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Abstract

This article explores the assumption that a deeper (quantitative) understanding of
the information-theoretic implications of sensory-motor coordination can help en-
dow robots not only with better sensory morphologies, but also with better explo-
ration strategies. Specifically, we investigate by means of statistical and information-
theoretic measures, to what extent sensory-motor coordinated activity can generate
and structure information in the sensory channels of a simulated agent interacting
with its surrounding environment. The results show how the usage of correlation,
entropy, and mutual information can be employed (a) to segment an observed be-
havior into distinct behavioral states, (b) to analyze the informational relationship
between the different components of the sensory-motor apparatus, and (c) to iden-
tify patterns (or fingerprints) in the sensory-motor interaction between the agent
and its local environment.

Key words: Self-structuring of information, sensory-motor coordination,
agent-environment interaction

1 Introduction

Manual haptic perception is the ability to gather information about objects
by using the hands. Haptic exploration is a task-dependent activity, and when
people seek information about a particular object property, such as size, tem-
perature, hardness, or texture, they perform stereotyped exploratory hand
movements. In fact, spontaneously executed hand movements are the best
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ones to use, in the sense that they maximize the availability of relevant sen-
sory information gained by haptic exploration (Lederman and Klatzky, 1990).
The same holds for visual exploration. Eye movements, for instance, depend
on the perceptual judgement that people are asked to make, and the eyes
are typically directed toward areas of a visual scene or an image that deliver
useful and essential perceptual information (Yarbus, 1967). To reason about
the organization of saccadic eye movements, Lee and Yu (1999) proposed a
theoretical framework based on information maximization. The basic assump-
tion of their theory is that due to the small size of our foveas (high resolution
part of the eye), our eyes have to continuously move to maximize the infor-
mation intake from the world. Differences between tasks obviously influence
the statistics of visual and tactile inputs, as well as the way people acquire
information for object discrimination, recognition, and categorization.

Clearly, the common denominator underlying our perceptual abilities seems
to be a process of sensory-motor coordination which couples perception and
action. It follows that coordinated movements must be considered part of the
perceptual system (Thelen and Smith, 1994), and whether the sensory stim-
ulation is visual, tactile, or auditory, perception always includes associated
movements of eyes, hands, arms, head and neck (Ballard, 1991; Gibson, 1988).
Sensory-motor coordination is important, because (a) it induces correlations
between various sensory modalities (such as vision and haptics) that can be
exploited to form cross-modal associations, and (b) it generates structure in
the sensory data that facilitates the subsequent processing of those data (Lun-
garella and Pfeifer, 2001; Lungarella and Sporns, 2004; Nolfi, 2002; Sporns and
Pegors, 2003). Exploratory activity of hands and eyes is a particular instance of
coordinated motor activity that extracts different kinds of information through
interaction with the environment. In other words, robots and other agents are
not passively exposed to sensory information, but they can actively shape such
information. Our long-term goal is to quantitatively understand what sort of
coordinated motor activities lead to what sort of information. We also aim at
identifying “fingerprints” (or patterns of sensory or sensory-motor activation)
characterizing the agent-environment interaction. Our approach builds on top
of previous studies on category learning (Pfeifer and Scheier, 1997; Scheier and
Pfeifer, 1997), as well as on work on the information-theoretic and statistical
analysis of sensory and motor data (Lungarella and Pfeifer, 2001; Sporns and
Pegors, 2003; Te Boekhorst et al., 2003).

The experimental tool of the study presented in this article is a simulated
robotic agent, which was programmed to search its local environment for red
objects, approach them, and explore them for a while. The analysis of the
recorded sensory and motor data shows that different types of sensory-motor
activities displayed distinct fingerprints reproducible across many experimen-
tal runs. In the two following sections, we give a detailed overview of our
experimental setup, and describe the actual experiments. Then, in Section 4,
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we expose our methods of analysis. In Section 5, we present our results and
discuss them. Eventually, in Section 6, we conclude and point to some future
research directions.

