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Abstract: Risk analysis for autonomous underwater vehicles (AUVs) aims to assist 

decision making for their safer operation. This article provides a structured review of 

risk analysis research to enhance the safety performance of AUVs. It aims to provide 

AUV stakeholders comprehensive insights into fundamental concepts and an evolution 

of analysis methods implemented for AUV operations. At the same time, it is expected 

to highlight future directions to bridge existing gaps. Forty-four articles with significant 

relevance to the scope of the work were retrieved and analyzed. Critical risk factors 

were identified and categorized. A comparatively analysis was undertaken from 

qualitative, semi-quantitative, and quantitative aspects. The study observes that as AUV 

technologies gradually mature, environmental factors, human factors, and their 

interactive impacts are gathering more attention. Quantitative risk analysis methods 

have recently played a key role in improving the accuracy and handling the 

uncertainties of risk estimation. The study recommends devoting efforts to dynamic 

risk analysis, addressing scarce historical data, intelligent risk analysis, and multi-

vehicle risk analysis for future works. 
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1. Introduction 

Autonomous Underwater Vehicles (AUVs) are effective platforms for navigating 

underwater or under ice to provide automated measurements without human 

intervention (Xu et al., 2013; Brito and Griffiths, 2016). The high level of autonomy of 

AUVs makes them an ideal tool for multiple data-gathering applications in scientific 

(Wadhams et al., 2006; Dowdeswell et al., 2008; Jenkins et al., 2010), commercial 

(Kleiner et al., 2011), military (Rothrock and Wensnahan, 2007), and geopolitical 

(Brito et al., 2012) areas. In recent research, AUVs are increasingly deployed in harsh 

environments such as under sea ice or ice shelves in the Antarctic (Nicholls et al., 2006; 

Jenkins et al., 2010; Cadena, 2011; Williams et al., 2015; Gwyther et al., 2020) and the 

Arctic (Wadhams et al., 2006; Dowdeswell et al., 2008; Salavasidis et al., 2016) regions. 

Operating in such extreme conditions, including thick ice cover, permafrost, fragile 

material integrity, unpredictable climatic changes, and poor visibility, will inevitably 

pose a higher risk to both the physical vehicle and the onsite AUV supervisors 

compared to open water missions (Loh et al., 2020c). Hence, it is essential to conduct 

effective risk analysis before a mission to ensure the safe deployment of AUVs. 

Table 1 summarizes potential accidents and their severity of AUV operations, 

where AUV loss could be regarded as the most severe. AUV loss usually refers to the 

complete loss of the physical vehicle or an AUV being damaged and unrepairable for 

future missions. It is not only financially costly due to the higher insurance premium 

and acquisition costs of the vehicle (Griffiths et al., 2007a). Furthermore, it may also 

cause time delays or even the termination of research projects, lead to the loss of 

valuable gathered data, and potentially harm fragile polar environments (Griffiths and 

Collins, 2007; Brito et al., 2010).  

Over the years, there have been a number of formally reported accidents of AUV 

losses during deployment, as shown in Fig. 1. For example, the AUV Autosub2 was 

lost under the Fimbulisen ice shelf in Antarctica on 16 February 2005. A formal 

accident inquiry concluded that this accident was equally likely to have been caused by 

an abort command or a loss of power. These technical failures was most likely 
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introduced during the manufacturing and assembly phases (Strutt, 2006). Another lost 

vehicle, SeaBED, which was designed to scan the seafloor below overhanging sea ice, 

became trapped under the Antarctic ice during a mission and was almost crushed by an 

iceberg before it was rescued (Waters, 2015). The Autonomous Benthic Explorer (ABE) 

was lost on 5 March 2010, during its 222nd research dive off the coast of Chile. 

Researchers believed that the loss of the ABE was also caused by a technical failure. 

More specifically, the ABE may have suffered a catastrophic implosion of a glass 

sphere used for providing buoyancy, causing instant destruction of the on-board 

systems. Consequently, the ABE failed to send fail-safe commands for helping itself 

float to the surface for recovery (Lippsett, 2010). An underwater glider, Seaglider 

SG522, lost communication in the Antarctic on 14 February 2012 after having 

completed 156 dives. The inquiry panel identified that the root cause was an erroneous 

command, which resulted in this glider continuously diving and eventually being lost. 

(Brito et al., 2014b). On 4 April 2014, the Autosub Long Range AUV lost 

communication during a mission near the Irish coast. Luckily, it re-transmitted its 

position signal and was recovered after three months. More recently, a Hugin AUV was 

lost during its first under ice mission in the Antarctic on 15 January 2019, and was 

recovered four days later. Pre-dive checks had been reviewed for this vehicle without 

any irregularities. Technicians believed the vehicle was trapped below an ice floe, 

causing the Iridium signal for the AUV position failing to be received (Bound, 2019). 
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Fig. 1. Timeline and potential causes of historical accidents of AUV loss. 

Table 1. Classification of the consequence severity of AUV operations. 

Level Consequence Severity 

I AUV loss Catastrophic 

II Severe damage, mission failure, mission abort Critical 

III Mitigable damage, mission degraded, mission delayed Moderate 

IV Minor damage  Marginal 

V Minimal damage or no damage Negligible 

From the overview of historical accidents of AUV loss, it is observed that the 

potential causes of historical accidents show a wide variety, which confirms the 

unpredictable and uncertain features of AUV related accidents. This non-uniform 

accidental pattern as well as relatively severe consequences imply the vulnerability of 

AUV operations and reinforce the necessity of implementing effective risk analysis 

before an AUV mission. 

Risk analysis is a proactive approach for hazard identification, consequence 

analysis, and risk estimation for potential accidents (Rausand, 2013). As AUV 

technologies have gradually matured, risk analysis for AUV operations has rapidly 
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become important to assist decision making and provide preventive risk mitigating 

measures. A number of past efforts regarding risk analysis research have been 

undertaken to improve the safety performance of AUVs. However, to the best 

knowledge of the authors, a systematic review and analysis of previous research has 

not yet been done. As a thorough review will enable domain researchers to gain better 

understanding of AUV risk analysis and benefit future development, the authors believe 

that a critical review article is timely. 

In light of the above, the objective of this article is to provide a structured review 

of risk analysis research regarding AUV operations. It aims to answer several key 

questions arising from historical developments and to predict future trends in this 

domain, as listed in Table 2. The main contribution of this study is to help researchers 

and AUV stakeholders obtain comprehensive insights about fundamental concepts and 

major methodologies for the risk analysis of AUVs, and to indicate directions for future 

research to bridge existing gaps. 

Table 2. Research questions regarding previous studies of AUV risk analysis. 

Question Description Section 

Q1 What is risk analysis for AUV operations? Section 1 

Q2 Why implement risk analysis for AUV operations? Section 1 

Q3 How is risk analysis implemented for AUV operations? Section 2&3 

Q3,1: What are the key risk factors identified in past studies? Section 2 

Q3,2: Which risk analysis method was adopted in past studies? Section 3 

Q3,3: What are the advantages and disadvantages of these methods? Section 3 

Q3,4: What trends can be observed regarding past studies? Section 2&3 

Q4 What are the future challenges of risk analysis for AUV 

operations? 

Section 4 

The scope of this study is restricted to research which is closely related to risk 

analysis for AUV operations. According to the objective and scope of this review, the 

literature retrieval was performed based on keywords including AUVs with the 

combination of risk identification, risk analysis, risk assessment, risk management, risk 

mitigation, risk modeling, and safety measures. A total of forty-four articles with 

significant relevance to the research purpose and scope were retrieved. In addition, in 

order to better answer the research questions and facilitate further statistical analysis, 
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the selected publications were classified into various aspects, such as the type of 

identified risk factors, the type of adopted risk analysis methods, the type of mission 

forms, the area of operations, and the type of potential consequences. The dataset of 

selected literature is classified and summarized in the Appendix. 

The article is structured as follows. In section 2, critical risk factors of AUV 

operations are identified and summarized by categorizing them into technical factors, 

environmental factors, and human factors. Section 3 compares adopted risk analysis 

methods for AUV operations by classifying them as three types: qualitative methods, 

semi-quantitative methods, and quantitative methods. Section 4 briefly outlines current 

research gaps and future directions. The summary and conclusion of this study are given 

in Section 5. 

