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Abstract. In this paper, we propose a way to fuse the image-based localisation
approach with the Monte-Carlo localisation approach. The method we propose
does not suffer of the major limitation of the two separated methods: the need of
a metric map of the environment for the Monte-Carlo localisation and the failure
of the image-based approach in environments with spatial periodicity (perceptual
aliasing). The approach we developed exploits the properties of the Fourier Trans-
form of the omnidirectional images and uses the similarity between the images
to weights the beliefs about the robot position. Successful experiments in large
indoor environment are presented in which we do not used a priory information
on the metrical map of the environment.

1 Introduction

In mobile robotics the localisation problem is a fundamental problem. A robot
in order to effectively fulfill an assigned task, must be able to move from point
to point and to be able to know its position in the environment. Several solu-
tions have been proposed to this problem. In this work we focused on two suc-
cessful solutions developed in the past years: the image-based localisation and
the Monte-Carlo localisation. Both of these techniques are well known and well
known are their limits, i.e. the frame of assumptions under which they are ef-
fective. In this work we propose a way to fuse these two techniques trying to
overcome, with this fusion, their intrinsic limitations.

The image-based localisation approach [1,5,13, 15,19, 9] is based on the idea
that most of the time, the robot does not need a metrical localisation and a topo-
logical localisation is enough. We can choose some points in the environment,
called reference locations. Every time the robot makes a new measurement (i.e.
it grabs a new image), it can infer at which of these points it is closer (topological
localisation). The robot infers the reference location corresponding to its actual
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Fig. 1. (a) The sketch of the test environment in a laboratory cluttered with many pieces of forni-
ture. The dimensions of the test environment are about 5m x 2m. (b) The sketch of the environ-
ment where most of the tests were carried out. This is a large environment of about 50m x 25m.

position by comparing the current image it grabbed, called input image, with
the referenceimages previously grabbed at the reference points. The flaw in this
approach is the fact the localisation is purely reactive: to a sensorial input, imme-
diately corresponds a localisation. The image-based localisation approach does
not work if more than one reference location corresponds to a input image. In
this case the robot cannot choose between the two possible solutions. This hap-
pens in environments with highly periodical structures where the appearance of
the environment is the same at different locations, like in a maze or in a hospital
or in an office building.

The Monte-Carlo localisation approach was developed using range finder sensors
like sonars or laser range finders. It is based on the idea of scanning the environ-
ment at a certain location and matching this scan to a geometrical map [10]. The
possible location of the robot is one of the locations from which the robot would
have experienced that scan. The belief about the robot position is managed with a
Bayesian approach, as detailed in Section 3. This probabilistic approach allows to
manage multi-modal probability distribution of the believed robot position and to
fuse the robot’s odometry with the range observations. The limit of this approach
is that it requires to know a detailed geometrical map of the environment in order
to associate a probable robot location to a certain scan.

In this work, we combine the image-based localisation approach with the Monte-
Carlo Localisation approach. The advantage is that we do not need a geometrical
map of the environment, because the probable position of the robot is calculated
using the similarity between the current input image and the reference images.
The Monte-Carlo localisation approach allows us to manage the case in which
the current image is similar to more of one reference image (i.e. multi modal
probability distribution for the robot position) and to overcome the limitations of
the reactive localisation. We will see in Section 3, how the Monte-Carlo locali-



sation keeps track of the history of the robot states by updating the past beliefs
about the robot position based on the actual motion performed by the robot.
Other authors proposed a similar fusion. Wolf, Burgard and Burkhardt proposed
to use a perspective camera and an image retrieval system for the image-based
localisation part. In our opinion, the disadvantage of his method is that it needs a
large number of reference images and it needs a geometrical map of the environ-
ment [23]. Krdse et al. used an omnidirectional camera and an image matching
method based on Principal Component Analysis to reduce memory required to
store the reference images. For managing the probability distribution of the robot
position, he used a Markov Localisation with an occupancy grid. They focus on
the description of the environment rather than on the localisation process. They
do not use a model of the motion of the robot and every time the robot takes a
new step all positions in the grid have the same probability to contain the robot.
The approach we propose in this paper has been extensively tested in real world
indoors environments. We performed preliminary test in the small laboratory of
Fig. 1 (a) and more challenging tests in the corridors of Fig. 1 (b). Both are at
Floor 7 of Wakayama University, Japan.

2 |Image-based L ocalisation

The main problem tackled by researchers in the image based localisation ap-
proach is how to store and to compare a large number of reference images. In
fact, if a perspective camera is used, the appearance of the environment from
a reference location changes with the direction of gaze. Nevertheless, there are
several successful works where perspective cameras have been used. A solution
could be to constrain the movements of the robot in order to have the perspec-
tive camera gazing always in the same direction [5]. An alternative solution could
be to acquire a large number of images with different gaze directions, but to ex-
tract from the perspective images compact distinctive features which reduce the
amount of memory required to store the images [23].

