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Abstract

This paper proposes a new technique for vision-based robot navigation. The basic
framework is to localise the robot by comparing images taken at its current location
with reference images stored in its memory. In this work, the only sensor mounted
on the robot is an omnidirectional camera. The Fourier components of the omni-
directional image provide a signature for the views acquired by the robot and can
be used to simplify the solution to the robot navigation problem. The proposed sys-
tem can calculate the robot position with variable accuracy (“hierarchical localisa-
tion”) saving computational time when the robot does not need a precise localisation
(e.g. when it is travelling through a clear space). In addition, the system is able to
self-organise its visual memory of the environment. The self-organisation of visual
memory is essential to realise a fully autonomous robot that is able to navigate in
an unexplored environment. Experimental evidence of the robustness of this system
is given in unmodified office environments.
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1 Introduction

A mobile robot that moves from place to place in a large scale environment
needs to know its position in the environment to successfully plan its path
and its movements. The general approach to this problem is to provide the
robot with a detailed description of the environment (usually a geometrical
map) and to use some kind of sensors mounted on the robot to locate it-
self in its world representation. Unfortunately, the sensors used by the robots
are noisy, and they are easily misled by the complexity of the environment.
Nevertheless, several works successfully addressed this solution using high pre-
cision sensors like laser range scanners combined with very robust uncertainty
management systems [19] [2]. Another solution, very popular in real-life robot
applications, is the management of the environment. If artificial landmarks,
such as stripes or reflecting dots, are added to the environment, the robot can
use these objects, which are easy to spot and locate, to calculate its position
on a geometrical map. An example of a successful application of this method
is the work of Hu [8].

Unfortunately, these two approaches are not always feasible. There are situa-
tions in which an exact map of the environment is either unavailable or useless
— for example, in old or unexplored buildings or in environments in which the
configuration of objects in the space changes frequently. So, the robot needs to
build its own representations of the world. This internal representation can be
something different from a metrical map. As an example let us consider topo-
logical maps. These are representations of the environment that capture the
topology of the environment and that have been successfully used for robot
navigation and map building [4] [14] [18]. This means that in most cases a
geometrical map contains more information than that needed by the robot to
move in the environment. Often, this adds unnecessary complexity to the map
building problem. Kuipers showed that is possible to construct a hierarchical
description of the environment [13] by first building a topological map and
then, on top of it, a metrical description of the environment. In a previous
work we showed it is possible to implement these ideas in a real robot fitted
with an omnidirectional vision system [15].

In addition to the capability of reasoning about the environment topology
and geometry, humans show a capability for recalling memorised scenes that
help themselves to navigate. This implies that humans have a sort of visual
memory that can help them locate themselves in a large environment. There is
also experimental evidence to suggest that very simple animals like bees and
ants use visual memory to move in very large environments [5]. From these
considerations, a new approach to the navigation and localisation problem
developed, namely, image-based navigation. The robotic agent is provided with
a set of views of the environment taken at various locations. These locations are
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Fig. 1. The omnidirectional vision sensor used in the experiments.

called reference locations because the robot will refer to them to locate itself
in the environment. The corresponding images are called reference images.
When the robot moves in the environment, it can compare the current view
with the reference images stored in its visual memory. When the robot finds
which one of the reference images is more similar to the current view, it can
infer its position in the environment. If the reference positions are organised
in a metrical map, an approximate geometrical localisation can be derived.
With this technique, the problem of finding the position of the robot in the
environment is reduced to the problem of finding the best match for the current
image among the reference images. The problem now is how to store and to
compare the reference images, which for a wide environment can be a large
number.

As we will see in Section 2.1, different methods have been proposed. In this
paper, we have fully developed a method we proposed in a previous work
[10]. The robot is equipped with an omnidirectional camera and takes a set
of omnidirectional images at the reference locations, then it compares the
current omnidirectional image with the reference images. In order to store and
match a large number of images efficiently, we transform each omnidirectional
view into a compact representation by expanding it into its Fourier series.
The agent memorises each view by storing the Fourier coefficients of the low
frequency components, that we call the “Fourier signature” of the image.
This drastically reduces the amount of memory required to store a view at
a reference location. Matching the current view against the visual memory is
computationally inexpensive with this approach. Details on how to calculate
the Fourier signature from the original image are given in Section 2.1. In
Section 2.2, we will describe the process of matching the current view against
the visual memory. This process is derived from calculating the degree of
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Fig. 2. An omnidirectional image taken at a reference location.

