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Abstract

With the rise of global trade, maritime transportation networks have become an indispensable element of logistics
networks. Approximately 80% of the global trade volume is transported by sea with the maritime logistics network
fuelling global economic integration. Due to the uncertainty of the transportation process and the impact of accidents,
the reliability analysis of the logistics network is a topic of immense interest. In this paper, we propose an original
and novel model to quantitatively analyze the vulnerability of the maritime logistics network by considering the
importance of each port in the network. Three centrality measures that consider different topology information of
the network are used in this paper to identify the importance of ports. Different information about the network is
considered through the joint entropy and the multiscale factor q to evaluate the vulnerability of the logistics network.
The Asia-Europe maritime transportation network serves as a real-world example to demonstrate the effectiveness and
applicability of our proposed model. The experimental results suggest that the performance of the maritime network
is closely related to the heterogeneity of the connectivity pattern and the process of decentralization can reduce the
vulnerability of the maritime network.

Keywords: Transportation Networks, Network Theory, Joint Entropy, Vulnerability, Centrality

1. Introduction1

The usage of transportation network has become an indispensable part of daily life [1, 2]. Short-distance cars, long-2

distance trains, and transoceanic planes are common across travel patterns. Due to globalization and the development3

of maritime transportation, people can now easily enjoy commodities from all over the world without long-distance4

travel [3]. Therefore, the performance analysis and planning of the transportation system is a topic of immense5

interest among researchers. When the city (port, or station) is regarded as a node and the connection (transportation)6

between them is regarded as a connecting edge, such a complex system can be modeled by complex network to better7

understand its characteristics [4, 5]. By exploring this kind of complex system through the lens of network science,8

several structural properties can be better understood, such as the reliability [6, 7], resilience [8, 9], safety [10, 11],9

and vulnerability [12, 13]. Network science, coupled by a variety of topics like game theory [14, 15, 16], evidential10

network [17, 18], Bayesian network [19, 20, 21], evidence theory [22, 23], optimization algorithms [24, 25, 26], fuzzy11

theory [27, 28], and artificial intelligence [29, 30, 31, 32], has allowed us to model multi-disciplinary complex systems12

using real-world conditions.13

Analysis of reliability and vulnerability has always been the focus of research of transportation network perfor-14

mance [33, 34, 35, 36]. In general, research pertaining to network reliability analysis attempts to address this problem15

from two perspectives. The first one is to identify and measure the characteristic of each individual or the connec-16

tion between them, such as identifying the importance of nodes for network topology-based cascade models [37, 38].17

The other one is to evaluate and explore the property of the entire network and community structure. The resilience18
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[39, 40] and vulnerability [41, 42] of communities have been studied to explore the impact of community structure on19

the construction of transportation networks. For network, researchers also analyzed several properties of real-world20

network, such as assessing the risk of the electric power system of New York State from the transportation system21

scenarios [43], optimizing the configuration of logistics service centers before the disaster [44], studying the safety22

efficiency of the road transportation network [45], and designing a network with the least cost that can meet resilience23

constraints of the system [46]. It is worth noting that the property of the network (macroscale) may shed light on the24

property of communities (mesoscale) and individuals (microscale).25

Since the maritime logistics network occupies a large proportion of the global trade volume (80%), it has become26

an indispensable element of transportation network, thus playing an increasingly important role in the world [3].27

Buyers’ demand for goods is transformed into a comprehensive need for goods that is timely, reliable and cost-28

efficient [47]. Researchers have started to study the impact of accidents on maritime networks [48]. For example,29

the vulnerability of global supply chains caused by disruptions in maritime transportation services was studied in the30

Americas from the perspective of multiplex network [49], the accident risk in the maritime transportation is assessed31

based on Markov modelling and Markov Chain Monte Carlo simulation [50], the vulnerability of the maritime network32

was evaluated based on the centrality distribution of ports [51], an optimal resilience model was proposed to manage33

the residual resilience of ports and routes based on the post-disaster analysis in a maritime transportation network34

of 23 cities [52], and the delayed maritime transportation of essential goods after earthquake was studied in British35

Columbia based on the Bayesian network [53].36

As discussed above, prior research in the maritime transportation network has primarily focused on one aspect, that37

is, port or network. However, our proposed model can identify the importance of ports and evaluate the vulnerability38

of the maritime transportation network at the same time to fill this important gap. Specifically, the importance and39

connection pattern of each port will be identified from three different aspects at the same time, so as to fully consider40

the topological characteristic of the network, including (1) neighborhood-based centrality (k-core decomposition),41

(2) gravity-based centrality, (3) iterative refinement centrality (PageRank). The centrality scores of ports obtained42

by different measures are then normalized. The vulnerability of the maritime transportation network is explored by43

considering the normalized centrality score of three measures based on the joint entropy and the multiscale factor. The44

multiscale factor q can be adjusted to reflect different statistical characteristics of the network. The applicability and45

performance of this proposed model is demonstrated by the Asia-Europe maritime transportation network and three46

typical theoretical networks. The relationship between different centrality measures is explored by Pearson correlation47

coefficient in the experiment. The experimental results suggest that the heterogeneity of the connectivity pattern and48

the degree of uniformity of the centrality distribution are closely related to the vulnerability of the network. The49

process of decentralization shows that the impact of the nodes with high centrality score on the vulnerability of the50

entire network. This proposed vulnerability evaluation approach can be further applied to other types of transportation51

network. Hence, this proposed model can help individuals, companies, and governments to design the transportation52

network in the initial stage.53

The rest of this paper is organized as follows. Section 2 develops the proposed entropy-based vulnerability mea-54

surement model in detail. The numerical experiments are performed in Section 3 through the application of the55

