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Abstract

The recent development of a new kind of public transportation systens mlia particular
double-steering kinematic structure enhancing manoeuvrability in cluttexecements
such as downtown areas. We daillsteerable cama vehicle showing this kind of kinemat-
ics. Endowed with autonomy capacities, the bi-steerable car ought to cosuliakly and
safely a set of abilities: simultaneous localisation and environment modelling, mpbén-
ning and motion execution amidst moderately dynamic obstacles. In this papeldness
the integration of these four essential autonomy abilities into a single applicSpewaif-
ically, we aim at reactive execution of planned motion. We address thenfo$icontrols
issued from the control law and the obstacle avoidance module usinghjilisti@tech-
niques.

Key words: Car-like robot, navigation, path planning, obstacle avoidance, autoreomou
navigation.

1 Introduction

The development of new Intelligent Transportation Syst@mS), more practical,
safe and accounting for environmental concerns, is a téagival issue of highly
urbanised societies today [18]. One of the long run objestis to reduce the use of
the private automobile in downtown areas, by offering nevdera and convenient
public transportation systems. Examples of these, are tizalyobot — designed
at INRIA and currently traded by the Robosoft company (see welwsoft.fr) —
and the pi-Car prototype of IEF (Institut d’Electronique Bamentale, Université
Paris-Sud).

Preprint submitted to Elsevier Science 7 October 2004



The kinematic structure of these robots differs from thaaafar-like vehicle in
that it allows the steering of both the front axle and the ora. We call a vehicle
showing this feature a bi-steerable car (or BiS-car for 3hort

Endowed with autonomy capacities, the bi-steerable canttiogcombine suitably
and safely a set of abilities that eventually could come &orthief of the end-user
in complex tasks (e.g. parking the vehicle). Part of thedéiab have been tackled
separately in previous work: simultaneous localisaticshemvironment modelling,
motion planning execution amidst static obstacles andclesavoidance in a mod-
erately dynamic environment without accounting for a pcthmotion.

In this paper we address the integration of these four essantonomy abilities
into a single application. Specifically, we aim at reactixeaition of planned mo-
tion. We address the fusion of controls issued from the cbkdw and the obsta-
cle avoidance module using probabilistic techniques. Véecanvinced that these
results represent a step further towards the motion autgrdriiis kind of trans-
portation system. The structure of the paper follows.

In section 2, we sketch the environment reconstruction andlisation methods
we used and we recall how the central issue regarding theometanning and

execution problem for the general BiS-car was solved. Se&iexplains how our
obstacle avoidance system was designed and section 4 hoas iaglapted to the
trajectory tracking system. In section 5 we present expantal settings showing
the fusion of these essential autonomy capacities in ogtdarable platform the
CyCab robot. We close the paper with some concluding remarkgaidelines on

future work in section 6.

2 Localisation, Environment modelling, M otion planning and execution

In the design of an autonomous car-like robot, we are coedrhbat localisation,
modelling of the environment, path planning and trajectoagking are of funda-
mental importance.

2.1 Map-building and Localisation

The CyCab robot is the size of a golf-cab capable of attainindouBOKm/h.
Its “natural” environment is the car-park area of the INRIA RBéAlpes (about
10000m?). For localisation purposes, we did not want to focus on gtection of
natural features in the environment, since such detecsioftén subject to failure
and not very accurate. So, in order to ensure reliabilitydeeded to install artifi-
cial landmarks in the environment. These landmarks had tebected easily and
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Fig. 1. Obstacle map evolution: Experimental images during the obstacle nidjmgpu
phase. The vehicle is driven within the car-park area as long as negidadtaneously, the
laser range sensor is used to detect the landmarks to build-up the localisagpon

accurately, and they should be identified with a reasonabtgatation effort. Fig.
2 shows our robot, its sensor and the landmarks : cylindeereavwith reflector
sheets, specially designed for our Sick laser range finder.

Landmarks

Sick 2D lasef
range finder

.

Fig. 2. Cycab robot and its landmarks for localization

Moreover, in order to keep flexibility, we wanted to be abletpip the environ-
ment with non permanent beacons. For this reason, we cottélgmn a definitive
landmark map, and we had to build a system able to learn therdstate of the



car-park area. This led us to use SLAMmethods. The method which was best
suited to our needs was the Geometric Projection Filter[@gHdor reference, and
[24] for implementation details). It consists in buildingvap of features uncor-
related with the robot state. Such features are, for instathe distance between
landmarks or angles between three of them.

