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Abstract

There are some mobile-robot applications that require the complete coverage of an
unstructured environment. Examples are humanitarian de-mining and floor-cleaning
tasks. A complete-coverage algorithm is then used, a path-planning technique that
allows the robot to pass over all points in the environment, avoiding unknown
obstacles. Different coverage algorithms exist, but they fail working in unstructured
environments. This paper details a complete-coverage algorithm for unstructured
environments based on sensor information. Simulation results using a mobile robot
validate the proposed approach.

Key words: Mobile-robot navigation, path planning, complete coverage,
unstructured environments, humanitarian de-mining

1 Introduction

Path-planning algorithms are well understood for a variety of exploratory ap-
plications. Artificial-intelligence methods like learning algorithms are widely
used to solve the problem of robot navigation in unstructured environments.
However there are some types of mobile-robot applications that need a differ-
ent path-planning technique. Scanning applications, like landmine detection,
cleaning tasks and terrain-map generation, require not findind the shortest
path to a point in the environment but scanning over all points in the envi-
ronment and avoiding obstacles of unknown location. This is known as the
complete-coverage problem in unstructured environments. A variety of cov-
erage algorithms exist [1–5], but the most powerful ones are those that rely
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Fig. 1. (a) Exact cellular decomposition of a rectangular area with obstacles. (b)
Adjacency graph.

on finding the critical points of a function to guarantee the completeness of
the method [4–6]. The complete-coverage algorithm herein proposed is of this
type and extends Choset’s algorithm to achieve better performance in unstruc-
tured environments. Choset first developed his coverage algorithm for known
spaces [7] and later adapted it to cover unknown ones [5,6], but the resulting
algorithm fails in some cases to detect critical points.

Previous coverage algorithms that are based on finding critical points use crit-
ical points to achieve an exact cellular decomposition of the environment. This
decomposition divides the environment into a finite number of regions called
cells, which are free of obstacles. Figure 1(a) shows an example, the cellular
decomposition of a rectangular area with an obstacle. A cell can then be swept
by a simple zigzagging pattern of motion in which the robot moves back and
forth along successive grid lines that sweep across the entire field from left to
right. Two different types of critical points can be found: An IN critical point
closes an existing cell and opens two new ones; an OUT critical point closes
two existing cells and opens one new cell (see Figure 1(a)). Then, the complete
coverage of the field is guaranteed by means of an adjacency graph, which as-
sures that every cell is visited. In the adjacency graph each cell is modeled as
an edge connecting two nodes, which represent the critical points. Therefore,
an IN critical point is represented as a node with two diverging edges, and
an OUT critical point is represented by a node where two edges converge (see
Figure 1(b)). Although this type of coverage algorithm has been proved to
be more efficient than previous approaches, two main problems arise when
attempting to use this coverage algorithm in unstructured environments. The
first one is critical-point detection. When the location and shape of the obsta-
cles are unknown, the robot has to include a critical-point searching method
in its zigzagging pattern of motion, and the success of the cellular decomposi-
tion relies on the efficiency of this method. The second problem that arises in
unstructured environments is the on-line generation of the adjacency graph.
Two consecutively detected IN and OUT critical points do not necessarily
belong to the boundary of the same obstacle, depending on the robot’s mo-

2



tion. Therefore, completion of the on-line adjacency graph is no trivial matter
and requires an IN/OUT matching algorithm. These two problems arise when
applying coverage algorithms from the literature, and this paper proposes an
enhancement of Choset’s coverage method to solve them.

The outline of the paper is as follows: first Section 2 describes the robot and
the environment. Then, Section 3 briefly reviews the complete coverage prob-
lem in unstructured environments and shows some deficiencies of previous
approaches. Section 4 explains the improvement of the proposed method in
finding critical points and also shows how the method guarantees complete
coverage by means of an extension of the adjacency graph. Finally, Section 5
shows some simulation results of the proposed approach and conducts a per-
formance analysis. Lastly, Section 6 presents some conclusions.

2 Robot and environment description

2.1 The robot

Unlike in most previous work, here the robot is not considered a point but a
finite area. It can be a rectangular area or a circular area of width/diameter
Drob . This implies that the opening size between two obstacles it can pass
through is lower-bounded by this amount. The robot has knowledge of its exact
location at all times (drawn from a Global Positioning System, an Inertial
Navigation System, etc.), and it is equipped with a sensor capable of detecting
obstacle boundaries (range sensors, bumpers, etc.). The sensor is assumed to
detect obstacles within an area of radius R ≥ Drob/2 around the robot’s body.
Finally, the robot is also equipped with a scanning sensor for carrying out its
main task (mine detector, cleaning scrub, etc.). A navigation system allows
the robot to perform four types of motions: Move forward, Rotate an angle,
Follow obstacle contour to its right, and Follow obstacle contour to its left.