2. Risk factors identification of the AUV operations 

Risk identification is defined as the process of identifying potential risk factors, which 

is the first step of the risk analysis phases (Rausand, 2013). By reviewing the chosen 

literature, identified risk factors related to AUVs are summarized in this section by 

categorizing them into technical factors, human factors, and environmental factors. Fig. 

2 illustrates the distribution of the number of publications regarding the three types of 

risk factors. It is observed that research of technical factors has been steadily increasing 

over the last two decades and now surpasses the other two factors. By contrast, research 

on human factors, environmental factors, and the interactive factors is emerging in 

recent years and receiving more attention. Each of the three risk factors is elaborated in 

the following subsections. 
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Fig. 2. Distribution of the research of three risk factors regarding (a) the accumulative 

number of publications and (b) the proportion of the publications. 

2.1 Technical factor analysis of AUV operations 

A technical factor is defined as a risk contributor that is directly related to the AUV 

technical systems and components (Hegde et al., 2018). Previous studies have primarily 

focused on improving the technical performance of AUVs. As shown in Fig. 2, the 

number of studies related to technical factors account for 55.3% of the domain 

publications. It is important to understand the difference between a failure, fault, and 

error. A failure refers to the inability of a component or system to perform a required 

function. A fault is defined as an abnormal condition, state, or defect, which may lead 

to a failure. An error refers to the discrepancy between a value, condition, or human 

behavior. It usually occurs when deviating from the target performance, which can also 

cause a failure (Rausand and Høyland, 2003). With complex subsystems and 

components of an AUV, a technical failure can easily occur with electromechanical 

equipment, and then cause functional failures of a certain subsystem. Since AUVs 

operate mainly depending on the cooperation of their subsystems without human 

intervention. Once a subsystem fails to work, there is a high risk of overall mission 

failure. In particular, as a self-contained submarine robot, there is limited scope for 

calibrating and testing each component or subsystem thoroughly before a mission. 
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Therefore, technical factors are most fundamental and paramount for safe deployment 

of AUVs. 

In order to better identify technical factors of AUVs, it is important to understand 

the main functions of AUV subsystems and key components, which are summarized in 

Table 3. The major subsystems of an AUV consist of the propulsion system, navigation 

system, communication system, energy system, security detection system, sensor 

system, and others. A propulsion system is responsible for providing the propulsive 

force and, in the case of gliders, to change the buoyancy. In general, AUVs can be 

classified into two types according to their different propulsion systems. The first type 

is actively-propelled AUVs with traditional propellers or thrusters to empower 

propulsion behavior, including horizontal and vertical movement. Another type is 

passively-propelled AUVs, such as underwater gliders, which employ variable-

buoyancy propulsion without any propeller type thrusters. Gliders can ascend and 

descend underwater through control by a buoyancy changing system. Simultaneously, 

they use wings to convert the vertical motion into horizontal motion, thereby achieving 

a sawtooth pathway in the water column. A navigation system enables an AUV to 

follow a predefined trajectory by measuring its position, attitude, and velocity. Among 

several kinds of navigations systems of AUVs, the inertial navigation system (INS) is 

a widely used navigation system. The INS typically contains an inertial measurement 

unit (IMU) including accelerometers and gyroscopes. For inertial navigation, the linear 

acceleration is measured by accelerometers and the angular velocity is measured by 

gyroscopes, and these parameters are combined to calculate the instantaneous velocity 

and position of the vehicle (Paull et al., 2014; Bao et al., 2020). In addition, some aided 

components, such as a Doppler Velocity Log (DVL), compass, pressure sensor, or 

global positioning system (GPS), are usually combined with the INS to provide 

integrated navigation. Among these auxiliary components, a DVL is an acoustic sensor 

that measures the velocity and position of the vehicle relative to the sea bottom; a 

compass is used for orientation that provides the heading direction for the vehicle; a 

pressure sensor is used to measure the external pressure of the vehicle, from which the 

water depth can be estimated; GPS is a satellite-based positioning system, which 
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enables an AUV near the water surface to acquire its position information, and GPS 

signals are input to the INS to correct the position measurement. A communication 

system is used for transferring and controlling the mission instructions, and it is 

particularly crucial during multi-vehicle missions. This system includes two parts: 

underwater communication is achieved by an acoustic modem, and above-water 

communication is achieved by local radio communication with an antenna. An energy 

system provides electrical energy which uses lithium-ion batteries or alkaline batteries 

(Griffiths et al., 2007b). Former studies have proved that more than 50% of AUV loss 

accidents are related to a power failure (Meng and Qingyu, 2010; Yu et al., 2017). An 

early study analyzed 63 mission abort incidents from a total of 205 glider missions 

(Brito et al., 2014a). As shown in Fig. 3, among the identified 19 failure modes of 

gliders, power failure was ranked as the second most common failure mode. Since the 

energy system powers all electrical motors, sensors, and the central computer, it is 

critical for the normal functioning of AUVs. In addition, it decides the mission 

endurance, which is influenced by the available energy storage and the energy 

consumption rate. An environmental detection system generally processes sensor data 

to perceive the surrounding environment, detects the forward obstacles, and prevents 

the AUVs from colliding with the seafloor. An emergency system ensures safety in 

emergency situations. Its overrides the navigation system by employing the low-risk 

path planning during the collision avoidance maneuver (Hegde et al., 2018). In addition, 

it also predominates the propulsion system in dangerous situations. For example, it can 

provide fail-safe measures by releasing the drop-weight, aborting the mission, and 

floating the vehicle to the water surface for rescue. 
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Fig. 3. Failure modes and their frequency during 63 abort incidents from 205 glider 

missions (Brito et al., 2014a). 

    There are various strategies to improve the technical performance of an AUV.  

Redundancies of key components can be provided for the hardware level (Yu et al., 

2017). For example, installation of a backup battery can significantly reduce the 

probability of energy system failure. For the software level, online monitoring and 

repairing could serve as effective risk mitigation measures (Aslansefat et al., 2014). In 

addition, as a majority of failures occur in the early phase of a mission, an endurance 

test can be performed in the operational configuration to monitor key subsystems before 

a mission (Kaminski et al., 2010). A mission can then proceed only when the vehicle 

operates properly during the endurance test. Otherwise, the vehicle should be recovered 

for onboard fault checking. 
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Table 3. Identification of AUV subsystems and risk factors. 

AUV Subsystem Functionality Main Component Risk Factor Reference 

Propulsion System  Provide the propulsive force 

 Change the buoyancy 

Propeller or thruster (active-

propelled AUV) 

Variable-buoyancy system 

(passive-propelled AUV) 

Thruster failure 

Buoyancy pump failure 

Bladder leak 

Fin actuator failure 

Rudder broken 

(Stevenson and Hunter, 1994; 

Griffiths et al., 2003; Bian et al., 

2009a, b; Xu et al., 2013; 

Aslansefat et al., 2014; Yu et al., 

2017; Hegde et al., 2018) 

Navigation System  Measure the position, 

attitude, and velocity data 

 Provide dead-reckoning 

navigation 

 Follow the predefined 

trajectory 

DVL 

On-board GPS receiver 

Attitude sensor 

Depth sensor 

Altimeter 

DVL failure 

Depth sensor failure 

Altimeter failure 

Inertial navigation failure 

GPS module failure 

(McPhail, 1993; McPhail, 1998; 

Griffiths et al., 2003; Bian et al., 

2009a, b; Xu et al., 2013; 

Aslansefat et al., 2014; Yu et al., 

2017; Hegde et al., 2018) 

Communication 

System 

 Underwater communication 

 Above water communication 

 Transfer and control the 

mission instruction 

Acoustic sensor 

Radio transceiver module 

Underwater acoustic sensor failure 

Radio communication failure 

Signal transmission failure 

Host computer failure 

(Meldrum and Haddrell, 1994; Bian 

et al., 2009a, b; Aslansefat et al., 

2014; Brito et al., 2014b; Yu et al., 

2017; Hegde et al., 2018) 

Energy System  Provide electrical energy Lithium-ion battery 

Alkaline battery 

Energy depletion 

Fail to charge 

Overcharging 

Battery detection failure 

(Winchester et al., 2002; Bian et al., 

2009a, b; Xu et al., 2013; 

Aslansefat et al., 2014; Yu et al., 

2017; Hegde et al., 2018) 