Fig. 3. The panoramic cylinder created by the omnidirectional image of Fig. 2.

similarity between two omnidirectional images using the signatures associated
to them. In Section 2.3, we will show experimental evidence of what we called
hierarchical localisation in a complex real-world environment in which many
objects are present. In Section 3.1, we will show experiments in which the
robot explores a new environment and memorises the local views at many
locations. When the exploration phase is finished, it organises the memorised
views so that they reflect the geometry of the environment. In Section 3.5, we
explain how the robot plans its navigation toward a destination in a reactive
manner by using its self-organised memory.

2 Image-based Localisation

As we pointed out in the introduction, the first problem to tackle when build-
ing an image-based localisation system is to find a manageable way of storing
and comparing the reference images. The aim is to have a data set that fully
describes the environment and enables the system to reliably associate the
current view with the reference view taken at a nearby location, while keeping
the dataset small enough to be easily stored and quickly processed.

The first step, in order to lower the number of required reference images, is
to use an omnidirectional camera. In fact, if the robot is fitted with a stan-
dard perspective camera, the view of the environment from a certain location
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changes with the direction of gaze. To be able to recognise this point regard-
less of the instantaneous heading, the robot needs to take several pictures
in different directions. The amount of memory required to store and retrieve
such a large number of images can rapidly grow to an unmanageable size. A
solution can be to constrain the movements of the robot in order to keep the
camera pointing at the same location [3], but this greatly limits the motion of
the robot. Another solution can be to extract from the images some features
that reduce the amount of required memory while retaining a unambiguous
description of the image [20]. Nevertheless, working with a perspective cam-
era, collecting such a large number of images is tedious and time consuming.
Therefore, we used the omnidirectional camera depicted in Fig. 1. This camera
mounts an hyperbolic mirror with a black needle at the apex of the mirror
to avoid internal reflections on the glass cylinder [9]. A single omnidirectional
image gives a 360◦ view of the environment from a certain location, see Fig. 2.

One might object that omnidirectional images have a low resolution, but this
usually is not a limitation in tasks like navigation and localisation. In fact, we
are more interested on the position of the objects than in the details on their
surfaces. Actually, to some extent, the low resolution can be an advantage,
because it lowers the number of pixels to be processed to extract the desired
information. We will show that the relatively low-resolution images we used
contain enough information for the localisation and navigation task.

2.1 Image signature

Let us come to the second step, the comparison of the current image with
the reference images. The simplest approach might appear to be some sort of
direct comparison of two images pixel by pixel, but this will force us to store the
whole image using much memory. We propose to use what we call a Fourier
signature to represent the omnidirectional images. The Fourier signature is
computed in three steps. First, the omnidirectional image is transformed in a
panoramic cylinder, this is a new image obtained unwarping the original
omnidirectional image, as depicted in Fig. 3. Second, we calculate the 1-D
Fourier transform of every line of the panoramic cylinder and we store in a
matrix the Fourier coefficients line by line. Third, we keep only a subset of
the Fourier coefficients, those corresponding to the lower spatial frequencies,
as signature for the image.

Note we do not calculate the Fourier transform of the original omnidirectional
image, but we calculate the Fourier transform of the panoramic cylinder. This
simplifies the problem of calculating the image similarity. First of all, the
panoramic cylinder is a periodic function along the x-axis which, firstly, sim-
plifies the calculation of the Fourier transform and secondly, is the natural
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Fig. 4. Two panoramic cylinder acquired at the same location before and after a
rotation on the spot. The dashed box indicates the spatial shift a between the two
images.

representation for implementing a rotational invariance. As we said, the robot
must be able to match the current view with the corresponding reference image
regardless of the current heading. So, we need to introduce a rotational invari-
ance in the calculation of the similarity between two images. Using the Fourier
coefficients as a signature for the images, this problem is also addressed. Let
us explain how it works.