2.2 The environment

The terrain to be explored is a finite planar area populated with a finite but
unknown number of obstacles of arbitrary shapes and unknown locations. The
obstacles need not be visible from each other. The boundary of an obstacle is
a simple closed curve. The terrain limits can be defined either by walls or by
a rectangular area of dimensions L × W .
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3 Complete coverage of unstructured environments based on critical-
point detection

The complete-coverage algorithm that this work is based on relies on achieving
an exact cellular decomposition of the environment while the robot generates
a path of back-and-forth motions sweeping the field from left to right (see
Figure 2). The exact cellular decomposition consists in dividing the field into
regions or cells free of obstacles, so that the sum of resulting cells equals the
total space free of obstacles. Then, each cell is completely covered by the
robot with back-and-forth motions, and the coverage of the entire field results
from assuring that the robot visits every cell. This has been well solved for
known environments; however, two main problems have to be solved to achieve
complete coverage of unstructured environments:

(1) On-line cellular decomposition based on sensed obstacles.
(2) Assurance that the robot visits every cell in the mine field.

Choset’s method for achieving complete coverage in unknown spaces solves for
both problems simultaneously during robot motion. The robot starts covering
the space with back-and-forth motions until it detects an obstacle. When an
obstacle is found, then a critical point is searched for. A critical point is a local
minimum or maximum of the function:

h(x, y) = x, ∀x, y ∈ C (1)

where x, y are the robot’s coordinates in the field’s reference frame and C is the
object’s contour. If the distance along the field’s x-axis that the robot covers
while surrounding the obstacle equals the detection diameter 2R, then the
robot gives up searching for a critical point and continues with back-and-forth
motions. However, if the robot senses a critical point, existing cells will be
closed and new ones will be opened. Then the cellular decomposition consists
in detecting all critical points in the field. In this sense the method is complete,
because it guarantees that every critical point in the environment is detected.
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At the same time, an adjacency graph is incrementally constructed which has
the overall information on already-visited cells.

3.1 Critical-point detection method

The critical-point detection method is depicted in Figure 3. The robot starts
covering the field from a point at the origin of the field’s reference frame, which
will be considered to be CP1. At a given instant, the sensor detects an object
in the robot’s path. Then the robot changes its trajectory to follow the object’s
contour, C, until it finds a critical point, named CP2, or travels a horizontal
distance of 2R. If a local minimum is found and the obstacle is locally convex
at this point, it corresponds to an IN critical point, and at this time the current
cell is closed, and two new cells are opened. An IN point opens two new cells,
while a local maximum (OUT point) closes two existing cells. If the robot
travels a horizontal distance of 2R around the obstacle and finds no critical
points, it goes arround the obstacle back to the location where the obstacle
was detected and continues sweeping the cell with back-and-forth motions.
Figure 3(b) shows the detection of an IN critical point (CP2), which closes
one existing cell, C1, and opens two new cells, C2 and C3, while Figure 3(c)
shows the detection of an OUT critical point (CP3), which closes two existing
cells, C2 and C3, and opens one new cell, C4. Choset also defines two more
types of critical points for non-convex obstacles. When the obstacle is locally
concave, we have a START point at a local minimum or an END critical point
at a local maxima.

3.2 Adjacency-graph construction

The adjacency graph represents the critical points as nodes and the cells as
edges. Each time a critical point is sensed, a new node is plotted. If the critical
point is a minimum (IN point), two edges diverge, and if it is a maximum
(OUT point), two edges converge at the new node. When the last corner in
the field (named CP4) is found, then the robot is guided to any critical point
with disconnected diverging edges. Such edges represent cells not visited. The
adjacency graph ensures that every cell in the mine field is visited by the
robot. The right side of Figure 3 shows the incremental construction of the
adjacency graph.
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4 Enhancement of the method

The method for complete coverage of unstructured environments proposed by
Choset is complete in the sense that the method guarantees that every critical
point in the environment is detected. However, the method is not complete in
the sense of covering the whole free space. There are certain cases where the
method fails. It fails in the critical-point detection algorithm when an obstacle
is not convex, it has more than one IN critical point but only one OUT critical
point, and the END point where the obstacle is locally concave cannot be
detected using range data because the boundary’s curvature is smaller than
the robot’s periphery. Another problem of Choset’s coverage algorithm relies
on matching IN and OUT critical points that define a given cell. When the
environment is unknown and critical points are detected by the way the robot
sweeps the terrain, sometimes the last OUT critical point detected does not
belong to the same obstacle as the last IN critical point found. Therefore an
IN/OUT critical-point matching process is required. In this section these two
problems will be covered in detail and an enhancement of Choset’s method
will be proposed.