2 Experimental Setup

The study was conducted in simulation. The experimental setup consisted of
a two-wheeled robot and of a closed environment cluttered with randomly
distributed, colored cylindrical objects. A bird’s eye view on the robot and
its ecological niche is shown in Fig. 1 a. The robot was equipped with eleven
proximity sensors (d0−10) to measure the distance to the objects and a pan-
controlled camera unit (image sensor) (see Fig. 1 b). The pan-angle of the
camera was constrained to vary in an interval of ±60o relative to the agent’s
midline. The proximity sensors had a position-dependent range, that is, the
sensors in the front and the ones in the back had a short range, whereas the
ones on the sides had a longer range (see caption of Fig. 1). The output of
each sensor was affected by additive white noise with an amplitude of 10%
the sensor range, and was partitioned into a space having 32 discrete states,
leading to sensory signals with a 5 bits resolution. To reduce the dimensionality
of the input data, we divided the camera image into 24 vertical rectangular
slices (i1−24), with width of two pixels for the slices close to the center (i7−18),
and width of six pixels for the slices in the periphery (i1−6 and i19−24). We
computed the amount of the “effective” red color in each slice as R = r− (b+
g)/2, where r, g, and b are the red, green, and blue components of the color
associated with each pixel of the slice. Negative values of R were set to zero.
This operation guaranteed that the red channel gave maximum response for
fully saturated red color, that is, for r=31, g=b=0. Subsequently, the red color
slices will also be referred to as red channels or red receptors.

For the control of the robot, we opted for the Extended Braitenberg Archi-
tecture (Pfeifer and Scheier, 1999) (see Figure 1 c). In this architecture, each
of the robot’s sensors is connected to a number of processes which run in
parallel, continuously influencing the agent’s internal state, and governing
its behavior. Because our goal is to illustrate how standard statistical and
information-theoretic measures can be employed to quantify (and fingerprint)
the agent-environment interaction, we started by decomposing the robot’s be-
havior into three distinct behavioral states: (a) “explore the environment” and
“find red objects”, (b) “track red objects”, and (c) “circle around red objects.”
Two points are noteworthy. First, while the agent is exploring the environ-
ment, its behavioral activity is only “weakly” sensory-motor coordinated, in
the sense that its motor activity is mainly driven by the random activity af-
fecting its sensors. The two latter behavioral states, however, display “strong”
sensory-motor coordinated activity, that is, motor activity characterized by a
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Fig. 1. (a) Bird’s eye view on the robot and its ecological niche. The trace depicts
the path of the robot during a typical experiment. (b) Schematic representation of
the simulated agent. The sensors have a position-dependent range: if rl is the length
of the robot, the range of d0, d1, d9, and d10 is 1.8 rl, the one of d2 and d3 is 1.2 rl,
and the one of d4, d5, d6, d7, and d8 is 0.6 rl. (c) Extended Braitenberg Control
Architecture: As shown, four processes govern the agent’s behavior.

tight coupling between sensing and acting. Second – and this point is more
subtle – the segmentation of the observed behavior into distinct behavioral
states is an important, maybe even necessary, step to simplify the analysis
towards quantifying the agent-environment interaction and identifying stable
patterns of interaction. It is crucial to understand that the goal here is to
show how statistical and information-theoretic measures can be employed to
identify patterns in sensory data, and not how those patterns can be identi-
fied automatically. In the latter case, despite being possible (see Fig. 7) the
segmentation of the observed behavior in distinct states would make less sense.
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3 Experiments

A top view of a typical experiment is shown in Fig. 1 a. At the outset of each
experimental run, the robot’s initial position was set to the final position of
the previous experiment (except for the first experiment where the robot was
placed in the origin of the x-y plane), and the behavioral state was reset to
“exploring.” In this particular state, the robot randomly explored its environ-
ment while avoiding obstacles. Concurrently, the robot’s camera panned from
side to side (by 60 degrees on each side). If the maximum of the effective red
color (summed over the entire image) passed a given (fixed) threshold, it was
assumed that the robot had successfully identified a red object. The behav-
ioral state was set to “tracking”, the camera stopped rotating from side to
side, and the robot started moving in the direction pointed at by the camera,
trying to keep the object in the camera’s center of view. Once close to the red
object, the robot started circling around it (while still keeping it in its center
of view by adjusting the camera’s pan-angle). At the same time, a “boredom”
signal started increasing. The robot kept circling around the object, until the
boredom signal crossed an upper threshold. In that instant, the robot stopped
circling, and started backing away from the red object, while avoiding other
objects. Concurrently, the boredom signal began to decrease. When the bore-
dom signal finally dropped below a lower threshold, the robot resumed the
exploration of the surrounding environment. We performed 16 experiments,
each of which lasted approximatively 3400 time steps. The sensor and motor
activations were stored into a time series file for subsequent analysis.

