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Abstract: We present in this paper a methodology for

computing the maximum velocity profile over a trajectory

planned for a mobile robot. Environment and robot dynam-

ics as well as the constraints of the robot sensors determine

the profile. The planned profile is indicative of maximum

speeds that can be possessed by the robot along its path with-

out colliding with any of the mobile objects that could in-

tercept its future trajectory. The mobile objects could be

arbitrary in number and the only information available re-

garding them is their maximum possible velocity. The ve-

locity profile also enables to deform planned trajectories for

better trajectory time. The methodology has been adopted

for holonomic and non-holonomic motion planners. An ex-

tension of the approach to an online real-time scheme that

modifies and adapts the path as well as velocities to changes

in the environment such that both safety and execution time

are not compromised is also presented for the holonomic

case. Simulation and experimental results demonstrate the

efficacy of this methodology.

1 Introduction

Several strategies exist for planning collision free
paths in an environment whose model is known [9].
However during execution, parameters such as robot
and environment dynamics, sensory capacities need to
be incorporated for safe navigation. This is especially
so if the robot navigates in an area where there are
other mobile objects such as humans. For example in
Figure 1, the robot would require to slow down as it
approaches the doorway, in anticipation of mobile ob-
jects to emerge from there, even if it does not intend
to make a turn through the doorway.

A possible means to tackle the above problem at
the execution stage is to always navigate the robot at
very low speeds. In fact, reactive schemes such as the
nearness diagram approach [11] operate the robot at
minimal velocities throughout the navigation. How-
ever incorporating the computation of a velocity pro-
file at the planning stage would circumvent not only
the problem of conservative velocities throughout nav-
igation but would also allow for a modification of the
trajectory to achieve lower time (Fig. 2).

Figure 1: A safe robot has to slow down while approaching
the doorway

We present in this paper a novel pro-active strategy
that incorporates robot and environment dynamics as
well as sensory constraints into a collision free motion
plan. By pro-active we mean that the robot is always
in a state of expectation regarding the possibility of a
mobile object impinging onto its path from regions in-
visible to its sensor. This pro-active state is reflected
in the velocity profile of the robot, which guarantees
that in the worst case scenario, the robot will not col-
lide with any of the moving objects that can interfere
with its path. The ability of the algorithm to compute
a-priori velocities for the entire trajectory accounting
for moving objects moving in arbitrary directions is
the essential novelty of this effort.

Figure 2: A longer path can be faster due to higher speed.

As is always the case, planned paths and profiles
need constant modification at the execution stage due
to changes in the environment. For example a profile
and path that was planned for an environment with
a closed doorway needs to be modified during real-
time if the doorway is found open. Also addressed in
this article the problem portrayed in Figure 3. Given
an initial trajectory planned for a particular environ-
ment how does the robot modify its trajectory while
new objects (not necessarily intersecting the robot’s
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trajectory) are introduced into the environment such
that the basic philosophy of ensuring safety as well
as reducing time lengths of the path continue to be
respected. Simulation and experimental results are
presented to indicate the efficacy of the scheme. In [1]
we had reported how the maximum velocity profiles
can be computed for any generic planner and in [8] we
presented initial simulation and experimental results
of the reactive version of [1].

Figure 3: How does the robot adapt its path in the pres-
ence of new segments (a, b) and (c, d) while maintaining
safe velocities?

Related work can be cited in the areas of modifying
global plans using sensory data obtained during exe-
cution for overcoming uncertainty accumulated during
motions [3] and those that try to bridge the gap be-
tween planning and uncertainty [10] or planning and
control [7][2]. The velocity obstacle concept [13][5]
bears resemblance to the current endeavor in that they
involve selection of a robot velocity that avoids any
number of moving objects. The difference is that in
the present approach the only information about the
mobile object available is the bound on velocity. The
direction of motion and the actual velocities are not
known during computation of the velocity profile. The
work of Stachniss [14] also involves considering the
robot’s pose and velocities at the planning phase. A
path is determined in the (x, y) space and a subgoal
is chosen. A sequence of linear and angular velocities,
(v, w), is furnished till the subgoal is reached. In [12] a
policy search approach is presented that projects a low
dimensional intermediate plan to a higher dimensional
space where the orientation and velocity are included.
As a result better motion plans are generated that en-
able better execution of the plan by the robot. The
current effort has similarities to [12], at the planning
level but also extends it to a suitable reactive level in
the presence of new obstacles encountered during ex-
ecution. Similarly the dynamic window approach [16]
and the global dynamic window method of Brock et.al.
[17] both incorporate the dynamics and the kinematics
of the robot for a reactive collision avoidance system.
Incorporating the dynamics and searching in the space
of velocities overcome the problems of purely geomet-

ric methods. However these methods do not speak of
modifying the path in order to reduce its time-length
and the dynamics of the environment does not affect
the computation of the velocity profile, which places
our approach as different from those mentioned above.