The best solution in order to reduce the number of reference images is to use
omnidirectional cameras. For every reference location we will have only one om-
nidirectional image, containing the appearance of the environment in all possible
gazing directions. The visual memory constructed with the collection of reference
images is usually pre-processed to further reduce the memory requirements. The
most common approach is to extract a set of eigenimages from the set of reference
images and to describe every image as linear combination of these eigenimages.
Unfortunately, this approach does not lead to a rotational invariance of the im-
ages. In other words, if the image grabbed by the robot is rotated with respect to
the corresponding reference image the two images are not longer recognised as
similar images. So, authors using this approach need to constrain the heading of
the sensor as in [15, 20] or to further preprocess the images in order to obtain the
rotational invariance as in [1, 14, 9].

In this work, we decided to reduce the number of images required to describe the
environment by mounting an omnidirectional camera on the mobile robot [12,
16, 17]. In order to efficiently store and process the omnidirectional images we
exploited the properties of the Fourier transform of panoramic images as detailed
in a previous work [13]. Every time an omnidirectional image is grabbed, it is
transformed in a compact representation. The calculation of the compact repre-
sentation is performed as follow (Fig. 2). The omnidirectional image is unwarped
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Fig. 2. The process of generation of the Fourier Signature. The omnidirectional image (top left)
is unwarped in a panoramic cylinder (bottom) and the Fourier coefficient of every row of the
panoramic cylinder are calculated (top right).

creating a panoramic cylinder. The panoramic cylinder is expanded row by row
into Fourier series. Only the magnitude and the phase Fourier coefficients asso-
ciated to the lowest frequency components are stored. The result of this proce-
dure is a compact representation of the original omnidirectional image that we
called Fourier signature. The Fourier signature drastically reduces the amount
of memory required to store a view at a reference location and the computational
power required to match a current view against the visual memory. In addition,
the Fourier signature is the natural representation to implement a rotational invari-
ance, because the magnitude coefficients of the Fourier components are invariants
to rotation of the sensor heading. For more details on this procedure, please refer
to [13].

We defined a dissimilarity function on the Fourier signatures. The higher this
value, the more two images are dissimilar. The dissimilarity function is defined
as the L1 norm of two Fourier signatures:

-1 m-—1
Dis(03,05) = > Y |Fiy (k) — Fyy (k)| €
y=0 k=0
where & indicates the frequency and y is the index of the row of the panoramic

cylinder.
For convenience we defined also a similarity function obtained rescaling the
dissimilarity values between 0 and 1000.

Dis(Oi, Oj) — Mini,j {Dis(Oi, OJ)}
Mam,-,j {Dis(Oi, OJ)} - M'ini,j {Dis(Oi, OJ)}
()

Sim(0;,0;) = 1000—1000

A robot localisation technique to be used in a populated environment should be
able to cope with moving objects, like people, that may cause temporary occlu-
sions in the image. Experiments we conducted, but that we cannot report because
of lack of space show the Fourier Signature is robust to occlusion.
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Fig. 3. Some examples of perceptual aliasing in our test environment. The colour scale indicate
the amount of similarity of the different images: red the heighest similarity, blue the lowest sim-
ilarity. (a) Input Image 10 matches not only the correct reference image at position 1380 on the
x-axis, but also reference images at 320, 620 and 1060. The same happens in plots (b), (c) and

(d).

As we stated in the introduction, the image-based localisation approach has a
flaw: i.e. it fails in environments where two different locations look the same.
This is the trick used to get people lost in a labyrinth, i.e. all the junctions of the
labyrinth looks the same and one cannot distinguish one junction from another.
This situation is called “perceptual aliasing”. Nonone of the presented works on
image-based localisation can cope with such a situation, except [23]. More in-
formation than the simple image similarity is needed to be able to localise the
robot. The labyrinth is an extreme example, but also in our everyday-life indoor
environment perceptual aliasing is present. In Fig. 3, we present the calculation
of the similarity of a current image with respect to all reference images in the
environment. The current image is assessed as similar not only to the correspond-
ing image, but is similar also to other reference images at different locations. In
order to provide robust image-based localisation, despite the perceptual aliasing
we exploited the Monte-Carlo Localisation approach to keep track of the belief
about the robot position.



3 Monte-Carlo Localisation

To manage the uncertainty about robot position caused by the perceptual alias-
ing, we adopted a well-known approach based on Monte Carlo Methods. This
approach has been successfully used by many researchers [21, 6, 3, 22, 23] and is
referred as Monte Carlo Localisation.

