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Abstract

Pre-programming complex robotic systems to operate in unstructured environments is extremely difficult because of the
programmer’s inability to predict future operating conditions in the face of unforeseen environmental conditions, mechanical
wear of parts, etc. The solution to this problem is for the robot controller to learn on-line about its own capabilities and
limitations when interacting with its environment. At the present state of technology, this poses a challenge to existing machine
learning methods. We study this problem using a simple two-fingered gripper which learns to grasp an object with appropriate
force, without slip while minimising chances of damage to the object. Three machine learning methods are used to produce
a neurofuzzy controller for the gripper. These are off-line supervised neurofuzzy learning and two on-line methods, namely
unsupervised reinforcement learning and an unsupervised/supervised hybrid. With the two on-line methods, we demonstrate
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hat the controller can learn through interaction with its environment to overcome simulated failure of its sensors. Fu
ybrid is shown to out perform reinforcement learning alone in terms of faster adaptation to the changing circumstance

ailure. The hybrid learning scheme allows us to make best use of such pre-labeled datasets as might exist and to
ffectively good control actions discovered by reinforcement learning.
2004 Elsevier B.V. All rights reserved.
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. Introduction

In the future, advanced robotic systems will play
n increasingly important role in a wide spectrum of
pplications, in fields as diverse as manufacturing,
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domestic, medical, and aerospace. One key a
of these advanced systems is the provision of an
effector that is capable of achieving considerable g
ping dexterity in unstructured environments[1]. It has
been argued that without this provision, the full real
tion of advanced robotic handling will not be possib
We cannot hope to program a robotic manipulato
gripper to anticipate all the real-world circumstan
that it will ever encounter. A dexterous gripper need
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display dynamic adaptation to novel and unforeseen sit-
uations, mechanical wear, component failures, changes
in the environment, etc. Accordingly, it is vital that
the robot controller is able to learn from its perception
and experience of the environment[2], a requirement
which is firmly in the domain of intelligent control.

Research in intelligent control has attracted consid-
erable interest in recent years[3–6]. It is not a sin-
gle, cohesive theory or methodology ([7], pp. 7–8), but
rather a collection of complementary ‘soft computing’
techniques within a framework of machine learning[8].
These techniques are data-driven (i.e., they learn from
example data) and aim to deal appropriately with uncer-
tainty, imprecision and/or minor faults, non-linearities
and presence or absence of prior knowledge, all of
which figure prominently in our application. Several
attempts have been made to combine methodologies
to provide a better framework for intelligent control,
of which the most successful has probably been that
of neurofuzzy modeling[3,4,7], which combines neu-
ral network methods with fuzzy logic. In particular,
neurofuzzy techniques offer learning capabilities with
transparent knowledge representation. They have been
extensively researched and developed in our laboratory.
Hence, neurofuzzy control is the method of choice in
this study.

In previous work [9], we showed that a neu-
rofuzzy controller trained with the well-known
back-propagation algorithm[10,11]allowed a robotic
gripper to perform satisfactory grasping without slip or
d ning
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The reinforcement learning (RL) paradigm encom-
passes a broad range of techniques with the common
feature that a goal-oriented system adapts its on-line
behaviour in such a way as to maximise some ‘reward’
signal derived from its environment. Because the
reward reflects the system’s interaction with its envi-
ronment, learning can be unsupervised, without manual
intervention to indicate correct versus erroneous be-
haviour. Negative rewards, i.e., ‘punishments’, can
also be conveniently incorporated into the paradigm. In
view of its generality and on-line nature, RL has found
wide application in robotics and autonomous system
studies (e.g.,[13–16]). It is proposed as the basis of
the training method for the neurofuzzy controller in
this paper, to overcome the shortcomings of our earlier
supervised (back-propagation) training, namely its
off-line nature and the difficulty of obtaining complete
and consistently-labeled training data in advance.

The remainder of this paper is structured as follows.
We next detail (Section 2) the hardware of the end
effector that forms the focus of this work, and its con-
trol software. InSection 3, we outline the neurofuzzy
control methods which are at the heart of our learning
systems.Section 4 describes some previous work
on supervised learning in this particular application,
which we use as a baseline against which to assess
our on-line learning methods, as well as forming part
of the supervised/unsupervised hybrid which we have
studied in this work.Section 5introduces the basic
ideas of reinforcement learning before we describe our
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amage to the gripped object. Moreover, the lear
ave advantages over a manually-designed fuzzy
ontroller: It had a faster control action and was ea
o modify and maintain. In this previous work, howev
he training was supervised with the training data
uced off-line. There are occasions when input-ou
nowledge for supervised training is hard to obtai
s not available at all. When the environment chang
ew input-output dataset must be obtained and the

em retrained. Because training was off-line, the sys
isses the opportunity for self-retuning and reorg

sation, so as to adapt automatically to environme
hanges. Ideally, therefore, learning in this applica
hould be on-line and unsupervised. This does
owever, mean that there might not be a secon
ole for supervised learning, as we will show later.

Reinforcement learning[12] is the natural frame
ork for the solution of the on-line learning proble
articular realisation inSection 6. We then describ
ur novel hybrid inSection 7. Results obtained usin

he three systems (supervised learning, reinforce
earning and hybrid) are detailed inSection 8and
ection 9concludes.