2 Problem Definition

The following problems are addressed in the paper,
given:

• A robot R modelled as a disc and equipped with
an omnidirectional sensor having a limited range
Rvis. We call Cvis the visibility circle, centered at
robot’s position with radius Rvis. The paths of
R are sequences of straight segments or straight
segments connected with circular arcs of radius
ρ in case of a non-holonomic robot. The robot’s
motion is subject to dynamic constraints simply
modelled by a bounded linear velocity v ∈ [0, vrm]
and a bounded acceleration a ∈ [−a−m, am]. The
maximum possible deceleration a−m need not
equal the maximum acceleration am.
• A workspace cluttered by static polygonal obsta-

cles Oi. The static obstacles can hide possible
mobile objects whose motions are not predictable;
the only information is their bounded velocity vob.

Problem 1: Given a robot’s path τ(s) computed by
a standard planner [9], determine the maximal veloc-
ity profile vτ (s) such that, considering the constraints
imposed by its dynamics, the robot can stop before
collision occurs with any of the mobile objects that
could emerge from regions not visible to the robot at
position s ∈ τ(s). For example the velocity profile
dictates that the robot in Figure 1 slow down near
the doorway in expectation of mobile objects from the
other side. We call MP = (τ(s), vτ (s)) a robust mo-
tion plan. The velocity profile allows us to define the
time T (τ) required for the robust execution of path τ :

T (τ) =
∫ L

0

ds

vτ (s)

Problem 2: Modify the planned trajectory such
that the overall trajectory time T (τ) is reduced. For
example, the path of Figure 2, albeit longer than the
one of Figure 1 is traversed in a shorter time.

Problem 3 Adapt the path and velocities reactively
in the presence of new objects not a part of the original
workspace such that the criteria of safe velocities and
reduced time of path continue to be respected. This
is illustrated in Figure 3.
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3 From path to robust motion plan

The procedure for computing the maximum veloc-
ity profile vτ (s) delineated in Sections 3.1, 3.2 and
3.3 addresses the first problem. The constraints im-
posed by the environment on the robot’s velocity are
due to two categories of mobile objects. The first cate-
gory consists of mobile objects that could appear from
anywhere outside the boundary of the visibility cir-
cle Cvis. The second category involves mobile objects
that could emerge from shadows created in Cvis due
to stationary objects.

3.1 Velocity constraints due to the envi-
ronment

Cvis

v(0) = vrob 0v(t  )=0

dobjdrob

vobj

v(t)= v   -a   trob m

vrob

Figure 4: Mobile objects may appear anywhere on Cvis’s
contour.

No obstacles in Cvis In the simple case where the
robot’s position is such that no static obstacle lies in-
side Cvis, a moving object may appear (at time t = 0)
anywhere on Cvis’s boundary (Fig. 4). Let Vrb denote
the maximum possible robot velocity due to a mobile
object at the boundary. At time t0 = vrb/a−m (i.e.,
when the robot is stopped), the distance crossed by the
object is dobj(vrb) ≤ vobvrb/a−m. Avoiding any poten-
tial collision imposes that Rvis ≥ drb(vrb) + dobj(vrb),
where drb = v2

rb/2a−m. The condition relates vrb to
the sensor’s range Rvis as:

vrb = −vob +
√

v2
ob + 2a−mRvis (1)

Influence of shadowing corners Static obstacles
lying inside Cvis may create shadows (e.g., see the grey
region of Figure 5) which contain mobile objects. The
worst-case situation occurs when the mobile object re-
mains unseen until it arrives at the shadowing corner
of a polygonal obstacle. Since the mobile object’s mo-
tion direction is not known it is best modeled for a
worst case scenario as an expanding circular wave of
radius vobt centered at (d, θ)