4 Methods

First, we introduce some notation. Correlation quantifies the amount of lin-
ear dependency between two random variables X and Y , and is given by
Corr(X, Y ) = (

∑
x∈X

∑
y∈Y p(x, y) (x−mX)(y −mY ))/σX σY , where p(x, y)

is the second order (or joint) probability density function, mX and mY are
the mean, and σX and σY are the standard deviation of x and y computed
over X and Y (note that the analyses were performed by fixing the time lag
between the two time series to zero). The entropy of a random variable X is a
measure of its uncertainty, and is defined as H(X) = −∑

x∈X p(x) log p(x),
where p(x) is the first order probability density function associated with X;
in a sense entropy provides a measure for the sharpness of p(x). The joint
entropy between variables X and Y is defined analogously as H(X, Y ) =
−∑

x∈X

∑
y∈Y p(x, y) log p(x, y). Mutual information measures the statistical

independence of two random variables X and Y (Cover and Thomas, 1991;
Shannon, 1948). Using the joint entropy H(X,Y ), we can define the mutual
information between X and Y as MI(X,Y ) = H(X) + H(Y ) − H(X, Y ). In
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comparison with correlation, mutual information provides a better and more
general criterion to investigate statistical dependencies between random vari-
ables (Steuer et al., 2002). For entropy as well as for mutual information, we
assumed the binary logarithm.

Correlation, entropy and joint entropy were computed by first approximating
p(x) and p(x, y). The most straightforward approach is to use a histogram-
based technique, described, for instance, in (Steuer et al., 2002). Because the
sensors had a resolution of 5 bits, we estimated the histograms by setting the
number of bins to 32 (which led to a bin-size of one). Having a unitary bin
size allowed us to map the discretized value of the sensory stimulus directly
onto the corresponding bin for the approximation of the joint probability den-
sity function. Because of the limited number of available data samples, the
estimates of the entropy and of the mutual information were affected by a
systematic error (Roulston, 1999). We compensated for this bias by adding a
small corrective term T to the computed estimates: T = (B − 1)/2 N to the
entropy estimate (where N is the size of the temporal window over which the
entropy is computed, and B is the number of states for which p(xi) 6= 0), and
T = (Bx + By −Bx,y − 1)/2 N to the mutual information estimate (where Bx,
By, Bx,y, and N have an analogous meaning to the previous case).

5 Data Analysis and Results

We analyzed the collected datasets by means of three measures: correlation,
mutual information, and entropy (which is a particular instance of mutual
information). In this section we describe, and in part discuss, the results of
our analyses.

5.1 Correlation

In the first behavioral state (“exploring”), the robot moved around avoiding
obstacles and “searching” for red objects. The correlation matrix of a partic-
ular experimental run is displayed in Figure 2 a (the diagonal of the same plot
represents the autocorrelation of di, that is, Corr(di, di) = 1, i = 0..10). In
all performed experiments, we observed either no or only weak correlations
between the proximity sensors, that is, the correlations were small and their
absolute values close to zero. The cross-correlation averaged over 16 runs was
0.011 ± 0.004, where 0.011 denotes the mean, and 0.004 is the standard de-
viation. Similarly, the output of the other sensory modality (red receptors)
did not lead to stable correlation matrices, that is, the pair-wise correlations
between the receptors varied significantly across the different experimental
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runs (the correlation matrix of a particular run is shown in Figure 3 a). In this
case, the average correlation was 0.053± 0.023. A possible explanation for the
absence of significant correlations in this state (in both sensory channels) is
that the oscillatory movement of the robot’s camera induced a rapidly chang-
ing stream of sensory data devoid of correlative structure. The intrinsic white
noise characterizing the sensor output in absence of external input, as well
as the low predictability of the sensory activations while the robot was “ran-
domly” exploring its ecological niche (i.e., the behavior was not sensory-motor
coordinated), only exacerbated the difficulty in inducing statistical dependen-
cies between the sensory channels.
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Fig. 2. Correlation matrix obtained from the pair-wise correlation of the distance
sensors for one particular experimental run. The behavioral states are: (a) “explor-
ing”, (b) “tracking”, and (c)“circling.” The higher the correlation, the larger the
size of the square. White squares denote a negative correlation, black squares a pos-
itive one. The diagonal represents the auto-correlation of the individual time series.
For the behavioral states displayed the average cross-correlation computed over 16
experimental runs was: 0.011 ± 0.004, 0.097 ± 0.012, and 0.083 ± 0.041, where ±
indicates the standard deviation.