If the robot grabs two omnidirectional images at the same location but with
different headings, these two images are actually the same omnidirectional
image rotated about its centre. The amount of rotation corresponds exactly
to the number of degrees the robot rotated. This means the two panoramic
cylinders created by unwarping the omnidirectional image are actually the
same image just shifted along the x-axis, like in Fig. 4. Let see how this
consideration affects the Fourier transform of the two images. If f(x) is one
row of the first panoramic cylinder, f(x − a) is the corresponding row of the
shifted panoramic cylinder and by applying the Shift Theorem, we can write:

F{f(x − a)} = e−j2πasF{f(x)} (1)

where F{f(x)} is the Fourier transform of f(x). In other words, the Fourier
transform of a shifted signal is equal to the Fourier transform of the origi-
nal signal multiplied by the unit magnitude complex coefficient e−j2πas. This
property is valid for every row of the panoramic cylinder. This means that the
amplitude of the Fourier transform of the shifted image is not changed and
there is only a phase change, proportional to the amount of shift a.

Coming back to our panoramic images, we can then associate the magnitude
of the Fourier transform to the appearance of the environment from a partic-
ular place and the phase of the Fourier transform to the heading of the robot.
In such a way, when the robot is turning on the spot and the apparency of
the environment is not changing, the magnitude of the Fourier transform does
not change. What is changing is the phase of the Fourier transform and the
amount of change is proportional to the change in the heading. Associating the
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Fig. 5. The power spectrum of the Fourier transform of the image in Fig. 3. Note that
only the first 30 components are shown and components after the 15th have very
small values and so can be neglected in the calculation of the similarity function.

apparency of the environment, and then the position of the robot, to the mag-
nitude of the Fourier transform and the heading of the robot to the phase of
the Fourier transform, we obtained both the desired rotational invariance and
a way to calculate the difference between the current heading and the head-
ing associated to the reference image. For further discussion of the rotational
invariance using the Fourier transform, see also [17].

Other authors used different approaches for reducing the memory requirement
of omnidirectional images. The most popular technique is to extract a set of
eigenimages from the set of reference images and to project the images into
eigenspaces. The drawback of such systems is that they need to further pre-
process the panoramic cylinder images they created from the omnidirectional
image in order to obtain the rotational invariance as in [1], in [11] and in [6] or
to constrain the heading of the sensor as in [12]. A different approach might be
to create a signature for the image based on the colour histograms of vertical
sub-windows of the panoramic image, as in [7]. They implemented a rotational
invariance by matching the colour histograms of sub-windows regardless the
position they appear in two panoramic images. However, this approach based
on colours is not useful in a office environment with poor colour information
(like the one we presented in the experiments) where the objects are almost
gray and white.

The reduction in the memory requirement with our method is large. Figure 2
shows a 640 × 480 pixels omnidirectional image. Figure 3 shows the 512 × 80
pixels panoramic cylinder created from this image, and Fig. 5 shows a plot
of the magnitude coefficients of its Fourier series. The Fourier signature as-
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Fig. 6. The values of similarity of an input image with respect to nearby reference
images. Every curve represent the similarity values calculated with Fourier signa-
tures with a different number of Fourier components.

sociated to the image weights only 19Kb, as we store the magnitude and the
phase component of the first 15 Fourier components for everyone of the 80
rows of the panoramic cylinder. As the figure shows, dominant power exists
in the frequencies before the 15th component and higher frequencies can be
considered not to bring additional information. This is shown in Fig. 6, where
we plotted the similarity of an input image against nearby reference images.
The similarity between the input images and the reference images have been
calculated with Fourier signatures composed of a different number of Fourier
components. One can see how, using only 2 or 5 Fourier components the dis-
criminant power of the similarity function is low and does not allow the system
to clearly distinguish which of the reference images is most similar to the in-
put image, while if more than 15 Fourier components are used (e.g. 50 or
256) there are no improvements and sometime the performance is even worse.
The reason is that only the low frequency components convey information
useful for localisation purpose and that very high frequency components are
dominated by noise, so they can spoil the localisation. As a result, we repre-
sent the omnidirectional image with just the 15 values of the first 15 Fourier
components.