(X(t)− d cos θ)2 + (Y (t)− d sin θ)2 = v2
obt

2

Let us first consider that the robot’s path τ is a
straight segment. Considering that the intersections
between the circular wave and the robot’s segment
path, should never reach the robot before it stops at
time t0 = vrs/a−m yields the following velocity con-
straint:

v4
rsv − 4(a−md cos θ + v2

ob)v
2
rsv + 4a2

−md2 ≥ 0 (2)

Here vrsv is the maximum possible robot velocity due
to the shadowing vertex under consideration. The so-
lution of Eq. 2 gives vrsv, as a function of (d, θ).

drob

vobj

robv

d
θ τ τ

Figure 5: Mobile objects may also appear from the shad-
ows of static obstacles

This solution only exists under the condition vob >√
a−md(1− cos θ), i.e., when the object’s velocity vob

is sufficiently high to interfere with the robot’s halt-
ing path. Otherwise, the shadowing corner does not
constrain the robot’s velocity which can be set to vrm,
the maximum bound on robot’s velocity.

Similar reasoning can be applied to the case where
the robot traverses a circular arc path of radius ρ.
This case however leads to a nonlinear equation that
needs to be solved numerically to derive the maximal
velocity [4]. The expression that needs to be solved
for computing the maximum velocity at a given point
on a circular arc is of the form :

((v2
rsvv2

ob)/a2
−m) + 2ρ2 cos(v2

ob/2a−mρ)+

2dρ sin((v2
ob/2a−mρ)− θ)

= d2 + 2ρ2 − 2dρ sin θ (3)

3.2 Computing the shadowing corners

The problem of determining the set of shadowing
corners needed for the velocity computation in Sec-
tion 3.1 is the problem of extracting those vertices of
the polygonal obstacle to which a ray emitted from
the robot’s center is tangential (Figure 6). The set
of shadowing corners can be easily extracted from an
algorithm that outputs the visibility polygon [15] as a
sorted list of vertices.
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Figure 6: Shadowing corners: among the three vertices of
V(p), only s2 and s3 create shadows (the line going through
s1 is not tangent to the left obstacle).

3.3 Computing the velocity profile vτ (s)

While the methodology for computing the maxi-
mum velocity profile delineated here is essentially for
a holonomic path, its extension to the non-holonomic
case is not very difficult.

1. A holonomic path τ , consisting of a sequence
of straight line segments ab, bc, cd (Fig. 7) is
deformed into a sequence of straight lines and
clothoids to ensure continuity of velocities at the
bends [6]. The maximum deviation from an end-
point to its clothoidal arc (depicted as e in Figure
7) is dependent on the nearest distance to an ob-
ject from the endpoint under consideration.

Figure 7: A holonomic path deformed into a sequence of
straight segments and clothoidal arcs.

2. The linear velocity along a clothoid is a constant
and the maximum possible linear velocity consid-
ering robot dynamics alone is calculated for each
of the clothoidal arc a1b0, b1c0 according to [6]
and is represented as vc(a1), vc(b1).

3. The straight segment aa1 is discretized into M
equally spaced points, excluding the endpoints of
the segment, viz. a and a1. We denote the first
such point as a1 and the last such point as aM .
The point of entry into the clothoid, viz. a1 is
also denoted as aM+1.

4. For each of the N points, ai, the steps 4a to 4e
are repeated.

4a Maximum possible velocity that a robot could
have such that it can come to a halt before collid-
ing with objects that enter into the robot’s field of

vision from the boundary is computed as vrb(ai)
according to Equation 1.

4b Velocity of the robot due to stationary obstacles
inside the robot’s field of vision that create shad-
ows is computed as vrsv(ai) according to Equa-
tion 2. The minimum of all the velocities due to
such vertices is found and denoted as vrs(ai).

4c The maximum possible velocity of the robot at ai

due to environment is then computed as

vre(ai) = min(vrb(ai), vrs(ai)) (4)

4d Velocity of the robot at ai due to its own dynam-
ics is given by

vrd(ai) =
√

v2
r(ai−1) + 2ams(ai, ai−1) (5)

The above equation is computed if vre(ai) >
vr(ai−1). Here s(ai, ai−1) represents the distance
between the points ai and ai−1. am represents
the maximum acceleration of the robot.

4e The eventual velocity at ai is given by

vr(ai) = min(vrd(ai), vre(ai), vrm) (6)

Here vrm represents the maximum robot velocity
permissible due to servo motor constants.

5. The velocity at the endpoint a1 is computed as
vr(a1) = min(vr(a1), vc(a1)) and this would be
the linear velocity with which the robot would
traverse the clothoid.

