. Guan et al. [36] extended the work of Rafiee 20 

et al. [35] by establishing a reliability model for a multi-component system. Compared with the models 21 

based on fixed failure thresholds, the soft failure thresholds or the hard failure thresholds were 22 

considered to change with the degradation-shock levels, but the degradation rates were not considered 23 

to change as well [10, 17, and 33-36]. 24 

In short, the research on reliability analysis for competing failure processes has been extensively 25 

carried out. However, to the best of our knowledge, few studies have been carried out with the 26 

consideration of the effects of degradation levels on both degradation rates and hard failure thresholds. 27 

As the system deteriorates, the degradation of the system gets faster and its ability to resist random 28 
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shocks declines, hence both degradation rates and the hard failure thresholds should be supposed to 1 

change with the degradation levels. There are many examples of this scenario in practice. For example, 2 

as the corrosion pits of the dam or bridge develop, their structural deterioration accelerates and their 3 

ability to resist big flood peaks becomes weaker; in some areas, as the soil erosion becomes severe, the 4 

ecological environment is getting worse at a faster speed and its ability to resist intensive rainfalls 5 

declines, which may finally lead to debris flow; the crack size of the mechanical product develops faster 6 

when the degradation level is higher and the hard failure occurs more often when experiencing random 7 

shocks.  8 

Based on the practical needs, a more realistic and practical reliability model is proposed with 9 

consideration of the dependence between the degradation level and the degradation rate, which is the 10 

difference from the previous work. In this paper, both degradation rates and hard failure thresholds 11 

changing with degradation levels are considered. Section 2 shows the motivation and commonly used 12 

assumptions, and the failure modes of the system are described in detail. The proposed model is based 13 

on the general path process and the extreme shock pattern, and the reliability analysis of other competing 14 

failure processes can be obtained by analogy. In section 3, the analytical equations for calculating the 15 

reliability of the system with two-state deterioration and multi-state deterioration are derived 16 

respectively in Section 3. In Section 4, the Monte Carlo simulation is carried out to verify the accuracy 17 

of the proposed model. Furthermore, a practical example of MEMS (Micro-Electro-Mechanical Systems) 18 

is used to illustrate and discuss the meaning and effectiveness of the presented model, then the results 19 

are compared and discussed in detail. Finally, the conclusions are summarized and future challenges are 20 

discussed in Section 5. 21 

2. System description 22 

2.1 Motivation and assumptions 23 

In this paper, both the degradation rates and the hard failure thresholds are considered to change with 24 

the degradation levels of the system. There are many practical scenarios where such a situation occurs. 25 

In addition to the examples given in the introduction part, two further examples are as follows. 26 



6 

 

1) The degradation of LED lighting systems: a LED system suffers from a soft failure when the light 1 

output reduces to 70% of the initial performance. Heat management is the dominant factor that affects 2 

its degradation rates. As the chips, the package materials, and the heat sink of the LED deteriorate, the 3 

heat production increases, but the speed of heat transmission decreases, then not only the light output of 4 

the LED system reduces at a faster speed but also the hard failure is triggered more often due to random 5 

shocks caused by the vibrations of currents and voltages [40]. 6 

2) The crack growth of mechanical systems: the fatigue crack is one of the dominant failure modes 7 

of mechanical systems. As the size of the crack becomes larger, not only the growth of the crack gets 8 

faster but also the hard failure due to vibrations and random loads is triggered more often [41].  9 

All of the assumptions made in this paper are as follows, which are commonly used in [17-18, 21-10 

22, and 35-36].  11 

1) The system is not repaired during the lifetime. Degradation of the system is supposed to follow a 12 

general path process, and the shock process follows the Extreme shock process. A soft failure occurs 13 

when the total degradation value exceeds the soft failure threshold, and a hard failure is triggered when 14 

the shock magnitude exceeds the hard failure threshold. 15 

The degradation can also follow other stochastic processes, such as the Gamma process, the Inverse 16 