Owing to the accuracy of the laser range finder, to the goodcehaf our land-

marks, and to the strength of the SLAM methods we use, we a&tsmbhe worst
case accuracy of our localisation system to the followingezaabout 10 centime-
tres in position and 2 degrees in orientation. We refer taeeeto [24] for more
details about the way we evaluate these values.

2.2 The Obstacle Map

The previous method localises the robot and builds a lankimap. But, we still

miss a map of observed obstacles in order to plan safe paitehieve this goal,
we build a kind of simplified occupancy grid[8] on the envinoent. This struc-
ture gives us informations correlated with the probabilitsit a given place is the
boundary of an obstacle.

Both maps are built online, in real-time, by the robot durimg tonstruction phase.
Fig. 1 shows how the obstacle map evolves while we are exygdhe environ-
ment. This map is made of small patches which are added aongdaithe need of
the application. In this way, the map can be extended in argction, as long as
memory is available. Once the map-building phase has fidjghe obstacle map
is converted into a pixmap and passed to the Motion Planrnagges

2.3 Motion Planning Amidst Static Obstacles

The Motion Planner adopted for the CyCab was presented infEa8entially, it is

a two step approach, dealing separately with the physicatcaints (the obstacles)
and with the kinematic constraints (the non-holonomy). plaaner first builds a
collision-free path without taking into account the norddmmmic constraints of
the system. Then, this path is approximated by a sequenadlisian-free feasible
sub-paths computed bysaiitable? steering method. Finally, the resulting path is
smoothed.

A key issue in non-holonomic motion planning is to find a stegemethod account-
ing for the kinematics of the robot. One way of designing stgemethods for a

I Simultaneous Localisation And Mapping
2 i.e. Verifying the topological property as explained in [26].



non-holonomic system is to use ftatnesgroperty [10] allowing also for feedback
linearisation of the nonlinear system (this is discusseskntion 2.6). This is what
we did for the general BiS-car for which a flat output—or linsisag output—was
given in [26].

2.4 Steering a BiS-car

The kinematics model of a general bi-steerable vehicle @rftht output are shown
in Fig. 3.

Fig. 3. Cycab robot, its landmarks and its kinematics model showing the catediaf the
flat output (pointH) with respect to the reference frame of the robot placed at gairn
our case we have thét ., y-, 0, ) is the state of the robot.

The striking advantage of planning a path in the flat spackaswe only need
to parameterise a 2-dimensional curve whose points andatiggs define every-
where the current-dimensional staté of the robot (in the case of the BiS-car
n = 4). The main characteristic of such a curve is its curvatufeom which the
steering angle can be computed.

Fig. 4 shows the outcome of the motion planner using an olestaap generated
as described in the previous section.

2.5 User-Planner Interface

The User-Planner interface in the CyCab is achieved througtueh-screersu-
perposed to 840 x 480 pixels LCD display. Additionally, we use the keyboard to
allow for the entrance of data.

3 The configuration space in robotics is called state spacén control theory, so we will
use indistinctly both terms.
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Fig. 4. Path computed by the motion planner using a real obstacle map. Tiaelebsire
grown as well as the robot before computing the path.

Parked cars

The interface is used to display the current position of ¢t within its environ-
ment and to capture the goal position entered by the useselasitions together
with the obstacle map is passed to the motion planner. Theubyiath is then
displayed allowing the user to validate the path or startvasearch.

Finally, the reference trajectory is generated using aleegnarameterisation of the
path [16] and the user is requested to accept to start thelgxeof the trajectory.

2.6 Trajectory tracking using flatness

It is well known that a non-holonomic system cannot be sisdal using only
smooth state static feedbacks [6]. Ever since then, tingng feedbacks [25]
and dynamic feedbacks have been successfully used inyartfor the canonical
tractor-trailer and car-like robots [9].

Flat systems are feedback linearisable by means of a testratass of dynamic
feedback callegendogenou$l0]. The interest is that we are able to use state-of-
the-art linear control techniques to stabilise the systéfa.present here results
coming from recent work on feedback linearisation of theggahBiS-car.