In the next section, we will describe how the Fourier Signatures can be used
to assess the degree of similarity between different images.
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Fig. 7. The plot of the dissimilarity function values versus the distance between
the reference image and the current image. The different lines in the plot represent
different pairs of reference image - current image.

2.2 Similarity computation

To compute the similarity between two omnidirectional images we first define
a Dissimilarity function that uses the two Fourier Signatures associated to
the images. The dissimilarity Dis(Oi, Oj) between the omnidirectional images
Oi and Oj is:

Dis(Oi, Oj) =
l−1∑
y=0

m−1∑
k=0

|Fiy(k) − Fjy(k)| (2)

where Fiy(k) and Fjy(k) are the Fourier coefficients of the k-th frequency of
y-th row of Oi and Oj, l is number of rows of the panoramic cylinder, and
m is the number of Fourier components in the Fourier signature. The higher
the dissimilarity value, the more two images are dissimilar. The dissimilarity
function is defined as the L1 norm of two Fourier signatures:

The plot in Fig. 7 depicts how the value of the dissimilarity function changes
depending on the distance between the positions where the current image
and the reference image were taken. The different lines in the plot represent
five different pairs of reference image-current image taken in a cluttered office
environment. The dissimilarity linearly increases with the distance within a
short range, Fig. 7. Augmenting the distance between the two images, the
value of the dissimilarity function steadily grows, but after a certain distance
it saturates. This happens because when the two images are taken at points
that are far apart, there is no correlation at all between the two images. The
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Fig. 8. The values of the similarity functions calculated at every reference point
for the current image. The empty circles on the XY plane represent the reference
images. The cross represents the actual position of the current image. The height
of the surface at every reference location is proportional to the degree of similarity
between the reference image and the current image.

absolute value of the dissimilarity function is unimportant – it depends on
the environment structure in a non-trivial way. What is important, in our
approach, are the relative values obtained for the current image against all
the reference images. To stress this concept, we introduced the concept of
similarity function, re-scaling the dissimilarity values to lie between the
two arbitrary values 0 and 1000. The rescaling in done on the whole dataset
of reference images.

Sim(Oi, Oj) = 1000 − 1000
Dis(Oi, Oj) − Mini,j{Dis(Oi, Oj)}

Maxi,j{Dis(Oi, Oj)} − Mini,j{Dis(Oi, Oj)}
(3)

In Fig. 8, the surface represent the values of similarity of the current input
image with respect to all reference images in the environment imaged in Fig. 3
and sketched in Fig. 10. The empty circles represent the position of the refer-
ence images, the cross the position of the current input image, and the surface
height at every reference position represents the similarity value between the
input image and the reference image. As we said, to calculate the position of
the robot, the system finds the reference image with the highest value of the
similarity function. This gives a topological localisation for the robot. In other
words, we do not know where the robot is, but we know that it is closer to the
location of the matched reference image, than to any other reference location.
As we will see in Section 3, this consideration, combined with the linearity
of the similarity function for small distances make it possible to extract some
geometrical information about the localisation of the robot and the geometry
of the environment as well. However, most of the time for tasks like navigation
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a precise geometrical localisation is not necessary. It is enough for the robot
to have a topological localisation and in most situations the robot can effec-
tively navigate with a broad topological localisation. In fact, the localisation
accuracy with which the robot needs to navigate depends on the environment
and on the current action the robot is performing. If the robot is crossing a
wide open space, it does not need to know where it is down to the centimetre,
but if it has to enter a door the accuracy must be higher. This is similar to
the behaviour we experience walking down a street of an unknown town using
a map. When we are following the High Street, we do not need to know our
exact position on the map, but when we have to take a detour or to enter a
building we need to reduce the uncertainty about our position, maybe looking
for additional environmental clues. We called this process hierarchical local-
isation. The word hierarchical was chosen to indicate the robot can calculate
more and more precise self-localisation areas, as will be explained in the next
section.