Gaussian process and the Wiener process, and the equations are presented in Appendix A [5-6, 11-13]. 17 

Besides, the shock process could be a δ-shock process or an m-shock process, and the calculation of the 18 

probability that the system survives from the hard failure process could be derived according to [30 and 19 

35]. 20 

2) The hard failure thresholds Dj are supposed to be decreasing constants, and the basic parameters 21 

including the degradation rates βj, the shock magnitudes Wi, and the shock damages Yi are assumed to 22 

be normally distributed. The assumptions are commonly used in [18-22, and 35-36]. For example, the 23 

degradation rate of the MEMS (Micro-Electro-Mechanical System) is β=2πrcF, where r is the radius of 24 

the pin joint, c is the coefficient, F is the force between rubbing surfaces, c and F are constants. 25 

Considering that the parameters of the same batch of products are generally assumed to follow the 26 

normal distribution, the radius of the pin joint r is considered to be normally distributed. Hence, the 27 

degradation rates βj are considered as normally distributed parameters. The shock magnitudes Wi, and 28 
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the shock damages Yi are also commonly considered to follow the normal distribution [18-22, and 35-1 

36], but the shock sizes and shock damages could be time-dependent or follow other distributions, such 2 

as the exponential distribution, the phase-type distribution and the log-normal distribution, and the 3 

calculation of reliability could be obtained according to [37-38]. 4 

2.2 Description of competing failure processes 5 

It can be seen from Figs. 1-2 that the system is supposed to experience both degradation and shock 6 

processes. The total degradation value XS(t) at time t is composed of two parts, that is, XS(t)= X(t)+ S(t), 7 

X(t) is the continuous degradation and S(t) is the abrupt degradation caused by the shocks. The system 8 

can fail due to two failure modes: 1) the system suffers from a soft failure when the total degradation 9 

value exceeds the soft failure threshold H; 2) when the system deteriorates to the jth state, the system 10 

suffers from a hard failure when the shock magnitude exceeds the hard failure threshold Dj, where, j=1, 11 

2, …, k+1. No matter which failure mode occurs, the system is triggered to fail. 12 

     

Fig. 1 System description                  Fig. 2 The failure modes of the system 1 

Compared with the existing literature, the novelty of this model is that both degradation rates and 2 

hard failure thresholds are considered to change with degradation levels. When the total degradation 3 

values reach Lj, the degradation rates change from βj to βj+1 (j=1, 2, …, k+1), the hard failure thresholds 4 

change from Dj to Dj+1, and the competing failure processes are divided into k+1 states. For example, 1) 5 

when k=0, the degradation rate and the hard failure threshold of the system do not change and the system 6 
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degrades with one state; 2) when k=1, that is, βj and Dj of the system change once at t1 when the 1 

degradation level reaches L1, and the competing failure processes of the system are divided into two 2 

states by t1; 3) By analogy, when k=2, βj and Dj of the system change twice, and the competing failure 3 

processes of the system are divided into three states by t1 and t2 when the degradation level reaches L1 4 

and L2, respectively. 5 

3 Reliability analysis for competing failure processes 6 

In this section, reliability models for both the degradation process and the shock process are 7 

established. The degradation process is modeled with multiple degradation rates, which are firstly 8 

considered to change with the deterioration levels in this paper. Besides, the shock process is described 9 

with multiple failure thresholds, and the hard failure thresholds are supposed to change with the 10 

deterioration states. Then the reliability functions for the systems subject to multi-state competing failure 11 

processes are derived, after modelling the reliability for the systems deteriorating with two states.  12 

3.1 Reliability analysis for the degradation process 13 

The degradation rate is supposed to change with the degradation levels. When the total degradation 14 

reaches a higher level Lj, the system is supposed to deteriorate at a faster speed, that is, the degradation 15 

rate changes from βj to βj+1. The degradation of the system could also decrease due to self-healing, but 16 

this case is not included in this paper. In this section, the general reliability function for the system 17 

subject to soft failure is derived, then the reliability for other degradation processes could be obtained 18 

by analogy.  19 

The continuous degradation value of the system with multiple degradation rates, X(t), is: 20 