6. Steps 6a and 6b are performed by going back-
wards on each of the N points from aN to a1.

6a If vr(ai) > vr(ai+1) then the modified maximum
possible velocity at ai is computed as

vrd(ai) =
√

v2
r(ai+1) + 2a−ms(ai, ai+1) (7)

6b Finally the maximum safe velocity at ai is given
as vr(ai) = min(vr(ai), vrd(ai)).

7. Repeat steps 3 to 6 for all the remaining
straight segments to obtain the maximal veloc-
ity profile over a given trajectory τ as vτ (s) =
{vr(a), vr(a1), ..., vr(aN ), vr(a1), vr(b1), ..., vr(d)}.

3.4 Modifying planned trajectory for
lower time

The knowledge of the maximum velocity profile over
a trajectory is utilized to tackle the problem posed in
Section 2 of reducing the overall trajectory time of
the path. The procedure for reducing trajectory time
at the planning stage involves random deformation of
the planned path and evaluating time along this path.
The modified path becomes the new trajectory if time
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along it is less than along the original trajectory. The
process is continued till over a finite number of at-
tempts no further minimization of trajectory time is
possible. Prior to delineating the algorithm it is to
be noted that the set of all collision free space of the
workspace is denoted as Cfree and the current trajec-
tory of the robot as τc(s). A point of discretization
on a trajectory discretized into N parts is denoted as
p(si), i ∈ {1, 2, ..., N}. The corresponding configura-
tion of the robot at those points is denoted by q(si).
The algorithm is given as Algorithm 1.

Algorithm 1 Globally reducing trajectory time
1: Ntry ← 0
2: while Ntry < Nattempts do
3: Discretize current trajectory τc(s) into Np parts

where Np is selected based on minimum dis-
cretization distance between two points.

4: Set flag ← 0
5: for i = 1 to Np do
6: Compute minimum velocity at si due to shad-

owing vertices as vrmin(si)
7: if vrmin(si) < vrm then
8: Find a configuration q(sp) ∈ Cfree and

sp /∈ τc(sk), k ∈ {1, ..., Np} such that q(sp)
is reachable from q(si).

9: Find a point sr on the remaining part of
the trajectory, sr ∈ τc(sj); i < j ≤ Np such
that q(sr) is reachable from q(sp).

10: Form a new trajectory through si, sp, sq

and denote it as τn(s)
11: if T (τn) < T (τc) then
12: discretize τn into Nq points.
13: τc ← τn

14: Np ← Nq

15: Set flag ← 1
16: end if
17: end if
18: end for
19: if flag = 0 then
20: Ntry ← Ntry + 1
21: end if
22: end while

Step 8 of the algorithm is carried out by searching
for a collision free configuration which would displace
the path away from the shadowing vertex responsible
for the lowest velocity at si . Step 11 adapts the dis-
placed path as the new current path if its trajectory
time is less than the current path. Nattempts, is the
number of unsuccessful attempts at minimizing tra-
jectory time before the algorithm halts.

3.5 Remembering Sensor Information

The computation of the velocity profile at a given
point on the robot’s trajectory incorporates the
robot’s field of vision at that point. This field can
change appreciably between two successive instances
of computation. For example in Figure 8 the robot at
position a has full field of vision of the corridor that is
transverse to the robot’s trajectory. However at posi-
tion b the robot is blind to the zone shown in darker
shade of gray. Hence it needs to slow down as it moves
further down to c since it envisages the possibility of
a moving object approaching it from the corners of
the stationary objects. These corners are the starting
areas of the robot’s blindzone at b.

Figure 8: Memorization of previous scenes

However, if the robot could remember the earlier
scene it could use this when computing its velocity
profile during execution of the planned path. In such
a case, if the robot did not see any moving objects in
close proximity at a it can make use of this information
at b to have a velocity profile from b that is greater
than the one computed in the absence of such infor-
mation. Figure 8 shows (in darker shade) the zone
remembered by the robot. The contour of the remem-
bered area represents the blindzone of the robot at b,
from where mobile objects can emanate. The area in
lighter shade of gray is the visibility polygon for the
robot at b. With the passage of time the frontier of the
remembered area shrinks due to the advancement of
the imagined mobile objects from the initial frontier.
The details of this scheme are given below.