Asia-Europe maritime transportation network. The conclusions and discussions are given in Section 4.56

2. Entropy-based vulnerability evaluation method57

In this section, a new method is proposed to evaluate the vulnerability of logistics networks. This proposed58

approach will consider multiple source of information from different aspects of the network, including neighborhood-59

based centrality, gravity-based centrality, and iterative refinement centrality. The topological structure information of60

the logistics network can be fully discovered by these three types of centrality. A vulnerability evaluation model is61

then applied to fuse these information based on the joint entropy and the multiscale factor.62

2.1. Structure of complex networks63

For a given complex network G(N, E), N and E represent the set of nodes and edges respectively, |N | and |E|64

indicate the number of nodes and edges in the networks respectively. The topological structure of the network is given65

by the adjacency matrix A|N |×|N |, where Ai j = 1 indicates there is an edge between node i and node j and vice versa.66
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The shortest path between each pair of nodes can be identified by Dijkstra algorithm and the distance of the shortest67

path is defined as,68

di j = aiη1 + aη1η2 + ... + aηm j, (1)

where η1, η2, ..., ηm are IDs of nodes that are on the shortest path between node i and j, and aiη1 , aη1η2 , aηm j are elements69

in the adjacency matrix. The degree ki of node i is then defined as,70

ki =
∑
j∈N

ai j, (2)

and it indicates the number of edges that connected with node i.71

2.2. Centrality measures72

The topological structure information of each node can be described by the centrality. Different types of central-73

ity are considered in our proposed method to discover the characteristic from different aspects, resulting in a more74

accuracy vulnerability evaluation result. Specifically, (1) the neighborhood-based centrality (k-core decomposition)75

indicates the position of each node in the network; (2) the gravity-based centrality considers the information of each76

node and the relationship with other nodes; and (3) the iterative refinement centrality (PageRank) shows the influence77

of each node based on the influence of its neighbors rather than the number of its neighbors. The definitions of these78

models are introduced below in detail.79

2.2.1. Neighborhood-based centrality80

The degree of nodes only consider the number of the nearest neighbors, resulting in many nodes with the same81

degree. Hence, Kitsak et al. [54] argued that the location is much more important than the degree because it indicates82

whether the node is located in the core part or the periphery of the network. The k-core decomposition [55], one of the83

most popular neighborhood-based centrality, is applied in our model to show the function of transshipment terminals84

in the logistics network. In the logistics network, the coreness ηi of isolated nodes (ki = 0) is defined as 0, that is,85

ηi = 0. These nodes with k ≤ 1 are then removed from the network continually until the degree of remaining nodes86

is lager than 1, and the coreness of these nodes is ηi = 1. These nodes with larger coreness (ηi = 2, 3, ...) can be then87

identified until all nodes are removed from the network. An example of this centrality is given in Figure 1. The k-core88

decomposition approach can identify whether the seaport is located in the core part or the periphery of the network,89

so it can better reflect the importance of the port than other neighborhood-based centralities that only consider the90

number of immediate neighbors. The seaport located in the central position in the logistics network has a higher value91

of ηi than the seaport in the periphery, resulting in its higher importance.92

i j

=1

=2

=3

3ik = 2jk =

6ijd =

Figure 1: Example of k-core decomposition approach.
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2.2.2. Gravity-based centrality93

Based on the gravity law, each object can attract other objects, thereby causing gravity force. In the network, the94

mass of objects is represented by the degree of nodes, and the distance between objects is defined by the distance of95

the shortest path identified by Dijkstra algorithm. Inspired by the formula of the gravity law, the gravity index of each96

individual [56, 57] can be defined as follows,97

δi =
∑

j∈N, j,i

ki × k j

di j
, (3)

where ki and di j are the degree and the shortest distance which have been introduced in Section 2.1. An example of this98

centrality measure is given in Figure 2. Node j can be all nodes other than node i, indicating the relationship between99

node i and all other nodes. The gravity model takes into account both the neighbor information and path information,100

which makes use of more topological information of the network than other classical approaches. According to the101

definition in Eq. (3), transshipment terminals play a more important role in the logistics network when they have102

more neighbors (more nodes that can be reached directly) and are closer to other transshipment nodes with higher103

influential ability, which adopts the formula of the gravity law. For example, the logistics network will be divided into104

several discontinuous sub-networks due to the unfuntion of these terminals with higher δi, resulting in the temporary105

failure in the network; these terminals with higher δi can also take on more roles to avoid greater losses in the logistics106

network when their neighbor nodes cannot work.107

i j

=1

=2

=3

3ik = 2jk =

6ijd =

Figure 2: Example of gravity-based centrality.