4.1 Problems in on-line critical-point detection

A critical point is detected when a local extreme of equation (1) is found. A
convex obstacle will normally have two critical points, one IN and one OUT,
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that define two cells (the upper cell and the lower cell), as shown in Figure
4(a). However, non-convex obstacles, as shown in Figure 4(b), might have more
than one local minimum, that is, more than one IN critical point. Also an END
critical point exists at the local maximum point where the obstacle is locally
concave, however, as Choset advances in his paper, this END point cannot
be detected by range data when the boundary’s curvature is smaller than the
robot’s periphery. When this happens a problem arises when attempting to
generate the adjacency graph, because one IN critical point matches one OUT
critical point, defining two cells, but the remaining IN critical point opens
two new cells that do not actually exist, and the algorithm will fail when it
attempts to detect the corresponding OUT point. It is clear that the second
IN critical point needs to be removed from the robot’s memory to let the
algorithm succeed. If that is done, only critical point IN1 in Figure 4(b) would
be considered, and Cell3 and Cell4 would be merged as one. To solve this
problem, we propose two changes in the coverage algorithm:

Definition 4.1 An IN critical point is the minimum of all local minima of
the function h(x, y) = x, ∀x, y ∈ C.

Definition 4.2 An OUT critical point is the maximum of all local maxima
of the function h(x, y) = x, ∀x, y ∈ C.

With these two modifications, only one IN and one OUT critical point will be
detected per obstacle, solving the problem of previous approaches.
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4.2 Problems in completing the adjacency graph

In the critical-point detection process in unstructured environments, the robot
searches for critical points while sweeping the environment from left to right
with back-and-forth motions. When an obstacle is found in the robot’s tra-
jectory, a critical point is searched for while the robot follows the obstacle’s
contour. If a critical point is then detected, the robot continues with back-and-
forth motions until it reaches another obstacle and then searches for another
critical point. This method of critical-point detection has proven to be very
efficient in identifying critical points while the robot minimizes its trajectory.
However, it is difficult to know which OUT critical point closes the cells opened
by the last IN critical point found. Figure 5 shows an example where the robot
first finds critical point IN1, and therefore Cell1 is closed and Cell2 and Cell3
are opened in the adjacency graph. The robot continues searching in Cell2.
The next critical point found is IN2, which closes the current cell (Cell2) and
opens two more cells (Cell4 and Cell5). The problem arises when the robot
detects the first OUT critical point, that is, OUT1. This point belongs to the
first obstacle, but the robot does not have that knowledge, and the adjacency
graph assumes it belongs to the second one, closing Cell4 and Cell5. This is
a big mistake, because the OUT point found should close Cell3 and Cell5.
As a result, the environment will never be completed, because the robot will
store the wrong information. To solve this problem, an IN/OUT critical-point
matching process is here proposed. This algorithm is based on the following
properties from computational-geometry theory [8]:

Property 4.1 For every obstacle defined by a pair of (IN,OUT) critical points,
xIN < xOUT .

Property 4.2 For a couple of obstacles, let us name the pair of IN/OUT
critical points that define the first obstacle (IN1,OUT1), and the pair of critical
points that define the second obstacle (IN2,OUT2). Then if yIN1 < yIN2 then
yOUT1 < yOUT2. Otherwise the obstacles will cross.

The new method is as follows:

While the robot is detecting critical points, they are stored in an array CP of
nCP elements until the last critical point is found. Then the following process
is carried out:

Do while nCP is greater than 0:

Step 1: Search for the first OUT point in CP. Let us name it OUT1.

Step 2: Search for all IN points in CP such that xINi
< xOUT1 is

true. Let us name the array of those critical points CPIN and the

number of elements in CPIN nIN.
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Step 3: If nIN equals 1 then name the IN critical point IN1 and go

to Step 8.

Step 4: Order the elements in CPIN such that yINi
< yINj

if i < j.
Step 5: Search for all OUT points in CP such that yOUTi

< yOUT1 and

store them in an array CPOUT.

Step 6: Order the elements in CPOUT such that yOUTi
< yOUTj

if i <
j.