Remembering is fruitful when a non-shadowing ver-
tex begins to cast a shadow thereby hiding regions
which were previously visible. The set of all ver-
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Figure 9: Three categories of blind vertices.

tices that are currently visible, shadowing and were at
some prior instant visible, non-shadowing is denoted
by V sns. For every vertex ve ∈ V sns a correspond-
ing vertex is associated and called the blind vertex.
The blind vertices are of three categories explained in
Figure 9 where the vertex a, non-shadowing for the
robot at p becomes shadowing when the robot is at q.
Correspondingly the vertex c of the triangular obsta-
cle which was visible and shadowing when the robot
was at p becomes invisible when the robot moves to q.
Simultaneously one of the other end-points of a, viz.
b, would also become inevitably invisible at q. Ver-
tices like b fall in the second category. If b was already
outside Cvis at p the intersection of Cvis with the seg-
ment ab, namely o is identified as the third category of
blind vertex. The set of all such vertices is denoted by
V bs. These vertices are advanced by a distance vob∆t
where ∆t is the time taken by the robot between p and
q to new virtual locations along the line that connects
those vertices to a. At q the velocity is computed due
to the closest of the vertices in the set V bs at their
virtual locations instead of a, which is otherwise the
vertex for which equation(2) is computed.. Such a
trend continues till the distance between the robot to
the closest hypothetical vertex is less than the actual
distance of the robot to a.

The remembering part of the algorithm is given in
algorithm 2. The set of all visible shadowing vertices
is denoted by V sh.

4 From Plan to Execution

The velocity profile, vτ (s), is a sequence of max-
imum velocities calculated at discretized locations
along the trajectory τ(s). The locations at which the
velocity profile at the execution stage is computed are
not the same locations as where the profile was com-
puted during planning, due to odometric and motor

Algorithm 2 Remembering effects on velocity
1: for each vertex ve ∈ V sh do
2: if ve ∈ V sns then
3: for each vertex vb ∈ V bs associated with ve

do
4: Advance vb by vob∆t
5: end for
6: Denote the distance from the robot’s current

location, sc, to the closest of all advanced ver-
tices, vbc as dcvb

7: if d(sc, ve) < dcvb then
8: Compute velocity due to the virtual vertex

vbc through Equation 2
9: else

10: Compute velocity due to the actual vertex
ve through Equation 2

11: end if
12: end if
13: end for

constraints. Moreover, if there are changes in the envi-
ronment it entails modifying the trajectory and hence
the velocities. During execution it is computationally
expensive to compute the profile for the entire remain-
ing trajectory, hence the profile is computed for the
next finite distance, given by, dsafe = dmax + ndsamp,
where dmax = v2

rm/(2 ∗ a−m), represents the distance
required by the robot to come to a halt while it moves
with the maximum permissible velocity afforded by
motor constants. And dsamp = vrmtsamp is the max-
imum possible distance that the robot can move be-
tween two successive samples (time instants) of trans-
mitting motion commands, where time between two
samples is tsamp.

The main issue here is what should be the distance
over which the velocity profile needs to be computed
during execution such that it is safe. A velocity com-
mand is not considered safe if it is less than the cur-
rent velocity and not attainable within the next sam-
ple. The velocity is constrained by the environment
as well as robot’s own dynamics and hence their roles
are studied below.

Effect of Environment Mobile objects that can
emerge from corners in a head-on direction cause the
greatest change in velocity over two samples. Figure
10 shows one such situation, where the rectangular
object casts a shadow and is susceptible to hide mobile
objects. Let the current velocity of the robot at a due
to the object be v1. Let the velocity at a distance, s,
from a, at b (Fig. 10) due to the object be v2.
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Figure 10: Effect of an obstacle on the robot’s velocity,
possibly hiding mobiles objets at locations a and b.

The velocities at a and b are given by

va = −vob +
√

v2
ob + 2a−md (8)

vb = −vob +
√

v2
ob + 2a−m(d− s) (9)

Hence
v2

a − v2
b = 2a−ms+

2vob(
√

v2
ob + 2a−m(d− s)−

√
v2

ob + 2a−md) (10)

Evidently the second term on the right hand side
of Equation 10 is negative, since the second square
root term is more positive than the first. Hence
v2

a − v2
b ≤ 2a−ms. Therefore the velocity at b, vb can

be attained from the velocity at a, va under maxi-
mum deceleration, dm, irrespective of the maximum
velocity of the mobile object or the robot’s own motor
constraints. This was intuitively expected since the
robot’s velocity at any location is the maximum pos-
sible velocity that guarantees immobility before colli-
sion; its velocity at a subsequent location permitted
by the environment would be greater than or equal
to the velocity at the same location obtained under
maximum deceleration from the previous location. In
other words for safeness of velocity going purely by
environmental considerations it would suffice to calcu-
late the velocity, for the next sampling distance alone,
for without loss of generality, d = dsamp.

