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Abstract

In this paper, we present techniques that allow one or multiple mobile robots to effi-
ciently explore and model their environment. While much existing research in the area
of Simultaneous Localization and Mapping (SLAM) focuses on issues related to uncer-
tainty in sensor data, our work focuses on the problem of planning optimal exploration
strategies. We develop a utility function that measures the quality of proposed sensing
locations, give a randomized algorithm for selecting an optimal next sensing location,
and provide methods for extracting features from sensor data and merging these into
an incrementally constructed map.

We have also provide an efficient algorithm driven by our utility function. This
algorithm is able to explore several steps ahead without incurring too high a computa-
tional cost. We have compared that exploration strategy with a totally greedy algorithm
that optimizes our utility function with a one-step-look ahead.

The planning algorithms which have been developed operate using simple but flex-
ible models of the robot sensors and actuator abilities. Techniques that allow imple-
mentation of these sensor models on top of the capabilities of actual sensors have been
provided.

All of the proposed algorithms have been implemented either on real robots (for
the case of individual robots) or in simulation (for the case of multiple robots), and
experimental results are given.
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1 Introduction

Autonomous robots must possess the ability to explore their environments, build represen-
tations of those environments, and then use those representations to navigate effectively in
those environments. Collectively, these requirements define the problem of Simultaneous
Localization and Mapping (SLAM) [5, 9, 24, 32], which has become a very active topic of
research in the last decade.

To date, work on SLAM has focused primarily on issues related to uncertainty in sensing.
Early research on SLAM [32] used a Kalman filtering approach to manage uncertainties that
accumulate during robot motion, simultaneously providing an estimate of robot position
and landmark locations. More recently, generalized Bayesian approaches have been proposed
(see, e.g., [24]) for the SLAM problem, relaxing the restrictive conditions imposed by Kalman
filtering methods.

In this paper, we address issues related to uncertainty in sensing and control, but our
primary focus is on the problem of planning optimal exploration strategies. In particular,
we develop a formalism for planning exploration strategies that optimize criteria such as in-
formation gain, uncertainty reduction, etc. We then present methods for extracting features
from sensor data (predefined landmarks and geometric features such as corners), and fusing
these features into a common, global map. The result is a robot that autonomously explores
its environment, optimizing the exploration at each stage and merging newly acquired sensor
data into its existing map. Preliminary versions of this work appeared in [35] and [36].

Our proposed utility function is constructed in such a way that it balances the desire to see
as much of the as-yet-unseen environment as possible, while at the same time having enough
overlap and landmark information with the already scanned part of the indoor environment
to guarantee good map registration and robot localization. The exact form of this utility
function (which is presented in Section 3) is fairly complex, which precludes solving the
optimization problem in real time. Therefore, optimization of the utility function is achieved
by a randomized sampling scheme.

Computer vision is used to recognize landmarks using a Bayesian approach. A laser
range finder is used to find straight lines in the environment (using least squares fitting), and
lines obtained in consecutive sensing operations are fused by minimizing a partial Hausdorff
distance. The final result of the exploration is a multi-representational map consisting of
polygons and landmarks, and including a roadmap (backtracking graph) constructed from
the trajectory followed by the robot.

All of the proposed algorithms have been implemented. For the case of a single robot,
the algorithms have been tested on a real robot, and experimental results are included in
this paper. Algorithms for muti-robot map building have been implemented and tested via
simulation.

The remainder of this paper is organized as follows. Previous research is discussed in
section 2. The utility function that is used to evaluate candidate sensing locations is pre-
sented in section 3. In section 4 we briefly describe the landmarks and features that are used
by our system. In section 5 we give the map building algorithm. A planner for multi-robot
map building is presented in section 6. The robot architecture, experiments and results are
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described in section 7. Conclusions and future work are given in section 9.

2 Related Research

Automatic model building is an important problem in mobile robotics [4, 6, 10, 34]. Three
types of models have been mainly proposed: i) topological maps [7], ii) occupancy grids [10]
and iii) feature-based maps [6, 21, 33].