. End effector hardware and software

The work reported in this paper was undertaken
imple, low-cost, two-finger end effector (Fig. 1). This
ad just one degree of freedom; the fingers could e
lose or open. It was fitted with a slip sensor[17] and
orce sensors. The slip sensor is located on one fi
nd is based on a rolling contact principle. Slip indu
otation of a stainless steel roller on a spring moun
hich is sensed by an optical shaft encoder. The
ensor has an operational range of 0 to 80 mm s−1 and
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Fig. 1. The experimental, two-fingered end effector. The slip sensor
appears on the left of the picture, attached to one of the fingers. The
force sensors (strain gauges) are attached approximately midway
along the finger shown on the right of the picture.

sensitivity of 0.5 mm s−1. The applied force is mea-
sured using a strain gauge bridge on the other fin-
ger. The force sensors have a range of 0 to 2500 mN,
with a resolution of 2 mN. Control of the end effec-
tor was achieved using a personal computer (Pentium
75 MHz, 64 MB RAM) fitted with a high-speed ana-
log input/output card (Eagle Technology PC30GAS4).
Control software ran under the MS-DOS operating sys-
tem. The sampling period for the system was set con-
servatively to 17 ms to allow adequate time for all pro-
cessing to be completed between consecutive samples.

Fig. 2shows the end effector gripping a metal can.
The roller of the slip sensor is clearly visible, together

Fig. 2. The end effector gripping a metal can.

with its spring mounting which prevents the sensor
from seizing during gripping. This metal can was found
to be an effective vehicle for our experiments, as the
total weight of the gripped object could be conve-
niently manipulated by placing various weights in it
(seeSection 8).

3. Neurofuzzy control

There are many factors in the control of a gripper,
its specific task and the environment in which it oper-
ates that are “qualitative and fuzzy” in nature, and can-
not easily be expressed in precise quantitative terms
[18]. In a complex environment, it is difficult or im-
possible to anticipate all the conditions that will be
met in operation. Hence, we are exploring the use of
‘soft’ controllers in preference to classical, ‘hard’ al-
gorithmic control (e.g., feedforward control, model-
referenced adaptive control) which require a full, quan-
titative specification of system dynamics, operating
environment, etc. Soft methods are characterised by
a focus on “learning from experimental data and. . .

transferring human knowledge into analytical meth-
ods” ([8], p. xi).

3.1. Advantages of neurofuzzy control

Neurofuzzy techniques have been successful be-
cause they combine the well-established modeling and
l ns-
p s, so
s ria.
N r be
l ting
p nce
a yer
f tion
s stem
c nces
w . A
t the
i nc-
t can
o r a
f

uro-
f ove
earning capabilities of neural networks with the tra
arent knowledge representation of fuzzy system
atisfying both of the above complementary crite
eurofuzzy systems embody rules which can eithe

earned ‘from scratch’, used as a way of implan
rior knowledge, and/or improved through experie
nd learning. The set of rules maps to a multila

eedforward neural network in which the connec
trengths correspond to rule confidences. The sy
an then be trained by adapting the rule confide
hich changes the strength with which a rule fires

rained neurofuzzy model is able to describe well
nput-output mapping for any arbitrary non-linear fu
ion. In many applications, a neurofuzzy system
utperform both a neural network controller and/o

uzzy logic controller[19].
Hence, a strong feature of our work is that our ne

uzzy systems learn from the environment to impr
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their performance. According to Haykin ([6], p. 50)
neural network learning takes place “through an inter-
active process of adjustments applied to. . . synaptic
weights and bias levels ... The type of learning is de-
termined by the manner in which the changes in the
parameters take place”. For our purposes, the two main
distinctions between types of learning are:

(1) supervised versus unsupervised, and
(2) off-line versus on-line.

We believe that on-line, unsupervised learning is
most appropriate for our problem. Supervised learn-
ing requires that we know the correct system action
for a set of complete and representative inputs. This
can be difficult to achieve in this application. We will,
however, use the much commoner and simpler off-
line supervised learning as a benchmark against which
to assess our on-line method. Furthermore, there may
be situations in which we do have labeled training
data available, and we might then seek to use these
data to our advantage. We will also describe a hy-
brid of supervised and unsupervised methods that we

F gripper have fixed
( uzzifica

believe has benefits over the use of either approach
alone.

3.2. Implementation of neurofuzzy network

Fig. 3shows the architecture of the neurofuzzy net-
work that controls the gripper. It has two inputs, the
gripped object’s slip rate (ideally zero) and the ap-
plied force (ideally minimal), and one output, the motor
voltage. There are 5 fuzzy membership values for slip
and 4 for force, giving 20 hidden units (‘fuzzy neu-
rons’) each corresponding to a rule. The units used in
a neurofuzzy network are, of course, different from the
McCulloch-Pitts type neurons[20] used in neural net-
works in general. Fuzzy neurons are conceptually sim-
ple logic elements that perform fuzzy logic operations
on their inputs, as opposed to the usual summing and
non-linear thresholding done by the activation func-
tions of McCulloch-Pitts neurons. There is no method-
ology to set the number of memberships[21]; generally
the larger the number, the smoother the behavior will be
but the more complex will be the controller. The values
of 5 and 4 represent a good compromise between these
ig. 3. Structure of the neurofuzzy network used to control the
unity) weight. Connections between the rule layer and the def
. Connections between the fuzzification layer and the rule layer
tion layer have their weights adjusted during training.
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competing constraints. Appropriate ranges for slip and
applied force were determined experimentally. Trian-
gular membership functions were chosen for all fuzzy
variables for simplicity and economy. The well-known
centre of sums (CoS) method was chosen for defuzzi-
fication for its simplicity.

The linguistic variables used for the term sets are
simply value magnitude components: Zero (Z), Very
Small (VS), Small (S), Medium (M) and Large (L) for
the fuzzy set slip while for the applied force they are Z,
S, M and L. The output fuzzy set (motor voltage) has
the set members Negative Very Small (NVS), Z, Very
Small (VS), S, M, L, Very Large (VL) and Very Very
Large (VVL). This set has more members so as to have
a smoother output.