Step 7: Name the first element of CPIN IN1 and the first element

in CPOUT OUT1 .

Step 8: IN1 and OUT1 are a pair of critical points and define two

cells. Assign OUT1 to IN1 and remove the pair from CP.

Once the IN/OUT critical-point matching process is finished, every IN point
has a corresponding OUT point, and the process of sweeping the unvisited
cells can be completed successfully. If new critical points were detected while
sweeping unvisited cells, the matching algorithm must be executed again.

4.3 Finding the shortest path to critical points

The two subsections above improve previous coverage algorithms in unstruc-
tured environments. Inserting them into Choset’s method ensures the com-
pleteness of the coverage process. However, to enhance the method’s perfor-
mance, one last consideration is required. Once the last x-coordinate of the
environment has been visited, the robot needs to complete the adjacency graph
to detect unvisited cells. Once the unvisited cells are determined by using the
herein improved algorithm, the robot must be guided to those critical points
that define the unvisited cells. There are some applications, like humanitarian
de-mining, where the robot’s path from its position to the critical point must
be carefully planned, because the robot should not pass through unvisited
cells. It should move along a path traversing the already-known space towards
an IN critical point where the unvisited cell starts. Also, for performance en-
hancement, this path must be minimized. Here, a method for obtaining the
minimum path from the robot’s position to the unvisited IN critical point is
also proposed based on visibility graphs [8]. First the unvisited area is de-
limited by polygons, and the visibility graph is constructed to determine the
shortest path to the critical points. As long as unvisited cells are being visited,
the set of polygons must be updated to increase the area where the path can
be planned.
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4.3.1 Polygon generation

Once the robot encounters the last x-coordinate in the environment, and after
running the IN/OUT critical-point matching algorithm proposed in subsec-
tion 4.2, it only has the knowledge of IN/OUT critical-point pairs defining
obstacles. However some information is needed to let the robot know the size
of the corresponding unvisited cell. This information is necessary to complete
the set of polygons that cover unvisited areas. Figure 6(a) shows an environ-
ment decomposed into cells. Five of them have already been visited (shaded
cells) and still two unvisited cells remain (Cell3 and Cell4). At this time the
robot does not have knowledge of the dimensions of unvisited cells; however,
during the robot’s trip around the obstacles’ contour, the robot did have that
knowledge. Therefore, we insert another new modification into the coverage
algorithm.

Let us define two new types of critical points:

Definition 4.3 A SUP critical point is the maximum of local maxima of the
function g(x, y) = y, ∀x, y ∈ C.

Definition 4.4 An INF critical point is the minimum of local minima of the
function g(x, y) = y, ∀x, y ∈ C.

When the robot is following the obstacle’s contour, it only senses one INF
or one SUP critical point, because it only covers one of the two cells defined
by an obstacle. Therefore, the INF or SUP critical point detected is assigned
to the last IN critical point found (there is no need for matching processes
here). Knowledge of the INF or SUP critical point lets the robot know if the
unvisited cell is over or under the obstacle (along the y coordinate), and also
the dimensions of the unvisited cell.
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Fig. 6. Completion of the set of polygons of unvisited cells (a) cellular decomposition
with unvisited cells in white; (b) Set of polygons
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Definition 4.5 If a SUP critical point is found, then the unvisited cell is
under the current obstacle, that is, for every point P (x, y) that belongs to the
unvisited cell, y < ySUP .

Definition 4.6 If an INF critical point is found, then the unvisited cell is
over the current obstacle, that is, for every point P (x, y) that belongs to the
unvisited cell, y > yINF .

Now the polygon that contains the unvisited cell can be determined as the
union of five points: (xIN , yIN), (xSUP , ySUP ), (xOUT , yOUT ), (xOUT , 0), (xIN , 0)
if a SUP point is detected, or (xIN , yIN), (xINF , yINF ), (xOUT , yOUT ), (xOUT , ymax),
(xIN , ymax) if an INF point is detected. Figure 6(b) shows the set of polygons
that contain the unvisited areas.

4.3.2 The shortest path

Once the set of polygons that contain the unvisited cells is defined, the shortest
path to IN critical points can be defined. To define the shortest path, again two
properties of computational-geometry theory are considered (see Figure 7):

Property 4.3 Any shortest path between two points Pstart and Pgoal among a
set S of disjoint polygonal obstacles is a polygonal path whose inner vertices
are vertices of S.