12 

Voltage and current monitoring 

failure 

Environmental 

Detection System 

 Perceive the surrounding 

environment 

 Avoid the forward obstacles 

 Prevent colliding with the 

seafloor 

Camera 

Forward-looking sonar 

CTD sensor 

Underwater camera failure 

Light sources failure 

Sonar suite failure 

CTD failure 

(Bian et al., 2009a, b; Xu et al., 

2013; Aslansefat et al., 2014; Yu et 

al., 2017; Hegde et al., 2018) 

Emergency 

System 

 Ensure safety in an 

emergency situation 

 Alternate the low-risk path 

planning 

 Jettison weight for fail-safe 

Drop-weight Hermetic hull broken 

Leak detection sensor failure 

Jettison device failure 

Mission aborting command failure 

(Ortiz et al., 1999; Bian et al., 

2009a, b; Xu et al., 2013; Yu et al., 

2017; Hegde et al., 2018) 
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2.2 Human factor analysis of AUV operations 

The maturing of AUV technologies has fostered a gradual shift to risk analysis of 

human operators. To comprehensively control the risk of AUV deployments, human 

factors, which are critical but relatively difficult to quantify, are receiving more 

attention in the AUV risk management process. Human intervention influences 

autonomy of AUVs. Autonomy is defined as the capability of a system to make 

decisions independently, which can be measured in six levels, namely (i) human 

operated, (ii) human assisted, (iii) human delegated, (iv) human supervised, (v) mixed 

initiative, and (iv) fully autonomous (NFA, 2012; Thieme et al., 2015b). The level of 

autonomy denotes involvement of human operators, i.e., a higher level of autonomy 

refers to less human intervention. Current AUV systems can be categorized into level 

(ii), (iii), and (iv), while future AUVs may reach level (v) and level (vi). Therefore, 

although an AUV system in the current state has a certain level of autonomy, human 

operators still play a vital role as a supervisor. The main intervention of human 

operators includes determining mission plans in the design phase, performing the 

launch and recovery of the vehicle, taking control when encountering emergencies, and 

so on (Henriksen et al., 2016; Loh et al., 2020c). Errors caused by human involvement 

may lead to the AUV being susceptible to failure. During the four-year missions of the 

Autosub3 AUV from 1996 to 2000, the most faults were notably identified as a result 

of human errors rather than technical failures, as shown in Fig. 4 (Griffiths et al., 2003).  
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Fig. 4. Failure modes and their frequency during missions 1-240 of the Autosub3 

AUV from 1996 to 2000 (Griffiths et al., 2003). 

Researchers have begun to recognize the importance of human factors contributing 

to the overall risk of AUV operation (Stokey et al., 1999; Manley, 2007; Ho et al., 2011; 

Akhtar and Utne, 2014). A risk management framework incorporating human and 

organizational factors was established (Thieme et al., 2015a). This study proposed a 

structured approach to assess the risk of AUV loss and mission aborts resulting from 

human factors. Potential risk mitigation measures were provided, such as procedures 

improvement, mission planning, and fault recognition. A case study involving the 

operation of the REMUS 100 AUV was conducted, which proved that risk analysis 

should not only consider the technical system itself but also emphasize the human 

interaction with the system. Extended studies assessed human factors in risk monitoring 

of AUV missions (Thieme et al., 2015b; Hegde et al., 2018). Detailed information of 

human factors, such as level of training, operator experience, operator fatigue, and 

situation awareness, were analyzed in these studies. Furthermore, a system-based risk 

analysis framework was proposed for an in-depth analysis of the impact of human 
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factors (Loh et al., 2019; Loh et al., 2020a; Loh et al., 2020b; Xu et al., 2020). Several 

key findings were demonstrated by these studies. The risk level of AUV loss will 

gradually drop in the initial years of the formation of an AUV team, reaching a minimal 

level before rising again in later periods. In addition, the human error incident rate was 

proven to decline with the overall increase of the experience of an AUV team. Therefore, 

increasing the experience of an AUV operator can be an effective measure of risk 

reduction, which can be achieved by safety training, human resources allocation, 

recruitment, and staff retention. Human factors identified in previous studies are 

summarized in Table 4.  

Table 4. Identified human factors in previous literature. 

Human Factor Description Reference 

Supervisory error 

checking 

Ability of the operator to timely identify 

errors and contingency situations during a 

mission. 

(Loh et al., 2020c) 

Supervisory handling 
Ability of the human supervisor to take 

required actions. 

(Hegde et al., 2018; Loh et 

al., 2020c) 

Wrong configuration 

setting 

Wrong configuration parameters of a sensor 

are set which might lead to incorrect 

measurement. 

(Loh et al., 2020c) 

Workload 
Number of tasks that the operators are 

required to execute. 

(Parasuraman and Miller, 

2004; Ho et al., 2011; Fouse 

et al., 2012; Thieme et al., 

2015b) 

Experience of operators 
Level of experience of the operators with the 

deployment mission. 

(Manley, 2007; Loh et al., 

2020a; Loh et al., 2020c, b) 

Human fatigue 

Inability to function at the desired level due to 

incomplete recovery from the demands of 

prior work and other working activities. 

(Akhtar and Utne, 2014; Loh 

et al., 2020c) 

Training of operators 
Level of required operational and safety 

training for a human supervisor. 

(Thieme et al., 2015b; Hegde 

et al., 2018) 

Situational awareness 
Ability to monitor the system, comprehend 

the information and take the right decisions. 

(Baxter and Bass, 1998; Ho 

et al., 2011; Johnson and 

Lane, 2011) 
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Communication of 

operators 

Level of communication effectiveness among 

operators and the crew. 
(Thieme et al., 2015b) 

Trust in the system 
Level of the operator’s belief in the 

autonomous capabilities of the AUV. 

(Parasuraman and Miller, 

2004; Johnson et al., 2007; 

Ho et al., 2011) 

2.3 Environmental factor analysis of AUV operations 

AUVs operate in several typical subsea environments such as under open water (Brito 

et al., 2014a) (Brito et al., 2008), under sea ice or shelf ice (Griffiths and Brito, 2008; 

Brito and Griffiths, 2016) (McPhail et al., 2009), and along coastal areas (An et al., 

2001; Koay and Chitre, 2013; Oliver et al., 2013), as shown in Fig.5. Due to the 

dynamic and hazardous nature of subsea environments, safe deployment of AUVs is 

challenging. Therefore, it is vital to identify underwater environmental factors and 

comprehend how they cause risk to AUV operations. Based on former studies, this 

section has analyzed four critical risk-related environmental factors, including sea ice, 

underwater currents, ambient temperature, and water density. 

 

Fig. 5. Typical operating environments of AUVs. 

2.3.1 Sea ice 

Deploying an AUV in the polar regions has a higher risk than in other areas, and sea 

ice is as a critical contributor. For example, a former study proved that the median 
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probabilities of AUV loss in under sea-ice and under ice-shelf missions are 4.9 and 9.4 

times higher than in open water missions (Brito et al., 2010).  

Sea ice, which is characterized by ice thickness and ice concentration, can affect 

the AUVs operational risk in multiple ways. Firstly, sea ice with modest thickness may 

pose a collision risk and poor visibility in the recovery phase or the fail-safe phase, as 

it could form a rigid lid and lead to the AUV being trapped under the ice when floating 

to the surface. Moreover, it may damage components such as the antennas and propeller 

blades during the floating process or crack the vehicle hull and cause leakage. Secondly, 

the occurrence probability of these collision incidents will increase with ice 

concentration. Finally, the communication efficiency can be affected by both ice 

thickness and concentration (Brito and Griffiths, 2016). The ability to receive satellite 

signals will be compromised under ice, and poor communication increases the 

difficulties for vehicle relocation.  

To prevent collision with ice, risk mitigation measures can be taken, such as 

attaching a tether to the vehicle (Doble et al., 2009; Forrest et al., 2012), mounting a 

locating beacon inside the vehicle (Kukulya et al., 2010), temporarily parking the 

vehicle in a safe location (Ferguson, 2008; Kaminski et al., 2010), and optimizing the 

obstacle avoidance system (Pebody, 2008; Eichhorn, 2009). 