4. Supervised learning

In general, we believe that on-line unsupervised
learning is most appropriate for this work. However, to
provide a benchmark for assessing unsupervised learn-
ing and also because it is a component of the hybrid
system to be described later, we first consider sim-
pler and better understood off-line supervised learn-
ing. In supervised learning, the system is instructed by
a ‘teacher’ which has knowledge of the environment.
This knowledge is represented by a set of input-output
examples—the training dataset. The task of the learn-
ing algorithm is to adjust the system parameters in re-
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object correctly. That is, the ‘teacher’ tried to achieve,
as far as possible, fast, stable gripping with minimum
finger force, and without allowing the object to fall.
The program recorded the readings from the force and
slip sensors as well as the applied motor voltage, each
separated by the sampling period of 17 ms, to form the
dataset for training. An extrastop key was included
to allow the operator to pause the data collection and
consider subsequent actions. This prevented the collec-
tion of excess training data, making the training dataset
more compact.

Several trials were carried out. Each trial started with
the gripper completely opened. The object used was an
empty metal can (Fig. 2). During the trials, the weight
of the object was modified (both within and between
trials) by adding or removing weights of various value
up to a maximum of approximately 40 g. There was
no very strict scheme for the addition or subtraction of
weights: We merely tried to cover a reasonable range
of different values. Also, several disturbances of differ-
ent magnitude were applied on the object to induce slip
(i.e., the can was manually displaced by the ‘teacher’).
Each trial concluded once the object was gripped sat-
isfactorily. From the total number of trials, a subset of
15 were selected and concatenated to form the train-
ing dataset. These 15 were chosen on the basis that
the ‘teacher’ judged good manual control to have been
achieved. After concatenation, the total dataset con-
sisted of 8200 samples.

It should be obvious from this description that the
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ponse to the given inputs so as to reproduce the de
utput ([6] p. 63). To achieve high system performan

he training data must be consistent and complete.
s an obvious shortcoming of the supervised lear
pproach for our problem: In the real environment
ill not be able to anticipate all conditions which w
e met, so it is not possible to guarantee complete

To collect training data, a simple C program w
ritten to control the gripper manually using seve
eys of the computer keyboard. Six keys were de
ated to define coarse applied motor voltages:−5, 0,
.5, 2.7, 3.9 and 5 V respectively. Another two k
llowed fine adjustment—increasing or decreasing
pplied voltage by increments of 0.1 V. The ‘teach
the first author) employed his judgement and obse
ion of the current object status (e.g.. gripped satisfa
ily, crushed, slipping) to increase/decrease the ap
oltage via the keyboard so that the gripper graspe
rocess of collecting training data is imperfect. I
ubjective and relies on the ‘teacher’ being able to
icipate the full variety of situations which will be m
n practice. For this reason, we believe that any p
ical system needs to be based primarily on unsu
ised learning. However, supervised training can f
useful benchmark against which to assess a sy

mploying unsupervised training. Further, there
e occasions when a labeled dataset is available
because learning from supervised data is a much
er problem generally leading to better performan
t makes good sense to attempt to use it. This is
ationale behind the hybrid system to be descr
ater.

Because it is not our primary focus, we have used
ommonest and best-understood method for off
upervised training, namely error back-propaga
10,11]. Using this algorithm, the weight correcti
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∆wij(n), applied to a rule weightwij between theith
rule unit and thejth unit in the defuzzification layer at
iteration n, is given by the delta rule:

∆wij(n) = ηδj(n)xj(n)+m∆wij(n− 1)

whereη is the learning rate,δj(n) is the local gradient,
m is the momentum, andxj(n) is the input signal of
neuronj in the defuzzification layer. In our previous
work [9] and here, we have used a learning rate and
momentum of 0.5. The stopping criterion for learning
was that the average squared error per epoch reduced
to less than 0.2V2. That is,

N∑
i=1

|di − Vi|2 < 0.2, N = 8200

wheredi is the desired output voltage for theith input
(force-slip pair) according to the supervised training
dataset andVi is the actual output voltage.

In previous work[9], we have shown that back-
propagation learning, used to train the neurofuzzy con-
troller described inFig. 3, produces reasonable results.
That is, the system did indeed learn to grasp the object
in the way specified by the training dataset.

5. Reinforcement learning

Reinforcement learning (RL) is a broad class of ma-
chine learning techniques in which the ‘teacher’ is re-
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feedback from the environment” ([22], p. 188). In many
formulations of the RL problem, the system is sup-
posed to decide the best action to select based on its
current state. When this step is repeated, as occurs in
continuous interaction with the environment, we have a
Markov decision process (MDP) ([12], p. 66). A finite
MDP is defined by its (finite) state and action sets and
by the one-step dynamics of the environment.

The basic idea of the machine learning approach,
and what distinguishes it from classical control, is that
the detailed design of the controller is replaced by the
much simpler task of specifying the desired dynamics
of the gripper controller in a suitable high-level
form—namely an MDP transition graph as illustrated
in Fig. 4. This is where we specify what are good and
bad outcomes of interaction with the environment,
and how they should be rewarded or punished. For our
problem, the state set is defined as S ={S0, S1, S2, S3}
= {not touching, slipping, crushing,
OK}, and the action set is A ={grip, release }.
The large open circles denote state nodes and the
small filled circles denote action nodes issociated with
those states. Each arc is labeled with an ordered pair
consisting; of the transition probability of moving
from state S to state S′ with associated action A, and
the expected reward for that transition. Punishments
are implemented as negative rewards.