2.2.3. Iterative refinement centrality108

The importance of a node not only depends on the number of its neighbor nodes, but also relies on the importance109

of its neighbor nodes. Hence, PageRank [58], the well-known algorithm to rank websites in Google, is applied as an110

iterative refinement centrality to explore the degree to which each node is supported by its neighbors. This algorithm111

considers both the quantity and quality of nodes to identify their importance based on the topological structure of the112

network through random working. The PageRank value is the same for every nodes ζi (0) at the beginning, and is113

updated based on the rule below,114

ζi (t) = s
∑
j∈N

a ji
ζi (t − 1)

kout
j

+ (1 − s)
1
|N |

, (4)

where a ji is an element of the adjacency matrix A, kout
j is the out-degree of node i. If the network is an undirected115

network, each undirected edge will be replaced by two directed edges, rendering the original network to be a directed116

network. To avoid non-convergence [59], each node will walk to its neighbor nodes with probability s, and walk to117

a random node (ignoring the structure) with probability (1 − s). Eq. (4) will degenerate to the classical form that118

only considers the network structure when s = 1. The importance of each node will be evaluated by the PageRank119

value when ζi (t) of all nodes become steady. This centrality takes into account both the number and importance120

of neighbors of each port, thus, the local information is fully applied to identify the importance of each port. In the121

logistics network, a terminal can get more support from its neighbor terminals when it has a high value of ζi, including122

transshipment and rescue, leading to its higher importance.123
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2.3. Entropy-based method124

In order to measure the vulnerability of the logistics network from the perspective of entropy, the score obtained125

from each centrality measure needs to be normalized to the interval [0, 1]. The probability distribution of nodes in the126

network is obtained by,127

px
i =

xi∑
i∈N

xi
, x ∈ {η, δ, ς} , (5)

where xi is the value of node i obtained by different methods, and px
i is the normalized score of node i obtained by128

different methods. Here, xi can represent the coreness ηi, gravity index δi, and PageRank value ςi. The probability set129

obtained by each method is given as,130

PX=
{
px

1, px
2, ..., px

n

}
. (6)

Rényi entropy that is a generalized entropy to consider the weights of probabilities is defined as131

RX =

log2
∑
i∈N

(
px

i

)q

(1 − q)
. (7)

More properties and discussions about Rényi entropy can refer to Ref. [60, 61, 62]. The multiscale approach to132

evaluate the vulnerability of logistics network is then developed,133

ψX =

(
RX

|E|

) 1
|q|

=


log2

∑
i∈N

(
px

i

)q

(1 − q) |E|


1
|q|

, (8)

where px
i is the normalized score of node i obtained by method x, |E| is the number of edges, q is the multiscale factor134

which can be adjusted based on the topology of network. Unlike only considering the entropy measure, our proposed135

method takes into account more information of network topology.136

2.4. Vulnerability evaluation137

The vulnerability evaluated by different measures is given by,138

ψη =
(

Rη
|E|

) 1
|q| ,whenPX=Pη,

ψδ =
(

Rδ
|E|

) 1
|q| ,whenPX=Pδ,

ψς =
(

Rς
|E|

) 1
|q| ,whenPX=Pς,

(9)

where ψη, ψδ, ψς are the vulnerability degree of the logistics network obtained by the normalized coreness score,139

normalized gravity score, and normalized PageRank score. When pηδςi jk represents the joint probability distribution of140

Pη, Pδ, and Pς, the joint entropy ψ̄ of these distributions is defined by,141

ψ̄ = ψηδς =

(
Rηδς

|E|

) 1
|q|

=


log2

∑
i∈N

∑
j∈N

∑
k∈N

(
pηδςi jk

)q

(1 − q) |E|


1
|q|

. (10)

In addition, the joint entropy is usually less than or equal to the sum of individual entropies, that is,142

ψηδς ≤ ψη + ψδ + ψς. (11)

In this paper, three centrality measures are considered simultaneously to evaluate the vulnerability of the logistics143

network. Since Pη, Pδ, and Pς are mutually independent, the joint entropy ψ̄ can be also obtained by,144

ψ̄ = ψηδς = ψη + ψδ + ψς. (12)
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Obviously, entropy will reach the maximum value when the probability set is uniformly distributed, that is,145

px
i =

1
|N |

, x ∈ {η, δ, ς} , i ∈ N. (13)

Hence, the maximum entropy is defined as,146

ψX
max =

 log2
∑
i∈N

(
1
|N |

)q

(1−q)|E|


1
|q|

=

(
log2

(
1
|N |

)q−1

(1−q)|E|

) 1
|q|

=
( log2 |N |
|E|

) 1
|q| , X ∈ {η, δ, ς} ,

(14)

and the maximum joint entropy is given by,147

ψ
ηδς
max = 3 ×

(
log2 |N |
|E|

) 1
|q|

. (15)

Hence, the vulnerability of the logistic network that considers several centrality measures is defined as,148

ν = 1 −
ψ̄

ψ
ηδς
max

= 1 −
ψηδς

ψ
ηδς
max

, (16)

which is related to the difference between the joint entropy and its maximum entropy. Our proposed vulnerability149

evaluation approach has the following properties,150

1) ν is a dimensionless value in [0, 1);151

2) The logistics network is more vulnerable with higher value of ν;152

3) ν equals to 0 only when all nodes have the same score obtained by different centrality measures (fully connected153

network);154

4) ν is high when the property (such as connectivity) of nodes in the network is extremely unbalanced;155

5) The mutilscale factor q can be adjusted according to the type of network;156

6) This model can easily be generalized to consider more information achieve better outcomes if users need.157