2.3 Hierarchical Image-based Localisation

Other authors have also highlighted the need for different localisation accura-
cies depending on the kind of motion required by the robot. The work in [6]
is an example of a vision-based navigation system that uses different localisa-
tion accuracies for different tasks. This system uses two different vision-based
navigation strategies: topological navigation and visual-path following naviga-
tion. The system switches between these two alternatives depending on the
situation. The drawback of this solution is that visual path following requires
handmade design and an accurate control system. We solved the requirement
of a different localisation accuracy within the frame of image-based navigation
using the same technique described in Section 2, actually simplifying this tech-
nique. To explain how this work, we need to give some insight on the meaning
of the Fourier coefficients we can calculate from the panoramic cylinders.

When we calculate the Fourier transform of a brightness signal, such as one
row of the panoramic cylinder, we are decomposing this signal into its com-
ponents on a set of basis functions. These basis functions are related to the
spatial brightness variation. The first basis function, the one with zero fre-
quency, is the constant brightness signal and the coefficient associated with
it gives the level of brightness of the image. The basis functions with higher
frequencies give the importance of the brightness pattern of corresponding fre-
quency. When we are calculating the similarity function for two images we are
summing up all the contributions from the different frequency components.

When looking for the similarity between two images, we can see that the
average brightness of the images changes slowly with the distance between the
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Fig. 9. An example of hierarchical localisation. The number of Fourier components
used to calculate the similarity function increases from left to right. The empty
circles represent the reference images. The full circle represents the actual position
of the current image, and the grey area represents the calculated possible locations
of the robot.

two images (the same applies to low frequency brightness pattern), while the
distribution and the presence of high frequency brightness patterns changes
much faster. This is because, when one observes the environment from different
locations one experience different perspective effects and different occlusions.
Due to parallax, occlusion of distant objects (i.e. high frequency brightness
patterns) change much faster. Therefore, we can expect that the low frequency
components of the Fourier transform of the two images are more similar in a
larger interval of distances than the higher frequency components. This means
that, if in the calculation of the similarity function, we stop the calculation of
the sum in Eq. 3 at the first Fourier components, our current image will match
not only the closest reference image, but also a larger number of reference
images distributed in the surrounding of the current position.

As a result, we can have a localisation with a variable accuracy just by choosing
the number of Fourier components to compare in the similarity function. This
saves computational power as well. In fact, if the robot needs only a broad
localisation it does not need to calculate the inner sum in Eq. 3 for every
value of k; it can just stop after the first few values. The result is to match
the current view not only with the closest view but also with other reference
views close to it. When a more precise localisation is needed, as in a situation
in which the robot has to manoeuvre in a cluttered environment, the sum can
be extended to higher values of k in order to have a more strict matching
against only one reference image. The localisation accuracy one can achieve
with this technique, as with all image-based approaches, is limited to the
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distance between two successive reference images 1 .

In Fig. 9 is depicted a graphical representation of the hierarchical localisation
achieved with our system. The empty circles represent the reference images.
The cross represents the actual position of the current input image. The pos-
sible position of the robot, as calculated by the system, is represented by the
grey area. The number of Fourier components used to calculate the similarity
function increases from left to right, consequently the grey area showing the
possible localisation of the robot decreases, giving a more and more precise
localisation. In this test the reference images were taken on a 25 cm grid in
an office environment cluttered with many pieces of furniture, as you can see
from pictures in Fig. 2 and Fig. 3.

In Fig. 10, we present the hierarchical localisation obtained at different loca-
tions in the same environment. The figure also sketches a rough map of the
test environment, in which objects appear in different colours. Lighter boxes
represent lower objects (e.g. desks or chairs), darker boxes represent taller
objects (e.g. filers or shelves). Currently, we are investigating the relation be-
tween the shape of the localisation areas and the disposition of the objects in
the environment.

In summary, our method provides a direct way of calculating the hierarchical
localisation for the robot by comparing the frequency spectrum of the current
image with the frequency spectrum of the set of reference images. Broad lo-
calisation is provided at minimal computational cost, just comparing very few
frequency components. When higher accuracy in localisation is needed, the
system will use additional computational power.