The statesnot touching and slipping are
easily detected by the (absence of) output of the force
sensor and output of the slip sensor, respectively.
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laced by an evaluative signal (or signals) derived f
he environment. Hence, it is eminently suitable
n-line robot learning applications in which contin
us interaction with the environment is all-importa
urthermore, RL is fully automatic, doing away w

he need for intervention of an expert (the ‘teacher
rovide a suitable training dataset. The evaluative
einforcement) signals do not specify what the cor
nswer should be, since this is unknown. Rather,
pecify whether the system output is right or wro
s well as (possibly) providing a scalar indication

he degree of correctness—see later. This evalu
ignal is often couched in terms of a reward or a p
shment, for being right or wrong respectively. Beca
here is no explicit provision of a correct answer b
teacher’, we take RL to be distinct from supervis
earning—although some researchers do treat it a
ervised “because the network does, after all, get s
rushing is considerably more difficult to detect
truly unstructured environment, as it requires s

rior knowledge of the object. Consider the diff
nce in failure mode between an egg and a thin w
an—the former is “explosive”, the latter will crump
i.e., the gripper will close, but force is still prese
fter a period of increasing force with no change
ripper position. Hence, we believe at this stage
ny form of crush detection will be have to be ad
nd specialised to the particular object or object
e handled. So here, we have constrained the stu
ripping metal cans. That is, the latter description
e used. To allow the study to proceed, and recogn

hat the focus of this work is intelligent control rath
han crush detection, we adopted the following s
ion. In the absence of automatic crush detection
rst author monitored the system operation and i
ated (by pressing a button) when crushing occu
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Fig. 4. Transition graph specifying the dynamics of the finite MDP. The large open circles denote state nodes and the small closed circles denote
action nodes. Arcs are labeled with an ordered pair consisting of a transition probability and a reward. Punishments are implemented as negative
regards. In this work, we simplify the MDP by making all transition probabilities filiations of just two parameters,α andβ.

Crushing was considered to happen when the can was
visibly deformed by the end effector. When crushing
ceased, the button was again pressed to indicate this.
Crushing was found not to occur in normal system op-
eration, but could happen during sensor failure (see
Section 8.2) or retraining after sensor failure. In fu-
ture work, we will attempt a more general solution to
the problem of automatic crush detection, which will
dispense with the need for manual intervention.

In this work, we have used 2 transition-probability
parametersα and β. Note that at least two parame-
ters are required because the maximum outdegree of
an action node is 3, and 1 degree of freedom is fixed
because the transition probabilities must sum to 1. We
choose to use 2 parameters (rather than 3) to ease the
empirical task of finding appropriate values for them.
We setα relatively high to denote a transition proba-
bility into the desired (OK) state, andβ is set relatively
low. Generally,β denotes a transition probability into
the undesired states (slipping and/orcrushing ).
There are, however, two exceptions to this generalisa-
tion set by the interdependencies between parameters
due to the need for the transition probabilities to sum to
1. Thus, when the outdegree of an action node is 2, the

transition probability intoslipping and/orcrush-
ing states may be (1− α), which therefore needs to be
approximately equal toβ. An example is the (undesir-
able) transition into thecrushing state from theOK
state by the grip action. When the transition is from an
action node whose outdegree is 3 the transition prob-
ability into slipping and/orcrushing states will
be 1− (α + β), again to keep the sum of the transi-
tion probabilities 1. An example occurs for the release
action in thecrushing state leading toslipping .
So further requirements are thatα + β < 1 in order that
these transition probabilities do not vanish, and 1− (α
+ β)∼ β to keep transition probabilities into undesired
states commensurate. Obviously, we cannot simultane-
ously satisfy 1− α = β and 1− α = 2β, but it is not
essential that these equalities are exact, only that the
relevant transition probabilities are commensurate for
similar outcomes. In this work, we have setα = 0.85
andβ = 0.12 by trial and error.

Rewards and punishments are either fixed, or made
to depend upon the time spent in the originating state
for that transition. Rewards are attached to transitions
into the OK state. Punishments are attached to tran-
sitions into the undesirable (slipping , crushing
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andnot touching ) states. Time-dependent rewards
have the effect of increasing the reward for moving to
the OKstate according to the length of time spent in
an undesirable state, and conversely for punishments.
Both time-dependent and fixed rewards/punishments
have been set empirically. Transitions with a−16 pun-
ishment are included in the MDP specification for com-
pleteness; it is envisaged that they should never occur
in the trained network. When the object is being sat-
isfactorily gripped, i.e., we remain in theOKstate for
tOK, the rewards for the two associated actions ofgrip
andrelease are:

RGRIP= RRELEASE= k
2500− F

2500
(1+ tOK)

whereF is applied force andk is a constant empirically
set equal to 20 in this work. Its purpose is to make the
rewards for remaining in the OK state commensurate
with those for other actions and consequences. With
this scheme, the rate of increase of the reward decreases
as the applied force approaches its upper limit of 2500
(seeSection 2), corresponding physically to 2500 mN.

6. Actor-critic method

Actor-critic methods are temporal-difference (or
TD) learning methods[23]. TD methods are based
on learning the difference(s) between temporally-
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Fig. 5. Block diagram of actor-critic reinforcement learning system
(after Sutton and Barto[12], Fig. 6.15).

In this work, we have used the Generalised Approx-
imate Reasoning-based Intelligent Control (GARIC)
architecture of Berenji and Khedkar[24] as the ba-
sis of our system, primarily because of the facility it
gives to combine actor-critic and neurofuzzy methods.
It has been widely employed in similar works on intel-
ligent control (e.g.,[25–27]). GARIC consists of two
neural networks: the Action Selection Network (ASN)
operating as the actor and the Action Evaluation Net-
work (AEN) which criticises the actions made by the
ASN. Outputs from these two neural networks feed
into a Stochastic Action Modifier (SAM), as shown in
Fig. 6.

6.1. Action Selection Network

The Action Selection Network, or actor, is a neuro-
fuzzy controller with structure as shown inFig. 3. The
choice of a neurofuzzy network gives transparency to
the system. That is. the behaviour of the physical sys-
tem is described by a set of easily-interpreted linguistic
rules. These can then be used to understand and validate
the process under control, or to modify it.