Effect of robot’s dynamics The robot needs to
respect the velocity constraints imposed while near-
ing the clothoidal arcs and eventually while coming to
the target. The robot can reach zero velocity from its
maximum velocity over a distance of dmax, computed
before. Hence dmax + dsamp represents the safe dis-
tance over which the velocities need to be computed.

4.1 Online path adaptation for better tra-
jectory time

The third of the problems outlined in Section 2 is
tackled here. During navigation the robot in general
comes across objects hitherto not a part of the map.

The robot reacts to these new objects in line with
the basic philosophy of safety as well as time reduced
paths. The adaptation proceeds by finding locations
over a finite portion of the future trajectory where
drops in velocity occur and pushing the trajectory
away from those vertices of the objects that caused
these drops to areas in free space where higher veloci-
ties are possible. A search is made through the newly
found locations of higher velocities for a time reduced
path.

Generalized Procedure The generalized proce-
dure for adapting the path in the presence of new
objects is delineated through Figure 11.

Figure 11: A trajectory in the presence of new ob-
jects. The points marked with crosses represent locations
through which a path is searched for reduced time of tra-
jectory.

1. On the trajectory segment that is currently tra-
versed, AB in Figure 11, enumerate the vertices
of objects that reduce the velocity of the robot.

2. The positions are found on AB where the influ-
ence of vertices is likely to be maximal.

3. These positions are pushed by distances dp =
k(vl − vr), where vl and vr are the velocities at
that location on the path due to the most influ-
ential vertices on the left and right of the path.
These new locations are denoted as p1, p2, p3, p4
(Fig.11) and maintained as a list provided the ve-
locity at the new locations is higher than the orig-
inal ones. p6 is the farthest point on the robot’s
trajectory visible from its current location at A.

4. On this set of locations A, p1, p2, p3, p4, p5, p6
starting from the current location at A, find a
trajectory sequence shorter in time than the cur-
rent sequence of A,B, p6 if it exists.

5. The steps 1 to 4 are repeated until the robot
reaches the target.

It should be noted that when a collision with an ob-
ject is detected, a collision free location is first found
that connects the current location with another loca-
tion on the original trajectory and this new collision
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Figure 12: Path computed by a typical planner and its
velocity profile shown on the top. The robot’s velocity
corresponding to its location on the trajectory is shown by
a vertical line on the profile and labeled as m.

free path is further adapted for a time-reduced path if
it exists. Also note that while the velocities are com-
puted over a distance dsafe, that part of the remaining
trajectory that is visible from the current location is
considered for adapting to a better time-length.

5 Planning Results and Analysis

In this section the results of incorporating the ve-
locity profile computation as a consequence of con-
sidering robot and environment dynamics and sensor
capacities at the planning stage and the subsequent
adaptation of paths to better time of trajectory is ana-
lyzed. Figure 12 shows the path computed by a typical
holonomic planner [9] and its corresponding velocity
profile. The velocity corresponding to the robot’s lo-
cation on the trajectory (shown as a small circle) is
marked by a straight line labeled m on the profile.
The dark star-shaped polygon centered at the robot
depicts the visibility of the robot at that instant and
is called the visibility polygon. The figure is a snap-
shot of the instant when the robot begins to decelerate
to a velocity less than half the current velocity as it
closes down on the vertex a marked in the figure. Evi-
dently from the visibility polygon the vertex a casts a
shadow and the closer the robot gets to it, the slower
the velocity must be.

Figure 13 is the time reduced counterpart of Figure
12. The snapshot is once again at a location close to
vertex a. Staying away from a permits nearly max-
imum velocity. The dip observed in the profile due
to vertex a is negligible. Similarly staying away from
other vertices such as b allows for a trajectory time
of 21.79s compared to 26.30s for Figure 12. Mod-

Figure 13: Path obtained after adaptation to reduced
time-length.

ification of the trajectory for shorter time proceeds
along the lines of Section 3.4. For the two examples
discussed, the robot’s maximum acceleration and de-
celeration was fixed at 1m/s2, maximum velocity at
1m/s and the sensor range at 7m. The maximum
bound on the object’s velocities was 1.5m/s.