In our proposed method, ν can measure the degree of uniformity of the distribution in the logistics network, which158

compares the joint entropy and its maximum entropy. Hence, the impact of the failure of each node on the performance159

of the entire network can be reflected by this index.160

In this paper, q = 2 is taken as an example to illustrate the applicability and effectiveness of this proposed method.161

Rényi entropy will degenerate to the Collision entropy when q = 2 that is sensitive to the hub transshipment termi-162

nals due to the power of probabilities. In addition, it can measure the impact of the centrality of each node on the163

vulnerability of the network, thereby showing the effect of the heterogeneity.164

2.5. Illustrative examples165

Three simple networks with different characteristics are first used as examples to illustrate our method. All of166

them are closely linked to the real-world transportation network. The topological structure of these networks is167

shown in Figure 3. The star network (Figure 3(a)), lattice network (Figure 3(b)), and fully connected network (Figure168

3(c)) represent the hub-and-spoke network, grid road network, and point-to-point transit network in the real-world,169

respectively. The size is the same in three networks to avoid the its impact on the vulnerability.170

ψX for X ∈ {η, δ, ς} are given in Table 1 when the size of networks is |N | = 9. The vulnerability indexes ν of171

three networks when |N | = 9, 16, 36, 64 are also given in Table 1. The results show that the fully connected network172

has the lowest vulnerability (ν = 0) in three networks, followed by the lattice network (ν = 0.0114), and the star173

network has the highest vulnerability (ν = 0.0971). It is the same as the realistic situation because (1) the highly174
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(a) Star network (b) Lattice network (c) Fully connected network

Figure 3: Three contrasting networks with the same number of nodes.

concentrated center node (like node 0 in Figure 3(a)) render the star network as the most vulnerable network, (2) the175

lower vulnerability of the lattice network is caused by its relatively homogeneous structure, (3) the fully connected176

network is the least vulnerable as each node can reach the entire network via an edge. Hence, it indicates that the177

homogeneous distribution of the topology of the fully connected network renders it to be the most robust network178

(ν = 0). When the size of network |N | increases, the fully connected network is always the least vulnerable network179

(ν = 0) due to its homogeneous distribution. The lattice network becomes less vulnerable when the size is larger180

because there will be more nodes with the same centrality score. However, the star network will be more vulnerable181

(ν = 0.0971, 0.1629, 0.2128, 0.2418) when the size increases due to the more centralized center node.182

Table 1: Vulnerability of three theoretical networks.
Network |N | = 9 |N | = 16 |N | = 36 |N | = 64

ψη ψδ ψς ν ν ν ν

Star network 0.6295 0.5291 0.5032 0.0971 0.1629 0.2128 0.2418
Lattice network 0.5140 0.5011 0.5092 0.0114 0.0090 0.0054 0.0038

Fully connected network 0.2967 0.2967 0.2967 0.0000 0.0000 0.0000 0.0000

Before evaluating the vulnerability of networks by this proposed approach, the impact of the multiscale factor q is183

studied. q = 2, 3, 5 are applied to show the impact on the vulnerability ν of the star network (S), lattice network (L),184

and fully connected network (C). The vulnerability of three types of networks with different sizes |N | and multiscale185

factors q is shown in Figure 4. Under different values of q, the star network is always the most vulnerable (highest186

value of ν), followed by the lattice network, and the fully connected network is the most stable (ν ≡ 0 regardless of187

the value of q and |N |). It means that the vulnerability ν of networks is robust to changes in q. In addition, the star188

network becomes more vulnerable as the size increases due to its highly concentrated center node, whereas the lattice189

network becomes more stable as the size increases.190

Two similar networks are applied to show the effectiveness of this proposed approach by comparing with classical191

methods. The structure of the two networks is shown in Figure 5(a), including the bat network G1 and umbrella192

network G2. The only difference between two networks is the edge {{1, 3} , {4, 6}} in G1 and {{1, 6} , {3, 4}} in G2. G1193

is more vulnerable than G2 because the attack on node 7 (red node in Figure 5(a)) causes G1 to be divided into 3194

disconnected sub-networks, while G2 only becomes 2 components. Therefore, the vulnerability of two networks is195

different. However, these methods based on degree centrality and eigenvector centrality cannot be applied to measure196

the vulnerability of two networks due to the same degree distributions and eigenvectors with maximal/minimal eigen-197

values, such as Refs. [63, 64]. The average edge betweenness [65] that can measure the vulnerability of networks is198

defined below,199

b (G) =
1
|E|

∑
l∈E

bl (17)

where E and |E| represent the set and number of edges respectively, and bl is the edge betweenness of edge l [66].200

However, b (G1) = b (G2) = 43/13 indicates the identical vulnerability of the two networks. In addition, the vul-201

nerability of the two networks is the same measured by the maximum efficiency reduction after removing the edge202

7



Figure 4: Vulnerability of three types of networks under different values of |N| and q.

(v (G1) = v (G2) = 0.1951) [67]. All of these methods have failed to distinguish the vulnerability of the two networks.203

However, our proposed method can clearly show the difference (ν (G1) , ν (G2) when q ∈ [2, 10]) in Figure 5(b),204

and the difference between the vulnerability of two networks ∆ν = ν (G1) − ν (G2) becomes larger as q increases.205

Therefore, compared with these methods, our proposed method can effectively measure the vulnerability of networks206

based on the structure.207

(a) Structure of networks (b) Vulnerability of networks

Figure 5: The bat network G1 and umbrella network G2, including (a) the structure and (b) the vulnerability of two networks. In this experiment, the
gravity-based centrality is replaced by the betweenness centrality to illustrate that our proposed method can effectively measure the vulnerability
of networks based on different centrality measures.