The ASN output isf(t), which determines the ‘pro-
visional’ voltage to be applied to the gripper motor. By
‘provisional’, we mean that this value is subject to ran-
dom modification by the Stochastic Action Module as
described immediately below. The updating of the ASN
weights (i.e., the rule confidence vector of connection
weights between rule and denazification layers as in
F ard,
v ent
uccessive predictions. In the RL situation, we
ict reward or punishment and the goal of learnin

o make the current prediction (for the current inp
ore closely match the next prediction, at the next

tep (here 17 ms). Actor-critic methods have a s
ate memory structure to represent the policy (i.e.
apping between states and actions) explicitly an
ependent of thevalue function(seeFig. 5). The latte

s the system component which estimates or derive
internal”, or TD-error. signal to drive the learning pr
ess. The policy structure is known as theactorbecaus

t selects actions, and the value function is known a
ritic because it criticises the actions made by the a
ctor-critic methods have two significant advanta

or our purposes: They require minimal computatio
elect actions and are able to learn an explicitly stoc
ic policy, allowing the optimal probability of selectin
ppropriate actions to be learned ([12], p. 153).
ig. 3) is in a direction that increases the future rew
(t), predicted by the AEN. Hence, to effect gradi
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Fig. 6. Block diagram of the actor-critic system using the GARIC architecture (after Berenji and Khedkar[24], Fig. 3j).

descent optimisation, the weight update should be pro-
portional to∂v(t)/∂wij(t) > 0, giving:

∆ωij(n) = η

n∑
k=0

mn−kr̂(k)s(k)
∂v(k)

∂ωij(n)
(1)

wherek is an index that runs from the initial time 0
up to the current time indexn ([6], p. 170), ˆr(t) is
the ‘internal’ reinforcement signal (i.e., the output of
the AEN, so called because it is internal to GARIC),
s(t) is an output of the SAM, andη and m are the
learning and momentum constants which were em-
pirically set to 0.75.Eq. (1) is similar to Eq. (29)
of Berenji and Khedkar[24], except that they mod-
ify the antecedent and consequent membership func-
tions whereas here we are updating the rule confidence
vector.

6.2. Stochastic Action Modifier

The Stochastic Action Modifier (SAM) gives a
stochastic deviation to the output of the ASN, to pro-
vide better exploration of the state space and a better
generalisation ability[24,28]. The deviation, which is

used as a learning factor for the ASN, is:

s(t) = f ′(t)− f (t)

e−r̂(t−1)

where f (t) is the output of the ASN andf ′ (t) is a
Gaussian random variable of meanf (t) and standard
deviation e−r̂(t−1)

6.3. Action Evaluation Network

The Action Evaluation Network (AEN), or critic,
is shown in detail inFig. 7. It is a neural predictor,
producing the necessary predictions for TD-learning.
Its input variables are the normalised measurements of
the slip rate, the applied force to the object and the mo-
tor voltage. The AEN produces a prediction of future
reinforcement,v(t), which is then combined with the
reward signal from the environment,r(t), to produce the
‘internal’ reinforcement signal, ˆr(t). The combination
rules are[24]:

r̂(t) =




0, start state

r(t)− v(t − 1), failure state

r(t)− γv(t)− v(t − 1), otherwise

(2)
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Fig. 7. The Action Evaluation Network (or critic) Li this work consists of a neural network predicting future reward,v(t), which is combined
with the reward signal,r(t), from the environment to produce an ‘internal’ reward signal, ˆr(t).

where�, set to 0.47 in this work, is a discount rate
used to control the balance between long-term and
short-term consequences of the system’s actions ([6],
p. 606). Here, ‘start’ state means the state encountered
on power-up, and ‘failure’ state means that the object
has been dropped. This latter, binary state is inferred
to have occurred when the force signal falls to zero
from a positive value (i.e., we are not in the start start).
A further failure mode exists in which the object is
being deformed by excessive force, thecrushing
state. However, we are unable at present to detect this
state automatically for a range of objects so that this is
handled by manual intervention (seeSection 5) at the
present stage of the work.

This network fine-tunes the rule weight vector using
a gradient descent algorithm. As the hidden layer ac-
tivation function is a sigmoidal function the formulae
for updating the AEN weights are[24]:

aij(t) = aij(t − 1)+ β1r̂(t)yj(t − 1)(1− yj(t − 1))

sgn(cj(t − 1))xi(t − 1)

bi(t) = bi(t − 1)+ β2r̂(t)xi(t − 1)

cj(t) = cj(t − 1)+ β2r̂(t)yj(t − 1)

for i = 1, 2, 3 andj = 1, . . ., 5. The learning rate pa-
rametersβ1 andβ2 were set empirically to 0.68 and
0.45, respectively. The signum function,sgn(), takes
the value 1 when its argument is positive and the value
0 otherwise.

7. Hybrid learning

Thus far, our reinforcement learning scheme fol-
lows the GARIC methodology[24] quite closely. In
our terms, GARIC is an unsupervised learning sys-
tem. However, supervised and unsupervised learning
each have their own characteristic advantages and dis-
advantages as detailed earlier. For instance, supervised
learning generally leads to better performance because
the learning task is simpler and better constrained, but
it can be problematic to obtain a labeled dataset that
covers all situations that will be met in practice. For
instance, if there is a sensor failure, the real operating
conditions will diverge from those implicit in the train-
ing data, with the consequent danger that the system
becomes uncontrollable. Hence, we believe that there
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Fig. 8. Hybrid unsupervised/supervised system in which a Super-
vised Learning Network (SLN) is added to the basic GARIC archi-
tecture. The SLN is originally trained on pre-labeled data, but ‘good’
control actions discovered by reinforcement learning are added into
the training dataset as learning proceeds.

are virtues to a hybrid of supervised and unsupervised
learning. For our application, we see unsupervised RL
as the ‘core’ of the system because of its advantages
for on-line adaptive control, with a supervised learning
module ‘fine tuning’ the overall operation.

