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Abstract— Since its inception about three decades ago,
modern minimally invasive surgery has made huge ad-
vances in both technique and technology. However, the
minimally invasive surgeon is still faced with daunting
challenges in terms of visualization and hand-eye coor-
dination.

At the Center for Computer Integrated Surgical Sys-
tems and Technology (CISST) we have been developing
a set of techniques for assisting surgeons in navigating
and manipulating the three-dimensional space within the
human body. In order to develop such systems, a variety of
challenging visual tracking, reconstruction and registration
problems must be solved. In addition, this information
must be tied to methods for assistance that improve
surgical accuracy and reliability but allow the surgeon
to retain ultimate control of the procedure and do not
prolong time in the operating room.

In this article, we present two problem areas, eye
microsurgery and thoracic minimally invasive surgery,
where computational vision can play a role. We then
describe methods we have developed to process video
images for relevant geometric information, and related
control algorithms for providing interactive assistance.
Finally, we present results from implemented systems.

I. INTRODUCTION

Modern minimally invasive surgery developed slowly
over the twentieth century until, with the advent of
rod optics and fiber-optics (shortly after World War
II), the automatic insufflator (in the 1960’s), and the
first solid state camera (1982), it became a practical
reality. Continued advancement in tools and techniques
has established minimally invasive surgery as a standard
of care in many areas of surgical practice. Today, the
same basic concepts of remote visualization and remote
manipulation of a physically removed surgical site can
be found in diverse areas of surgical practice including,
eye, ear, throat, and sinus surgery.

Despite its widespread use, the challenges in mini-
mally invasive surgery are manifold. First and foremost,

many procedures are performed using magnified, monoc-
ular video1 images, thereby severely reducing the depth
perception and field of view of the surgeon. At the
same time, the scale of many such procedures is quite
small, making it challenging to perform the required
manipulations over the large fulcrum provided by the
instruments which are constrained at the insertion point.
Finally, the remote dexterity of the surgeon is often
severely limited by the structure and design of the
instruments themselves. For example, most traditional
instruments do not include a remote wrist that would
allow reorientation of the end-effector.

At the CISST ERC we have been developing a
set of techniques for assisting surgeons in navigating
and manipulating the three-dimensional space within
the human body. In order to develop such systems, a
variety of challenging visual tracking, reconstruction and
registration problems must be solved. In addition, this
information must be tied to methods for assistance that
improve surgeon accuracy and reliability, allow them
to retain ultimate control of the procedure, and do not
significantly extend time in the operating room.

In this paper, we will review applications of computer
vision and vision-based control for micro-surgery of
the eye and minimally invasive thoracic surgery. Our
emphasis here is to portray the broad spectrum of
applications, and, by extension, the rich set of science
and engineering problems they present. Much of this
material is taken from our recent publications in this
area, including [1, 2, 3, 4].

II. RELATED WORK ON INTRA-OPERATIVE V ISION

AND ROBOTICS

One can generally divide the notion of image-guidance
into two categories: 1) guidance based on pre-operative

1Although stereo imaging systems are now commercially available,
they have yet to find widespread use.



images and 2) guidance based on intra-operative imag-
ing. The former is well-established in a variety of mar-
keted systems for surgical navigation (e.g. the Stealth-
Station by Medtronic Inc.) and robotic interventions (e.g.
the ROBODOC system by Integrated Surgical Systems).
In this article, we will concentrate on the latter, with a
focus on the use of video imagery for interactive surgical
guidance.

Most prior work on image-guidance has concentrated
on ultrasound and fluoroscopy. Abolmaesumi, Salcud-
ean and Zhu have done work on developing a robotic
assistant for ultrasound [5]. The principle goal has been
to develop visual tracking and servoing techniques that
compensate for patient motion in the plane of the ultra-
sound image. Hong et al. [6] describe a needle insertion
instrument which can track a moving object based on
visual servo control and tumor specific active contour
models. Real-time ultrasonic image segmentation is used
to drive the needle.

An algorithm for automatic needle placement using
a 6-DOF robot during minimally invasive spine proce-
dures is described by Corral et al. [7]. The placement
is achieved with closed-loop position control of the
needle by segmenting the needle in the x-ray images
to find its position. This is then used as feedback to
control the robot and move towards the desired target.
Cadaver studies over twenty trials resulted in an average
distance error of 1.21mm. Navab et al. [8] describe
a method for image-based guidance of a surgical tool
during percutaneous procedures. Visual servoing, using
projective geometry and projective invariants, is used to
provide precise 3D-alignment of the tool with respect
to an anatomic target. This approach also estimates the
required insertion depth. Experiments with a medical
robot inserting a needle into a pig kidney under X-ray
fluoroscopy are discussed.

In recent work, a robot vision system that automat-
ically positions a laparoscopic surgical instrument is
described by Ginhoux et al. [9]. Laser pointers are fitted
on the instrument to emit optical markers on the organ. A
visual servoing algorithm is used to position the surgical
instrument by combining pixel coordinates of the laser
spots and the estimated distance between the organ and
the instrument. The system does not require knowledge
of the initial perspective position of the endoscope and
the instrument. Successful experiments using this system
were done on living pigs. Wang and Ueker [10] describe
a framework that utilizes intelligent visual modeling,
recognition, and servoing methods to assist the surgeon
in manipulating a laparoscope. It integrates top-down
model guidance, bottom-up image analysis, and surgeon-
in-the-loop monitoring. Vision algorithms are used for
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The anatomy of the eye.

image analysis, modeling, and matching in a flexible,
deformable environment (such as the abdominal cavity).
Top-down and bottom-up activities are reconciled by
robot servoing mechanisms for executing choreographed
scope movements with active vision guidance. This
maneuvering allows the surgeon hands-free control of
the visual feedback and reduces the risk of inappropriate
scope movements. This framework is described and pre-
liminary results are given on laparoscopic image analysis
for segmentation and instrument localization. Wei et
al. [11] describe a visual tracking method for stereo
laparoscopes. The use of color segmentation is used
instead of shape analysis to correctly locate a surgical
instrument in the image.