 ( ) ( ) ( )1 1 2 2 1 1
...

k k
X t t t t t t   

+
= + + − + + −  (1) 21 

where, φ is the initial degradation value of the system, tk is the time when the total degradation value 22 

reaches Lk, k=0, 1, 2, …, t0=0, and L0=0. The degradation rate of the jth state, βj, follows the normal 23 

distribution 
j
 ( ) 

  2,
j j

, j=1, 2, …, k+1. 24 

Besides the degradation process, the system is supposed to experience an extreme shock process, 25 
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which follows a Poisson process with parameter λ [39]. The total degradation damage caused by random 1 

shocks, S(t), is: 2 

 ( )
( )

( )

( )
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N t
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where, N(t) is the number of shocks, Yi is the abrupt degradation damage caused by the ith shock. In this 4 

paper, the degradation damage Yi is supposed to follow the Normal distribution, 
i

Y  ( )2, 
Y Y as [18-5 

21].  6 

The total degradation value of the system, Xs(t), is: 7 

 ( ) ( ) ( )Xs t X t S t= +  (3) 8 

If the total degradation value exceeds H, then the system experiences a soft failure. The probability 9 

that the system survives from a soft failure is: 10 
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where, H is the soft failure threshold, fS(t) (u|N(t)=n) is the PDF (Probability Density Function) of the 12 

degradation value caused by random shocks.  13 

If Yi and βj are normally distributed, fS(t) (u|N(t)=n) and Eq. (4) can be expressed as: 14 
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where, () is the CDF (Cumulative Distribution Function) of the standard normal random variable, tj-1 1 

is the start time of the jth state, tj is the end time of the jth state, j=1, 2, …, k+1. If j=1 and j= k+1, then 2 

t0=0, tk+1=t. λ is the arrival rate of the shock process. 3 

When the continuous degradation process follows the Inverse Gaussian process, the Gamma process 4 

or the Wiener process, the CDF of the degradation value caused by a continuous degradation process, 5 

P(X(t)<H-u|S(t)=u, N(t)=n), can be obtained according to [5, 11-13] and the derivations are presented in 6 

Appendix A. 7 

3.2 Reliability analysis for the random shock process 8 

The magnitude of the ith shock, Wi, is supposed to follow a normal distribution:
i

W  ( )2, 
W W . 9 

As shown in Fig. 1, if the shock magnitude exceeds the hard failure thresholds Dj, then the system fails 10 

due to hard failures. When the system deteriorates, its ability to resist random shocks is getting weaker 11 

and the system is more vulnerable to fail due to random shocks. For such a scenario, a reliability model 12 

based on multiple hard failure thresholds is established. The probability of the multi-state system 13 

surviving from the hard failure is:  14 
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where, N(tj-tj-1) is the number of shocks in the jth state, Dj is the hard failure threshold of the jth state, 16 

j=1, 2, …, k+1. 17 

The parameters Wi and Yi are supposed to follow normal distributions, then the reliability of the hard 18 

failure process calculated by Eq. (7) can be derived as: 19 
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3.3 Reliability analysis for systems subject to competing failure processes with two states 2 

When k=1, the degradation rate and the hard failure threshold of the system change for one time. As 3 

shown in Fig. 3, the competing failure processes of the system are separated into two states by t1. Before 4 

t1, the degradation value is less than L1, the degradation rate and the hard failure threshold are 
1
 5 

( )
1 1

2,
 

   and D1 respectively. If the shock magnitude exceeds D1, then the system fails due to hard 6 

failure. The degradation rate changes to 
2

  ( )
2 2

2,
 

   and the hard failure threshold shifts to D2 7 

after t1. If the degradation value reaches H, then the soft failure occurs. If the shock magnitude exceeds 8 