2.3.2 Underwater current 

Underwater currents result from the surface winds, gravitational tides, water density, 

and water pressure at a certain depth (Hegde et al., 2018; Ullah et al., 2020). Underwater 

currents are a critical issue for the dynamic motion control of AUVs, especially for the 

relatively slow-moving underwater gliders with a typical velocity below 0.5 m/s 

(Griffiths et al., 2007b; Petillo and Schmidt, 2012). Without external thrusters, a glider 

is easily subjected to environmental disturbances (e.g., strong currents). For example, 

strong currents may deviate its predefined path, and as a result, a glider cannot reach its 

target position.  
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Various strategies have been proposed to improve AUV control against 

underwater currents, such as increasing the surfacing frequency to reduce positioning 

errors resulting from the currents (Bachmayer et al., 2006) and optimizing the 

navigation system by integrating current models (Smith et al., 2012; Von Oppeln-

Bronikowski et al., 2020). 

2.3.3 Ambient temperature 

Another key environmental factor which may cause danger for AUV operations is the 

ambient temperature. Low ambient temperature especially in polar regions, can cause 

large temperature gradients between the air and the water column. Consequently, the 

vehicle or component may suffer integrity failure and leakage (Ferguson, 2008). For 

instance, it has been known for the seal of a CTD sensor to crack at low ambient 

temperatures, and therefore sea water can penetrate and freeze inside, and eventually 

cause sensor failure (Kaminski et al., 2010). Additionally, low temperature also forces 

ice formation on the equipment. One example found that the GPS of an AUV was 

unable to acquire satellite signals when working in the Arctic, possibly due to a thin 

layer of ice which formed on the antenna (Bellingham et al., 2008). Another potential 

challenge caused by low temperature is the degradation of the energy system. As 

introduced in Section 3.1, lithium batteries are widely used as the energy source of 

AUVs. However, in cold environments, especially when the ambient temperature is 

below -20℃, the battery capacity may drop significantly. Therefore, poor battery 

performance could further lead to premature energy depletion and a mission abort 

(Bandhauer et al., 2011). Apart from the impact on the vehicle, low temperature will 

cause a harsh working condition for the AUV crew, both physically and psychologically. 

2.3.4 Water density 

As a factor of underwater thermohaline circulation, water density is decided by the 

combination of the water depth, water temperature, and salinity (Fofonoff and Millard 
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Jr, 1983). Water density has a critical influence on providing positive buoyancy of 

AUVs, according to Equation (1).  

𝐹𝐵 = 𝜌𝑠𝑒𝑎𝑤𝑎𝑡𝑒𝑟𝑔𝑉𝑡𝑜𝑡𝑎𝑙 (1) 

where FB is the buoyant force in N, ρseawater is the density of seawater in kg/m3, 

Vtotal is the total volume of the vehicle and the external bladder in m3, and g is the 

gravitational acceleration in m/s2. 

It is noted in Section 3.1 that some passively-propelled AUVs, such as underwater 

gliders, usually control their buoyancy either by filling an external bladder or by 

pushing seawater in or out of an internal reservoir (Griffiths et al., 2007b). However, in 

some areas, for instance, near melting glaciers, seawater density can change with a large 

gradient. As a result, decreasing water density due to salinity dilution would require 

supplementary buoyancy for the vehicle’s rising motion (Bachmayer et al., 2006; 

Dowdeswell et al., 2008). On the contrary, in other areas where the water density is 

relatively high, redundant buoyancy could be provided and consequently compromises 

the vehicle’s diving motion. In conclusion, once the water-density gradients exceed the 

compensating range of the vehicle, unstable buoyant control will occur, and the vehicle 

may become trapped in a neutrally buoyant water-layer and fail to float to the surface, 

or the vehicle is unable to dive to the planned depth. Thus, pre-measurement of the 

water density is necessary before an AUV mission to prevent buoyant control problems. 

According to the above analysis, the impact of various subsea environmental 

factors and their interacting relationships are topologically represented in Fig. 6, where 

the arrows point to the functional failures caused by environmental factors. It is evident 

that distinct environmental factors may interact with each other and cause different 

functional failures. Hence, when conducting risk analysis of AUVs in a certain 

environment, the operator must be aware of this and update the environmental factors 

according to local configuration characteristics. 
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Fig. 6. Risk identification of subsea environmental factors. 

3. Risk analysis methods of AUV operations 

This section provides an overview of existing methods for risk analysis of AUV 

operations. It aims to outline the evolution of the developed methods and models, 

critically analyze the progress and limitations of past research, and highlight future 

research trends in this domain. This section is expected to help researchers gain better 

understanding of historical developments for AUV risk analysis methods and bridge 

the existing research gaps in future work. In this section, the reviewed methods are 

categorized into qualitative, semi-quantitative, and quantitative methods. The 

classification of main risk analysis methods regarding AUV operations is shown in 

Table 5. Related to the three types of methods, Fig. 7 shows the distribution of the 

number of publications in each area over the last two decades. It is observed that 

research using quantitative methods has rapidly increased in recent years, which implies 

that quantitative representation is becoming more widespread in risk analysis of AUVs. 

In the following subsections, typical methods relating to risk analysis of AUVs will be 

discussed. 

Table 5. Classification of typical risk analysis methods regarding AUV operations. 

Risk Analysis Method Reference 

Qualitative Safety layer method (Ortiz et al., 1999) 
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Semi-

quantitative 

Risk management process (Griffiths and Trembanis, 2007; Brito et al., 

2010; Griffiths and Brito, 2011; Thieme et 

al., 2015a) 

 Fault tree analysis (Bian et al., 2009a, b; Hu et al., 2013; Xu et 

al., 2013; Aslansefat et al., 2014; Thieme et 

al., 2015a; Brito, 2016; Harris et al., 2016; 

Xiang et al., 2017; Brito and Chang, 2018) 

 Event tree analysis (Thieme et al., 2015a; Brito et al., 2018) 

 Failure Mode and Effects 

Analysis 

(Hu et al., 2013; Harris et al., 2016) 

 Bow-tie model (Yu et al., 2017) 

 Kaplan-Meier survival 

model 

(Brito et al., 2010; Brito et al., 2014a; Brito 

and Griffiths, 2016) 

 Fuzzy set theory (Loh et al., 2019; Loh et al., 2020a; Loh et 

al., 2020b; Xu et al., 2020) 

Quantitative Bayesian belief network (Griffiths and Brito, 2008; Brito et al., 2012; 

Thieme et al., 2015b; Brito and Griffiths, 

2016; Brito and Griffiths, 2018; Hegde et 

al., 2018; Bremnes et al., 2019) 

 Markov chain (Brito and Griffiths, 2011; Griffiths and 

Brito, 2011) 

 System dynamics (Brito and Griffiths, 2012; Loh et al., 2020a; 

Loh et al., 2020c, b; Xu et al., 2020) 

 

Fig. 7. Distribution of the three types of risk analysis methods over the last two 

decades. 
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3.1 Qualitative methods for risk analysis of AUV operations 

Qualitative risk analysis refers to a non-numerical representation to describe the 

frequency and the severity of a hazardous event. The representations include flow 

diagrams, graphs, sources of data, and other descriptive scales (Rausand and Høyland, 

2003; Khan et al., 2015). Within the domain of risk analysis of AUVs, qualitative 

methods emerged in the early phase, as shown in Fig. 7. A safety layer method was 

firstly proposed (Ortiz et al., 1999). This study analyzed the technical reliability of 

AUVs, emphasizing that internal fault detection in the hardware structure is an essential 

step to achieve safe operations. Subsequently, a failure diagnosis layer was developed 

for AUV mission control (Madsen et al., 2000). A tree diagram was built to represent 

the potential causes of mission failure.  

The aforementioned qualitative research primarily used non-probabilistic models 

in synthesis with expert knowledge. In the early development of AUVs, qualitative 

methods were ideal tools to analyze operating risks owing to a lack of available data. 

However, few of them explicitly capture the underlying risk contributors and complex 

causal relationships, and thereby the overall risk level cannot be determined accurately. 

Hence, qualitative methods can only offer general guidelines in the AUV risk 

management process, and quantitative information is required to handle the inherent 

uncertainties of AUV operating risk. 