The proposed hybrid system is depicted inFig. 8,
in which an extra component, the Supervised Learning
Network (SLN), is added to the GARIC architecture
of Fig. 6. In this scheme, the ASN always has priority
over the SLN. The SLN has the form of the neuro-
fuzzy controller inFig. 3. It is trained by (supervised)
back-propagation, initially using the dataset collected
as described inSection 4. However, as and when RL
discovers a ‘good’ action, this is added to the training
set for background supervised learning. Specifically,
when tOK reaches 3 s, it is assumed that gripping is
successful; input-output data recorded over this inter-
val are then concatenated onto the labeled training set.
In this way, we hope to ensure that such good actions
do not get ‘forgotten’ as on-line learning proceeds.

With the datasets used here, and with experiments
running for approximately 15 min, (re)training of the
SLN took about 5–10 s. This was done in the ‘back-
ground’ (i.e., without stopping overall system execu-
tion). When such retraining is complete, the SLN then
sends a weight updating signal to the ASN. Corre-
sponding ASN and SLN weights are now compared
and any ASN weight which is within 5% of the corre-
sponding SLN weight is overwritten by the latter value.
More precisely:

if (wASN
i > 0.95wASN

i ) ∧ (wASN
i < 1.05wASN

i ) then

wASN
i ← wASN

i ∀ i

wherei counts over all corresponding ASN and SLN
weights.

Although the kind of ‘soft’ approaches to intelli-
gent control that we have used here allow us to tackle
difficult problems in robotics and manipulation, they
have the major disadvantage that the lack of an under-
lying mathematical model means that we cannot derive
stability criteria in advance. Obviously, overwriting the
ASN weights in the way just described carries the clear
risk of introducing instability into the hybrid system.
The 5% criterion is an attempt to minimise the prob-
lem of instability while still allowing the supervised
training data to have an effect. The value of 5% was
set empirically, although the system was not especially
sensitive to this value. For instance, a series of tests
was undertaken with the criterion set to 10% and the
s
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ystem still maintained correct operation.

. Experiments

Experiments were carried out with a range
eights in the metal can (Fig. 2), different from the
nes used in collecting the labeled training data
ection 4). This was intended to test the ability of ne

ofuzzy control to maintain correct operation robu
n the face of conditions not previously encountere

To recap, three experimental conditions were s
ed:

(i) off-line supervised learning with bac
propagation training;

(ii) on-line reinforcement learning;
iii) hybrid unsupervised/supervised learning.
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In each case, by virtue of using a neurofuzzy
methodology, we have the possibility either to learn
‘from scratch’ or to seed learning with prior knowl-
edge about good actions. An example of such prior
knowledge would be the manually-written fuzzy rules
described by Dubey, Crowder and Chappell[29].
Since we have previously shown[9] that rules learned
from scratch by back-propagation are superior to the
Dubey et al. rules, we actually proceed as follows.
In (i), we learn ‘from scratch’ by back-propagation.
This is repeated 15 times from different initial, ran-
dom weight settings; it was found that there was
very little difference in the solutions as far as qual-
itative behaviour is concerned. In (ii), reinforcement
learning is seeded with the rules from (i), to see
if RL can improve on back-propagation. In the hy-
brid (iii), RL is again seeded with the rules from
(i). As stated in the previous section, however, as
and when RL discovers a good action, this is added
to the training set for background supervised learn-
ing, which can in turn modify the weights of the
ASN (i.e., the ‘actor’ in the RL actor-critic frame-
work).

Table 1
Typical rule-base and rule confidences obtained after training

Voltage Fingertip force

Z S M L

S

.1, 0.0 0.8)
4, 0.5) )
, 0.5)
.0, 0.0

2, 0.2) 0.3)
6, 0.7) 6)
, 0.1) .2)

0.3, 0.2 .4)
.7, 0.7 )
.0, 0.1

, 0.2) )
.7, 0.8 )

, 0.2)
.8, 0.8 )

R r: (i) we on-line
r and (iii .

8.1. Learned rules

Typical rule-base and confidences obtained after
training are presented inTable 1. In the table, each rule
has three confidence values corresponding to condi-
tions (i), (ii) and (iii) above. Since reinforcement learn-
ing is on-line, the notion of a stopping criterion does
not apply. In principle, learning carries on forever. To
assess results, however, we decided to stop learning
after approximately 15 min of training, during which
time the rule confidences had stabilised.

We choose to show typical results (from 15 runs)
because the precise findings depend on factors like the
initial start points for the weights (rule confidences),
the action of the Stochastic Action Modifier in the re-
inforcement and hybrid learning systems, the precise
weights in the metal can, and the length of time that
the system runs for. Nonetheless, there was found to be
very little obvious difference in the learned solutions
so some very useful generalisations can be drawn.

As stated earlier, one of the virtues of neurofuzzy
methods is that the learned rules are transparent so that
it should be fairly obvious to the reader what these mean
lip

Z L (0.0, 0.1, 0.0) S (0.05, 0
VL (0.1, 0.6, 0.05) M (0.1, 0.
VVL (0.9, 0.3, 0.95) L (0.8, 0.5

VL (0.05, 0

VS L (0.2, 0.2, 0.0) S (0.3, 0.
VL (0.7, 0.8, 0.6) M (0.6, 0.
VVL (0.1, 0.0, 0.4) L (0.1, 0.2

S M (0.2, 0.1, 0.2) M (0.25,
L (0.8, 0.6, 0.4) L (0.65, 0
VL (0.0, 0.3, 0.4) VL (0.1, 0

M L (0.08, 0.1, 0.2) L (0.2, 0.3
VL (0.9, 0.7, 0.4) VL (0.8, 0
WL (0.02, 0.2, 0.4)