D2, then the hard failure happens. No matter which type of failure occurs, it can lead the system to fail. 9 

 10 

Fig. 3 System description with two states 11 
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The reliability of the system, R1(t), is calculated by two independent and mutually exclusive 1 

situations:  2 
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where, A1 is a collection of the events that the systems survive from both soft failures and hard failures; 4 

B1 is a collection of the events that the degradation values of the systems are less than L1 with n shocks; 5 

B2 is a collection of the events that the degradation values of the systems are no less than L1 with n 6 

shocks. A1, B1, and B2 could be expressed as:  7 
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1) When the total degradation value of the system is less than L1, then the system reliability in the 11 

first case, R1_1(t), is: 12 
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2) When the degradation value of the system is equal to or greater than L1, then the system reliability 14 

of the system in the second case, R1_2(t), is: 15 
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The parameters βj, Wi, and Yi are supposed to follow the normal distribution, then R1(t) can be derived 17 
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as follows. 1 
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In Eq. (12), f(t1|N(t1)=n1) is the PDF of t1, F(t1|N(t1)=n1) is the CDF of t1, which can be derived as 3 

[35]:  4 
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3.4 Reliability analysis for systems subject to competing failure processes with multiple states 7 

As shown in Fig. 1, when k≥2, the system degrades with multiple states. The degradation rate of the 8 

system accelerates from βj to βj+1 when the degradation level of the system reaches Lj. As the system 9 

degrades, its ability to resist random shocks deteriorates from Dj to Dj+1, where j=1, 2, …, k+1. Then, 10 

the reliability of the system, Rk(t), can be calculated as follows. 11 
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When the total degradation value of the system XS(t)[Lj-1, Lj), the reliability of the system Rk_j(t) is: 6 
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Especially, when j=1, Rk_1(t) can be calculated by Eq. (10). The parameters βj, Wi, and Yi are supposed 8 

to follow the normal distributions, then Rk(t) can be derived as follows. 9 
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The CDF and PDF of tj can be derived as: 2 
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where j=1,2, …, k+1. 1 

To clarify the formula for calculating Rk(t), the reliability functions for the system subject to three 2 

states competing failure processes are derived in Appendix B. 3 

4 Numerical examples 4 

A practical example of MEMS [42], carried out at Sandia National Laboratories, is widely used to 5 

illustrate degradation-shock models [18-19, 22, 30, and 35]. Hence, in this section, MEMS is also 6 

adopted to illustrate and discuss the results of the proposed model. And the Monte-Carlo simulation is 7 

applied to verify the accuracy of the presented model. 8 

The micro-engine is supposed to fail mainly due to two competing failure processes: 1) The soft 9 

failure occurs mainly due to the degradation, which is caused by continuous wear and debris; 2) The 10 

hard failure is mainly caused by the hub fracture, which is resulting from random shocks. As the 11 

degradation of the micro-engine increases, not only its ability to resist the random shocks declines but 12 

also its growth of wear accelerates. Based on the background, a new reliability model for competing 13 

failure processes is proposed by considering the effects of degradation levels on deterioration rates and 14 

hard failure thresholds. All parameter values and the sources are provided in Table 1. One thing should 15 

be noted that the parameter values are obtained from difficult papers, but the set of failure data was 16 

obtained from one experiment of MEMS. 17 

For MEMS, the wear value of the pin joint is considered as one of the performance indexes, and the 18 

degradation rate is calculated by the physical models [42-43]. For other products or systems, and the 19 

performance indexes can be selected depending on the demands of users. Then the physical models of 20 

the performance indexes can be established, and the data of the basic parameters, such as diameters, 21 

voltages, and currents, can be obtained by appropriate experiments. Finally, the proposed model can be 22 

applied to other systems with degradation-shock processes. 23 

 24 

 25 

 26 

 27 
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Table 1. Parameter values 1 

Parameters Values Sources 

H 0.00125μm3 Tanner et al. [42] 