This is a probabilistic methods based on Bayesian Filtering (Markov Localisation
in robotics) [2, 23, 8]. It calculates the probability density of robot position (the
belief) and recursively propagates this probability density using motion and per-
ception information. In our implementation motion data come from the odometry
sensors and perception data come from the omnidirectional vision system. The
belief about robot position is updated every time the robot grabs a new image
(i.e. a new observation of the world).

In robotics, many technique has been applied to approximate a continuous density
for the beliefs. Two of the most used techniques were Kalman Filter and Grid-
based Methods, but these methods presented many disadvantages [7] and new
techniques have been proposed like the Particle Filter approach.t

The Particle Filter approach represents the belief about the robot position with
a set of discrete points in the configuration space of the robot. These points are
called samples. To update the belief over time, these samples are updated. To
every sample is associated a weight indicating the probability that the robot is
occuping that position. The samples with the lowest weights are deleted and the
samples with heighest weights survive and generate new samples.

This approach is efficient and can solve the well know problems of Position track-
ing and Global Localisation [8]. Nevertheless, Particle Filters alone cannot solve
the problem of the Kidnapped robot [8]. In [8] was proposed to continuously
generate a subset of samples uniformly distributed in the environment at random
positions . This approach relies on the hope that some samples of this subset will
be generated by chance close to the position where the robot has been moved. In
this case, these samples will have height weights in the next measurements and
will survive and cluster the other samples close to them. The drawback of this
approach is that it takes several iterations for the samples to cluster around the
correct sample and sometimes it takes some iteration to generate a sample close
to the position where the robot was kidnapped. In the next section, we will present
our solution to speed up the position recovery.

3.1 Theproposed kidnapping strategy

In order to understand the new kidnapping strategy we propose, we need to briefly
review the theory behind the Monte-Carlo Localisation approach. In the Bayesian
Filtering problem one has to calculate the probability density of the robot position
Bel(st) = p(st|O¢, at) over the time. What is known is: the prior probability
density Bel(so), which describes the initial robot uncertainty about its position;
the prediction model p(s:|s:—1,a:—1) that applies motion data a;—1 to actual
state s;_1 obtaining a new state s;; the observation model p(Oy|s;) that repre-
sents the probability of making observation O, from state s;.

! For a complete review and evaluation of localisation method refer to the two enlightening
works of Gutmann [10, 11].



Using the Bayes Formula and Markov assumption about the state space the equa-
tion to calculate the belief is

Bel(s)) = ml01fs) [ sl ar-)Bel(si-ds @

where n is a normalisation factor. In Monte-Carlo Localisation the probabil-
ity density of the robot position (i.e. the belief) is approximated with a set of
weighted samples {si,wi};=1..~. These samples are updated recursively with
a procedure called sampling-importance-resampling composed of following
steps: For each samples s¢_; in previous set, a new samples §¢ is drawn from
p(s|si_i,at—1) and si_; is replaced with 5%; Given the new observation Oy,
each sample §¢ is weighted proportionally to P(O;|3%); The samples are replaced
proportionally to the weights [4], i.e. if a sample has weight 0.7, the sample is re-
placed with 7 identical sample.

To tackle the kidnapped robot problem the standard approach is to replace, after
the prediction step, a certain amount of samples with others samples randomly
drawn in the entire environment. This technique is robust, but in general require
many steps to re-localise the robot, expecially in large environments. We propose
a new solution: instead of randomly drawing the sample, the new samples should
be generated around the reference images that best match the current input image.
This assures that the newly generated samples are concentrated around possible
locations only. This approach is made possible by the technique we use to match
the input image with the reference images. In fact, in the calculation of the sim-
ilarity, Eq. 2, if we stop the summation over the frequencies at low values of &,
we obtain a broader localisation, as detailed in [18]. In other words, if we use
only the Fourier components corresponding to the lowest spatial frequency, the
current input image does not match only the corresponding reference image, but
also other similar reference images. Usually, these reference images are close to
the correct reference image, i.e. the new samples concentrate in a region around
the correct reference image, but sometimes these similar reference images can be
one far away from the other (e.g. in case of perceptual aliasing), i.e. the new sam-
ples take into account alternative possibility for the actual location of the robot.
In both cases, our system recover very quickly the correct position after the kid-
napping. To be noted that our tecnique not only re-localise quickly the robot after
a kidnap but also speed-up the global localisation process.

We tested our system in a large indoor environment with a long corridor and a
loop (a path about 100 m long): the robot faced many false hypothesis, but the
obtained results are good. Particularly we can exploit hierarchical localisation
to consider a wide number of hypothesis: that is we can use a lower humber of
frequencies to generate the new samples with the strategy. Remember that if we
use m frequencies in weight process automatically we have all similarity data for
m’ <= m. Using a lower number of frequencies we obtain a broad localisation
that is a wide number of hypothesis that after will be controlled by MCL.