L VL (0.1, 0.3, 0.0) L (0.1, 0.2
VVL (0.9, 0.7, 1.0) VL (0.9, 0

ule confidences are shown in brackets in the following orde
einforcement learning while interacting with the environment;
) NVS (0.2, 0.4, 0.3) NVS (0.9, 0.8,
Z (0.8, 0.6, 0.7) Z (0.1, 0.2, 0.2

)

Z (0.1, 0.2, 0.0) NVS (0.0, 0.2,
VS (0.9, 0.5, 0.6) Z (0.75, 0.7, 0.
S (0.0, 0.3, 0.4) VS (0.25, 0.1, 0

) S (0.4, 0.3, 0.4) VS (0.4, 0.5, 0
) M (0.6, 0.7, 0.6) S (0.6, 0.5, 0.6
)

M (0.3, 0.4, 0.2) S (0.3, 0.4, 0.1
) L (0.7, 0.6, 0.6) M (0.7, 0.6, 0.7

VL (0.0, 0.0, 0.2) L (0.0, 0.0, 0.2)

L (0.8, 0.7, 0.6) S (0.0, 0.1, 0.0)
) VL (0.2, 0.3, 0.4) M (0.9, 0.8, 0.85

L (0.1, 0.1, 0.15)

ights after off-line supervised training; (ii) weights found from
) weights found from hybrid unsupervised/supervised learning
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and how they relate to control of the object. For exam-
ple, if the slip is large and the fingertip force is small,
it means that we are in danger of dropping the object
and the force must be increased rapidly by increasing
the motor voltage. The two fuzzy rules inferred in this
case (by reinforcement and hybrid learning) are:

R18,6 : if (slip is L) ∧ (force is S) then voltage is L

(c18,6 = 0.2)

R18,7 : if (slip is L)∧(force is S) then voltage is VL

(c18,7 = 0.8)

whereRij is the rule label, subscripti (=18) here indi-
cates the combination of antecedents (i.e., slip L and
force S corresponds to the 18th cell ofTable 1count-
ing left-to-right from top-to-bottom), subscriptj (6 or 7)
indicates that the consequent is the 6th or 7th member-
ship (L or VL) in the output fuzzy set (motor voltage)
as specified inSection 3.2, andcij denotes confidence
in the rule.

The strength of each of these rules is determined by
the grade of membership for slip and force in the fuzzy
sets (L and S, respectively). The final motor voltage will
depend on how these and other relevant rules (i.e., those
for which there is also a non-zero grade of membership
for slip and force) interact at the defuzzification layer
(Fig. 3).

In the case that there are just two memberships to
the fuzzy rule consequent, all three learning schemes
give very similar results. This is to be expected in view
o o).
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tions of simulated (force) sensor failures. Several dif-
ferent sensor failures were studied—various offsets to
the force sensor, to the slip sensor and to both. Re-
sults were qualitatively similar in all cases, so here we
choose to describe just one case, namely when failure of
the force sensor was simulated by increasing the force
measure by an offset of 0.2 N. Performance was inves-
tigated by manually introducing several disturbances
of various intensities acting on the object (i.e., as in
Section 4).

8.2.1. Supervised learning system
The solid line ofFig. 9 shows typical performance

of the supervised learning system under normal condi-
tions; the dashed line shows operation when a sensor
failure is introduced at about 5.5 s. In this and the fol-
lowing tests, the experimenter must attempt to repro-
duce the same pattern of manual disturbance inducing
slip at different times so that different conditions can be
compared. This is clearly not possible to do precisely.
To allow easy comparison of these slightly different
experimental conditions, we have aligned plots on the
major induced disturbance, somewhat arbitrarily fixed
at 3 s.

Although very precise comparison is not possible, a
general pattern of results is clear to see. In normal op-
eration, the figure shows that the system is able to grasp
the object (metal can) properly despite the manually-
induced disturbances, which can be clearly seen as tran-
sients or ‘spikes’ in the figure. On the other hand, fol-
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owever, when there are more than two rule co
uents, a more variable pattern emerges. Some

he hybrid learning produces a result more like
upervised learning result, sometimes it is more
he reinforcement learning result, sometimes it is
ermediate between the two, and sometimes it ra
nlike either. Our best interpretation of this is t

he hybrid system is doing something distinctly d
erent to the other two learning systems. The ques
hen arises: Is the hybridbetter in some quantifiabl
ense than the ‘pure’ reinforcement learning sys
lone?

.2. Experiments with sensor failure

To answer this question, we have chosen to
mine operation of the various systems under co
owing a sensor failure, the system is unable to a
utomatically and drops the object. The loss of c

rol following a sensor failure can be clearly seen
he period after 5.5 s. The object slip increases rap
Fig. 9(a)) while at the same time the end effector m
or voltage saturates (Fig. 9(b)) but the resultant forc
Fig. 9(c)) drops to zero because the object is no lo
eing gripped—it has been dropped.

.2.2. Reinforcement learning system
Fig. 10 shows typical performance of the syst

rained with ‘pure’ reinforcement learning. To sim
ate continuous on-line learning but in a way wh
llows comparison of results as training proceeds
roke each complete RL trial into a series of ‘in
ctions’. After each such interaction, lasting app

mately 6 s, the rule-base and rule confidence ve
btained were used in the neurofuzzy system to
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Fig. 9. Typical performance with supervised learning, under nor-
mal conditions (—) and with sensor failure at about 5.5 s (- - -): (a)
shows the slip initially induced by manual displacement of the object
(a metal can), (b) shows the control action (applied motor voltage)
which attempts to retain appropriate grasp of the object, (c) shows
the resulting force applied to the object. Note that the manually in-
duced slip is not exactly the same in the two cases because it is not
possible for the experimenter to reproduce this exactly.