For a reference frame of the robot placed at péinh Fig. 3, the flat outpuy =
(y1,y2)" of a BiS-car are the coordinates of a polt= (x,,y,)" = (y1,y2)",



computed as a function of the state as follows:

H = F +P(p)ip + Q(p)ty-

whereP(yp) and Q(y) are coordinate functions relative to the robot’s reference
frame (see [26] for details) and wheii (resp.u,.) is the unitary vector in the
directiond (resp. the directiod + 7).

Looking for a tractable relation between the controls ofrtht®ot and the linearising
output, we found an expression giving the flat output dynamiith respect to a
more convenient reference frame placed at the middle ofrtme &xle of the robot
(point ) and having orientation = [0 + 5(¢)] =7 where the functiorB(y) is the
characteristic angle of the velocity vector of the flat otitpu

The convenience of this new reference frame relies on thetatthe velocity of
the flat output has a single component in it. More preciselgsuening thaty =
0+ ((¢) + m—one can show that, in this reference frame, the flat outpoénhjcs
is given by the following expression [14]:

oH

E:UHU“/ (1)
oP 0

vu=veleos(ip — 0 —m) — OF) 4wl £ ]

where ¢, w,) are the controls of the robot (i.e. the heading and the fste@tring
speeds)y — § — ) is the angle subtended between the velocity vector of thetrob
VFr and the velocity vector of the flat outpu}; (see Fig. 3).

From expression (1) the open-loop controls of the robot eafohnd as soon as
the trajectory of point{ is known. As we are interested in stabilising the BiS-car
around a reference trajectory, we explored the fact thap@vo the flatness prop-
erty, the system is diffeomorphic to a linear controllalhe $§10]. The endogenous
dynamic feedback that linearises the general bi-steedeem is presented in
[14]. Then, from linear control theory, it can be shown ttregt €losed-loop control
stabilising the reference trajectoyy has the following form :

2 . .
i = 0" = ki (o - 0)) i =12 ‘2)
=0

Where(.)) stands for the total derivative of orderSee [7] for details.



3 Obstacle avoidance using probabilistic reasoning

The previous approach considers trajectories in a staticta@mment. In order to
make the execution of these trajectories more robust, aadbsavoidance system
should be prepared to react to unpredicted changes in ti@ement. This section
presents the principles of our obstacle avoidance module.

3.1 State of the art on reactive trajectory tracking

Most of the approaches for obstacle avoidance are locai]jl that is they do not
try to model the whole environment. They goal is rather tosesesor measures to
deduce secure commands. Being simpler and less compuiaiantensive, they
seem more appropriate to fast reactions in a non-staticamwient. On the other
hand, we can not expect optimal solutions from a local mettad possible that
some peculiar obstacle configuration create a dead-endAftoah the robot cannot
escape with obstacle avoidance only.

3.1.1 Potential fields

The general idea of potential fields methods, proposedllyitby O. Khatib in
1986, is to build a function representing both the navigagoals and the need for
obstacle avoidance. This function is built so has to deergdgen going closer to
the goal and to increase near obstacles. Then, the navigatblems is reduced to
an optimisation problem, that is, to find the commands thiaglsrthe robot to the
global minimum of the function. This later can be defined wéhpect to the goal
and the obstacles but other constraints can also be addeththe

Numerous extensions to the potential fields have been pedsisce 1986. Among
others, we can cite the Virtual Force Fields [3], the VectetdHistograms [4] and
their extensions VFH+[28] and VFH*[29]. Basically, thesethws try to find the
best path to the goal among the secure ones.

3.1.2 Steering Angle Field (SAF)

The SAF method, proposed tieiten et al.in 1994, use obstacles to constrain
steering angle in a continuous domain. Simultaneouslgdpentrol is an iterative
negociation process between the high-level driving moduakkthe local obstacle-
avoidance module.

One of the first extension to this method was published in.[R Bxpress the col-
lision avoidance problem as an optimisation problem in tht@ot controls space



(linear and rotational speeds).

3.1.3 Dynamic Window

The Dynamic Window approach[11] propose to avoid obstdnyesxploring com-
mand space in order to maximise an objective function. Tdiey laccounts for the
progression toward the goal, the position of closer obstaghd current robot con-
trols. Being directly derived from the robot dynamic, thisthwle is particularly
well adapted to high speed movements.