3. Experiments208

The real-world maritime network is applied in this paper to validate the effectiveness and applicability of our209

proposed model. Due to the rise of global trade, maritime networks have become more important as a typical rep-210

resentative of transportation networks and global supply chain networks. However, the relationship between the211

vulnerability of the maritime transportation network and accidents has rarely been studied [68]. Hence, exploring212

the impact of topological structure of the network on its vulnerability can greatly contribute to the improvement and213

development of the global supply chain network.214
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3.1. Data215

The Asia-Europe maritime logistics network [68] that is the busiest and most important maritime network in the216

world is used as a case to explore in this paper. This maritime transportation network (Figure 6) contains 54 seaports217

and 112 routes all over the world, where the name and ID of seaports are given in Table 2. The node and edge in the218

network represent the seaport and route in the transportation system respectively. This network is a undirected and219

unweighted network but it is sufficient to explore the impact of structure information of on the vulnerability of the220

logistics network.221

0
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4952
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Figure 6: The structure of the maritime transportation network.

Table 2: ID and name of seaports in the Asia-Europe maritime transportation network.
ID Port ID Port ID Port
0 Gdansk 18 Valencia 36 Chiwan
1 Aarhus 19 Fos-sur-Mer 37 Shanghai
2 Gothenhurg 20 Marsaxlokk 38 Nagoya
3 Bremerhaven 21 Jeddah 39 Nansha
4 Hamburg 22 Salalah 40 Yokohama
5 Antwerp 23 Jebel Ali 41 Ningbo
6 Zeebrugge 24 Vung Tao 42 Qingdao
7 Le Harve 25 Tanjung Pelepas 43 Xiamen
8 Felixstowe 26 Port Klang 44 Kwangyang
9 Rotterdam 27 Nansha New Port 45 Busan
10 La Spezia 28 Kobe 46 Xingang
11 Genoa 29 Yantain 47 Dalian
12 Algeciras 30 Hong Kong 48 Odessa
13 Port Tangiers 31 Singapore 49 Ilyichevsk
14 Whihelmshaven 32 Constantza 50 Ambarli
15 Colombo 33 Izmit Korfezi 51 Trieste
16 Suez Canal 34 Port Said 52 Koper
17 Barcelona 35 Beirut 53 Rijeka

3.2. Port importance identification222

From this subsection, the vulnerability of the logistics network will be studied step by step. Firstly, the impor-223

tance and influential ability of each seaport will be identified by three centrality methods based on different topology224

9



information (introduced in Section 2.2). The normalized score and rank of each port obtained by k-core decomposi-225

tion approach, gravity-based centrality, and PageRank centrality are shown in Table 3, 4, and 5, respectively. Here,226

ports with duplicate scores are assigned the same rank. Ports with high scores are identified as important ports in the227

maritime transportation network due to the characteristics of each centrality measure (Section 2.2). Observed from228

Table 3, there are many nodes with the same score ηi and rank so we cannot distinguish between the differences of229

these nodes and their impact on the vulnerability of the network. However, this method can easily identify the center230

seaport in the maritime network. The outcome is caused by the inherent characteristic of this k-core decomposition231

approach. The normalized score given by gravity-based centrality (Table 4) and PageRank centrality (Table 5) can be232

used to identify the importance of each port clearly, and there are almost no nodes with the same score (apart from233

node 18 and 19 as well as node 52 and 53). The score of each seaport is then visualized on the network (Figure 7).234

Here, the size of nodes represents the score obtained by different centrality methods, where the node with a higher235

centrality score has a larger size, thereby indicating the importance of ports in the maritime network. Except for the236

similar size of nodes in Figure 7(a), the size of nodes is different in Figure 7(b) and 7(c), reflecting the importance of237

nodes. We can find that nodes (ports) near the center of the network are usually of higher importance (Figure 7).238

Table 3: Normalized score ηi obtained by k-core decomposition approach.
ID ηi Rank ID ηi Rank ID ηi Rank
0 1.389 × 10−2 28 18 1.389 × 10−2 28 36 2.778 × 10−2 1
1 1.389 × 10−2 28 19 1.389 × 10−2 28 37 2.778 × 10−2 1
2 1.389 × 10−2 28 20 1.389 × 10−2 28 38 1.389 × 10−2 28
3 2.083 × 10−2 10 21 1.389 × 10−2 28 39 2.778 × 10−2 1
4 2.083 × 10−2 10 22 2.083 × 10−2 10 40 1.389 × 10−2 28
5 1.389 × 10−2 28 23 1.389 × 10−2 28 41 2.778 × 10−2 1
6 2.083 × 10−2 10 24 1.389 × 10−2 28 42 2.778 × 10−2 1
7 2.083 × 10−2 10 25 2.083 × 10−2 10 43 2.083 × 10−2 10
8 2.083 × 10−2 10 26 2.083 × 10−2 10 44 2.083 × 10−2 10
9 2.083 × 10−2 10 27 2.083 × 10−2 10 45 2.778 × 10−2 1
10 1.389 × 10−2 28 28 1.389 × 10−2 28 46 2.083 × 10−2 10
11 1.389 × 10−2 28 29 2.778 × 10−2 1 47 2.083 × 10−2 10
12 2.083 × 10−2 10 30 2.778 × 10−2 1 48 1.389 × 10−2 28
13 2.083 × 10−2 10 31 2.778 × 10−2 1 49 1.389 × 10−2 28
14 2.083 × 10−2 10 32 1.389 × 10−2 28 50 1.389 × 10−2 28
15 1.389 × 10−2 28 33 1.389 × 10−2 28 51 1.389 × 10−2 28
16 2.083 × 10−2 10 34 1.389 × 10−2 28 52 1.389 × 10−2 28
17 1.389 × 10−2 28 35 1.389 × 10−2 28 53 1.389 × 10−2 28