In the next section we will present the ability of the robot to self-organise the
set of reference images on a map.

3 Memory-based Navigation

3.1 Organising the reference images

As we saw from Fig. 7, in the short range there is a certain linearity between
the value of the similarity function and the distance between the two images.
So, we can give an estimation of the real distance between the two images.
This is a one dimensional measure, however, and we cannot directly infer the
environment geometry from it. We can only know that the first image will be

1 Actually, to some extent is possible to interpolate between to images, using the
linearity of Fig. 7 to have a finer localisation.
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Fig. 10. Several examples of hierarchical localisation at different places in the en-
vironment. The layout of the room in which experiments were performed is shown
and the boxes represent the objects in the environment. Lighter boxes represent
shorter objects, darker boxes represent taller objects.

within a circle of a maximum radius from the second image. In the following,
we propose a method for the automatic organisation of the reference images,
that is, visual memory, into a lattice that reproduces the geometry of the
environment.
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3.2 Spring model

We propose to use a spring model to arrange the observation points according
to the geometry of the environment. As stated earlier, we are using an omni-
directional camera as the only sensor. We do not use any other sensors (e.g.
odometers or GPS), so the robot does not have access to the actual locations
of the observation points. The basic idea is as follows. Since the similarity
provides a measure of the 1D distance between observation points, we arrange
the points in a 2D lattice in such a way that the inconsistency between the ob-
served similarity is minimised. If three omnidirectional images are acquired at
three different positions, [O1, O2, O3], we arbitrarily fix the position of the first
one, and then we arrange the second and third points at the distances specified
by the three similarities Sim(O1, O2), Sim(O1, O3) and Sim(O2, O3). In the
general case, in a set of n reference image, we have m measures of similarity
where m is:

m =

(
n

2

)
(4)

Usually the arrangement that satisfies all measures cannot be found. Thus, we
organise the reference image on a spring lattice and we minimised the energy
of the lattice. In this model every node of the lattice (i.e. every position at
which an omnidirectional image was taken) is attached to every other node of
the lattice with a spring, Fig. 11(a). The spring length is proportional to the
distance calculated with the similarity function. If two images are arranged at
a distance closer than the one calculated by the similarity function, the spring
will push away the two images; if they are arranged at a farther distance, the
spring will pull them closer. As with a real spring, the force of each spring
is proportional to the displacement between the spring length (the calculated
distance for the images) and the images distance on the lattice. In this way
the nodes of the lattice (the images) will reach an equilibrium state, where
the nodes are arranged in a way that minimises the inconsistency between the
observations, that is, the total tensions of the springs (Fig. 11(b)). When a
new omnidirectional image is added to the set, this process is repeated.

For the actual implementation, we should modify the spring model. In fact, as
depicted in Fig. 7, the distance estimated from the similarity value becomes
unreliable for images separated by great distances. Fig. 12(a) shows the depen-
dence of the error E(d) in the calculation of the distance between two images
from the distance d that separates the two images. The error remains small for
a short distance, but becomes extremely large for longer distances. The spring
model should include the reliability of the distance estimation. This can be
performed by allowing spring length to affect the spring coefficient. We used
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Fig. 11. A sketch of the physical simulation used to find the stable state of the
spring model.

Fig. 12. (a) Error function associated to the distance between two images calculated
with the similarity distance. (b) Non-linear characteristic of the springs.

the following definition for the spring coefficient K:

K(x) = e

E(x) log 0.1
E(x1) (5)

where x is the distance between the images and x1 is the maximum distance at
which there is a correlation between the images. The dependence of the spring
coefficient on the distance is highly non-linear, and it is depicted in Fig. 12(b).
The force that can be exerted by long springs is very small compared to the
force of short springs (the coefficient is less than 0.1). So, short springs will
dominate the disposition of the nodes of the lattice. This means that the
forces that dominate the organisation of the nodes of the lattice are based on
reliable estimations of the actual distance between the images. The result is
a distribution of images in the explored space that faithfully reproduces the
relative locations of the reference images in the environment, as we will see in
the experiment section.
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Fig. 13. Overview of the room where
the experiment took place.