III. T WO APPLICATIONS

Our model of a surgical assistant generically includes
a stereo video observation system, and a robot manip-
ulated or guided by a surgeon. Here we describe two
specific applications of this type.

A. Micro-surgery of the Eye

Age-related macular degeneration (AMD), choroidal
neovascularization (CNV), branch retinal vein occlusion
(BRVO), and central retinal vein occlusion (CRVO) are
among the leading causes of blindness in individuals over
the age of 50 [12, 13]. Current treatments involve laser-
based techniques such as photodynamic therapy (PDT)



Fig. 2

The typical setup for retinal eye surgery. A surgeon observes the

retina using a stereo microscope (looking through the cornea).

Tools are inserted through the schlera near the cornea to access the

retinal structures at the rear.

and panretinal laser photocoagulation (PRP). However,
these treatments sometimes result in a high recurrence
rate or complications leading to loss of sight [14, 15].
Recently, alternative approaches employing direct ma-
nipulation of surgical tools for local delivery of clot
dissolving drug to a retinal vein (vein cannulation) or
chemotherapeutic drugs to destroy a tumor have been at-
tempted with promising results (see Figure1 for a review
of eye anatomy). However, these procedures involve ma-
nipulation within delicate vitreoretinal structures. Here,
the challenges of small physical scale accentuate the
need for dexterity enhancement, but the unstructured
nature of the tasks dictates that a human be directly
“in the loop.” For example, retinal vein cannulation [16]
involves the insertion of a needle of approximately 20-
50 microns in diameter into the lumen of a retinal vein
(typically 100 microns in diameter or less, approximately
the diameter of a human hair, see Figure3). At these
scales, tactile feedback is practically non-existent, and
depth perception is limited to what can be seen through
a stereo surgical microscope. A typical surgical setting
is shown in Figure2.

Our work on micro-surgical assistance is motivated by
the JHU Steady-Hand Robot, and, in particular, the as-
sistance paradigm of direct manipulation it was designed
for [27, 20, 28]. Briefly, the JHU Steady-Hand robot is

Fig. 3

A 10 µ i.d. glass pipette near a retinal blood vessel as seen through

the surgical microscope at high magnification.

a 7 DOF robot equipped with a force sensing handle
at the endpoint. Tools are mounted at the endpoint, and
“manipulated” by an operator holding the force handle.
The robot responds to the applied force thus permitting
a means of direct control for the operator. The robot
has been designed to provide micron-scale accuracy, and
to be ergonomically appropriate for minimally invasive
microsurgical tasks [28].

Using the Steady-Hand robot, we have developed two
versions of a retinal testbed as shown in Figure4. A
preliminary testbed was first used to validate the basic
concepts of vision-guided retinal surgery at a larger
scale. More recently, we have developed and demon-
strated an integrated visualization and assistance system
operating at the micro scale. However, since quantitative
performance results for this system are not yet available,
results reported here are for the preliminary testbed.

For this testbed, we placed a stereo camera pair
(baseline 18cm, 12mm focal length) approximately 0.6m
away from the robot. A tool is attached to the end-
effector of the robot where the 6 DOF force/torque
sensor is located. The user applies force directly to the
tool handle.

B. Robotic Minimally Invasive Surgery

Figure 5 shows a typical scene from a laparoscopic
surgery (in this case, a right adrenalectomy on a porcine
subject). The instruments in this image consist of one
laparoscope, two devices that perform retraction and/or
cutting or blunt dissection, and one that suctions out
blood and other matter. These instruments, which are
often a foot or more in length, are introduced through
multiple incisions and held by two surgeons. Normally,



Fig. 4

Left, an initial macro-scale retinal mockup and, right, a more recent retinal workstation.

Fig. 6

The Intuitive Surgical da Vinci system. From left to right, the master console, one of the arm masters, the bed-side unit,and a close up of

one of the surgical tools.

the instruments are introduced through trocars that seal
the opening and permit the abdomen to be insufflated.

From this, it is easy to see the difficulties facing
the minimally invasive surgeon. First, he or she is
manipulating small structures (often 1 cm or less) at a
relatively large distance. The view is a single monocular
video sequence looking roughly along the same line as
the tools, although with a somewhat arbitrary orientation.
The workspace itself is confined, but most of it is not
even within view. Finally, the tactile feedback from the
instruments is minimal, and is combined with forces
applied by the body wall at the trocar.

Robotic surgery, now primarily represented by the da
VinciTM system of Intuitive Surgical, Inc., is one means
of overcoming these limitations. The da Vinci, shown

in Figure 6, consists of a bedside surgical robot and a
master console. The bedside robot manipulates a stereo
endoscope and two or three surgical instruments. The
master console displays the images to the surgeon and
provides two master arms for manipulating the remote
tools. An innovative wrist design for the tools, together
with an immersive visualization of the surgical site,
makes manipulation with the da Vinci “intuitive” by
turning minimally invasive surgery back into a more fa-
miliar three-dimensional hand-eye coordination problem.
Figure7 shows the left image of a stereo pair taken from
the da Vinci during a suturing operation.

While the da Vinci makes surgery more “intuitive,”
it is important to realize that, as with the eye surgery
system, the surgeon is still ultimately relying on their



Fig. 5

Conventional minimally invasive surgery during the removal of the

adrenal gland from the vena cava. Note both instruments have

straight shafts with no distal dexterity and the camera viewis

highly oblique. The third instrument in view is a suction device.

Fig. 7

The da Vinci system during a suturing operation. In comparison to

conventional MIS, note the remote wrist dexterity and the more

natural camera view.

intrinsic hand-eye coordination, mediated by cameras
and mechanisms, to perform the task at hand.

IV. V IDEO-GUIDED SURGICAL ASSISTANCE

In this section, we first introduce the basic admittance
control model used to provide interactive guidance to
the surgeon. We then extend this control to anisotropic
compliances, and finally we relate virtual fixtures to an
underlying task geometry. We note that, although defined
for an admittance style robot, in practice the same
techniques can be applied to impedance style systems
(such as the da Vinci master console) based on the
methods of [17].