The computational cost of the optimization process is redugsing the dynamic
caracteristics of the robot (bounded linear and angulaglacation) so as to reduce
the searched space. This kind of constraints are called Constraintssince the
must be respected. Conversely, when the objective functiclides preferences
on the robot movement, we call the resulting constrea& Constraints

3.1.4 Dynamic environments and Velocity Obstacles

In the specific case of moving obstacles, special methodsleen proposed[17,2]

using theVelocity Obstaclenotion. Basically, this notion consist in projecting per-
ceived obstacles and their expected movement in the spasmcofe commands.

So, each mobile object generates a set of obstacles in themaondspace. These

obstacles represent the commands that will bring to a amili; the future.

In the general case, obstacle movement parameters areawoh krpriori, so they
have to be deduced from sensor data. Obstacle avoidana®lsaate then com-
puted in reaction to theses previsions. Currently, it i$ gtilte difficult to get re-
liable previsions of the obstacles future trajectory. Consaétly, these obstacle
avoidance methods are not appliable in real situations yet.

3.1.5 Obstacle avoidance and trajectory following

When we want to perform obstacle avoidance manoeuvres vdtibsving a trajec-

tory, a specific problem appear. On our non-holonomous rabetpath planning
stage took into account the kinematic of the robot and pldranéeasible path.
When the reactive obstacle avoidance generates commapdgliftle leaves its
planned trajectory. Then, we cannot be sure anymore thatitiz objective of the

trajectory is still reachable.

A solution to this problem was proposed in [20]. This methaestto deform the
global trajectory in order to avoid the obstacle, respeetkimematic constraints
and ensure that the final goal is still reachable. Even if itgzally very inter-

esting, this obstacle avoidance scheme is still difficulapply in real situations



due to it computational complexities, especially on an aooous car. In our ex-
periments[20], the vehicle had to stop for several minutesrder to perform the
trajectory deformation

3.2 Obijectives

After all these results on obstacle avoidance, it seemab\hat our goal is not to
propose a new solution to this problem. It has been showh[1®at probalities and
bayesian inference are appropriate tools to deal with redidwncertainty and to
model reactive behaviors. We this in mind, we wanted to thinéut the expression
of the obstacle avoidance problem as a bayesian inferenbéepn. Consequently,
the originality of our approach is mainly its expression dnel semantic we can
express with it.

3.3 Specification

The CyCab can be commanded through a spgéezhd a steering angle. It is
equipped withr radians sweeping laser range finder. In order to limit the vol
ume of the data we manipulate, we summarised the sensortagmi values :
the distances to the nearest obstacle ity/& angular sector(see Fig. 5). We will
call D,k = 1...8the probabilistic variables corresponding to these measur

Besides, we will assume that this robot is commanded by sogtelavel system
(trajectory following for instance) which provides it with pair of desired com-
mands(Vy, ®4).

Our goal is to find commands to apply to the robot, guarantghegehicle security
while following the desired command as much as possible.

3.4 Sub-models definition

Given the distancé); measured in an angular sector, we want to express a com-
mand to apply that is safe while tracking desired commanueNkeless, since this
sector only has limited information about robot surrouggiwe choose to express
the following conservative semantic: tracking the deso@thmand should be a soft
constraint whereas an obstacle avoidance command shoalddre constraint, the
closer the obstacle, the harder the constraint.

We express this semantic using a probability distributigarahe commands to
apply (V, @) knowing the desired commands and the distabeeneasured in this

10
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sector:

Bi(VO | Va®aD;) = Pi(V | VaD;) P(® | @4D;) €))
where P,(V | Vu;D;) and P,(® | ®,D;) are Gaussian distributions respectively
centred onuy (Vy, D;) and uge (P4, D;) with standard deviatiorry (V,, D;) and
oo (®y, D;). Functionsuy, e, oy, 0 are defined with sigmoid shape as illustrated
in Fig. 6. Example of resulting distributions are shown ig.H.
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There is two specific aspects to notice in Fig. 6 and 7. Fissicerning the means
1y andug, we can see that, the farther the obstacle, the closer toetfieed com-
mandy will be, and conversely, the nearer the obstacle, the mawgsge: minimal
speed, strong steering angle.
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Fig. 7. Shape of;(V® | V;®,4D;) for far and close obstacles

Second, the standard deviation can be seen as a constvainHer instance, when
an obstacle is very close to the robot (smal), its speednustbe strongly con-
strained to zero, this is expressed by a small standardtaevi&onversely, when
obstacle is far, robot speednfollow the desired command, but there is no damage
risk in not applying exactly this command. This low level straint is the result of

a big standard deviation.