3.2 Semi-quantitative methods for risk analysis of AUV operations 

Semi-quantitative methods fall in between qualitative and quantitative methods (Khan 

et al., 2015). They can quantify probabilities and consequences in an approximate way 

and provide more detailed measurement than qualitative methods (Rausand and 

Høyland, 2003). Based on early research, a number of semi-quantitative approaches for 

risk analysis of AUVs have been proposed. The risk management process (RMP) model, 

the fault tree analysis (FTA) method, the event tree analysis (ETA) method, and the 

failure mode and effects analysis (FMEA) method have been successively applied for 

risk assessment of AUV operations.  
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A novel risk management process (RMP) model was proposed to support decision 

making in extreme environments (Griffiths and Trembanis, 2007), shown as Fig. 8. The 

proposed RMP model was the first systematic risk management approach to help an 

AUV team determine an acceptable risk level of deployment. It estimated the 

probability of AUV loss based on both expert knowledge and statistics. Applications of 

the RMP model have been discussed in subsequent studies (Brito et al., 2010; Griffiths 

and Brito, 2011; Thieme et al., 2015a).  

 

Fig. 8. The flow chart for Risk Management Process (RMP) of AUVs (Griffiths and 

Trembanis, 2007) 

The FTA method was widely used in the technical reliability analysis of AUVs 

(Bian et al., 2009a, b; Xu et al., 2013). In these studies, AUV mission failure was 

denoted as the top event, whereas the subsystem failure or component failure were 

identified as root causes. During a qualitative analysis, the fault tree was built to depict 

the failure propagation and logical relationships between root causes and the top event. 

The Monte Carlo random simulation was subsequently used to assist in quantitative 

calculation. ETA is another method which is capable of mapping causal relationships 

between a hazardous event and the consequent sequence. Three consequences have 

been analyzed using the ETA model, including AUV mission failure, mission abort, 

and the loss of an AUV (Thieme et al., 2015a; Brito et al., 2018). FMEA is a 
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recommended method for the underwater robotic industry to identify the component-

level failures and their effects on the system (Veritas, 2003; Aktiengesellschaft, 2009; 

Harris et al., 2016). For instance, FMEA was applied to analyze different failure modes 

for an AUV mechanical system (Hu et al., 2013). Key components including the sealing 

elements and hermetic hulls were identified, which have the greatest impact on 

mechanical system failure.  

By comparison, key conclusions can be drawn. Firstly, for the component level or 

the subsystem level, FMEA is quite suitable for preliminary risk analysis. Since a 

component or a subsystem has relatively constrained failure modes and simpler causal 

relationships, FMEA can be easily used to identify risky elements. In addition, fault 

data, such as the mean time between failures, can be determined to quantify the 

component failure rate. Such quantitative methods can provide a more accurate way for 

identifying critical components and implementing suitable safety measures. However, 

for the whole vehicle level, FTA and ETA can be ideal tools for systematic risk analysis. 

These two methods can help to better identify the underlying contributors to overall 

vehicle failure, the interactive relationships between AUV subsystems, and the failure 

propagation pathway. In order to perform a more holistic and reasonable risk analysis 

for AUVs, combined analysis using these methods can be considered. 

To sum up, semi-quantitative methods perform well in analyzing potential failure 

modes, possible consequences, and necessary safety barriers in the AUV domain. 

However, as the basic data applied in these approaches are mainly estimated by experts 

or by random sampling methods, bias and uncertainties are inevitably introduced and 

may accumulate during the analysis process. Thus, although semi-quantitative methods 

provide a valuable reference in initial risk analysis, quantitative methods are further 

required to reduce uncertainties and enhance the analysis accuracy. 

3.3 Quantitative methods for risk analysis of AUV operations 

Quantitative risk analysis provides a numerical estimation for probabilities, 

consequences, and severities (Rausand and Høyland, 2003). A remarkable benefit of 
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quantitative methods is that they offer a reliable reference for tackling uncertainties and 

informing decision making (Khan et al., 2015). More recently, extensive studies have 

been carried out that lay the foundation for quantitative risk analysis of the deployment 

of AUVs. Three typical methods are comparatively introduced in the following 

subsections, namely, Bayesian Belief Network, Markov chains, and the system 

dynamics method. Their main characteristics are summarized in Table 6. 

3.3.1 Bayesian Belief Network 

The Bayesian belief network (BBN) model has been widely used for risk analysis of 

AUV deployments. In general, BBN is a directed acyclic approach using Bayes’ 

theorem as the key inference mechanism (Weber et al., 2012). The variables in BBN 

(i.e., risk factors) are represented by nodes, while the arcs links between the nodes 

denote the causal effect relationships. One of the key advantages of BBN is that 

conditional dependency degrees of nodes can be indicated by conditional probabilities 

(Song et al., 2016). This feature facilitates the BBN to provide more accurate risk 

prediction in a probabilistic way, even when information is scarce. 

So far, within the domain of risk analysis of AUVs, the BBN model is mainly used 

for estimating the risk of AUV loss (Griffiths and Brito, 2008; Brito and Griffiths, 2016) 

and monitoring the mission success (Thieme et al., 2015b; Hegde et al., 2018). It was 

first used for estimating the risk of loss of AUVs in a sea ice environment (Griffiths 

and Brito, 2008). Operations under sea ice or ice shelves may involve significant risks 

to AUVs. Earlier methods for assessing the risk were mainly based on expert judgment. 

However, subjective expert judgment can hardly provide accurate risk estimation. Thus, 

a solution using BBN was proposed (Griffiths and Brito, 2008). The causal effects of 

the environments and the vehicle were captured in their study, and the expert judgment 

was included to provide conditional probabilities of the BBN model. By quantitative 

calculation, the probability of vehicle loss was obtained. An extended study also applied 

BBN for predicting the risk of AUV loss (Brito and Griffiths, 2016). Ice concentration, 
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ice thickness, environmental constraints, and vehicle types were highlighted as the main 

contributors to AUV loss. 

Another application of the BBN model for monitoring AUV mission success was 

proposed (Thieme et al., 2015b). The risk influencing factors (RIFs), which can cause 

the mission to abort, were modeled in their study. Although the BBN model was proved 

as an effective method to assess risks prior to executing a mission, the study lacks 

quantitative analysis for the relationships among RIFs. To address this problem, an 

extended study presented a novel BBN model to quantify the probability of mission 

success during the submarine operations of inspection, maintenance, and repair (IMR) 

(Hegde et al., 2018). Through this BBN model, the RIFs that affect the failure of IMR 

missions were identified and topologized, including technical, organizational, and 

operational factors. The established BBN model is relatively systemic and holistic, 

which can support the decision making of human supervisors to achieve safe IMR 

operations. 

In comparison to the aforementioned risk analysis methods for AUVs, such as 

FTA, ETA, and others, the BBN model has advantages in several aspects. Firstly, it is 

a probabilistic method that can quantify both the relationships among RIFs by 

conditional probabilities and the probability of a target node, such as AUV loss and 

mission failure. Deriving the conditional probabilities can be a resource demanding 

process. Given the scarcity of historical accident data, using data driven approaches to 

obtain the conditional probabilities may not be applicable in the AUVs domain. The 

involvement of expert judgment can be an alternative solution. Thus, the basic data 

used to quantify the BBN model can be elicited from expert knowledge rather than 

empirical data. Secondly, the BBN model can be updated by incorporating new 

evidence, and thereby it can produce an updated mission abort probability. This 

characteristic is particularly suitable for dynamic undersea environments. In addition to 

the subsea oil and gas industry, the potential application of the BBN-based risk analysis 

method can be adapted to other domains, such as deep-sea mining and aquiculture, that 

may utilize AUVs for routine submarine operations. 
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3.3.2 Markov Chains 

A Markov chain is a widely-used stochastic model for reliability analysis (Gagniuc, 

2017). A detailed description and application of the Markov chain model have been 

well presented in previous research (Grimes, 1970; Alam, 1986). Here, a significant 

property should be emphasized: finite discrete states of a system are included in the 

Markov chain, and the state transition probability (STP) to the next state is only 

determined by the current state, rather than historical states’ information. Therefore, the 

Markov chain is suitable for predicting the occurrence probability of a future state. 

In an AUV mission, a complete deployment process from the initial predive test 

to final recovery comprises sequential phases, and varied risks and failure 

characteristics pertain to different phases. For instance, higher risks are associated with 

the launch and recovery phases (Griffiths et al., 2007a). Given that a Markov chain can 

identify system states and quantify the STP of a sequence of operations, it can be chosen 

as an ideal method for the risk analysis of AUV deployment. 

A critical element for the application of the Markov chain is estimating the STP. 