L1 0.000875μm3 Rafiee et al. [35] 

L2 0.00095μm3 Assumption 

D1 1.5GPa Rafiee et al. [35] 

D2 1GPa Assumption 

D3 0.8GPa Assumption 

φ 0 Rafiee et al. [35] 

1
  8.4823×10-9μm3 Tanner et al. [42] and Peng et al. [43] 

2


 
10.4823×10-9μm3 Rafiee et al. [30] 

3


 
12.4823×10-9μm3 Rafiee et al. [30] 

1
  6.0016×10-10μm3 Tanner et al. [42] and Peng et al. [43] 

2
  8.0016×10-10μm3 Assumptions 

3


 
10.0016×10-10μm3 Assumptions 

Y
  1.2×10-4μm3 An et al. [19] 

Y
  4×10-5μm3 An et al. [19] 

W
  1.2GPa An et al. [19] 

W
  0.4GPa An et al. [19] 

  5×10-5/revolutions Rafiee et al. [35] 

4.1 Reliability analysis for the system by considering both degradation rates and hard failure 2 

thresholds shifting with degradation levels 3 

To verify the accuracy of the newly proposed model, four groups of R1(t) and F(t1|N(t1)=n1) calculated 4 

by Eqs. (9-14) with different L1 are checked by Monte-Carlo simulation. As shown in Table 2 and Fig. 5 

4, the reliabilities and the confidence intervals of parameters are calculated at a 95% confidence level 6 
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based on sample sizes of 10,000. It can be seen from Figs. 4-6 that the theoretical results are very 1 

consistent with the simulation results. To get F(t1|N(t1)=n1), the parameter n1 needs to be given firstly 2 

according to Eq. (13). In Fig. 6, n1 is 3, but n1 is a variable that can be any value in the range of Eq. (12), 3 

that is, n1[0, n].  4 

Table 2. Confidence intervals of parameters 5 

Parameters 95% Confidence intervals Parameters 95% Confidence intervals 

1
  (8.4779×10-9, 8.5018×10-9)μm3/r Y

  (1.1938×10-4, 1.2096×10-4)μm3 

2


 
(10.475×10-9, 10.506×10-9)μm3/r Y

  (3.9814×10-5, 4.0933×10-5)μm3 

3


 
(12.476×10-9, 12.516×10-9)μm3/r W

  (1.1963, 1.2120)GPa 

1
  (6.0088×10-10, 6.1778×10-10)μm3/r W

  (0.3941, 0.4052)GPa 

2
  (7.7970×10-10, 8.0161×10-10)μm3/r   (4.9663×10-5, 5.033×10-5)/r 

3


 
(9.9310×10-10, 1.0210×10-10)μm3/r   

 6 

 7 

Fig. 4 The reliability curves at the 95% confidence level 8 
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 1 

Fig. 5 The comparison of simulation and 2 

theoretical results of R1(t) 3 

Fig. 6 The comparison of simulation and 

theoretical results of F(t1|N(t1)=n1) 

It can be seen from Fig. 7 and Fig. 8 that the simulation results are in great agreement with the 4 

theoretical ones. The analytical results of R2(t) and F(t2|N(t2)=n1+n2) are calculated by Eqs. (B.1-B.8) in 5 

Appendix B. In Fig. 8, t1 is 20,000r, n1 is 0, and n2 is 2. But t1, n1 and n2 are variables which can be any 6 

value in the range of Eq. (B.4), that is, t1[0, t], n1[0, n], n2[0, n-n1]. 7 

 

Fig. 7 The comparison of the simulation and 1 

theoretical results of R2(t) 2 

Fig. 8 The comparison of the simulation and 

theoretical results of F(t2|N(t2)=n1+n2) 