3.5 Command fusion

Knowing desired controls and distance to the nearest dbsteits sector, each sub-
model, defined by?;(V® | V;0,D;), provides us with a probability distribution
over the robot controls. As we have eight sectors, we wilehavfuse the controls
from eight sub-models. Then we will find the best control imteof security and
desired control following.

To this end, we define the following joint distribution:
P(V®V;®;D,...Dg S)=P(D;...Dg) P(Vy ®,) (4)
P(S)P(V® | Vy®;D;...Dg S)
where variables € [1...8] express which sector is considerét|.D; ... Ds) and

P(V,;®,) are unknown distributiofh. As there is no need to favour a specific sub-
model, we define”(S) as a uniform distribution. The semantic 8fwill be em-

4 Actually, as we know we will not need them in future computation, we dorveha
specify them.
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phasised by the definition @ (V® | V4D, ... DsS):
PV [ Vy@uD: ... Ds[S =i]) = B(VP | Va®yD;)

In this equation, we can see that the variabBlacts as model selector: given its
valuei, the distribution over the commands will be computed by thiesodel;,
taking into account only distande;.

Using equation 4, we can now express the distribution weealyrinterested in,
that is the distribution over the commands accounting flothal distances but not
variables:

P(V® | Vy®yDy...Dg) =S (P(S)P(V® | Vg®y Dy ... Ds S)) (5)
S

This equation is actually the place where the different trans level expressed by
functionsoy andog will be useful. The more security constraints there will the,
more peaked will be the sub-model control distribution. Go-models who see no
obstacles in their sector will contribute to the sum with gjtfat distribution, and
those who see perilous obstacles will add a peaky distabuhence having more
influence (see Fig. 8). Finally the command really executethb robot is the one
which maximiseP(V & | V; ®; D; ... Ds) (eq. 5).

Command due to \e ‘
close obstacles on the left ’ r
\L Command due to not so close

Desired command

lobstacles on the right

PV ® | Dy sVy®,)

(=}

Fig. 8. Probability distribution over speed and steering, resulting from ltktaole avoid-
ance system.
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3.6 Results

Fig. 9 illustrates the result of the obstacle avoidancessysipplied on a simulated
example. The simulated CyCab is driven manually with a jostia square envi-
ronment. In this specific situation, the driver is continsiguasking for maximum
speed, straight forward (null steering angle). We can ofesen the dotted trajec-
tory that, first obstacle avoidance module bends the t@jgat order to avoid the
walls, and second, when there is no danger of collisiongretesommands are
applied exactly as requested.

From the density of dots, we can figure out the robot speede@is when it comes
close to the walls and while its turning and try to follow desispeed when obsta-
cles are not so threatening.

Startingosition
Max speed,
Null steering angle

Fig. 9. Robot trajectory while driven manually with constant desired stgangle

3.7 Relation to fuzzy logic approaches

The design of our obstacle avoidance modules may remind seeders of a fuzzy
logic controller[15,22,12]. It is rather difficult to sayahone approach is better
than the other. Both fuzzy logic and bayesian inference vimmiselves as exten-
sion of classical logic. Furthermore, both methods willldei#h the same kind of
problems, providing the same kind of solutions. Some wifer the great freedom
of fuzzy logic modelling and others will prefer to rely on tegong mathematical
background behind bayesian inference.

As far as we can see, the choice between fuzzy logic and lzayé@sierence is
rather an personal choice, similar to the choice of a prograrm language: it has
more consequences on the way we express our solution thdre olution itself.

To extend the analogy, one might relate fuzzy logic to the i@@jleage whereas
Bayesian inference would be closer to Ada.

14



4 Trajectory tracking with obstacle avoidance

The method presented in the previous section provides us amitefficient way
to fuse a security system and orders from a high level sysisvertheless the
perturbations introduced in the trajectory following ®yatby obstacle avoidance
are such that they can make it become unstable. In this sestibshow how we
integrate trajectory tracking and obstacle avoidance.

While following the trajectory, obstacle avoidance will nifgccertain commands
in order to follow as much as possible desired orders whaatjng security. These
modifications may introduce delay or diversions in the cartrop. If no appropri-

ate action is taken to manage these delays the control langeragrate extremely
strong accelerations or even become unstable when obstaegone. This is
typically the case when our system evolves among movinggtedes. Thus we
designed a specific behaviour to adapt smoothly our congstem to the pertur-
bations induced by obstacle avoidance.