Basic data have been provided from a former study, which illustrated the generic 

information of the AUV operation process and assigned the probability of AUV loss 

for 63 incidents (Griffiths and Trembanis, 2007). However, insufficient data generated 

in this study did not fully cover the STP of the whole deployment chain. To overcome 

this limitation, a systematic Markov chain approach was proposed for modeling AUV 

risk in different phases and quantifying risk for multiple scenarios (Brito and Griffiths, 

2011; Griffiths and Brito, 2011). With the elicitation of domain experts’ judgment, 

these studies addressed unobtainable SPT data from existing research. The developed 

Markov chain method consists of two steps. The first establishes a topological structure 

that encodes the sequential phases of a deployment life cycle. A total of 11 states are 

identified, as shown in Fig. 9. The state description and different risks involved in each 

phase of AUV deployment are summarized in Table 7. In the second stage, the STP is 

determined by embedding the extended Kaplan-Meier survival statistics. Hence, with 
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the integration of the Markov chain and survival statistics, the success probability of 

each state and of achieving the overall mission goal can be quantified. 

 

Fig. 9. Markov chain model capturing the sequential phases of the AUV deployment, 

adapted from (Brito and Griffiths, 2011). 

Table 7. State description and risk involved in each phase of AUV deployment. 

State Number State Name State Description Risk Involved 

X1 Pretest state 
Fault identification and 

rectification 
- 

X2 Post-test state Ready to launch - 

X3 Overboard state Ready for predive checks 
Loss risk next to a 

deployment platform 

X4 Diving Proceed with the mission 
Uncontrolled dive, Loss 

risk 

X5 
Holding/test 

Pattern phase 
Test during the first dive Loss risk 

X6 Underway state Proceed with the mission Loss risk 

X7 Loss 
Temporary or permanent 

loss of the vehicle 
Loss risk 

X8 Recovery Recover the vehicle Loss risk, collision risk 

X9 Find Find the vehicle - 

X10 Salvage Salvage the vehicle Loss risk 

X11 Scrap 
Scrap the vehicle as being 

beyond economical repair 
- 
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The application of the Markov chain in their study proved it is effective for the 

risk analysis of multiple phases of AUV deployment. Transparency is injected through 

its clear graphical structure, which facilitates the risk estimation of each state and the 

overall mission achievement. However, a simple assumption is made in this method: 

the AUV risk is quantified as a function of the traveled distance. As the mission formats 

become more complex and dynamic in unpredictable environments, especially with the 

interaction of multiple vehicle platforms, an extended study based on the Markov chain 

is required as a suitable solution to provide updating STP in future studies. 

3.3.3 System Dynamics 

The system dynamics (SD) method was proposed for the analysis of dynamic complex 

systems (Forrester, 1997). It is an objective-oriented deterministic approach to 

understand non-linear behavior of the system in real time by using internal feedback 

loops, stock and flow structures, and time delays (Sterman, 2010). The central concept 

of the SD method is that it uses feedback control to represent how the system structure 

responds to dynamic behavior (Loh et al., 2020c). Given that this method can 

effectively model both the dynamic nature of the risk and causal relationships among 

risk contributors, SD has widely served as a risk analysis method for complex systems. 

For the risk analysis of the AUV system, the SD method was first used to analyze 

risk mitigation influenced by multiple AUV deployments (Brito and Griffiths, 2012). 

This attempt analyzed the risk mitigation efforts influenced by multiple AUV 

deployments, which focused on human resource management. Although this study 

lacks a structured framework and validation of the proposed method, it proves the 

capabilities of the SD method applied for risk analysis in the AUV domain. Furthermore, 

a system-based SD framework was first proposed for analyzing the risk of AUV loss 

(Loh et al., 2020c). Presented as a structured framework, this study mainly examined 

the human error incident rate in Antarctic AUV programs and produced policy 

recommendations. The strength of the SD method is well recognized in this study: 

complex causal relationships between risk factors can be modeled, and the dynamic 
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nature of these contributors can be captured effectively by the stock and flow structures. 

However, solely applying the SD model to analyze risk factors has its drawbacks. Risk 

is often viewed as derived from uncertainties, which features the risk with a multi-

dimensional, dynamic, and fuzzy nature (Haimes, 2009). However, such uncertainties 

cannot be explicated expressed by the deterministic SD model. This limitation has 

promoted the recent development of integrating the SD method with fuzzy logic (Loh 

et al., 2020a; Loh et al., 2020b; Xu et al., 2020). A resultant fuzzy system dynamics 

risk analysis (FuSDRA) method was proposed to achieve a more robust risk analysis 

for an AUV loss accident (Loh et al., 2020b). In the FuSDRA framework, the SD 

method modeled the dynamic interrelationships among risk variables from different 

dimensions such as human and organizational factors, technical factors, and external 

commercial factors. At the same time, fuzzy logic was integrated to account for 

stochastic uncertainties of risk variables and their interrelationships. An extended study 

used the FuSDRA approach for exploring the relationships between AUV crews’ 

experience and the risk of AUV loss (Loh et al., 2020a). It was the first time that the 

FuSDRA method was utilized for in-depth risk analysis of human factors. In a more 

specific application, the FuSDRA method was applied to analyze how the government 

support and technological obsolescence could influence AUV loss (Xu et al., 2020).  

In conclusion, the hybrid FuSDRA approach leverages the strength while 

overcoming the constraints of both the SD method and fuzzy logic theory. The 

application of this method can facilitate risk mitigation policies provided by AUV 

decision makers, and these risk control recommendations are expected to be more 

reliable and effective in an actual deployment mission. Furthermore, the FuSDRA 

method can serve as a risk management method for AUV programs. In an academic 

aspect, it further explores the non-probabilistic concept of quantitative risk analysis. 

This attempt is particularly challenging for solving on-site problems when AUV 

performance data are not always accessible. Despite the advantages of the FuSDRA 

method for risk analysis of AUVs, its limitations are also identified. The major 

limitation is that this method heavily depends on expert judgment elicitation. Due to 

the unavailability of AUV performance data, the risk variables and their fuzzy rules 
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basically lie in domain expert judgments. Different assumptions or even conflicting 

perceptions can be derived from experts with varied levels of experience. As a result, 

biases are inevitably introduced when developing the FuSDRA framework. Therefore, 

further improvement can consider assignment of weights and the confidence level of 

domain experts to reduce the subjective biases. 
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Table 6. Characteristics of the three risk analysis methods. 

Risk Analysis 

Method 
Basic Model Advantages Limitations 

Bayesian Belief 

Network 

 

• BBN provides quantitative and intuitive 

estimates for AUV decision-makers of the 

probability of different risk profiles before a 

mission, which is particularly valuable in the 

early utilization phase of an AUV when historical 

fault data is limited. 

• Risk factors and their interactive relationships 

can be systematically identified and topologically 

represented by the BBN model. 

• Critical risk factors can be determined by 

comparing the differences between post 

probabilities and prior probabilities. 

• The BBN model can be updated in real time when 

new evidence is involved, which is beneficial for 

AUV missions in dynamic subsea environments. 

• The process of risk nodes identification, 

states definition, and allocation of 

conditional probabilities may refer to 

expert judgment elicitation, which 

induces uncertainties and biases in the 

BBN model. 

• With the increase of the number of risk 

nodes and the complexity of their 

interrelationships, it is relatively difficult 

to calculate the conditional probabilities 

and apply the BBN model. 
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Markov Chains 

 

 The Markov chain is well-suited to identify 

distinct states and state transitions involving 

risks. Thereby it can model the complete 

sequence of an AUV mission from prelaunch to 

recovery and facilitate risk identification of each 

mission phase. 

 The Markov chain is a valuable tool for 

predicting the risk of mission abort. It allows for 

quantifying the success probability of each state 

by using STP, and it iteratively calculates the 

success probability of the final mission goal. 

 The Markov chain requires estimation for 

STP, which are usually derived from 

expert knowledge when historical data 

are unobtainable. This process may lead 

to judgmental biases. 

 The Markov chain is limited to represent 

and explain the underlying risk 

contributors and their causal 

relationships. 

System 

Dynamics 

 

• Complex causal relationships between risk 

factors of different dimensions can be captured 

effectively in the causal loop diagram. 

• Dynamic behaviors of risk factors can be 

represented by stock and flow structures. This 

characteristic is particularly useful for time 

dependent AUV missions. 