With virtual fixtures in place, we then describe the
video processing used to recover the local geometry of

the surgical site for both of the applications described
above.
Notation: In the remainder of this paper, transpose is
denoted by′, scalars are written lowercase in normal
face, vectors are lowercase and boldface, and matrices
are normal face uppercase.

A. Virtual Fixtures

In a recent series of papers [18, 19, 20, 21, 22], our
group in the Engineering Research Center for Com-
puter Integrated Surgical Systems (CISST ERC) has
been steadily developing systems and related validation
methods for cooperative execution of surgical tasks.
The basis of these systems is a specific type of virtual
fixture, which we term “guidance” virtual fixtures. Other
virtual fixture implementations, often called “forbidden
region virtual fixtures,” are described in [23, 24, 25, 26].
Guidance virtual fixtures create anisotropic stiffness that
promote motion in certain “preferred” directions, while
maintaining high stiffness (and thus accuracy) in orthog-
onal directions.

1) Virtual Fixtures as a Control Law:In what follows,
we model the robot as a purely kinematic Cartesian
device with tool tip positionx ∈ SE(3) and a control
input that is endpoint velocityv ∈ ℜ6, all expressed in
the robot base frame. The robot is guided by applying
forces and torquesf ∈ ℜ6 on the manipulator handle,
likewise expressed in robot base coordinates.

In the Steady-Hand paradigm, the relationship be-
tween velocity and motion is derived by considering
a “virtual contact” between the robot tool tip and the
environment. In most cases, this contact is modeled by
a linear viscous friction law

kv = f (1)

or equivalently

v =
1
k

f (2)

wherek > 0 controls the stiffness of the contact. In what
follows, it will be more convenient to talk in terms of
an admittance gainc≡ 1/k.

When using(2), the effect is that the manipulator
is equally compliant in all directions. Suppose we now
replace the single constantc with a diagonal matrixC.
Making use ofC in (2) gives us the freedom to change
the admittance of the manipulator in the coordinate
directions. For example, setting all but the first two
diagonal entries to zero would create a system that
permitted motion only in thex-y plane. It is this type of
anisotropic gain matrix that we term a virtual fixture. In
the case above, the fixture is “hard,” meaning it permits



motion in a subspace of the workspace. If we instead set
the first two entries to a large value, and the remaining
entries to a small one, the fixture becomes “soft.” Now,
motion in all directions is allowed, but some directions
are easier to move in than others. We refer to the motions
with high admittance aspreferred directions, and the
remaining directions asnon-preferreddirections.

2) Virtual Fixtures as Geometric Constraints:While
it is clearly possible to continue to extend the notion of
virtual fixture purely in terms of admittances, we instead
prefer to take a more geometric approach, as suggested
in [29, 30]. We will develop this geometry by specifically
identifying the preferred and non-preferred directions of
motion at a given time pointt. To this end, let us assume
that we are given a 6×n time-varying matrixD = D(t),
0 < n < 6. Intuitively, D represents the instantaneous
preferred directions of motion. For example, ifn is 1,
the preferred direction is along a curve in SE(3); ifn is
2 the preferred directions span a surface; and so forth.

From D, we define two projection operators, the span
and the kernel of the column space, as

Span(D) ≡ [D] = D(D′D)−1D′ (3)

Ker(D) ≡ 〈D〉 = I − [D] (4)

This formulation assumes thatD has full column rank.
It will occasionally be useful to deal with cases where
the rank ofD is lower than the number of columns (in
particular, the case whenD = 0). For this reason, we
will assume[ · ] has been implemented using the pseudo-
inverse [31, pp. 142–144] and write

Span(D) ≡ [D] = D(D′D)+D′ (5)

Ker(D) ≡ 〈D〉 = I − [D] (6)

The following properties hold for these operators [31]:
1) symmetry:[D] = [D]′

2) idempotence:[D] = [D][D]
3) scale invariance:[D] = [kD]
4) orthogonality:〈D〉′[D] = 0
5) completeness: rank(α〈D〉+ β[D]) = n whereD is

n×m andα,β 6= 0
6) equivalence of projection:[〈D〉 f ] f = 〈D〉 f

The above statements remain true if we exchange〈D〉
and [D]. Finally, it is useful to note the following
equivalences:

• [[D]] = [D]
• 〈〈D〉〉= [D]
• [〈D〉] = 〈[D]〉 = 〈D〉

Returning to our original problem, consider now de-
composing the input force vector,f, into two components

fD ≡ [D]f and fτ ≡ f− fD = 〈D〉f (7)

It follows directly from property 4 thatfD · fτ = 0 and
from property 5 thatfD + fτ = f. Combining (7) and (2),
we can now write

v = cf = c(fD + fτ) (8)

Let us now introduce a new admittance gaincτ ∈ [0,1]
that attenuates the non-preferred component of the force
input. With this we arrive at

v = c(fD +cτfτ)

= c([D]+cτ〈D〉)f (9)

Thus, the final control law is in the general form of an
admittance control with a time-varying gain matrix de-
termined byD(t). By choosingc, we control the overall
admittance of the system. Choosingcτ low imposes the
additional constraint that the robot is stiffer in the non-
preferred directions of motion. As noted above, we refer
to the case ofcτ = 0 as ahard virtual fixture, since it
is not possible to move in any direction other than the
preferred direction. All other cases will be referred to
as soft virtual fixtures.In the casecτ = 1, we have an
isotropic gain matrix as before.

It is also possible to choosecτ > 1 and create a virtual
fixture where it is easier to move in non-preferred direc-
tions than preferred. In this case, the natural approach
would be to switch the role of the preferred and non-
preferred directions.