4.1 Multiplexed trajectory tracking

4.1.1 Validity domain of flat control law

Experimentally, we found that the control law based on flesrean manage errors
in a range of about 1 meter and 15 degrees around nominattygeje Further-
more, as this control law controls the third derivative cé ttat output (eq. 2), it
is a massively integrating system. For this reason, a conptturbation such as
immobilisation due to a pedestrian standing in front of tie@igle will result in
a quadratic increase of the control law output. This phem@mgs mainly due to
the fact that when obstacle avoidance slows the robot ddwirongly breaks the
dynamic rules around which the flat control law was built. Beye is no surprise
in its failure.

4.1.2 Probabilistic control law

In order to deal with the situations that flat control law catrmanage, we designed
a trajectory tracking behavioul TB) based again on probabilistic reasoning (sec-
tion 4.2). As this behaviour has many similarities with agbeed sum of propor-
tional control laws, we do not expect it to be sufficient tdbdtse the robot on its
trajectory. Nevertheless, it is sufficient to bring it baokle convergence domain
of the flat control law when obstacle avoidance perturbatiweve occurred. Basi-
cally, the resulting behaviour is as follows: while the rblsoclose to its nominal
position, it is commanded by flat control law. When, due to atist avoidance, it

is too far from its nominal position, TTB takes control, amg to bring it back to

15



flat control law’s convergence domain. When it enters thisaarrflat control law
is reinitialised and starts accurate trajectory trackimg(s illustrated in fig. 10).

4.1.3 Time control

Path resulting from path planning (section 2.3) is a listaidat configuration in-
dexed by time. So when the robot is slowed down by a travensedgstrian, it
compensates its delay by accelerating. Nevertheless, thibenbot is stopped dur-
ing a longer time, let’s say fifteen seconds, it should nosater to be delayed of
fifteen seconds, otherwise it will try to reach a positioregit second ahead, with-
out tracking the intermediary trajectory. To tackle thiffidulty, we introduced a
third mode to the trajectory tracking: when the robot coredar from its nominal
position, we freeze the nominal position, and we use the DliBé¢nter the domain
where nominal position can be unfrozen.

The global system is illustrated by Fig. 10: we implementecha kind of multi-
plexer/demultiplexer which manage transitions betweartroblaws. In order to
avoid oscillating between control laws when at the intezfaetween two domains
of validity, we had to introduce some hysteresis mechanisthe switching. This
is illustrated in Fig. 10.

Orientation error —Limit of control law validity
Histeresis limit

|—— Flat Control —
=
Law I

Trajectory
Obstacle

. Distance
Avoidance

Flat Control to nominal position

Proportional Control
Frozen nominal position

—| Tracking —

Configuration
[}
1}
[onuo)

10qOY pauIsa(]

]
[onuo)

Behavior

Robot

Control Law Selector

10qoy parddy
|7:‘

Traj. Tracking
——{ Behavior —

Frozen nominal ||
position

Proportional control

Fig. 10. Basic diagram of the control law selector mechanism and validity idgro&the
control laws

4.2 Trajectory tracking behaviour

Our trajectory tracking behaviour was built as a probatigliszsasoning, in a way
similar to the obstacle avoidance presented above (se8JidRunctionnaly, it is
very similar to a fuzzy control scheme as presented in [18]idunstrated in [12].

To specify our module, we use a mechanism of fusion with damp23]. If A
and B are two variables, we will define a diagnosis boolean vagid§l which
express a consistency betweéandB. Then,A andB will be called thediagnosed
variablesof 7%.

Our goal is to express the distribution over the desiredrottV,, ¢,) knowing
reference control§V,., ®,) planned by the path planning stage, and error in position
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(06X, &Y") and orientation¥ with respect to the nominal position. Fig. 11 illustrates

theses variables.

Reference
Vehicle

Tracking
Vehicle

Fig. 11. Variables involved in trajectory tracking behaviour

In addition to the preceding variables, we will add five diegis variablesl%, I“//d

19, 1¥ andly’. Variables linked to an error variabléX, §Y, 40) will diagnose if a
given command helps correcting this error. Variables ldhicereference commands
evaluate if a command is similar to the reference one.