• Without complex probabilistic computations, the 

SD model is relatively easy to understand and 

apply. 

• The complexity of the SD model would 

rapidly increase with the number of risk 

variables. Defining each risk variable and 

its correlation equations can be 

challenging and time-consuming. 

• The deterministic nature of the SD model 

cannot cope well with the uncertainties in 

interrelationships of risk factors, 

especially for soft factors like human 

factors, which are difficult to quantify 

explicitly using equations. 
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4. Future challenges for risk analysis of AUV operations 

Based on the above analysis of past progress, section 4 identifies current research gaps 

and discusses future challenges in the domain of AUV risk analysis. 

4.1 Dynamic risk analysis for AUV operations 

In general, the dynamic nature of AUV deployment risk results from two factors. The 

first is the complexity of the AUV itself. Many components and subsystems contribute 

to the functioning of the AUV system. The interaction between hardware and software 

leads to both physical and functional dynamics. Secondly, AUVs usually operate in 

highly dynamic marine environments. Unsteady working conditions result in the 

dynamic nature that evolves with time and space. Thus, due to the dynamic nature, real-

time decision making in uncertain underwater environments is quite challenging.  

For now, the majority of risk analysis models applied to AUV deployment are 

traditional methods that have a static structure, which cannot capture dynamic 

uncertainties existing in the complex AUV system and harsh environments. Therefore, 

dynamic risk analysis (DRA) methods are required. DRA is defined as a method which 

is capable of updating risk estimation dynamically. The key difference between 

traditional risk analysis methods and a DRA method is that DRA can monitor and assess 

abnormal conditions and revise the overall risk level when new information is 

incorporated. In the AUV domain, tailored DRA methods are demanded to provide a 

dynamically adaptable way to monitor and measure the risk estimation of AUV 

deployment. Effective and timely risk analysis is vital to predict an abnormal situation 

and prevent accidents. Adopting DRA methods will help decision making based on the 

real-time situation, inform stakeholders to take early actions before accidents occur, 

and enable safer performances of AUVs operating in extreme environments. 
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4.2 Risk analysis for AUVs with scarce historical data 

Historical data reveal the fault and incident information of AUV performances. This is 

the fundamental information required in many traditional risk analysis models, 

including FTA, ETA, BBN, and so on. Historical data is essential for accurate risk 

estimation. However, in the early phase of the utilization of an AUV platform, 

accidental data tend to be limited or scarce. In this case, the data source for risk analysis 

models is hard to obtain, and thus, it is challenging to conduct accurate risk estimation. 

When data is insufficient for accurate probabilistic quantification, combining 

domain expert knowledge can be compensatory. By incorporating expert judgments 

into the risk analysis process, the absence of data can be substituted by qualitative 

information. However, merely relying on experts may lead to judgmental uncertainties, 

which indicates a need for more advanced methods to address missing data problems 

in future studies. Such advanced methods can compensate for missing data in a 

quantitative way and additionally use the data to predict in-situ risk estimation. Machine 

learning techniques have great potential to tackle data limitation problems. A number 

of studies have used machine learning algorithms to improve the quantification 

accuracy under scarce data conditions (Ramoni and Sebastiani, 2001; Elidan et al., 2002; 

Elidan and Friedman, 2012; You et al., 2019), and provide valuable references to the 

AUV domain. Hence, machine learning based methods are effective tools for future 

research to reduce the dependence on historical data and expert judgments, and improve 

the accuracy and efficiency of risk estimation with incomplete data. 

4.3 Intelligent risk analysis for AUV operations 

Intelligent behaviors of an autonomous system are defined as onboard capabilities of 

decision-making, mission planning and re-planning, and fault tolerance (Seto, 2012). 

With the development of AUV technologies, risk analysis of AUV operations is 

broadening to an intelligent scope (Bremnes et al., 2019). Intelligent risk analysis in the 

AUV domain refers to performing risk analysis and decision making by the vehicle 

system itself instead of human operators. More specifically, intelligent risk analysis 
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enables the vehicle to process real-time data, assess in-situ risk level, adapt path 

planning and motion control strategies according to current risk scenarios, and assist 

the vehicle to accomplish a mission autonomously without much human intervention. 

Most of the classic risk analysis methods applied in the AUV domain are based on 

the offline assessment before a mission. These methods aim to assist operators to 

estimate the current risk level, take necessary risk mitigation measures, and adapt their 

mission plans accordingly. However, traditional offline risk analysis relying on humans 

tends to be time-consuming. Time delays caused by manual analysis processes will 

result in real-time risk scenarios that cannot be precisely identified. Delayed risk 

identification will successively compromise the accuracy of current risk estimation and 

reduce the effectiveness of subsequent decision making. This leads to the consideration 

of changing the way of risk analysis from human offline prediction to autonomous 

online risk analysis. 

Intelligent risk analysis can be a game-changer in future trends of risk analysis for 

autonomous vehicular systems. A potential solution is combining classic risk analysis 

models with machine learning techniques, and subsequently incorporating them into 

the online decision system. Currently, a number of studies have adopted machine 

learning methods to aid onboard risk analysis in the marine robotics domain (Liu et al., 

2012; Zhang et al., 2015; Hollinger et al., 2016; Xiang et al., 2017). The major 

advantage of machine learning algorithms is their self-learning capabilities to explore 

all possible interactions between non-linear input and output risk variables (Tu, 1996; 

Bevilacqua et al., 2010; Hegde and Rokseth, 2020). High computational speed enables 

them to achieve real-time risk prediction with much higher efficiency than human 

operators. In addition, a wide variety of data are continuously generated from sensor 

platforms. Machine learning techniques can process various forms of these data, 

including numerical data, textual data, and image data. The combination of data 

information is used to assess in-situ environmental and operational conditions, and thus 

achieve more systematic and accurate risk estimation. Therefore, the online decision 

system can take reasonable actions based on the current risk state. To sum up, in order 

to improve the autonomy level of AUVs and increase the effectiveness as well as the 
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efficiency of risk analysis, intelligent risk analysis is expected to be developed as an 

integral part of an AUV system. 

4.4 Risk analysis for multi-AUV collaboration 

As the technology of AUVs gradually matures, multi-AUV mission formats are rapidly 

emerging (Harris et al., 2016). Multi-AUV missions refer to the cooperative work of 

multiple AUVs to achieve a mission goal. As the mission format becomes more 

synergic, the multi-AUV system can cruise larger areas and complete more difficult 

tasks than a single vehicle. At the same time, as the multi-vehicle operations are more 

interactive and dynamic, operational risks inevitably become more complex and thus 

require effective analysis. However, most of the current risk analysis research has 

concentrated on traditional single-vehicle missions and cannot represent the interactive 

risk associated with multiple platforms. Therefore, novel methods are required in future 

research to facilitate the risk analysis for multi-AUV collaboration. 

When conducting risk analysis for a multi-AUV scenario, the interactive impact 

among multiple vehicles is a key consideration. During the cooperation between two 

vehicles, reliable communication is needed for data updates and data transmission. This 

process requires consideration of the constraints of space and time for both vehicles 

within dynamic underwater environments whilst preventing collisions. On the other 

hand, the interaction between vehicles can influence the risk among vehicles. For 

example, if failures occur in the navigation system and the vehicle takes incorrect 

headings, the likelihood of colliding with nearby vehicles can be increased. Therefore, 

future studies of risk analysis for multi-AUV collaboration should ensure the 

cooperative efficiency whist improve the safety performance of all platforms. 

5. Summary and conclusion 

The main objective of this study is to provide a systematic review of past progress of 

risk analysis research for AUV operations. This review answers key questions denoted 

in Section 1, including fundamental concepts and implemented methods in the domain 
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of risk analysis for AUVs, and it highlights future research trends to bridge existing 

gaps. The scope of this article is restricted to topics directly related to the research 

questions. Based on the aim and scope of this study, a total of forty-four articles with 

significant relevance to AUV related risk analysis were retrieved. The underlying risk 

factors identified from selected literature are summarized into three categories: 

technical factors, environmental factors, and human factors. A comparative analysis 

was undertaken to provide a clear picture of the evolution process, advantages, and 

limitations of adopted risk analysis methods from qualitative, semi-quantitative, and 

quantitative aspects. Current research gaps and future challenges in this domain were 

briefly outlined. 