3) Virtual Fixtures as Closed Loop Control Laws:
Note that, to this point, the notion of virtual fixtures
supports motion in a local tangent space of an underlying
surface or manifold. Now, we consider how to ensure that
the tool tip moves on aspecificmanifold or surface. To
study this problem, let us take a simple, yet illustrative
case: the case of maintaining the tool tip within a plane
through the origin. The surface is defined asP(p) = n ·
p = 0 wheren is a unit vector expressed in robot base
coordinates. For simplicity, consider the problem when
controlling just the spatial position of the endpoint.

Based on our previous observations, if the goal was to
allow motionparallel to this plane, then, noting thatn is
a non-preferred direction in this case, we would define
D = 〈n〉 and apply (9). However, if the tool tip is not
in the plane, then it is necessary to adjust the preferred
direction to move the tool tip toward it. Noting thatP(x)
is the (signed) distance ofx from the plane, we define a
new preferred direction as follows:

Dc(x) = (1−kd)〈n〉f/‖f‖+kd[n]x, 0 < kd < 1. (10)

The geometry of (10) is as follows. The idea is to
first compute the projection of the applied force onto
the nominal set of preferred directions, in this case〈n〉.



At the same time, the location of the tool tip is projected
onto the plane normal vector, producing a setpoint error
vector. The convex combination of the two vectors yields
a resultant vector that will return the tool tip to the plane.
Choosing the constantkd governs how quickly the tool
is moved toward the plane. One minor issue here is that
the division by‖f‖ is undefined when no user force is
present. Anticipating the use of projection operators, we
make use of a scaled version of (10) that does not suffer
this problem:

Dc(x) = (1−kd)〈n〉f +kd‖f‖[n]x, 0 < kd < 1. (11)

We now apply (9) with D = Dc.
Noting that the second term could also be written

‖f‖kdP(x)n,

it is easy to see that, when the tool tip lies in the plane,
the second term vanishes. In this case, it is not hard to
show, using the properties of the projection operators,
that combining (11) with (9) results in a law equivalent
to a pure subspace motion constraint.

With this example in place, it is not hard to see its
generalization to a broader set of control laws. We first
note that another way of expressing this example would
be to posit a control law of the form:

u = −(n ·x)n = −[n]x (12)

and to note that assigningDc = u would drive the
manipulator into the plane. This is, of course, exactly
what appears in the second term of (11). This introduces
another implementation of virtual fixture control law
where the motion is now restricted toward a target pose.

One potential disadvantage of the law described in
(11) is that when user applied force is zero, there is no
virtual fixture as there is no defined preferred direction.
Thus, there is a discontinuity at the origin. However,
in practice the resolution of any force sensing device
is usually well below the numerical resolution of the
underlying computational hardware, so the user will
never experience this discontinuity. Another special case
is introduced when the force input is very near the
null-space of the preferred directions, i.e.〈n〉f ≈ 0. In
this case,Dc(x), will be defined in the non-preferred
direction. As a result, the user can drive the tool away
from the preferred subspace. This is easily avoided by
checking the direction of the force input relative to
the signed distanceu. If the force vector points in
the opposite direction, the motion is treated as non-
preferred and attenuated bycτ. A particular case of this is
“targeting mode” where the preferred direction is defined
asu. The control law in (11) will allow motion both away

and toward the target position. The gain switch described
above ensures that motion toward the target is preferred
to the motion away.

If we now generalize this idea, we can state the
following informal rule.

General Virtual Fixture Rule: Given:

1) A surfaceS⊆ SE(3) (the motion objective)
2) A signed error vectoru = f (x,S)
3) A rule for computing preferred directionsD = D(t)

relative toS where〈D〉u = 0 iff u = 0

then applying the following choice of preferred direction:

Dg(x) = (1−kd)[D]f +kd‖f‖〈D〉u 0 < kd < 1. (13)

yields a virtual fixture that prefers motion towardS and
seeks to maintain user motion within that surface.

Note that a sufficient condition for condition 3 above
to be true is that, for all pairsu = u(t) and D = D(t),
[D]u = 0. This follows directly from the properties of
projection operators given previously.

To provide a concrete example, consider again the
problem of moving the tool tip to a plane through the
origin, but let us now add the constraint that the toolz
axis should be oriented along the plane normal vector. In
this case,n is a preferred direction of motion (it encodes
rotations about thez axis which we don’t care about).
Let z denote the vector pointing along the toolz axis
and define a control law that is

u =

[

−(x ·n)n
z×n

]

(14)

It is easy to see that this law moves the robot into the
plane, and also simultaneously orients the end-effectorz
axis to be along the normal to the plane. Now, let

D = D(t) =

[

〈n〉 0
0 n

]

It follows that [D] is a basis for translation vectors that
span the plane, together with rotations about the normal
to the plane. Therefore[D]u = 0 since (14) produces
translations normal to the plane, and rotations about axes
that lie in the plane. Thus, the general virtual fixture rule
can be applied.

B. Surface Recovery and Tracking

In order to implement virtual fixtures using video data,
it is necessary to compute the position of the surgical
instruments and the organ surface. To that end, we have
developed a set of techniques for tracking deforming sur-
faces from stereo video streams. In this development, we
assume a calibrated stereo system. Thus, incoming pairs



of images can be rectified to form an equivalent non-
verged stereo pair. LetL(u,v,t) andR(u,v,t) denote the
left and right rectified image pair at time t, respectively.

The disparity mapD is a mapping from image
coordinates to a scalar offset such thatL(u,v,t) and
R(u+D(u,v),v,t) are the projection of the same physical
point in 3D space. Given disparities, computing the 3-
D surface geometry at a point is well-known [32]. In
this development, we assume that the disparity map is
a parametric function with parametersp and thus write
D(p;u,v). Thus, the problem of computing disparities
is reduced to a parameter estimation problem. For our
purposes, it suffices to assume that this disparity map is
defined on a given regionA of pixel locations in the left
image, whereA is an enumeration of image locations,
A = {(ui,vi)

′}, 1≤ i ≤ N.