Topological maps can be expressed as a graph, where the nodes represent places and the
edge represent adjacency, or direct connectivity. Occupancy grids use a 2D array to represent
the environment. There, each cell takes one of three values: free space, occupied space or
unknown space. Grid-based algorithms have proved to be very simple and quite useful for
obstacle avoidance and planning purposes [10]. However, when the size of the environment
is large, these models become difficult to handle.

Feature-based maps [21] may portray a 2-D [6] or 3-D model [33]. They are another way
to represent the environment by using geometric primitives. The most popular geometric
primitive is the segment, which can be extracted from ultrasonic data [8], laser range-finder
data [14], or vision data [3, 17].

Most previous research has focused on developing techniques to extract relevant informa-
tion from raw data and to integrate the collected data into a single model; a robot motion
strategy is, however, typically not developed. In this work, we deal mainly with this latter
problem. An account of the field follows.

In [13,15] a map building motion planning strategy is presented. That research has shown
that it is possible to find a function that reflects intuitively how the robot should explore
the space. In a simple scheme, the evaluation function should assign a greater value to the
position that best fits the compromise between possible elimination of unexplored space and
travelled distance.

The approach presented in [22] proposes an exploration strategy for map building and
localization. The exploration strategy makes use of a utility function that evaluates the next
robot sensing location. This utility takes into account three elements: the information gain,
the distance to sensing location (cost) and the utility of localizability based on a covariance
matrix.

In [27] an algorithm for feature-based exploration of an unknown environment is proposed.
In that approach the candidate next robot locations (goals) are associated with all the
geometrical features of the environment. One major objective in [27] is to locally explore
spare regions. To obtain that objective, the following procedure is proposed. First, for each
goal generated, sample points are regularly scattered around it at a constant radius β. A
circle of radius α centered on each sample is then drawn. The final size of the sampling set
is the number of sample points for the goal at hand that satisfy these conditions: i) each
point has a clear line of sight to the goal, and ii) it has no line sight to any other circle of
radius α. The score η ∈ [0, 1] for evaluating a goal location is set to be the ratio of the final
and initial size of the sampling set.

The work presented in [31] deals with the problem of exploration and mapping of an
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unknown environment by multiple robots. A probabilistic grid is used to represent the
environment. The cells of the grid are of three types: Obstacle (probability of occupancy
above a given threshold po), clear (probability below a threshold pc) and unknown (either
never been sensed or probability between po and pc). The distance between the robot
and the frontier between known and unknown environment is used as an exploration cost.
The number of unknown cells that fall within the robot sensor range (for a possible next
location) is used as the information gain of sending the robot to that location. The utility
of a candidate sensing location is equal to its information gain minus its exploration cost. A
central executive tries to maximize the total utility. To coordinate the robots (relate robots
with sensing locations) the information gain is used.

Another robot motion exploration strategy is presented in [11]. There a metric for adap-
tive sensing that is defined in terms of the Fisher information is proposed. This metric is used
to choose among discrete robot actions that given the current state would locally maximize
the information gained in the next measurement. As a result of applying that algorithm the
robot tends to explore selectively different objects in the environment.

Other approaches have been proposed that are related to our research, even though they
are not directly intended for planning exploration strategies for SLAM.

In [12], software tools applied to multi-robot, distributed-robot and sensor network sys-
tems are proposed. That software is composed of two main elements: Player and Stage.
Player is a robot device server that provides sensing and control algorithms. Stage is a mul-
tiple robot simulator that provides a population of simulated robots and sensors operating
in a bitmapped environment. The main goal of the Player/Stage project is to provide Open
Source software interface to support experimental research with multi-robot systems.

In [19], the CentiBOTS project is presented. In that project the authors envisage a system
of a large number of robot able to explore, map, and surveil the interior of a building. One
major contribution of that work is a distributed robot architecture, that is adaptive and
fault tolerant.

3 Evaluating Candidate Sensing Locations

In this section we describe a utility function that can be used to evaluate the quality of a
proposed next sensing location. We begin with a general discussion of the desirable attributes
of such a function, and then present the specific utility function that we use.