In light of the review and analysis, three key conclusions can be drawn. Firstly, 

systematic identification of risk factors and their causal relationships are vital for 

further risk analysis. Most of the early research focused on technical factors of AUVs, 

relying on historical performance data. Whereas in current trends, environmental 

factors, human factors, and their interactive impacts, are increasingly receiving 

attention. Subsequently, it is evident that quantitative methods have been rapidly 

implemented in recent years to enhance the accuracy and handle the uncertainties of 

risk analysis of AUVs. However, former studies still heavily rely on expert knowledge, 

which may introduce judgmental bias. Lastly, future challenges for risk analysis for 

AUVs may include addressing dynamic risk analysis, scarce historical data, intelligent 

risk analysis, and multi-vehicle risk analysis. 
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Appendix 

Table 8. Classification of literature with respect to the risk analysis of AUVs. 

No. Literature 

Risk Factor Identification  

Risk Analysis Method Mission Type Mission area Consequence Type Technical 

Factor 

Environmental 

Factor 

Human 

Factor 

1  (Ortiz et al., 1999) ✓   
Safety layers 

analysis  
Qualitative General mission General area 

AUV abnormal 

working 

2  
(Madsen et al., 

2000) 
✓   Tree diagram Qualitative 

Deep water and under 

ice mission 
General area Mission abort 

3  
(Griffiths et al., 

2003) 
✓   

Kaplan-Meier 

survival model 
Semi-quantitative Under sea ice mission The Antarctic AUV loss 

4  
(Griffiths and 

Trembanis, 2007) 
✓   RMP Semi-quantitative 

Under sea ice and ice 

shelf mission 
Polar regions AUV loss 

5  
(Griffiths and 

Brito, 2008) 
 ✓  BBN Quantitative Under sea ice mission Polar regions AUV loss 

6  (Bian et al., 2009a) ✓   Fuzzy FTA Semi-quantitative General mission General area 
AUV abnormal 

working 

7  
(Bian et al., 

2009b) 
✓   

FTA, Monte-Carlo 

simulation 
Semi-quantitative General mission General area 

AUV abnormal 

working 

8  (Brito et al., 2010)  ✓  

RMP, Kaplan-

Meier survival 

model 

Semi-quantitative 
Under sea ice and ice 

shelf mission 
The Antarctic AUV loss 
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9  
(Meng and 

Qingyu, 2010) 
✓   

Safety measures 

analysis 
Qualitative General mission Lake area 

Battery failure, 

leakage, fishing net 

wrapped 

10  
(Kaminski et al., 

2010) 
 ✓  

Fault Response 

Table  
Qualitative 

under ice bathymetric 

surveys 
The Arctic AUV loss 

11  
(Brito and 

Griffiths, 2011) 
✓ ✓  Markov chain Quantitative General mission General area AUV loss 

12  
(Griffiths and 

Brito, 2011) 
✓ ✓  

RMP, Markov 

chain 
Quantitative Under sea ice mission Polar regions AUV loss 

13  (Ho et al., 2011)   ✓ / / General mission General area Mission abort 

14  (Brito et al., 2012) ✓   BBN Quantitative Under sea ice mission The Arctic Operational risk 

15  
(Brito and 

Griffiths, 2012) 
✓   SD Quantitative Multi-AUVs mission General area AUV loss 

16  (Hu et al., 2013) ✓   FMECA, FTA Semi-quantitative General mission General area 
AUV loss, mission 

abort 

17  (Xu et al., 2013) ✓   

FTA, Monte Carlo 

simulation 
Semi-quantitative 

Deep-sea minerals 

exploration 

Deep-sea 

hydrothermal 

area 

Mission abort 

18  
(Pereira et al., 

2013) 
 ✓  

Markov decision 

process 
Quantitative Path planning General area AUV collision 

19  
(Merckelbach, 

2013) 
 ✓  

Monte Carlo 

simulation 
Semi-quantitative General mission General area 

Glider loss, collision 

with ships 

20  
(Aslansefat et al., 

2014) 
✓   FTA Semi-quantitative General mission General area 

AUV abnormal 

working 

21  
(Brito et al., 

2014b) 
✓   

Probability tree 

model 
Quantitative General mission General area Loss of communication 
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22  
(Brito et al., 

2014a) 
✓   

Monte Carlo 

simulation, Kaplan-

Meier survival 

model 

Semi-quantitative 

Shallow water and 

deep-water glider 

mission 

Shallow water, 

deep water 
AUV collision 

23  
(Zhang et al., 

2015) 
✓   

Grey relation 

analysis 
Qualitative General mission General area Thruster fault 

24  
(Thieme et al., 

2015b) 
✓ ✓ ✓ BBN Quantitative General mission General area Mission abort 

25  
(Thieme et al., 

2015a) 
✓ ✓ ✓ 

Risk management 

framework, human 

reliability analysis, 

FTA, ETA 

Semi-quantitative Map the seafloor Coastal area 
AUV loss, mission 

abort 

26  
(Brito and 

Griffiths, 2016) 
 ✓  

BBN, Kaplan-

Meier survival 

model 

Quantitative Under sea ice mission the Antarctic AUV loss 

27  (Zeng et al., 2016)  ✓  

 Particle swarm 

optimization 

algorithm, Monte 

Carlo simulation 

Quantitative  Path planning 

environments 

with ocean 

currents 

AUV collision 

28  
(Hegde et al., 

2016) 
✓ ✓  

Risk indicator 

model 
Semi-quantitative 

Subsea IMR operation, 

path planning 
General area AUV collision 

29  
(Lefebvre et al., 

2016) 
✓   

HPA-Star 

algorithm 
Quantitative 

Subsea IMR operation, 

path planning 
General area AUV collision 

30  
(Harris et al., 

2016) 
✓   

FMEA, FTA, 

Markov Decision 

Process  

Semi-quantitative Multi-vehicle mission General area AUV loss 
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31  (Brito, 2016) ✓   FTA Semi-quantitative General mission General area Glider mission abort 

32  (Yu et al., 2017) ✓ ✓  Bow-tie Qualitative 

IMR operation of 

offshore oil and gas 

platform 

General area AUV collision 

33  
(Xiang et al., 

2017) 
✓   

FTA, Mamdani 

fuzzy neural 

network  

Semi-quantitative General mission General area 
Failure of onboard 

system 

34  
(Hegde et al., 

2018) 
✓ ✓ ✓ BBN Quantitative Subsea IMR operation 

Åsgard field, 

Norway 
Mission abort 

35  (Brito et al., 2018)   ✓ ETA Semi-quantitative 
Adaptive mission 

planning (AMP) 
General area Failure of AMP 

36  
(Brito and 

Griffiths, 2018) 
✓   BBN Quantitative General mission General area 

Mission abort, AUV 

loss 

37  
(Brito and Chang, 

2018) 
✓   FTA Semi-quantitative General mission General area AUV loss 

38  
(Hegde et al., 

2019) 
✓ ✓  

Safety envelop, 

Octree method 
Semi-quantitative 

Subsea IMR operation, 

path planning 
General area AUV collision 

39  (Loh et al., 2019) ✓ ✓ ✓ Fuzzy set theory Semi-quantitative Under sea ice mission the Antarctic AUV loss 

40  
(Bremnes et al., 

2019) 
✓ ✓  BBN Quantitative 

Under ice altitude 

control 
The Arctic AUV loss 

41  (Loh et al., 2020a) ✓  ✓ FuSDRA Quantitative Under sea ice mission the Antarctic AUV loss 

42  (Loh et al., 2020b) ✓ ✓ ✓ FuSDRA Quantitative Under sea ice mission the Antarctic AUV loss 

43  (Loh et al., 2020c)   ✓ SD Quantitative Under sea ice mission the Antarctic AUV loss 

44  (Xu et al., 2020) ✓  ✓ FuSDRA Quantitative Under sea ice mission the Antarctic AUV loss 
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Nomenclature 

 

Acronym Definition 

ABE Autonomous Benthic Explorer 

AUVs Autonomous underwater vehicles 

BBN Bayesian belief network 

BT Bow-tie 

DRA Dynamic risk analysis 

ETA Event tree analysis 

FMEA Failure mode and effects analysis 

FTA Fault tree analysis 

FuSDRA Fuzzy system dynamics risk analysis 

IMR Inspection, maintenance, and repair 

RIFs Risk influencing factors 

RMP Risk management process 

SD System dynamics 

STP State transition probability 
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