In traditional region-based stereo, correspondences are
computed by a search process that locates the maximum
of a similarity measure defined on image regions. As
we intend to perform a continuous optimization over
p, we are interested in analytical similarity measures.
Candidate functions include sum of squared differences
(SSD), zero-mean SSD (ZSSD), and normalized cross-
correlation (NCC) to name a few.

We choose our objective to be ZSSD. In practice, zero-
mean comparison measures greatly outperform their non-
zero-mean counterparts [33] as they provide a measure
of invariance over local brightness variations. If the
average is computed using Gaussian weighting, then
this difference can be viewed as an approximation to
convolving with the Laplacian of a Gaussian. Indeed,
such a convolution is often employed with the same goal
of achieving local illumination invariance.

Let L(u,v,t) = L(u,v,t) − (L ∗ M)(u,v,t) and
R(u,v,t) = R(u,v,t)− (R∗ M)(u,v,t) where ∗ denotes
convolution and M is an appropriate averaging
filter kernel in the spatial-temporal domain. Define
di = D(p;ui,vi). We can then write our chosen
optimization criterion as

O(p) = ∑
(ui ,vi)∈A

wi(L(ui,vi ,t)−R(ui +di,vi ,t))
2 (15)

where wi is an optional weighting factor for location
(ui,vi)

′.

For compactness of notation, considerA to be fixed
and write L(t) to denote theN × 1 column vec-
tor (L(u1,v1,t),L(u2,v2,t), . . .L(uN,vN,t))′. Likewise, we
defineR(p,t) = (R(u1 +d1,v1,t), . . .R(uN +dN,vN,t))′.

We now adopt the same method as in [34, 35, 36] and
expandR(p,t) in a Taylor series about a nominal value
of p. In this case, we have

O(4p) = ‖(L(t)−R(p+4p,t))W1/2‖2

≈ ‖(L(t)−R(p,t)−J(p,t)4p)W1/2‖2

= ‖(E(p,t)−J(p,t)4p)W1/2‖2 (16)

whereE(p,t)≡ L(t)−R(p,t), J(p,t)= ∂R/∂p is theN×
n Jacobian matrix ofR considered as a function ofp,
andW = diag(w1,w2, . . .wN). Furthermore, if we define
JD(p) = ∂D/∂p, we have

J(p,t) = diag(Lx(t))JD(p) (17)

where Lx(t) is the vector of spatial derivatives ofL(t)
taken along the rows.2

It immediately follows that the optimal4p is the
solution to the (over-determined) linear system

[J(p,t)tWJ(p,t)]4p = J(p,t)tWE(p,t) (18)

In the case that the disparity function is linear in
parameters,JD is a constant matrix andJ varies only due
to time variation of the gradients on the image surface.

At this point, the complete surface tracking algorithm
can now be written as follows:

1) Acquire a pair of stereo images and rectify them.
2) Convolve both images with an averaging filter and

subtract the result.
3) Compute spatialx derivatives in the zero-mean left

image.
4) Warp the right image by a nominal disparity map

(e.g. that computed in the previous step) and
subtract from the zero mean left image.

5) Solve (18).
The final two steps may be iterated if desired to

achieve higher precision. The entire procedure may also
be repeated at multiple scales to improve convergence,
if desired. In practice we have not found this to be
necessary.

A general example of a linear in parameters model
is a B-spline. Consider a set of scanline locationsα and
row locationsβ, such that(α,β)∈A. With m parameters
per scanline andn parameters for row locations, apth
by qth degree tensor B-spline is a disparity function of
the form

D(p;α,β) =
m

∑
i=0

n

∑
j=0

Ni,p(α) Nj ,q(β) pi, j (19)

2Here, we should in fact use the spatial derivatives of the right
image after warping or a linear combination of left and rightimage
derivatives. However in practice using just left image derivatives
works well and avoids the need to recompute image derivatives if
iterative warping is used.



To place this in the framework above, letk denote an
indexing linear enumeration of themn evaluated basis
functions, and defineBi,k = Nk,p(αi) ∗ Nk,q(βi) for all
(αi,βi) ∈ A. It immediately follows that we can create
the N×mn matrix B

B ≡











B1,1,B1,2....B1,mn

B2,1,B2,2....B2,mn
...

BN,1,BN,2....BN,mn











and write

D(p) = Bp (20)

It follows that the formulation above applies directly
with JD = B . By applying the tracking algorithm to a B-
spline disparity surface, we are able to tracking a smooth,
deformable surface in real-time. Furthermore this surface
is easily queried for the geometrical information neces-
sary to perform vision-based control.

C. Tool Tracking

In addition to tracking the tissue surface, it is neces-
sary to know the position of the surgical tool relative
to those surfaces. Although it is in principle possible
to compute such relationships using robot kinematic
information, we have found that internal kinematics are
not generally accurate enough for our purposes. This is
particularly true when the surgical tools apply force at
the insertion point, or to the tissue surfaces. Here we
describe the two different tracking methods used for eye
surgery and thoracic surgery.

1) Eye Surgery:In eye surgery, the tool is a very
simple mono-colored cylinder. Thus, the tracking algo-
rithm fundamentally involves segmenting the tool and
then computing the configuration of the tool from the
segmented image as outlined below and as shown in
Figure 8. We note this is a straightforward variation on
the XVision line tracking algorithm [36].

We maintain the color statistics of the tool in order
to segment it from the background. The color statistics
of the tool are assumed to follow a Gaussian density
model. Initially, the tool is selected from the first frame
and the color mean and covariance of both the tool and
the background is generated. We use the Mahalanobis
distance (r) to segment the tool from the image. A
particular pixel is considered part of the tool if the color
value at that pixel hasr ≤ 3.