Fig. 10. Typical performance with reinforcement learning, during
the first interaction (—) and the fifth interaction (- - -) after sensor
failure: (a) shows the slip initially induced by manual displacement
of the object, (b) shows the control action (applied motor voltage),
(c) shows the resulting force applied to the object.
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trol the end effector. This rule-base and rule confidence
vector were then used as the start point for reinforce-
ment learning for the next interaction. As before, during
each interaction, the experimenter attempted to main-
tain a consistent pattern of disturbance, although this
could not be done precisely. Simulated sensor failures
were introduced at approximately 5.5 s during the first
interaction.

In Fig. 10, the solid line shows results during the
first interaction and the dashed line shows results dur-
ing the fifth interaction after a sensor failure. (Note that
the first interaction after a sensor failure is actually the
second interaction in absolute terms.) As can be seen,
during the first interaction following a failure, the ob-
ject is dropped just before 6 s. There is a rapid fall off
of resulting force (Fig. 10(b)) while the control action
(end effector motor voltage) saturates (Fig. 10(c)). The
control action is ineffective because the object is no
longer present, having been dropped. By the fifth inter-
action after a failure, however, an appropriate control
strategy has been learned. Effective force is applied to
the object using a moderate motor voltage.

This result clearly demonstrates the effectiveness of
on-line reinforcement learning. Even in the presence
of sensor failure—simulated by adding a large offset
to the force sensor reading so that the end effector is
not applying as much force as it ‘thinks’—the system
is able to retain good grip in response to manually-
induced slip after a relatively short time.
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Fig. 11. Comparison of typical results of hybrid learning (—) and
supervised learning (- - -) during the first interaction after a sensor
failure: (a) shows the slip initially induced by manual displacement
of the object, (b) shows the control action (applied motor voltage),
(c) shows the resulting force applied to the object.

it) in ten repeated experiments, with both reinforcement
learning (—) and hybrid learning (- - -). Both learning
systems are able to reduce control failures to zero but
this takes longer for the reinforcement learning system.
It is not until the sixth interaction after a sensor failure
.2.3. Hybrid learning system
Fig. 11shows the performance of the hybrid train

ystem during the first interaction after a failure (
nd compares it with the performance of the sys

rained with supervised learning (- - -). Note that
atter result is identical to that shown by the full line
ig. 9. It is clear that the hybrid system succeeds in g
ing the object where the system trained on superv

earning fails. Remarkably, this success follows v
uickly after experiencing the sensor failure, whe

t took some 5 or 6 interactions for the reinforcem
earning system depicted inFig. 10to learn an appro
riate control strategy in these circumstances.

As the results presented thus far are typical ra
han exhaustive, it is worth asking if this apparent
eriority of the hybrid system is real and consistent
nswer this question, we plot inFig. 12the number o
ontrol failures (either dropping the object or crush



108 J.A. Dom´ınguez-L´opez et al. / Robotics and Autonomous Systems 48 (2004) 93–110

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

interaction after sensor failure

nu
m

be
r 

of
 d

ro
ps

 in
 1

0 
te

st
s

Fig. 12. Number of object drops after a simulated force sensor fail-
ure: Reinforcement learning (—); hybrid learning (- - -). There were
10 tests in all. The figure shows the number of drops following the
first test.

that the RL system adapts completely to the change.
The hybrid learning system manages this in fewer in-
teractions and displays far fewer control failures in total
(7 cf. 18).

9. Conclusions

Many applications of robotic end effectors require
optimal object grasping, preventing object motion rel-
ative to the end effector and avoiding crushing the ob-
ject by excess force. This must all be achieved in the
face of possible disturbance forces acting on the ob-
ject. The variety of objects and working conditions that
might be met in practice make it impossible to foresee
all the situations the system might encounter. Hence,
some form of learning or adaptation to changing cir-
cumstances is necessary. Ideally, therefore, the system
should learn on-line without a requirement for supervi-
sion, since it is difficult or impossible to collect a dataset
for supervised training which anticipates all future
requirements.

In certain cases, however, some amount of useful
labeled training data may exist and it then makes good
sense to try to use it. In this work, we have used super-
vised training of a neurofuzzy controller and shown that
the trained system operates well provided there are no
unexpected changes in the environment or the system’s
interface with the environment. In the case of simu-
l rops

dramatically. Using reinforcement learning to train the
neurofuzzy system allows on-line adaptation to such
changes and so led to successful control in situations
where the supervised learning system failed (dropping
the object to be gripped). It is important to recognize
that this is not a reflection of any inherent inferiority
of the supervised learning per se but is rather a result
of the difficulty of collecting complete labeled training
data in an unstructured environment. This, of course,
is the whole reason for using on-line reinforcement
learning.

We then described a hybrid of supervised and rein-
forcement learning which was intended to make best
use of pre-labeled training data should they exist. The
supervised learning scheme ran “in the background”
and its training dataset was added to if reinforcement
learning discovered a ‘good’ control action. It was only
allowed to overwrite the results of reinforcement learn-
ing if the neurofuzzy network weights were not too dis-
similar. We reasoned that this would allow the hybrid
system to “ignore” the labeled data if they were incon-
sistent with currently-encountered conditions, and also
represented an attempt to maintain stability in the ab-
sence of a precise mathematical model of the system.
This simple hybrid performed surprisingly well, recov-
ering from simulated sensor failure much faster than
the ‘pure’ reinforcement learning system. Our present
work is extending these ideas to the on-line control of
an end effector with more degrees of freedom and more
sensors than the simple two-fingered gripper used here,
t on-
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ated force sensor failure, however, its accuracy d
o see what limits the well-known “curse of dimensi
lity” (frequently cited as a drawback of neurofuz
ethods) might place on practical exploitation of
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