In the second behavioral state (“tracking”), the robot moved toward the red
object identified at the end of the previous state. In this case, the correlations
between the activity of the red receptors in and close to the center of the
image were high (see Fig. 3 b), and the average correlation computed over 16
experimental runs, amounted to 0.309± 0.042. A possible explanation is that
the robot’s behavior in this “goal-corrected” state was largely governed by the
dynamics of the sensory-motor coupling between robot and environment. In
other words, the robot – while moving toward the object – kept correcting its
movements so that the tracked object remained in the center of its visual field.
Moreover, because this state was characterized by a goal-directed movement
of the robot toward the red object, the number of red pixels present in the
image increased, leading to an increase of the stimulation of the red receptors
located in the center (note that the activation of the red receptors is an av-
erage computed over a vertical slice), and to a corresponding increase of the
correlation between those receptors.
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Fig. 3. Correlation matrix obtained from the pair-wise correlation of the red chan-
nels for one particular experimental run. The behavioral states are: (a) “exploring”,
(b) “tracking”, and (c) “circling.” The higher the correlation, the larger the size
of the square. White squares denote a negative correlation, black squares a posi-
tive one. The diagonal represents the auto-correlation of the individual time series.
For the behavioral states displayed the average cross-correlation computed over 16
experimental runs was: 0.053 ± 0.023, 0.309 ± 0.042, and 0.166 ± 0.031, where ±
indicates the standard deviation.

In the third behavioral state (“circling”), we observed negative correlations
between the pairs of proximity sensors located on the ipsi-lateral (that is,
same) side of the robot, such as (d2, d9) or (d3, d10). The correlation matrix
shown in Figure 2 c, for instance, displays such a negative correlation for the
sensor pair (d2, d9) (the correlation is −0.671). The negative correlation finds
explanation in the fact that the robot’s trajectory was not perfectly circular,
but somewhat wobbly, thus leading to out-of-phase activation of the sensors
in the front (d9) and in the one in the back (d2), and hence to a negative
correlation. In this state, we also observed – in all performed experimental
runs – strong correlations between the output of two groups of red receptors
located off-center (see Figure 3 c). In that particular experimental run, the
correlation was 0.920 for the receptors i4− i12 (a very high value indeed). The
overall average (computed over 16 experimental runs) was 0.166± 0.031. The
evident asymmetry of the correlation matrix is a consequence of the limitations
of the camera’s pan-angle (±60o), which caused the object to appear on the
side and not in the center of the visual field.

5.2 Entropy and mutual information

The pair-wise mutual information between the eleven proximity sensors is
shown in Figure 4. The diagonal of the same plot, courtesy of the expression
H(X) = MI(X, X), gives the entropy of the sensory stimulation. It is impor-
tant to note that as a result of the additive uniform white noise affecting the
activations of the individual sensors, even sensors that had never been active –
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due to some object – were characterized by a large entropy (refer also to graph
of cumulated activation in Fig. 6). A first observation is that in the first and
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Fig. 4. Mutual information matrix obtained by estimating the mutual information
between pairs of proximity sensors in one particular experimental run during the
behavioral state: (a) “exploring”, (b) “tracking”, (c) “circling”. The higher the
mutual information, the larger the size of the square. In order to better display the
informational structure the plots have not been normalized. The maximum values
for the mutual information are: 1.825 bits (“exploring”), 1.080 bits (“tracking”), and
2.936 bits (“circling”).