Fig. 14. The disposition of the
points where the reference images
were taken

3.3 Experimental results

To investigate the feasibility of our idea, we ran another series of experiments
in an office cluttered with many pieces of furniture, as shown in Fig. 13. A mo-
bile robot fitted with an omnidirectional sensor was moved around the room.
The robot took omnidirectional images every 30 cm, on the grid reproduced
in Fig. 14. The grid is 270 × 210cm wide. The robot then ran the physical
simulation to arrange the stored view in a lattice. The arrangement of the
grid points derived from the similarities between the views is given in Fig. 15;
it reflects the environment geometry except for the neighbours of the room
boundary. This is because the boundary images are just pulled inward and
there are no outer images to balance the force of the inner images.

3.4 Improving the lattice

The above mentioned method fails, if the environment contains some period-
icity. In fact, similar omnidirectional images appears at different places in the
environment. So, places that look similar but are far apart are mapped close to
one and other, because of the low value of the similarity function. The result of
this is that the topology of visual memory differs from that of the environment.
If the environment is a wide space, the likelihood of this happening increases.
Remember that up to now, we have used only the magnitude components of
the Fourier signature, and we did not use any kind of motion sensor. However,
if we also include the phase component of the Fourier transform, we can obtain
qualitative information about the agent’s motion direction in addition to the
position of the robot. Thus, we can arrange the visual memory to reflect the
environment geometry by using the motion information as a constraint in the
organisation of the lattice. By comparing the phase components of the Fourier

17



Fig. 15. Reconstructed environment geometry (the line segments are drawn only for
easy understanding).

series of two omnidirectional images, we can estimate the difference in heading
between the two images. The error in the direction estimation is about 10%.
The constraints assigned to the position of the nodes of the lattice by the in-
formation on the motion of the robot make it possible to apply our method to
a wider space. The grid shown in Fig. 16 is 540× 540cm wide. The robot was
moved in a zigzag path, the robot heading is shown by the arrows, and it took
images every 60 cm. The bold lines in Fig. 16 indicate the path of the robot,
the arrows indicate the motion direction of the robot, and the circles indicate
the position of the reference images. In this case, uncertainty concerning the
motion direction is within 15%, and uncertainty in the distance between two
observation points is within 10%. The environment structure presents some
periodicities but, as Fig. 17 shows, the coarse structure of the environment is
retrieved correctly by our spring system. The topology of the environment is
kept in the visual memory despite the coarse robot motion constraints. If one
had take closer images (e.g. on a 30 cm grid), the structure of the environment
could be retrieved more faithfully. However, our aim is to show that even such
a coarse representation can be used for a reactive navigation.

In the next section, we explain how the robot can use the retrieved coarse
map, to go from a starting location to a goal location.

3.5 Navigation

Once the robot has organised the position of the reference omnidirectional
images in a map, it can use the obtained environment map for memory-based
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Fig. 16. The positions at which the
images were taken in the experiment
in a large environment.

Fig. 17. The reconstructed environ-
ment geometry using the coarse infor-
mation on the motion of the robot.

Fig. 18. (a) The reconstructed environment geometry with the desired motion di-
rection to reach the destination point. (b) The actual positions of the images in the
environment with the real path followed by the robot while navigating.

navigation to reach a destination from the current position.

In Fig. 18(a) is represented a portion of the visual memory of the test environ-
ment acquired by the agent. Note that, even if the geometry of the disposition
of the reference locations is significantly distorted with respect to the real en-
vironment, the topology remains unchanged. The robot’s task is to reach the
destination guided by its visual memory. Our strategy is as follows. Starting
with the given goal, the agent expands a search tree and assigns a motion
direction to each observation point, or reference image Oi. For every reference
location, the directions toward the destination can be determined by com-
paring the Fourier phase components as described in the previous section. In
Fig. 18(a) the circles indicate the reference omnidirectional images and the
arrows indicate the motion direction the robot has to follow to go from that
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reference position toward the goal position. In Fig. 18(b) the real position of
the reference image in the environment is depicted. The robot starts at the
starting point close to location O2. It grabs an omnidirectional image and
finds its location as the starting point O2 by searching for the most similar
image in its memory. From O2, the agents moves along the assigned direction
A1. From its environment memory, the robot expects to move toward O4. It
may, however, move toward O5 rather than O4, because of the distortion of
the memory arrangement. This is not a problem because the navigation algo-
rithm is reactive. When the robot grab a new image and looks in the memory
for the corresponding match, the new image matches O5. The robot will infer
it has actually arrived in the vicinity of O5. At O5, the agent moves along
the assigned direction A2. By iterating these steps, the agent arrives at the
destination.