All these variables describe the relation between theigribaed variables in the
following joint distribution:

P(Va®aV, @, 0X & & 1)) I I3, 13, 157) = (6)
P(Vy @) P(V, ®,) P(6X &Y &)
P(IYY | Va 6X) P(Iy; | Va V;)
P(Ig, | ©4 &) P(Ig, | ®a & Vo) P(Ig | ©4 ;)

Using this joint distribution and Bayes rule, we will be alarnfer
P(Va®a|(V, ®,) (6X & &) (7)

[0y =01y, =118, = 1 Uy, =1] [Ig; =1])

Basically, this equation expresses the fact that we are ngolar the most likely
commands in order to correct tracking error while accounfor reference com-
mands. Having all the diagnosis variables set to one ergdahige semantic.

In the preceding joint distribution (eq. 6), all the diagedwvariables are assumed
to be independent, and to have uniform distributions. Adl ittformation concern-
ing the relation between them will be encoded in the distidouover diagnosis
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variables. In order to define this distributions, we first efihe functioni, (z, y)
as a Mahalanobis distance betweeandy:

dg($7y) = e_%<%)
Then, for two variables! and B, we define

P([IF =1] | AB) = dsa,p)(A, f(B)).

Let's see how preceding functiossand f are defined in specific cases.

4.2.1 Proportional compensation of errors

In the case of ¥, we setf(4X) = a.dX and
S(Vg, 6X) = max((1 — £.0X)0max s Ormin)-

Expression off implies that the maximum aP(1{¥ | V; 4X) will be for a value of
V, proportional to the errofX . Expression of5 defines the constraint level associ-
ated to this speed: the bigger the error, the more confideat@that a proportional
correction will work, so the smaller.

The basic behaviour resulting from this definition is thaewhhe robot is behind
it nominal position, it will move forward to reduce its errdine bigger its error, the
faster and with more confidence that this is the good cortrapply.

ForIg};, we use a similar proportional scheme. Its basic meaningaiswhen the
robot has a lateral error, it has to steer, left or right, deljogy on the sign of this
error. Again, the bigger the error, the more confident welaméwe have to steer.

Finally, the same apply foﬁ"d, except that the steering direction depends not only
of the orientation error, but also of the movement directign

4.2.2 Using planned controls

In the path planning stage, the trajectory was defined asaf seiminal position,
associated with planned speed and steering angle. Theytthéeaccounted for,
especially when error is small.

Let's consider first[“f;. We setf and S as follows: f(V,) = V, andS(V,, V,) =

ov. € [Omin, Omax), rather close t@ ... By this way, planned speed is used as a
indication to the trajectory following system. The distiiton over/z" is defined
using the same reasoning.
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4.3 Results

Fig. 12 illustrates the basic behaviour of our trajectoagcking behaviour. In both
graphs, desired command will maximise eitti&h” | X V) or P(® | 0Y 60 D.).
Since curveP(V | 60X V,.) is closer toP(V | 6X) than toP(V | V.), we can
observe that longitudinal errofX) has much more influence than reference com-
mand on the vehicle speed. In the same manner, steering iangleade-off be-
tween what should be done to correct lateral erébr) @nd orientation erroré@),
lightly influenced by reference steering angle.