second behavioral states, the results of the analysis of the data gathered in a
particular experiment cannot be generalized to all experiments (as opposed to
correlation analysis). That is, the standard deviation between individual ex-
perimental runs was high. The reason is that in runs, in which the robot had to
avoid some obstacle (i.e., a non-red object), the entropy of the individual sen-
sors, as well as the average mutual information between adjacent sensors, were
considerably larger than in experimental runs, in which the robot did not en-
counter any objects (it is important to remember that entropy measures the
uncertainty of a sensory state). In the latter case, the entropy and mutual
information were mainly due to the random basic activation of the sensors.
Further, it is possible to observe that in the third behavioral state (“circling”),
the entropy of the sensors d2 and d9, as well as their mutual information were
high, that is, H(d2)= 2.83 bits, H(d9)= 2.75 bits, and MI(d2, d9)= 1.62 bits
(see Fig. 4 c). In contrast, the average mutual information was rather mod-
est (0.243 ± 0.031 bits) (note that the highest possible value for entropy and
mutual information is 5 bits).

Figure 5 shows the mutual information matrices obtained from the estimation
of the mutual information for pairs of red channels. In the behavioral state
(“exploring”), the average (entropy-devoided) mutual information computed
over all experiments was 0.123 ± 0.020 bits (Fig. 5 a shows the result for one
particular experiment). The reason for such low values of mutual information
are (a) the additive white noise affecting the sensory channels, and (b) the
oscillations of the camera from side to side, which led to a rapidly chang-
ing camera image, and consequently to a drop of the statistical dependence
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between red channels (for a similar argument refer also to sub-section 5.1).
In contrast to the mutual information, the entropy of the individual sensory
channels was very high and close to the channel capacity, i.e., 5 bits. In the
second behavioral state (“tracking”), the average entropy for the red recep-
tors was not quite as high as in the first behavioral state, and amounted to
(2.674± 0.362 bits). The same mutual information between the red receptors,
however, was higher (0.804 ± 0.160 bits). The mutual information matrix for
a particular experimental run is shown in Fig. 5 b). For qualitatively similar
results refer also to (Lungarella and Pfeifer, 2001; Sporns and Pegors, 2003).
In the third behavioral state (“circling”), the entropy of the peripheral red
channels, as well as the mutual information between them, were large (see
Fig. 5 c). Across all experiments, for both sides of the image sensor, the stan-
dard deviation of the mutual information assumed high values (e.g., in Fig. 5 c,
the standard deviation of the six receptors on the far left of the image sensor
is 0.561 bits; the robot was circling around the object counter-clockwise). In
contrast, the mutual information for the red channels close to the center was
low (0.244 bits). This low value was largely independent from the direction in
which the robot circled around the object. The mutual information between
red receptors across all the experiments was also low: 0.102± 0.020 bits.
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Fig. 5. Mutual information matrix obtained by estimating the mutual information
between pairs of red channels in one particular experimental run during the behav-
ioral state: (a) “exploring”, (b) “tracking”, (c) “circling”. The higher the mutual
information, the larger the size of the square. In order to better display the infor-
mational structure the plots have not been normalized. The maximum values for
the mutual information are: 0.999 bits (“exploring”), 3.128 bits (“tracking”), and
3.637 bits (“circling”).

5.3 Cumulated sensor activation

It is important not to confuse the amount of variability (information) with the
cumulated amount of activation (total stimulation) of a particular sensor. The
total sensory stimulation for both sensory modalities was computed by inte-
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grating – separately for each behavioral state – the activation of the individual
sensors during an experimental run. The activation was then normalized as
a percentage (see Fig. 6). Interestingly, in the behavioral states “exploring”
and “tracking” the cumulated sensor activation did not show any stable pat-
terns across multiple experiments, in the sense that the positions of the peaks
changed from experiment to experiment, and were dependent on the number
of objects encountered. In the third behavioral state (“circling”), however, the
activation levels of the sensors d2 and d3 were high and stable across all experi-
mental runs (depending on the direction the agent circled around the object).
Figure 6 (a) demonstrates such stability by displaying the average (and the
standard deviation, that is, variance) of a set of experimental runs in which
the robot circled around the object counter-clockwise. The same graph shows
that the sensor d10 was also characterized by large activation levels (again, for
the case in which the agent circled counter-clockwise around objects).