The flow charts of the simulations can be seen in Appendix C. The simulation procedure for 3 

competing failure processes with k≥2 is similar to that with k=1, hence it is omitted. The simulation 4 

procedure for R1_2(t) is complicated, hence it is divided into two parts, R1_21(t) and R1_22(t), where R1_21(t) 5 

is the reliability of the system when Xs(t)L1 and N(t)=0, and R1_22(t) is the reliability of the system when 6 
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Xs(t)L1 and N(t)≠0. Instead of sampling 10,000 times in the beginning, sampling t1 and the number of 1 

shocks 100 times separately can help to reduce the running time from 5-6 hours to 6-7 minutes without 2 

affecting the simulation accuracy. The step size of t is: t=5,000r:5,000r:250,000r, it can also be smaller, 3 

but then the calculation time gets longer. t is set to start at 5,000r instead of zero, because there is a 4 

singular point for Rk(t) when both t and n are zero, and the reliability is commonly considered to be one 5 

at the start. The shock process follows the Poisson process, which means that the biggest number of 6 

shocks is about λ×t=5×10-5/r×2.5×105r=12.5, leading to the conclusion that 30 is an adequate number of 7 

shocks to ensure the accuracy of the simulation results. And the simulation of F(t1|N(t1)=n1) can be easily 8 

obtained by the reverse Monte-Carlo method. 9 

As shown in Fig. 9, the green line is the reliability calculated by An et al. [19] with WL=0. (An et al. 10 

[19] considered that only when the magnitude of the shock was larger than a certain level WL, the shock 11 

could cause a degradation increment to the system. To simplify the proposed model, this assumption is 12 

not considered in this paper, that is, WL=0.) The blue line represents the reliability calculated by Rafiee 13 

et al. [35]. The red line and the black line are the reliability curves calculated by the proposed method, 14 

which are lower than the reliability results calculated by the existing literature. Because the green line 15 

is calculated based on a fixed failure threshold, the blue line is calculated based on shifting hard failure 16 

thresholds and a fixed degradation rate. However, besides the hard failure thresholds, the degradation 17 

rates could also directly be affected by the degradation levels. For example, as the micro-engine wears, 18 

it becomes more vulnerable to random shocks and the growth of degradation becomes much faster. 19 

Therefore, the new method is proposed by considering both degradation rates and hard failure thresholds 20 

shifting with the degradation levels, and the results are lower than those calculated by the existing 21 

methods [19 and 35], which indicates that the proposed reliability model is more realistic and accurate. 22 
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 1 

Fig. 9 The comparison of the reliability 2 

evaluations of the new and previous models  3 

Fig. 10 The comparison of the reliability with 

k=1 and k=2 

As shown in Fig. 10, the differences among the reliability results of the systems with different k and 4 

Lk are not obvious at the beginning. This is due to the fact that in the initial state the growth of wear does 5 

not accelerate and the number of shocks is close to zero. Then, the differences among the reliability 6 

curves with different k become more obvious, especially when L1 and L2 are lower. Because after the 7 

degradation values reach L1 and L2, not only the growth of degradation gets faster but also its ability to 8 

resist random shocks gets weaker. When the L1 and L2 are smaller, the degradation acceleration and 9 

resistance reduction start earlier. Hence, the difference between the dark lines is the biggest among the 10 

four groups. It can be seen from Fig. 10 that the smaller Lk is, the bigger the difference between the 11 

system reliabilities with k=1 and k=2 becomes, which indicates that the reliability can be evaluated more 12 

practically and accurately if the states of the system are divided more rationally and finely according to 13 

the degradation levels. 14 

4.2 Sensitivity analysis for the system subject to both degradation rates and hard failure thresholds 15 

shifting with degradation levels 16 

As shown in Figs. 11-12 that the effects of L1 and L2 on the system reliability are quite obvious. The 17 

curves shift to the left when the values of L1 and L2 become lower and the reliabilities of the systems 18 

decrease faster after the degradation levels reach L1 and L2. It can be explained by the fact that as the 19 

micro-engine degrades, the growth of wear gets faster and the probability of hub fracture becomes higher, 20 
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then the system becomes more easily to fail due to both the soft failure and the hard failure.  1 