Property 4.4 The shortest path between two points Pstart and Pgoal among
a set S of disjoint polygonal obstacles consists of arcs of the visibility graph
Gvis(S∗), where S∗ = S ⋃{Pstart, Pgoal}.

It is not within the scope of this paper to remind the reader how the visibility
graph can be obtained. This information can be found elsewhere [9–11]. Then

P

P

goal

start

Shortest path

Fig. 7. Visibility graph and shortest path between two points among a set of polyg-
onal obstacles
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the algorithm to cover unvisited cells is as follows:

Let us name the initial position of the robot before computing the shortest
path (xrob, yrob). Then, the following steps have to be followed:

Do while the number of IN critical points on the adjacency graph is

positive:

Step 1: Compute the shortest path to the last IN critical point on

the adjacency graph.

Step 2: Follow the shortest path to the IN critical point.

Step 3: Sweep the current polygonal area Sn until the corresponding

OUT point is found.

Step 4: Remove Sn from the set S of disjoint polygonal areas. Remove

the last IN critical point from the adjacency graph.

Step 5: Let xrob = xOUT , yrob = yOUT. Go to Step 1.

Figure 8 shows the two shortest paths obtained for the example above. The
thick continuous line depicts the first path from the robot’s initial position to
the last IN critical point on the adjacency graph, that is, IN2. The thick dashed
line depicts the shortest path from critical point OUT2 to the remaining IN
critical point on the adjacency graph, that is, IN1. Note that the paths enter
the obstacle area. It is assumed that the robot will follow the obstacle’s contour
until it reaches the path again.

13



Fig. 9. Simulation results of cellular decomposition. Unvisited cells in white colour

Fig. 10. Simulation results of the complete-coverage algorithm after applying the
enhancements proposed

5 Experimental results and performance analysis

The proposed method for complete coverage of unstructured environments has
been tested through simulation for a variety of situations (shape and number
of obstacles). Different scenarios were obtained by generating obstacles using
circles that were placed randomly inside the rectangular area that represents
the field. This method of creating scenarios allows to generate complex obsta-
cles. The method succeeded at achieving completeness in all scenarios. Figure
9 shows a complex scenario where a walking robot’s path is shown by a dashed
line and a shaded area represents the total swept area. Cell decomposition is
performed and white areas show uncovered cells. Figure 10 shows the final
result of applying the IN/OUT matching algorithm and the shortest-path
method to cover the remaining cells. As may be observed from Figure 10, the
algorithm detects all critical points and sweeps the whole free space.
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Fig. 11. Simulation results in complex scenarios

More complex environments have been tested and the method succeeded. For
instance, when three or more obstacles have a common y coordinate, uncov-
ered cells may include one or more obstacles, and therefore, new cells will be
found while covering them. The proposed method can handle such environ-
ments. New critical points are found while sweeping unvisited cells. Then, the
IN/OUT matching algorithm has to be executed again and new polygons are
created. Figure 11 shows simulation results in such situations.

The performance of the algorithm, assessed in terms of the upper bound on
the length P of the generated path as a function of obstacle perimeters and
distance between obstacles, is:

P ≤ Z + 2
n∑

i=1

pi +
n−1∑

i=1

SPi,i+1 (2)

where Z is the total path generated with back-and-forth motions, pi is the
perimeter of the ith obstacle, with n being the total number of obstacles found,
and SPi,i+1 is the length of the shortest path from obstacle i to obstacle i+1.

The total path generated with back-and-forth motions is upper bounded by:

Z ≤ W

2R
+ L (3)

which corresponds to the case of no obstacles. In this expression, W is the
width of the field and L is the length of the field, with R being the scanning
radius.

The performance of the algorithm is the same as Choset’s provided that he
used the shortest-path algorithm. However, note that Choset’s method, al-
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though the most efficient of the methods in the literature, is not complete for
every possible situation, and the approach herein proposed is complete.

6 Conclusions

Some robotic applications require a complete-coverage algorithm to guarantee
that the robot’s path covers the whole obstacle-freee area. Prior coverage algo-
rithms exhibit good performance when negotiating structured environments,
but most of them fail in unstructured terrains. Some exhibit poor perfor-
mance, while others fail to guarantee completeness of the scanned area. This
paper describes some deficiencies of previous complete-coverage algorithms
in unstructured environments and also proposes some relevant modifications
to improve the method. The resulting method has been proven to success-
fully cover the whole area, and some simulation examples have been shown.
Added to the completeness of the proposed method, the performance achieved
is equivalent to that of the best previous approach. This method can be very
useful in robotic de-mining applications or cleaning tasks.
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