P(V1[dX=0.2]) - - [
P(V I [Vez—1]) ===+ - ’ P(@l [
[

/\ P(V | [dX==0.2] [Vc=—1]) — | 0B ,’ ‘\ P(® | [dc=0.3])-----]
RN ’ \ P( [dY=0.5] [@=0.11¢ c=0.3])— —
‘. 3 / \ B
1 \
AN
;o \.
1/ W\
1 \
1 / \
’ 1/ Vi
~~~~~~~~~~~~~~~~~~~~~~~~~~~ L. 1, \
'/ VN,
. Y I
, N ok + \o- i >
. NG A s [N
’ e A 7 e \ N
"’ N ook B \ .
’ \\ / o Q N
z ~ 2 ‘o
= v /_,’ D = T~
s 1 0s 0 o0s 1 15 2 ﬂn 03 02 01 0 01 02

Fig. 12. Trajectory tracking : resulting command fusion

Fig. 13 shows the collaboration of obstacle avoidance ajddiory following on
a simulated example. Planned trajectory passes throughstaabe which was not
present at map building time. Obstacle avoidance modifies@ig in order to grant
security. When errors with respect to nominal trajectorpashig, our control law
selector switch to the trajectory tracking behaviour. Hei®a big longitudinal er-
ror, due to obstacle avoidance slowing down the vehiclecwingger the switch-

ing.

4.4 Discussion

Using the multiplexed control laws we managed to integratéhe same control
loop, our flat control, accurate but sensible to perturlmatisith our TTB, less

accurate but robust to perturbations. By this way we obtamsygstem capable of
tracking trajectory generated by our path planner while@anting for unexpected
object in the environment.

Finally, when the robot has gone too far from reference ¢tajy, or when reactive
obstacle avoidance can not find suitable controls anymbneay be necessary to
re-plan a new trajectory to the goal. This has not been imgheed on the robot
yet, but this should not be considered neither a techniaahsaientific issue.
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Fig. 13. Collaboration of trajectory tracking and obstacle avoidance iomuated example

o T T BT

Fig. 14. An experimental setting showing from left to right: The arbitrancipig of the
landmarks; the manual driving phase for landmark and obstacle map-loyifdeobstacle
map generated together with the current position of the robot as seen b@Ehdisplay;
the capture of the goal position given by the user by means of the tovebrsthe execu-
tion of the found trajectory among aggressive pedestrians.

5 Experimental setup

We tested the integration of these essential autonomy itegsao our experimental
platform the Cycab robot. The aim was to validate the thewaietionsiderations
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made for the BiS-car and to get insight into the limitationghed whole motion
scheme.

The computation power on-board the Cycab Reatium IF** 233MHz running a
Linux system. All programs were written in C/C++ language.

During the experiments the speed of the robot was limited3m . The control
rate of the robot was fixed &bms. The throughput rate of the laser range-finder
was limited to140ms ® ; therefore the control system has to rely momentarily in
odometry[13] readings.

Fig. 14 is a set of pictures showing a complete applicatidegirating the stages
described throughout the paper.

) = ‘ '
T - .
L
Cycab starting f l H :g
t o

position @ {%' ‘}'
5 2

Fig. 15. Executed trajectory among static obstacles and moving pedesRearsmiddle
point (R in fig. 3) trajectory is drawn.

Planned trajectory
Executed trajectory

Multiplexer Mode

Fig. 16. Executed trajectory with respect to planned trajectory, and mukiphegde.

5 This rate is fair enough for our needs, even though we could use &imsatiriver.

21



1.5 T

Planned speed =~~~

Applied speed

z
£
st /
53 /
o ’
© /
/
05
\ 7
N
/
¥,
0 Y
Traj. Tracking Behavior(Frozen) Z
,,,,,,,,,,,,,,,,,,,,,,,,, 2
%_'.
Traj. Tracking Behavior e
3
[}
o
Flat @
| | | | | |
0 200 400 600 800 1000 1200 1400

Time index 'l = 0.05s1

Fig. 17. Applied speeds with respect to planned speed, and multiplexer mode

08 ‘ ‘

Planned steering angle - - - -
0.6 — Applied steering angle
04 —

02—

i wht il er A
gl TovoT Ty &

\ Pkl Y
. \ ,
/
02+ \ /
/|
/
-04

Traj. Tracking Behavior(Frozen)

Steering angle [rad]
(=]
E

Traj. Tracking Behavior

Flat

opow 1oxapdnnA

0 200 400 600 800 1000 1200 1400
Time index 1 = 0.05s1

Fig. 18. Applied steering with respect to planned steering, and multiplexer.mode

Figs 15 to 18 illustrates how a planned trajectory is exetwtale avoiding moving
pedestrians. In this environment, the control law usinghéias could only be used
at the beginning and at the end of the trajectory. On the n@nmabf the trajectory,
speed and steering angle are adjusted in order to maintaimityewhile keeping
pace with the plan as much as possible.
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6 Discussion & Conclusions

In this paper, we presented our new steps toward the autonbanlyi-steerable car.
The integration of localisation, map building, traject@ianning and execution in
a moderately dynamic environment was discussed. Controukang the CyCab
flathness property was found to be insufficient for trajectomgking among moving
pedestrians.

Even if this integration was successful and provides satiefy results, we are
convinced that a reactive behaviour cannot be sufficiertbisautonomy of vehicle
in a real urban environment. For this reason, we are workimthe perception and
identification of road users (pedestrians, cars, bikesuigks). By this way, we will
be able to predict future movement of “obstacles” and totraacordingly, in a
smarterway than the simple scheme proposed in this paper.
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