 2 

Fig. 11 The sensitivity analysis of reliability 3 

on L1 with k=1  4 

Fig. 12 The sensitivity analysis of reliability 

on L1 and L2 with k=2 

As shown in Figs. 13-14，if the Dj (j=1, 2, …, k+1) gets smaller, the reliability curves shift to the 5 

left. It can be explained by the fact that Dj represents the system resistance to the random shocks, if the 6 

ability of the system to survive from the shocks declines, then the system becomes more easily to fail 7 

due to the hard failure. In Fig. 13, it can be seen that the difference between the dotted line and the 8 

dashed line becomes less obvious when L1 changes from 0.0007μm3 to 0.0004μm3, while the difference 9 

between the dashed line and the solid line gets more noticeable. This is because when L1 gets smaller, 10 

the duration of the first state is shorter while the second state lasts longer, then the effects of D1 and D2 11 

become stronger and lighter respectively. Accordingly, the similar conclusion can be obtained from Fig. 12 

14 regarding the changes in L1, L2, D2 and D3. Compared to Fig. 13, the red lines and the blue lines in 13 

Fig. 14 are separated much earlier, because the hard failure thresholds of the red lines in Fig. 14 decrease 14 

earlier when the total degradation value reaches 0.0002μm3 instead of 0.0004μm3 in Fig. 13. 15 
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1 

Fig. 13 Sensitivity analysis of reliability on 2 

D1 and D2 with k=1 3 

Fig. 14 Sensitivity analysis of reliability on 

D2 and D3 with k=2 

 4 

Fig. 15 Sensitivity analysis of reliability on 5 

1
  and 

2
 with k=1 6 

Fig. 16 Sensitivity analysis of reliability on

1
 , 

2
 , and 

3
 with k=2 

As shown in Figs. 15-16, compared to Dj (j=1, 2, …, k+1), the reliability of the system becomes less 7 

sensitive to 
j

 , but the effects of 
j

  are still obvious. When the values of 
j

  are higher, then the 8 

reliability curves shift to the left. It can be explained by the fact that 
j

  represents the degradation 9 
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rates of the system, the higher the value of 
j

  is, the faster the system degrades, then the probability 1 

of the system suffering from soft failure becomes greater.  2 

As shown in Fig. 15, the difference between the solid lines and the dashed lines becomes increasingly 3 

obvious when L1 is larger. This is because the reliability of the first state, that is, R1_1(t), contributes to 4 

the system reliability more than R1_2(t), which can be seen from Fig. 17 (a-b). The values of R1_2(t) are 5 

much lower than R1_1(t), such as the values of the reliabilities marked as red squares in Fig. 17 (a-b). 6 

Hence, the difference between the solid lines and the dashed lines in Fig. 15 is increasingly larger 7 

because the first state lasts longer when L1 is bigger. Similar results can be obtained from Fig. 16 and 8 

Fig. 17 (c-d). 9 

 10 

Fig. 17 Sensitivity analysis of reliability on 
j

  11 
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 1 

Fig. 18 Sensitivity analysis of reliability on λ 2 

Fig. 18 shows the sensitivity of the reliability on the parameter λ, the curves shift to the left as the 3 

value of λ increases. It can be explained by the fact that the system is more vulnerable to hard failure 4 

when more random shocks occur. As shown in Fig. 18, initially, the differences among the red lines or 5 

the blue lines are not very big, but after 104 revolutions, the change of parameter λ affects the reliability 6 

in a more obvious way. It is because at the beginning, the number of shocks is close to zero and the 7 

system degrades mainly due to continuous degradation. As the time increasing, more random shocks 8 

occur, the degradation caused by random shocks becomes larger and the contribution of the hard failure 9 

is greater, then the effect of the shock arrival rate on the system reliability is increasingly obvious. 10 

5. Conclusion 11 

After the crack size becomes bigger, not only the crack growth of the micro-engine system 12 

accelerates but also the system becomes more likely to break down when suffering from random shocks. 13 