We computed the activation levels also for the 24 red receptors. As shown in
Figure 6 b, the total stimulation of the red channels in the first behavioral state
(“exploring”) was low in all experiments (the stimulation was largely due to
noise in the sensory channels). As in the case of the distance sensors, the graphs
are averages over a set of experimental runs in which the robot circled counter-
clockwise around objects. In the second behavioral state (“tracking”), however,
the activation levels for the red receptors close to the center were high, and
gradually tapered out toward the periphery. Such decrease of activation is a
result of the continuous sensory-motor adjustments of the camera pan-angle to
keep the red object in the center of its visual field. Clearly, the peripheral red
receptors are barely stimulated. Finally, the third behavioral state (”circling”)
shows high activation levels for the image sensors on both sides of the robot
(for the data displayed in Figure 6 b the agent circled counter-clockwise around
the object).

5.4 Pre-processed image entropy

The change over time of the total image entropy (computed as the average
of the entropies of the individual vertical image slices i1−24) is displayed in
Fig. 7. While the robot explored its ecological niche (phase P1), the image
entropy was low and not highly variable (compared to P2 and P3). When the
robot began approaching a red object (phase P2), the image entropy started
to increase. The image entropy reached its maximum in the third behavioral
state, and stayed high as long as the robot kept circling around the red object
(phase P3).
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Fig. 6. (a) Plot of activation levels for the proximity sensors (d0 to d10) for the
three behavioral states. (b) Plot of activation levels for the image sensors (i1 to
i24) for the three behavioral states. The plots display the average computed over 16
experimental runs, the bars denoting the 95% confidence limit. The lines denote the
following behavioral states: “exploring” (dotted), “tracking” (dashed), “circling”
(continuous).
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Fig. 7. Entropy of the effective red color averaged over all vertical slices. The plots
display the average computed over 16 experimental runs, the bars denoting the 95%
confidence limit.

6 Further Discussion and Conclusion

To summarize, coordinated motor activity leads to correlations in the sen-
sory data that can be used to characterize the robot-environment interaction.
Statistical measures, such as correlation and mutual information (although
sometimes tricky to use), can be effectively employed to extract and quantify
patterns induced by the coupling of robot and environment. In the “circling”
behavioral state, for instance, the average correlation (evaluated over 16 exper-
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imental runs) normalized by the number of distance sensors or red receptors
was 0.083 ± 0.041 for the distance sensors and 0.166 ± 0.031 for the image
sensors. The “tracking” behavioral state displayed an even higher stability,
and the average correlation was 0.097 ± 0.012 (for the distance sensors) and
0.309 ± 0.042 (for the image sensors). Mean and standard deviation clearly
show that correlation analysis leads to stable sensory patterns across multiple
experimental runs, and thus define quantitative measures for behavioral finger-
prints. A similar results holds for mutual information. It is important to note
that such stability is the direct consequence of a sensory-motor coordinated
interaction. And indeed, for the case in which the agent tracked the object
(in this case the agent’s sensory-motor coupling with the environment was
strong) the fingerprints displayed least variance. A possible conclusion is that
the particular combination of (a) morphological setup (that is, two wheels, 24
image sensors, and 11 distance sensors) and (b) control architecture is well
suited for tracking objects.

Our analyses also show that although correlation and mutual information
provide appropriate statistical measures for fingerprinting interaction, they
differ in at least one important aspect. Correlation can be used to identify
fingerprints of robot-environment interaction only if the sensory activations
between different sensors are temporally contiguous (that is, temporally close
relative to the time scale of the agent’s control structure). We hypothesize
that such temporal contiguity in the raw (that is, unprocessed) sensory data
can be induced by coordinated motor activity. It may indeed be the case that
sensory-motor coordination provides a very natural mechanism to achieve a
matching of the various time scales affecting an agent’s behavior: environment,
neural, and body-related.

A further result (that will be elaborated in future work) is that even if the
sensory channels are affected by additive white noise, adequate sensory-motor
coordination interaction can indeed induce stable fingerprints. In this sense,
it is possible to put forward the hypothesis that sensory-motor coordinated
interaction can act as some sort of “behavioral denoising filter.”
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