Table 4: Normalized score δi obtained by gravity-based centrality.
ID δi Rank ID δi Rank ID δi Rank
0 5.969 × 10−3 48 18 6.637 × 10−3 44 36 2.415 × 10−2 15
1 5.511 × 10−3 51 19 6.637 × 10−3 44 37 4.682 × 10−2 5
2 1.127 × 10−2 32 20 2.789 × 10−2 10 38 5.565 × 10−3 50
3 2.785 × 10−2 11 21 8.519 × 10−3 36 39 2.609 × 10−2 12
4 1.292 × 10−2 29 22 1.915 × 10−2 20 40 6.428 × 10−3 46
5 5.984 × 10−3 47 23 7.760 × 10−3 38 41 3.558 × 10−2 7
6 1.567 × 10−2 23 24 8.218 × 10−3 37 42 2.878 × 10−2 8
7 1.572 × 10−2 22 25 4.835 × 10−2 4 43 1.368 × 10−2 26
8 2.364 × 10−2 17 26 2.566 × 10−2 13 44 1.137 × 10−2 31
9 4.061 × 10−2 6 27 1.353 × 10−2 27 45 2.791 × 10−2 9
10 6.653 × 10−3 43 28 7.346 × 10−3 39 46 1.031 × 10−2 33
11 6.698 × 10−3 41 29 5.240 × 10−2 2 47 1.228 × 10−2 30
12 1.878 × 10−2 21 30 2.396 × 10−2 16 48 6.727 × 10−3 40
13 2.450 × 10−2 14 31 5.175 × 10−2 3 49 5.603 × 10−3 49
14 1.411 × 10−2 25 32 1.955 × 10−2 19 50 1.479 × 10−2 24
15 9.225 × 10−3 34 33 8.580 × 10−3 35 51 1.333 × 10−2 28
16 8.424 × 10−2 1 34 2.321 × 10−2 18 52 5.173 × 10−3 52
17 5.049 × 10−3 54 35 6.665 × 10−3 42 53 5.173 × 10−3 52

3.3. Centrality comparison239

The three centrality measures consider different structure information in the network and give different outcome,240

so we compare them in this subsection in detail. The normalized score and distribution of three centrality measures241

are shown in Figure 8. Due to the large number of duplicated scores obtained by the k-core decomposition, δ and ς242

are mainly analyzed in this section. Node 16 has the highest δ16 and ς16 at the same time, indicating node 16 (Suez243
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(a) Maritime network based on ηi

(b) Maritime network based on δi

(c) Maritime network based on ςi

Figure 7: Maritime networks, where the size of the node represents the importance of the port.
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Table 5: Normalized score ςi obtained by PageRank centrality.
ID ςi Rank ID ςi Rank ID ςi Rank
0 1.21887 × 10−2 45 18 1.35037 × 10−2 33 36 1.79703 × 10−2 22
1 1.26710 × 10−2 41 19 1.35037 × 10−2 34 37 3.01761 × 10−2 6
2 1.53439 × 10−2 27 20 2.99825 × 10−2 7 38 1.32040 × 10−2 36
3 2.98963 × 10−2 8 21 9.96643 × 10−3 52 39 2.30251 × 10−2 13
4 1.83048 × 10−2 20 22 1.69661 × 10−2 26 40 1.19527 × 10−2 47
5 1.07074 × 10−2 50 23 1.01668 × 10−2 51 41 2.96772 × 10−2 9
6 1.72793 × 10−2 24 24 9.70668 × 10−3 54 42 2.18204 × 10−2 15
7 1.72279 × 10−2 25 25 3.29975 × 10−2 3 43 1.20239 × 10−2 46
8 2.50705 × 10−2 10 26 1.99175 × 10−2 18 44 1.32433 × 10−2 35
9 3.15519 × 10−2 5 27 1.24174 × 10−2 44 45 2.20159 × 10−2 14

10 1.24273 × 10−2 43 28 1.17981 × 10−2 48 46 1.36380 × 10−2 31
11 1.26717 × 10−2 39 29 3.51642 × 10−2 2 47 1.31006 × 10−2 37
12 1.82708 × 10−2 21 30 1.79425 × 10−2 23 48 1.26712 × 10−2 40
13 2.10320 × 10−2 16 31 3.17821 × 10−2 4 49 1.29771 × 10−2 38
14 1.35391 × 10−2 32 32 1.88780 × 10−2 19 50 2.10287 × 10−2 17
15 9.71269 × 10−3 53 33 1.09851 × 10−2 49 51 2.39902 × 10−2 12
16 5.38294 × 10−2 1 34 2.47668 × 10−2 11 52 1.41706 × 10−2 29
17 1.45088 × 10−2 28 35 1.24651 × 10−2 42 53 1.41706 × 10−2 29