Figures 14 and 15 depict the planned trajectory and
velocity profiles before and after reduction of trajec-
tory time for our laboratory environment. The time
reduced trajectory is shorter by more than 8 seconds
as it widens its field of view by moving away from the
bends while turning around them.

Figure 14: Planned trajectory before adaptation to a re-
duced time.
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Figure 15: Time reduced trajectory at planning stage.

5.1 Effect of remembering on trajectory
time

Figure 16 shows an environment with four corridors
named 1, 2, 3 and 4 with planned path obtained by
minimizing time. It also portrays the robot’s field of
vision as it enters corridor 3. The velocity profile for
the above path is shown in Figure 17. The location
of the robot corresponding to its location in Figure
16 is shown through the vertical line. The locations
of the robot as it decelerates when its field of view of
each of the corridors vanishes is also marked with the
respective numbers on the profile.

Figure 16: Robot’s field of view as it enters corridor 3.

Though the path of Figure 16 is minimized in time
its velocity profile still shows decelerations in the vicin-
ity of the corridors. This is due to the phenomenon
discussed in Section 3.5 where the robot becomes blind
to many parts of the environment it had seen at the
preceding instant. Figure 18 shows the robot’s field

of vision at an instant after the one shown in figure
16. There is a marked decrease in its field of vision
at the latter instant that results in the robot reducing
its velocity in anticipation of moving objects from the
blindzones depicted in the velocity profile.

Figure 17: Velocity profile for the Figure 16. Correspond-
ing position of the robot shown in vertical line. Deceler-
ations near the corridors are also marked with the same
numbers.

Figure 18: Robot’s field of vision at an instant that im-
mediately follows the instance of Figure 16.

Figure 19: Velocity profile obtained after incorporation of
memory

However, when the robot is able to remember the
previous images, the need to decelerate is nullified and
the trajectory time is further reduced. Figure 19 il-
lustrates this where the decelerations shown in the ve-
locity profile of Figure 17 at locations 1, 2, 3 and 4 are
now absent.
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Figure 20: A simple planned trajectory and its velocity
profile.

6 Experimental Results

6.1 Velocity profiles

In this section the velocity profiles obtained dur-
ing the planning and execution stages are compared
in the absence of any new objects during execution.
Figure 20 shows a simple planned trajectory and the
corresponding velocity profile for our lab environment.
Some of the obstacles are filled in gray and others are
shown as segments (in gray). The robot is shown as a
small circle and the star shaped polygon in black rep-
resents the field of vision of the robot at that location.
The vertical line, marked m in the velocity profile rep-
resents the velocity of the robot corresponding to its
position on the trajectory. The profile shows a subse-
quent drop in velocity, a consequent of robot getting
closer to region marked, d, to which it is blind.

Figure 21 compares the planned and executed (in
simulation) velocity profile. The executed trajectory
tallied to a time of 12.28s in comparison with 12.25s
for the planned profile. These figures illustrate that
the executed profiles and execution times are close
to the planned profiles and times while there are no
changes in the environment.

Figures 23 and 24 show the execution by the Nomad
XR4000 (Fig. 22) of paths computed by a standard
planner. Figure 23 corresponds to the original path
computed by the planner and Figure 24 is its time
reduced counterpart.

The velocity profiles during execution of the two

Figure 21: The planned and executed velocity profile in
simulation. The ordinate measures velocity in m/s and
abscissa time in seconds.

Figure 22: The Nomad XR4000 used in our experiments
at LAAS.

paths are shown in Figure 25. Some of the bigger
drops in the unreduced profile are absent in the re-
duced profile as the robot avoids turning close to the
obstacles that form the bends. The path of Figure
24 got executed in 12.9s while the path in Figure 23
was executed in 13.98s. The Figures are meant as
illustrations of the theme that trajectories deformed
to shorter time-lengths at planning stage are also ex-
ecuted in shorter time during implementation than
their unreduced versions.
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Figure 23: Execution of the original planned path.

Figure 24: Execution of the time-reduced path.