In order to track the tool robustly over long periods of
time, it is necessary to update the color statistics of the
tool. As the tool is being tracked in subsequent frames,

Fig. 8

Initially the warped input image is color segmented. Then the tool

center is computed by summing along the y direction. Next, the

tool orientation is obtained by interpolating the responseat 3

different angles. The tool tip is finally computed by summingalong

x perpendicular to the tool orientation. The motion parameters are

updated by matching with the reference image to obtain the

updated warped image.

the pixels associated with the tool are used to update the
color mean adaptively based on the following update rule

µt+1 = αµt−1 +(1−α)µt (21)

where α is a design parameter and(µ)t is the color
mean at time stept. In the current implementation, the
covariance matrix is not updated. To decide which pixels
belong to the tool, we maintain distributions for both
foreground and background pixels. A pixel is deemed
to belong to the tool if the log likelihood value for the
tool density is higher than that of the background. Only
pixels passing the likelihood test are used for updating
the mean color value of the tool.

Given prior segmentation, the localization step in-
volves finding the location of the tool tip and the orienta-
tion of the tool shaft in both camera images. It is assumed
that the tool undergoes primarily image-plane rotation
and translation. Thus the tool motion can be represented
by three parameters, namely image-plane rotation angle
θ and the two components of the translation vectoru.
At every time step, using the parameters at the last time
step, a warped image of fixed size is obtained from the
input image. The warped image is then color segmented
as described above and the tool is localized in the warped



image with the following three sub-steps:
• The x location of tool center is computed by con-

volving the warped and segmented image with a box
filter at least as wide as the tool width along the x-
direction. The resultant image is then summed along
the y-direction to obtain a 1D signal, the maximum
of which gives the x location of the tool center.

• The tool orientation is obtained from the algorithm
similar to the one used in [37] to compute the
edge orientation. The filter response is summed
along shallow diagonals, which approximates small
changes in tool orientation and then interpolating
the resulting responses to obtain the maximum
response. The result of the interpolation yields the
orientation of the tool in the warped image.

• Once the tool orientation and center of the tool in
the x direction is known, the tool tip is located by
summing the segmented image perpendicular to the
computed tool orientation. This results in an obvious
step edge in the resulting 1D signal; the location of
this step is the end of the tool.

In the initial step a reference template and reference tip
location are stored. At every time step, a few iterations of
the tool localization are performed. After every iteration,
the parameters are updated by matching the warped
image and tip location with the reference values. The tip
location and orientation are computed independently in
the left and right rectified images and if the difference
in y location of the tip in both images is less than a
certain threshold, the tip is reconstructed to obtain the
3D location. Likewise, the tool orientation is used to
obtain a vector describing the tool axis.

The combined information of the tool and the back-
ground surface constitute a complete model of the sur-
gical field for this application.

2) Da Vinci Tool Tracking:The da Vinci robot pro-
vides a much more challenging tracking problem due to
the articulated end-effectors and more dynamic motions.
At the same time, the size and kinematic complexity
of the robot means that the tool position information
supplied by the internal encoders is relatively inaccurate.
Further kinematic errors occur when the tool is applying
force to a surface. Indeed, one of the reasons for tracking
the tools is to provide a accurate image positions for
graphical displays which are to follow the tools; such
displays are not possible using pure kinematic informa-
tion.

Our visual tracking system operates directly in the
(stereo) endoscopic camera view used by the surgeon.
In addition, we make use of the internal API which
provides estimated position and velocity of the robot
end-effector based on the internal encoder information.

Vision−Based

Tool Tracking

Robot−API

Position

Image−Based 

Tool Position

Kalman−Filter

for Data Fusion

Predicted Tool Position

Fig. 9

The kinematics data from the robot and the visual tracker output

from the stereo endoscope are fused to obtain reliable information

about the current position of the tool.

This information is fused using a Kalman filter as shown
in Figure9.

We have chosen to track the tool directly in the image
space of the single images using the stereo constraints
between the two views to improve the tracker robustness.

template selection

Orientation−dependent

Warping

Image_

Rejection
Outlier

Model
Inverse ∆ p

p

Σ Predicted Tool Position

Fig. 10

Data flow in the da Vinci tool tracking system.

At the image level, the tool tracker uses a standard
SSD (Sum-of-Square-Distances) approach [36] extended
to use multiple templates( Figure10). A candidate region
in the current image is selected and warped based on the
current pose estimate provided by the Kalman filter, and
then the current pose is updated by template matching.
If a sufficient percentage of the pixelsεth are matched in
the current view then the tracker estimate is incorporated
in the Kalman update step, otherwise just the Kalman
prediction is used at the next time step. The valueεth

is dependent on the shape and texture of the tool. The



value is estimated for each tool in a test phase that is
necessary just once for a new tool design.

The multiple templates model the fact that the tool
has different appearances from different views. Each
template is keyed to a specific range of tool orientations
in the two out of plane rotations (all other appearance
changes are be compensated for by image warping). We
switch between the different templates depending on the
current orientation of the tool predicted by the Kalman
Filter module. It is also possible to update the templates
over time, thus providing for changes in tool appearance
due to stains and tissue deposits on the tool.

The Outlier Rejectionmodule depicted in Figure10
is responsible to dealing with occlusions, minor deposits
and stains on the tool and illumination problems. Since
the light source is a part of the endoscopic system, we
have to deal with significant specularity on the metallic
body of the tool which cannot and should not be matched
to the template.

V. EXPERIMENTAL RESULTS

The methods described above have been implemented
and are a part of our continuing development and testing
efforts. Below, we illustrate the results we have achieved
to date.

A. Minimally Invasive Surgery Results

At the moment, we do not have access to the da
Vinci control system to implement a complete closed
loop system with virtual fixtures. However, we have
implemented and validated both the tool tracking and
surface reconstruction.

In the case of tool tracking, we have developed a
graphical overlay system that shows the location and
orientation of the tools in the master console of the
surgical robot system. Forces measured in the tool shaft
can be visualized in the master console to the surgeon
as shown in Figure11.

Additional detailed information about the tool status
and orientation can be displayed that is not available or
immediately apparent from the image data itself due to
occlusions or small scale as shown in Figure12. The
tracking helps to register the tool position correctly in
the image plane, while the information from the robot
kinematics provides details about the tool state, which
may be not visible in the actual image.