However, in most previous researches, the degradation rates and the hard failure thresholds are 14 

considered to change with the shock magnitudes. Motivated by the practical needs, a new model is 15 

established, where both the degradation rates and hard failure thresholds are considered to change with 16 

the degradation levels. Moreover, the analytical reliability functions for the systems subject to multi-17 

states degradation-shock processes are derived, after analyzing the reliability for the systems with two 18 

states competing failure processes. Furthermore, a numerical example of the micro-engine and Monte-19 

Carlo simulation are applied to illustrate and verify the proposed model.  20 
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Considering the effects of degradation levels on degradation rates and hard failure thresholds offers 1 

a more practical evaluation of the system reliability. The established model is based on the general path 2 

process and extreme shock pattern, and it can be applied to various kinds of systems or products subject 3 

to different degradation processes and shock patterns, such as the Wiener process, the Gamma process, 4 

the Inverse Gaussian process, the running shock pattern, and the δ-shock pattern. For future work, more 5 

complicated systems are worthy to focus on, such as systems composed of multiple components and 6 

systems suffering from mixed degradation processes and shock patterns. Besides, the shock size and 7 

damage are supposed to be normally distributed, the variability of the shock size and the shock damage 8 

is neglected. In future work, the time-dependent shock size and shock damage should be considered. 9 

For example, the parameters can also be functions of time t or follow other distributions, such as the 10 

Weibull distribution, the Gamma distribution, and the Phase-type distribution. In addition to modeling 11 

the system reliability, the corresponding maintenance strategies are worthy to figure out.  12 
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Appendix A 17 

When the continuous degradation process follows a Wiener process, X(t)=t+σB(t), where β 18 

represents the drift parameter, σ represents the diffusion parameter, and B(t) represents a standard Brown 19 

motion process. Then, the probability that the system survives from the continuous degradation process, 20 

P(X(t)<H-u|S(t)=u,N(t)=n), can be obtained according to [5]. 21 

 ( ) ( ) ( )( )
( )

2

2
, exp

H uH u t H u t
P X t H u S t u N t n

t t

 
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(A.1) 22 

where () is the CDF of the standard normal random variable. 23 

When the continuous degradation process follows an Inverse Gaussian process, X(t)IG(μ,), where 24 
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X(t)>0, μ>0, >0, μ is the mean, and  is the shape parameter. Then, the probability that the system 1 

survives from the continuous degradation process, P(X(t)<H-u|S(t)=u,N(t)=n), can be obtained 2 

according to [11]. 3 
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 (A.2) 4 

When the continuous degradation follows a Gamma process, X(t)Ga(,), where, >0, >0,  is 5 

the shape parameter, and  is the scale parameter. Then, the probability that the system survives from 6 

the continuous degradation process, P(X(t)<H-u|S(t)=u,N(t)=n), can be obtained according to [12-13]. 7 
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where, () is the gamma function, ( ) 1
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Appendix B 10 

To clarify the formula for calculating Rk(t), the reliability functions for the system subject to three 11 

states are derived as follows. 12 
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j=1, 2, 3, n0=0, L0=0, and L3=H 17 

Especially, when j=1, the system reliability of the first case R2_1(t), can be calculated by Eq. (10). 18 

1) When the total degradation value of the system is between L1 and L2, then the system reliability in 19 
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the second case, R2_2(t), is: 1 
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2) When the degradation value of the system is between L2 and H, then the reliability of the system 3 

in the third case, R2_3(t), is: 4 
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 (B.3) 5 

Then the reliability of the system calculated by Eq. (B.1) can be derived as follows. 6 
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where: 2 
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Appendix C 1 

 2 

(a) The flow chart of the simulation procedure for R1_1(t) and R1_21(t) 3 
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 1 

(b) The flow chart of the simulation procedure for R1_22(t) 2 

Fig. C.1 Flow chart of the simulation for the system with k=1 3 
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