6.2 Online adaptation of paths for better
trajectory time

This section presents results of the algorithm in the
presence of newly added objects that affect the ve-
locities of the robot in real-time. Figure 26 shows a
path where the robot avoids the two new segments S1
and S2 intersecting the original planned trajectory but
does not adapt its path for better time. The velocity
profile for the same is shown in Figure 27. Figure 28 is
the counterpart of Figure 29 where the robot adapts
its path to a better time-length reactively. The big
dips in the velocity profile of Figure 27 are filtered
in Figure 29 considerably as the robot avoids the ob-
stacles with larger separation. The time reduced ex-
ecution tallied to 10.9s while the unreduced version
was executed in 12.5s. The trajectory time at plan-
ning was 7.9s. The above graphs are those obtained
in simulation.

Figure 25: The top profile corresponds to the path ex-
ecuted in Figure 23 and the bottom to Figure 24. The
planned and executed velocity profile in simulation. The
ordinate measures velocity in m/s and abscissa time in
seconds.

Figure 26: A simulated execution in the presence of two
new segments S1 and S2 along with the corresponding
velocity profile. The path is not adapted to better time-
length. Start and goal locations marked as S and T .

Figure 30 shows the unreduced executed path by the
XR4000 Nomadic robot in our laboratory at LAAS.
The obstacles in the original map are shown by black
lines, while the segments perceived by the SICK laser
are shown in lighter shades of gray. Some of these
segments get mapped to the ones in the map and the
others are considered new segments. This is done by a
segment based localization algorithm. The segments
of concern here are those which form a box shaped
obstacle marked B in Figure 30. The vertex d of this
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Figure 27: Velocity profile for the execution of Figure 26.

Figure 28: Path of Figure 26 adapted to better time-
length.

obstacle casts a shadow on the robot’s sensory field,
which forces it to slow down at those locations due to
Equation 2. The execution time for this unreduced
path is 10.6s.

The time reduced counterpart is shown in Figure 31
that tallied to 9.6s. The original planning time was
8.8s in the absence of the box shaped object. The
corresponding velocity profile is shown in figure 32.

7 Conclusions and Scope

A proactive safe planning algorithm and its reac-
tive version that facilitates real-time execution has
been presented. The proactive nature of the algo-

Figure 29: Velocity profile for the execution of Figure 28.

Figure 30: Unreduced path executed by the Nomad
XR4000. The vertex d of the new box shaped object B
forces a slow down near it.

rithm stems from the computed velocity profile, vτ (s),
that guarantees immobility of the robot before colli-
sion with any of the possible mobiles that could inter-
fere its future trajectory from regions blind to its sen-
sor. The proactivity does not however come at the cost
of robot’s velocity or trajectory time. The knowledge
of vτ (s) computed over the trajectory τ(s) further fa-
cilitates reduction of the over all trajectory time T (τ)
by adaptation of the initially planned path. Analy-
sis of the scheme at the planning stage depict that the
robot can have a velocity profile that achieves its max-
imum possible velocity for a sustained duration with-
out many dips provided it stays away from doorways
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Figure 31: Time reduced path executed by the Nomad
XR4000.Increasing linear and angular separation from ver-
tex d facilitates a higher speed.

Figure 32: Velocity profile for the path executed by the
Nomad in Figure 31. The planned and executed velocity
profile in simulation. The ordinate measures velocity in
m/s and abscissa time in seconds.

and narrow passages along its path. Remembering of
previous scenes also enhances the robot’s performance
through reduced trajectory time and a more uniform
velocity profile.

A reactive extension of the scheme that facilitates
real-time simulation and implementation is also pre-
sented. The scheme maintains the underlying philos-
ophy of computing safe velocities and modification of
paths for better trajectory time. Simulation and ex-
perimental results at real-time corroborate our earlier
results obtained at the planning stage (that by keep-
ing away from vertices of objects that could hide mo-
biles the robot could move at higher velocities and
obtain better time-lengths) and thus the efficacy of

overall strategy is vindicated. The minimum distance
over which the velocities need to be computed on
the remaining trajectory during real-time such that
the computed velocities are safe is theoretically es-
tablished. This avoids repetitive computation of ve-
locities over the entire remaining trajectory for every
motion command, thereby reducing computational in-
tensity and facilitating for real-time implementation.
The methodology could be useful in the context of per-
sonal robots moving in areas where interference with
mobile humans especially aged ones are generally ex-
pected.

Immediate scope of this work involves in incorpo-
rating the memory phenomena at the reactive level
such that higher speeds are possible. The method-
ology needs to be validated in the presence of mo-
bile objects that actually impinge on the path from
blindzones with a provision for the robot to avoid the
objects without halting, continuing to respect safety
considerations as well as minimizing trajectory time.
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