The reactive strategy used for navigation overcomes the distortion of the cal-
culated geometry, and is successful in navigating the robot in the environment
using image-based navigation. However, to navigate in a much larger environ-
ment, we need to divide the environment into sub-areas and assign sub-goals
in them for guiding the robot to its destination. This is a problem for our
future study. Moreover, the path followed by the robot might be non-optimal,
but this is out of the scope of this research.

4 Conclusions and Future Work

The purpose of this paper is to show how omnidirectional images have a set
of properties that has not been exploited by other authors. In this paper
we proposed a new technique of image-based navigation for an autonomous
robot. Using this technique, we created a topological map consisting of a set of
omnidirectional images (views) that the robot autonomously acquires and
organises into its visual memory. Every image is one node of the map. As
we stated, it is not possible to compare the image directly because this will
require storing the whole image with intensive requirements in memory stor-
age and computational power. Therefore, we propose a new method in which
every image is represented by the components of its Fourier transform. We
defined a similarity function that can assess the degree of similarity between
two images using the Fourier signatures. As we saw in the experiments, the
first 15 components carry enough information to correctly match the current
image with the corresponding reference image. The definition we proposed for
the similarity function makes it possible to realise a hierarchical localisa-
tion of the robot, which is useful for navigating in a large scale environment.
Another advantage of the proposed similarity function is the capability of the
system to self-organise its visual memory. This is achieved running a physical
simulation of a lattice where every node represents an omnidirectional image
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and every node is connected to the others with a spring. The model of the
spring was modified to take into account the characteristics of the similarity
function.

In summary, the original contribution of this paper is that we highlighted four
properties of the Fourier transform of omnidirectional images:

• the magnitude of the Fourier components are related to the position of the
robot;

• the phase of the Fourier components are related to the heading of the robot;
• by using the Fourier signatures a high data compression can be achieved;
• a hierarchical localisation is embedded in this approach;
• the similarity function we defined is effective in the proposed method to

self-organise the visual memory;

The next step will be to integrate in the presented localisation and naviga-
tion system the image-based Monte-Carlo localisation technique we developed
to manage the uncertainty in the estimation of the position [16]. We demon-
strated the ability of tracking the robot position in order to handle a multi-
modal probability distribution of the robot position that can offer robustness
in case of a possible false match (for instance, in environments with periodi-
cal structures or perceptual aliasing) or in case of error recovery (like in the
kidnapped robot problem).

At the time of writing, we are carrying on new experiments in a outdoor
environment. The feeling is that because the current system does not make
any assumption on the structure of the environment, it should work on outdoor
images without any modification. We want to test the navigation system on a
much larger environment than that of the indoor experiments.

There is also room for improvement in the assessment of similarity between
images. The similarity function can be improved. One possibility could be to
extend Eq. 3 into the following function:

Dis(Oi, Oj) =
l−1∑
y=0

m−1∑
k=0

αk|Fiy(k) − Fjy(k)| (6)

where the parameters αk are weights that can give more importance to some
Fourier components with respect to others. At the moment every component
of the Fourier transform has the same weight, namely, 1, and this results in
giving more importance to the low frequencies components that, as shown in
Fig. 5, have preponderant values. The problem of choosing the right weights
is not trivial because they depend on the structure of the environment.

The natural extension of the hierarchical localisation is a hierarchical descrip-
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tion of the environment in which the density of the reference images in the
space is no longer constant but depends on the structure of the environment.
In fact, if we consider an empty space where the reference images are very
similar, we can represent this space with just a single reference image repre-
sentative of all close reference images.
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