The tool tracking operates in real-time (30 frames/s)
localizing the reference template in the current camera
view. The motion trajectory reported by the robot often
has a significant rotational and translational error that
does not allow a correct overlay of the annotation data in

Fig. 11

Template-based tracking result of the daVinci tool: the stereo image

and the selected template underneath; additional information about

forces and passive and active arms can be displayed.

Fig. 12

The tracking result is used for fine registration of the tool position

to the camera image. Combination of tracking information with

kinematics data allows powerful display possibilities that simplify

the tool navigation.

the image. Figure13 shows the results from a trajectory
in an scenario depicted in the left image. The system
switched the reference templates during the operation
at the points marked with circles along the brighter
trajectory. The solid line depicts the position of the center
of the chosen template in the image. The dashed line
represents regions during the motion, where the tracking
reported an insufficient matching quality between the
template data and the actual image data and the corrected
kinematics data was reported to the user instead.

The sequence consisted of a fast motion to test the
capabilities of the tracking system. The motion was 2-3
times faster than the typical tool motion during surgical
procedures. The reader can see that the system could rely
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The re-projection of the tool position based on the kinematics data

may have a significant rotational and translational error: (left) tool

position reported by the robot is shown as a small ellipse; (right)

comparison of the tool trajectory reported by the robot (upper

trajectory) to the trajectory reported by tracking (lower trajectory).

Fig. 14

One image from the stereo sequence used to track the surface of a

porcine heart.

on the visual tracking most of the time in this sequence.
The tracking only reported incorrect data in two regions,
where the specularity on the tool did not leave any
sufficient region on the tool to be matched correctly. In
this case, the system switched to the corrected kinematics
data that became available after the initial registration
error got corrected.

This shows the importance of the fusion of the differ-
ent sources of information. The robot provides reliable
data that may have an initial registration error and an
error due to forces applied on the tool. These errors can
be corrected by the visual tracking. The important fact
here is that the tracker can recognize correctly when it
gets the wrong result. In our case, the measure for it is
the number of correctly matched pixels to the number
of pixels in the template, which needs to be above the
thresholdεth as we discussed in sectionIV-C.2.

We have tested the deformable surface tracking on

two animal models. In the first, we used an anes-
thetized Wistar rat. Images of the rat’s chest’s movement
were acquired by a stereo microscope (Zeiss OPMI1-H)
mounted with two CCD cameras (SONY XC77). The
rat’s fur provided a natural texture. An eight second
sequence was processed offline by our Matlab imple-
mentation. In Figure15 we graph the respiration (75
breaths per minute) of the rat which was computed by
recording a fixed point on the tracked surface.

Fig. 15

Recovered disparity values from rat respiration.

In a second experiment, a cross-bred domestic
pig (weight, 19.5 kg) was anesthetized with telazol-
ketamine-xylazine (TKX, 4.4 mg T/kg, 2.2 mg K/kg,
and 2.2 mg X/kg) and mechanically ventilated with a
mixture of isoflurane (2%) and oxygen. Heart rate was
continuously monitored by a pulse oximeter (SurgiVet,
Waukesha, WI). The da Vinci tele-manipulation system
(Intuitive Surgical, Sunnyville, CA) was used for endo-
scopic visualization. Three small incisions were made
on the chest to facilitate the insertion of a zero-degree
endoscope and other surgical tools. The pericardium was
opened and video sequences of the beating heart from the
left and right cameras were recorded at 30 frames/sec.
The recording lasted approximately two minutes.

The system captured both the beating of the heart and
the respiration of the subject (Figure16). The results
are consistent with the other measurements we took
during the surgery. In Figure16, the blue line is a
plot of the motion of a fixed point on the surface. The
respiration (red-dotted line) is computed using Savitzy-
Golay Filtering. For a more detailed discussion of the
experiment please see [38].

B. Eye Testbed Results

We have validated the preliminary eye testbed on two
types of surfaces: a slanted plane and a curved surface.



Fig. 16

Graph of pig respiration and heart beat.
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Fig. 17

XYZ positions of the tool tip estimated by the tool tracker (solid

line) and estimated by the Optotrak (dash line). Calibration error

introduced a constant offset of 5 mm in the transformation as

shown in the Y position plot.

The latter is a simulated human retina consisting of a
concave surface of approximately 15 cm in diameter
covered with an enlarged gray-scale printout of a human
retina.

During the manipulation, the user has a direct view
of the surface. The user is allowed to change the state
of manipulation (Free motion, Tool insertion/extraction,
Tool alignment, Targeting, and Surface following) from a
GUI. Each state corresponds to a different vision-based
virtual fixture. To test the effectiveness of the virtual
fixtures, only a hard constraint (cτ = 0) is implemented.
The threshold for the surface tracking task was a constant
3mm offset from the surface. We note this corresponds
roughly to one pixel of disparity resolution in the stereo
cameras.

Robot-to-camera and stereo calibration is an essential
step in the experimental setup. As currently imple-
mented, the resolution and accuracy of the calibration
determine the efficacy of the virtual fixtures implemen-
tation. The 3D coordinates of the surface and the tool
pose are computed in the camera coordinate frame by
the visual system. The preferred directions and errors
are hence first calculated in the camera frame and then
converted to the robot frame where the rest of the virtual
fixture control law is implemented to obtain the desired
Cartesian tip velocity.

In the preliminary setup, the robot fixed-frame is
computed in the Optotrak frame of reference by first
rotating the robot about the fixed RCM points in both
X and Y axes and then translating it along the three
coordinate axes with a rigid body placed at the last
stage of the joint. In order to obtain the robot-to-camera
transformation, we need the transformation between the
Optotrak and the camera is which computed using the
Optotrak LED markers rigidly attached to a planar rigid
body. Once calibrated, the centers of the LED markers
are estimated in the left and right rectified images and
then triangulated to compute the 3D positions in the cam-
era coordinate frame. These points are also observed in
the Optotrak coordinate system. Finally, using standard
least square fitting techniques the rigid body transforma-
tion between the Optotrak and the camera is obtained.
All transformations are computed with reference to an
independent fixed rigid body to avoid any noise from
the motion of the Optotrak. As stated earlier, once these
transformations are known, the transformation between
the robot and the camera can be computed easily.