4 Experiments

We tested our system in the two environment of Fig. 1 (a) and (b). The first en-
vironment is a small cluttered laboratory and we use this as a first testbed for
our system. We obtained encouraging results in Global Localisation, Position
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Fig. 4. Localisation error during the path of 68 step of Fig. 5(a). The Topological strategy we
proposed outperforms the uniform strategy in robustness and speed in recovering the correct
position.

Tracking and Kidnapped Robot problem. We presented these tests in [18]. To
confirm the good performances of our system we carried out several experiments
in the environment of Fig. 1 (b). This is a very challenging environment. It is a
corridor 90 m long with a highly periodical structure and with many locations
which look similar, i.e. the same lighting, the same junctions, etc. This means
that image-based localisation fails because it could not decide between the var-
ious topological localisations as earlier described in Fig. 3. In this environment
the kidnapping robot problem is particularly challenging, due to this high percep-
tual aliasing. The uniform strategy proposed by Burgard et al. give non-optimal
results in this environment (cnf. with [18]). In Fig. 4 can be noted the uniform
strategy requires many steps to localise the robot from scratch during the Global
localisation. In the same way, it requires many steps to re-localise the robot after
a kidnapping. This is because, in such a large environmnent, the probability to
generate a sample close to the new robot position is low, so it takes many steps to
cluster the samples around correct position. This lead to a wide error during the
re-localisation process. As it could be seen in Fig. 4 our strategy is more effec-
tive. With the mixed technique proposed in this paper, it is possible to speed-up
robot global localisation and also to quickly relocalise the robot after the kidnap-
ping. In the experiments of Fig. 7, the robustness of our technique with respect to
perceptual aliasing is tested, because the kidnapping is made in a position in the
longer corridor with high perceptual aliasing as you could see in Fig. 3 (b). So
the re-localisation process have to trial several hypothesis after kidnapping and
require 5-6 step to assess the new position.

In Fig. 6 you can see the snapshot of the initial belief at the beginning of the
global localisation process. As the system has no information about the robot po-
sition, the samples are generated uniformly in the area of the environment. Notice
that we don’t control if the samples are in an allowed area or not, Fig. 1 (b). This
is not necessary. If a sample is inside an object it will be far away from any ref-
erence image. Its weight will be zero and at the next step it will be removed by
the sampling-importance-resempling. In this way we don’t use any map of the
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Fig. 5. The path we used to test our system in environment of Fig. 1. The blue dotted line is the
real path with indicated the positions where the robot grabbed the images. The green line is the
path reported by odometry.

environment. In Fig. 7 you can see some snapshot of the tests with the uniform
strategy (left series of images) and with the proposed topological strategy (right
series). As you can see our system localise robot quickly after about 5 steps and
after this it continues as a position tracking with clustered samples around true
position. When the robot is kidnapped our system consider the hypothesis based
to vision information and quickly cluster the samples around the true position re-
localising the robot in about 4 steps. Instead using uniform strategy it need about
10 steps to re-localise robot. Moreover after re-localisation our system continue
as a position tracking whereas with the uniform strategy the samples are gener-
ated randomly in the environment and this make less accurate the estimation.

5 Conclusions

In this paper we propose a way to fuse the image-based localisation approach
based on an omnidirectional sensor with the Monte-Carlo localisation approach.
Using an omnidirectional camera we can reduce the amount of memory required
to construct a visual memory for the robot because we can reduce the number
of reference images with respect to a perspective camera. Using Fourier signa-
ture to have a compact representation of an image, we obtain useful properties:
a natural rotational invariance, a robustness to occlusion and a hierarchical local-
isation. To improve our image-based approach in the case of environment with
high perceptual aliasing, we fused it with sample-based Monte-Carlo localisa-
tion. Particularly we proposed an improvement of this tecnique that exploits the
vision information to generate some of the samples. Using hierarchical locali-
sation we can concentrate samples around the true position while considering
others hypothesis. We tested this approach in a challenging environment with
high perceptual aliasing and we demontrate that our system speed-up the global
localisation task, and quickly relocalise after a kidnapping. Moreover, our system
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Fig. 6. Here you can see the initialisation of the belief in a global localisation task. The samples
are generated uniformly in the area without any knowledge of the environment map. Black dot is
the current mean estimated position.

does not need to know the geometrical map ogf the environment. We compared
our tecnique with the standard uniform approach and showed the advantages of
topological strategy. At the moment of writing we are testing our system in a
large outdoor environment, particularly to understand the influence of luminosity
pattern in our image-based system.
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