Canal) is the most important seaport in the global logistics network, which is consistent with intuition. All (shortest)244

maritime transport between Asia and Europe needs to pass through Suez Canal. η16 is not the largest as the k-core245

decomposition approach always identify the center node as the most important one, but it is usually the most central246

node that has the highest importance in the maritime network. Node 29 (Yantain) is identified as the most important247

seaport (η29) by the k-core decomposition approach, and it is the second most important node identified by the other248

two centrality measures (δ29 and ς29). Three centrality methods reached a consensus at this port because it locates in249

the center of East Asia and undertakes the transshipment of a large number of goods in this region. Node 25 (Tanjung250

Pelepas) and node 31 (Singapore) are also ranked very high (δ and ς) because they are in the key area of the Straits of251

Malacca and play an important role in Southeast Asia. Node 9 (Rotterdam) is then identified as the important seaport252

in the logistics network by δ and ς at the same time because Rotterdam has been Europe’s largest seaport for a long253

time. Node 37 (Shanghai), and node 41 (Ningbo) are identified as important nodes by η, δ, and ς at the same time,254

because it undertakes the sending and receiving of goods in the fastest growing and richest regions of China and even255

East Asia – the Yangtze Delta. Node 42 (Qingdao) and Node 45 (Busan) are two important seaports in the logistics256

network identified by η and δ at the same time. There are also some unimportant nodes that can be recognized by257

different centrality methods at the same time, such as node 17 (Barcelona) and node 24 (Vung Tao), because they258

are near other important seaports and have few routes. Figure 8 show that the distribution of η is the most uniform,259

followed by ς, and the distribution of δ is the most uneven.260

Figure 8: Normalized score obtained by different centrality methods, including the gravity-based centrality (blue), K-core decomposition approach
(orange), and PageRank (gray).

The Pearson correlation coefficient r is then applied to measure the correlation between the distribution of every261
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two centrality measures. r is defined as follows,262

r =

∑
(x − mx)

(
y − my

)
√∑

(x − mx)2 ∑(
y − my

)2
, (18)

where mx and my are the mean of x and y, respectively. Two centrality measures will give the same rank when r = 1263

and give totally different ranks when r = −1. The values of r are given in Table 6. It shows that δ and ς are closely264

related (r = 0.9459) because they can give each nodes a unique score. However, the k-core decomposition approach265

gives many nodes with the same η, which is difficult to evaluate the importance of each port and leads to irrelevance266

to the other methods. Different methods will give a different evaluation of the importance of nodes as they consider267

different kinds of topology information [69].268

Table 6: The Pearson correlation coefficient r between the distribution of every pair of centrality measures.
Pearson r δ η ς

δ 1.0000 0.6413 0.9450
η 0.6413 1.0000 0.5080
ς 0.9450 0.5080 1.0000

3.4. Vulnerability of the maritime network269

In order to evaluate the property of maritime network reasonably, more topology information should be considered270

in the process. Accurate results cannot be obtained by only considering single information because of insufficient un-271

derstanding of network information. This paper takes into account the k-core decomposition approach, gravity-based272

centrality, and PageRank centrality to measure the vulnerability of the maritime logistics network. Compared with the273

voting method proposed by Liu et al. [68], this proposed method is completely objective and there is no subjective de-274

ception and other similar behaviors. In addition, more topology information is considered in this proposed than Refs.275

[51] (multiscale factor q) and [65] (centrality measures). Hence, this proposed model will measure the vulnerability276

of maritime networks more reasonably. Given the distribution of different centrality measure, the vulnerability of the277

maritime logistics network is measured by Eqs. (8), (12), and (16). The results of the vulnerability of this network278

are shown in Table 7. The uniform distributions of η and ς cause the relatively low heterogeneity, resulting the high279

values of ψη and ψς. However, the distribution of δ is uneven (Figures 7(b) and 8), thus leading to the low value of280

ψδ. Hence, the uniformity degree of the distribution of the socre obtained by centrality measures is related to the281

vulnerability of the entire network. The vulnerability index of the maritime logistics network is ν = 0.0342 (Table 7).282

Table 7: The vulnerability of the maritime network.
ψη ψδ ψς ν

Maritime network 0.2245 0.2110 0.2212 0.0342

These highly central seaports (with large values of centrality socre) may create further potential crises, thereby283

increasing the vulnerability of the global maritime transportation network [70]. Failure or accident of this kind of port284

will lead to a decline in the overall performance of the global maritime transportation network, including transporta-285

tion capacity, transportation time, and transportation distance. The centralized structure (centralization of network286

performance control) makes the network structure prone to large-scale cascading failures. This proposed model can287

evaluate the heterogeneity of the connectivity pattern of the logistics network, thereby indicating the impact of every288

seaports on the transportation network. In addition, it suggests that the process of decentralization can increase the289

robust of the transportation network by reducing the heterogeneity of the entire network. Hence, these ports that are290

recognized by all centrality methods as high centrality score should be tested for their impact on the vulnerability291

of the entire maritime network, including node 16 (Suez Canal), node 29 (Yantain), node 25 (Tanhung Pelepas), and292