With the least squares technique used to compute
rigid body transformations, the average error for the
transformation was approximately 2±1.5mm. We believe
that the significant error is due to difficulty of segmenting
the center of LED markers in the images. In the more
recent testbed, the Optotrak has been eliminated in favor
of a direct robot/video calibration method. Although
clearly more accurate, we do not yet have quantitative
results on this calibration approach.

The accuracy of the tool tracker is validated with the
Optotrak. Using the transformation between the Optotrak
and the camera already computed, the tracking error
can be computed in a straightforward manner. Figure17
shows the comparison of the XYZ positions obtained
by the Optotrak and the tracker. Optotrak data was
converted to the camera frame by the corresponding
transformation described earlier. Note here that there
is a constant offset of approximately 5mm in the Y
coordinates. We believe that this constant offset is due to
an error in the Camera-Optotrack calibration because of



Fig. 18

Textured surface reconstruction overlayed with the traceddata

(black dots) obtained from the Optotrak. (Left) Slanted plane and

(Right) Portion of the eye phantom

the difficulty of segmenting LED centers as mentioned
earlier. The tool tracking has about 1 pixel error when
the offset is accounted for. The surface reconstruction
accuracy can be similarly estimated by reconstructing
the surface in the Optotrak using a pointed rigid body
calibrated at the tip. Figure18 shows the overlay of the
data points obtained from the Optotrak (black dots) on
the reconstructed surfaces(with texture). The error in the
plane reconstruction (left) is quite low. In the case of
the concave surface (right) though, the reconstruction
from the camera shows some errors especially toward the
boundary where the neighborhood information is sparse.
The reconstruction covers an area of approximately
6.5cm x 11cm and 6.5cm x 17cm for the plane and the
concave surface, respectively.

Figure19 shows the magnitude of the error over time
of manipulation during surface following, alignment, and
targeting tasks with hard virtual fixtures. Note here that
the small steps shown on the plot are the result of
update rate difference between the cameras and the robot.
Sources of noise in the magnitude plot may be due to
inaccuracy of the surface reconstruction, error in the
estimation of tool tip position, error in calibration, and
gain tuning of the virtual fixture control law. In surface
following mode, we use 3mm as the desired offset above
the actual surfaces. The average magnitude of error
was approximately 3± 2mm. The dashed vertical and
horizontal lines indicate the time when the tool reached
the surface and the average value (at 3mm), respectively.
The decay of the error as the tool approached a specified
orientation (Align mode) and target (Target mode) can
be clearly seen. In Align and Target modes, the virtual
fixture control law allows the movement along the direc-
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Fig. 19

The magnitude of error between the tool tip position and its

intersection on a plane (left) and a concave surface (right).

tion of the error vector (forward and backward motion
toward the desired orientation/target). Therefore, the user
is allowed to move toward or away from the desired
pose, as the plots show, in different portions of the
targeting task. However, gain tuning is used to minimize
the motion in the direction away from the desired pose.
Similar results can be seen for the concave surface.
We also performed the surface following task in free
motion. The performances with virtual fixtures guidance
in the surface following and targeting tasks do not show
significant improvement over free motion especially with
the level of noise and the resolution of the system.
However, performance with virtual fixtures guidance
naturally surpasses free motion in the alignment task.

The accuracy of the calibration and the limitation of
the system are important factors affecting the system
performance. As noted previously, with the macro-scale
setup, the resolution we can obtain is approximately 3
mm/pix. TableI provides an estimate of the resolution of
the current setup (Sony X700) along with an endoscope
and a microscope system. Based on our implementation
in the current setup and some preliminary experiments,
we believe that it is extensible to the high resolution



systems to perform tasks at a 50 micro-scale. In order to
accomplish this we will need to operate at higher mag-
nification and/or compute sub-pixel accuracy in tracking
and reconstruction. Thus we would like to incorporate
fine motion tracking techniques like SSD and kernel-
based methods to obtain sub-pixel accuracy for tool
tracking.

One of the limitations of the system is the slow update
rate of the cameras (10-15Hz) with respect to the robot
(100Hz). To deal with this, we would like to explore the
possibility of using estimation techniques like Kalman
filtering and obtain much smoother tool positions.

VI. CONCLUSION

When a surgeon is operating on a patient, he or
she carries extensive knowledge of human anatomy
which is combined with available pre-operative and
intra-operative information to perform an intervention.
If we are to develop successful assistance methods for
computer-integrated surgery systems, they must have
similar capabilities.

In this paper, we have briefly discussed some ap-
proaches that can be used to acquire three-dimensional
geometric information of the surgical field. These models
can be used for dexterity and visualization enhancement
for surgical assistance. There are several areas for ad-
vancement and improvement, many of which we are
currently working on. In the case of minimally invasive
surgery, our colleagues are developing a new control
system around the da Vinci hardware. With this control
system, we will be able to implement both active (motion
stabilized) and passive (virtual fixture guidance) control
algorithms. Indeed, one interesting avenue for future
work is the combination of both of these in a single
unified framework. Likewise, in eye surgery work, the
implementation is under way on the micro-scale testbed,
including improvements in tool tracking in order to
achieve the necessary levels of precision.

More generally, continued work on robotic assistance
for surgery offers the promise of improved safety, relia-
bility and, ultimately, better surgical outcomes. However
many problems remain to be solved. First and foremost,
the development of provably reliable and safe methods
of visual tracking and vision-based structure and mo-
tion estimation are essential. One path toward safety
and reliability is to incorporate the same anatomical
knowledge available to the surgeon into the algorithms.
At the same time, fusing geometric information across
time and across modality will be essential. During most
surgeries, pre-operative information and statistical atlases
can provide strong constraints on the vision problem.

Finally, we believe significant advances are possible
by engineering today’s medical instruments to be more
appropriate to robotically assisted surgery.
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