node 9 (Rotterdam). The process of decentralization is achieved by replacing the centrality score port with the mean293

value of the corresponding set [51]. This means that a large number of routes associated with these selected ports294
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will be temporarily adjusted (added or removed) to reduce the centralization of the maritime network in practice. The295

reduction of these high centrality scores will illustrate the effect of the heterogeneity on the network vulnerability from296

a quantitative perspective. The process and corresponding ν are given in Table 8. As more ports are replaced by new297

centrality score, the maritime network will become more reliable (lower ν). At the same time, the rate of vulnerability298

reduction will also slow down (lower ∆ν), indicating that the implementation of the decentralization process in the299

initial stage is more effective. Hence, these ports with high centrality scores are important for improving the reliability300

of a complex system like the Asia-Europe maritime transportation network.301

Table 8: The process of decentralization and corresponding ν.
Scenario Node ν ∆ν=ν (S i) − ν (S i−1)

S 0 — 0.0342 —
S 1 16 0.0182 -0.0160
S 2 16,29 0.0109 -0.0073
S 3 16,29,25 0.0051 -0.0059
S 4 16,29,25,9 0.0006 -0.0045

Different centrality measures are further studied in this proposed approach. When replacing the gravity-based302

centrality with the betweenness centrality, the vulnerability of the maritime network under different scenarios Ŝ in303

the decentralization is shown in Table 9. It can be found that the maritime network continues to become more304

reliable in the process (∆ν < 0) and the implementation of the decentralization process is more effective in the305

initial stage (
∣∣∣∣ν (Ŝ 1

)
− ν

(
Ŝ 0

)∣∣∣∣ is the largest). When replacing the gravity-based centrality and coreness centrality with306

the betweenness centrality and degree centrality at the same time, the vulnerability of the maritime network under307

different scenarios S̃ is also shown in Table 9. In this case, the same conclusion can be obtained, that is, ∆ν < 0308

and
∣∣∣∣ν (S̃ 1

)
− ν

(
S̃ 0

)∣∣∣∣ is the largest. Therefore, the maritime becomes more reliable in the process of decentralization309

regardless of the selection of centrality measures, indicating that our proposed approach is robust to different centrality310

measures.311

Table 9: The vulnerability ν of maritime time during the process of decentralization when different centrality measures are applied.
Scenario Node ν ∆ν

Ŝ 0 — 0.0894 —
Ŝ 1 16 0.0365 -0.0530
Ŝ 2 16,29 0.0316 -0.0048
Ŝ 3 16,29,25 0.0240 -0.0077
Ŝ 4 16,29,25,9 0.0134 -0.0105
S̃ 0 — 0.1005 —
S̃ 1 16 0.0413 -0.0592
S̃ 2 16,29 0.0341 -0.0072
S̃ 3 16,29,25 0.0239 -0.0101
S̃ 4 16,29,25,9 0.0115 -0.0124

4. Conclusions312

Due to the development of global trade and the progress of globalization, maritime network performance analysis313

has become an important topic of immense interest. An original and novel network vulnerability index has been314

proposed in this paper to study the vulnerability in accidents [71]. Our proposed method aims to close some critical315

gaps in existing methods, such as inadequate consideration of network topology information [65], neglecting the316

physical (multiscale) factor [51], and the limitations of network-scale measurement [72, 73]. Different from existing317

models, the importance of ports is measure by three important centrality measures, including k-core decomposition318

approach, gravity-based centrality, and PageRank centrality. Several kinds of network topology information can be319
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considered in this proposed model simultaneously. The centrality score of ports is then normalized to study its impact320

on the vulnerability of the network by joint entropy and the multiscale factor. According to the experiment network321

and purpose, the multiscale factor q can be adjusted to achieve more accurate measurement. q = 2 is taken in this paper322

to study the effect of these hub transshipment terminals in the maritime network. The vulnerability of the maritime323

network can be measured by the difference between the joint entropy and its maximum entropy. This proposed324

vulnerability index ν can measure the heterogeneity of the connectivity pattern and the degree of uniformity of the325

centrality distribution, thereby showing the effect of the failure of individual node on the performance (vulnerability)326

of the entire network.327

The Asia-Europe maritime transportation network [68] is applied as a test example to validate the applicability of328

our proposed model in Section 3. The importance of ports is first studied by three centrality measures. The results329

show that the k-core decomposition approach give several ports with the same score while the other two measures330

will not. The relationship between the three centrality measures is also discussed in detail, such as analysis of repre-331

sentative ports and Pearson correlation coefficient r. The vulnerability index ν of the original maritime network and332

corresponding index during the decentralization process are determined, thereby illustrating the importance of these333

ports with high centrality scores to reduce the vulnerability of the network. It is worth pointing out that our proposed334

model can be applied not only to maritime transportation networks, but also to other transportation networks in differ-335

ent contexts (high scalability). Transportation between individuals is one of the most important factors to measure the336

vulnerability of the transportation network, such as airlines in air transport networks, tracks in rail networks, and roads337

in highway networks. Although manifestations of connections are different, they can be regarded as edges between338

nodes in all types of transportation networks. Our proposed method can fully take into account the connectivity of339

networks through different centrality measures, thus can be used in a variety of transportation networks. In addition,340

this model can be used to help individuals, companies, and governments in the early logistics network design.341
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