A good utility function should prefer those positions from which the robot can recognize
a landmark that can be used either to reduce uncertainty in position [29] or to perform
navigation tasks [20, 25]. Here, we define a landmark as a predefined, recognizable object
in the work space. We do not assume that landmarks can always be recognized without
error by our computer vision system. Rather, we assume that recognition will be performed
by a Bayes classifier, and that this classifier will provide both a classification and an error
probability. Thus, our utility function should prefer landmarks with high probability of
recognition to those with low probability of recognition.

In addition to landmark recognition, the robot’s sensors are also used to extract features

4



(e.g. corners) that can be used to facilitate the fusion of data obtained from distinct views.
Therefore, in addition to maintaining landmark visibility, the utility function should prefer
sensing locations that maximize the number of visible and readily discernable features. In
our work, we have used corners in the environment as features, and thus the utility function
should prefer sensing locations from which a maximal number of corners are visible.

To explore the environment as quickly as possible, sensing locations that provide maximal
views of unexplored areas should be preferred. Unfortunately, without an existing map of
the environment, it is not possible for the robot to know where the unexplored areas lie. One
way to approximate the size of the unexplored space is to use the size of the free edge near
it. A free edge is defined as the border between regions of explored and unexplored space.
Thus, our utility function will prefer sensing locations that lie near long free edges.

As SLAM research has shown, one of the principal difficulties in constructing maps of
large environments is that odometry is typically imprecise, and that localization error grows
as the robot moves. This complicates the process of fusing new sensor data with existing
representations. A good utility function should therefore prefer trajectories that minimize
localization uncertainty. We use a simple model of uncertainty. The robot position uncer-
tainty grows in proportion to the square root of the distance traveled. In this uncertainty
model we also include a term that penalizes rotation, reflecting a preference for straight line
trajectories.

In the exploration process, at a given position, the robot may have more than one area
to explore. Thus, some unexplored areas are postponed to be explored. To come back to
those unexplored areas the robot travels a road-map built during exploration. Every node
in the graph is a previous sensing location where the robot stopped and built the map. Only
at those locations the robot is allowed to turn. In our experiments, we have found out that
robot acceleration and decelerations will increase the robot position error. Thus, minimizing
the number of stops to arrive at an unexplored area amounts to minimizing the robot position
error. Our utility function is so that the robot moves back to an unexplored area travelling
the road-map portion that requires the minimum number of stops—nodes—. Put another
way, our utility function was designed to give a better score to the robot trajectory with the
minimum number of stops.

Power consumption is another problem that confronts autonomous mobile robots. To
minimize power consumption, a good utility function should prefer trajectories that minimize
the total distance that the robot must travel.

Our utility function integrates all of these features, preferring positions combining prox-
imity to the robot, proximity to a free edge, small robot configuration uncertainty, high
landmark identification probability and ability to see features like corners. Furthermore,
positions near walls and objects will be discarded because many sensors become blind when
the objects are very near.

We have chosen a utility function with a multiplicative form. A configuration with a very
low value on at least one of these measures will be discarded even though it could have a very
good value on the others. For instance, a position very close to a free edge (with great chance
of discovering new space) must be discarded if the robot has no information to integrate this
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i Location where a sensing operation is done.
m Total number of sensing operations.
qi Total number of robot stops to reach location i
lvi Length of the closest free edge at location i
si Distance from the robot to the next possible location i
svi Distance from the next possible location i to the closest free edge
j Index for a robot configuration
θj Orientation change to reach the next configuration j
pk Identification probability of landmark k at location i
k Index for a given landmark
ni Number of landmarks inside a visibility region at location i
Nei Number of corners inside robot visibility region at location i
fmini A function that penalizes location i.
dl Minimum distance from a full edge

Table 1: Definitions of variables used in the utility function (1).

new area to the explored space. Similar forms of this utility function have been presented
in [35,36]. The main difference between our previously proposed utility functions and the one
presented in this paper is that now our utility function can be used to measure the utility of a
single robot location or a path associated to a sequence composed by several sensing locations.
The utility of a sequence of sensing locations will be simply the summation of the utility of
each location. Consider the variables definitions given in table 1, then our utility function
Ti is given by the following expression:

Ti =

m
∑

i=1

(

e(lvi−svi)

qi
∏

j=1

(

e−|θj |

√
sj + 1

)

(

1

ni

ni
∑

k=1

pk + Nei

)

fmini(dl)

)

. (1)

The function fmini is used to map the distance from an obstacle edge to a utility value.
To minimize effects of occlusion, it is desirable to maximize the distance to obstacles. On
the other hand, sensors such as sonars have a finite range. Therefore, beyond some threshold
distance, no advantage is gained by moving further from an obstacle. For this reason, we
have chosen for fmin the mapping shown in Figure 1. When the distance to the nearest
obstacle is less than a threshold distance t the function takes a low value, discriminating
those positions near the objects. Once this threshold distance is exceeded, fmini takes the
value of 1, allowing the remaining parameters to influence the value of T .

The parameters of the utility function are graphically described in the scheme presented
in Figure 2.

Our utility function quantifies different a sensing location depending on the path that
the robot has traveled to reach that location. We assume that the amount of the uncertainty
will vary according to the controls applied to the robot. To better clarify our statements
about the uncertainty induced by the types of paths traveled by the robot, we show below
the score that our utility function gives to different robot paths.
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Figure 1: The function fmin, which penalizes sensing locations that lie near on obstacle.

Figure 2: Parameters of the utility function
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(a) (b)

Figure 3: (a) Three different paths (b) Score given by the objective function

Fig. 3 a) shows three different types of paths. The first path is a straight segment in-
dicating that the robot goes from an initial to a final configuration in only one step. The
second path is also a straight segment, but in this case the robot stops at the vertical black
lines and then continues. Finally, in the third path the robot moves in zig-zag, changing its
angle at each step. Note that to come back to unexplored areas through the road-map, a
sensing location may be reached in more than one single step. The utility of each path is
calculated using the second term of our objective function:

m
∏

j=1

e−|θj |/λ

√
sj + 1

(2)

where:

• j is the the step index;

• m is the total number of steps;

• θj is the angle the robot must turn, given in radians;

• sj is the distance the robot will travel in the current step; and

• λ is a constant.

We have plotted the utility values of each path. For path 1, there is only one single value
calculated after the robot has reached the final configuration. For paths 2 and 3, there are
several values, one for each time the robot stops. These plots are shown in Fig. 3 b). Note
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that the more times the robot stops, the lower the utility value of the path. The lowest score
is obtained when the robot stops several times and then turns to change its heading.

To our knowledge, the effect of applying different types of controls to estimating the
uncertainty in robot position has not been considered before. Integrating this information we
better assess the utility of a robot path

4 Landmarks and Features

In our work, we distinguish between landmarks and features. Landmarks can be uniquely
identified by the robot, while features are geometric entities without specific identities. For
example, corners are used as features, while artifacts such as posters can serve as landmarks.
Below we briefly describe how landmarks are used by our system, and how line fitting and
model matching are used to extract line segment features and to fuse these into a single
representation.

Landmark detection and identification are useful to both, localize the robot and merge
different environment views. The merging becomes easier because these landmarks work as
pivotal features to align these partial views [25]. Landmarks are also useful to determine the
robot position relative to one or several of them [29].

Our utility function will prefer sensing locations from where corners or landmarks are
visible, so making it easier for a registration procedure (in our case the Hausdorff distance,
see section 4.3) to align the maps. To our knowledge this is the first attempt where the ability
to see landmarks or features is applied to estimate the utility of a sensing location.

4.1 Landmarks

We assume that the robot is provided with a library of landmarks that can be recognized
from sensor data or that it can build such a library as it explores its environment (note
that this is not a requirement, as our utility function and the resulting exploration strategy
can easily be modified to eliminate their use of landmarks). A good landmark is one that
is easy to recognize and that provides good localization accuracy. Landmarks in indoor
environments can be defined as structured elements such as posters, doors, or columns.

Recently, an indoor landmark detection method for robot navigation was proposed on
[16]. The algorithm takes advantage of the geometry of indoor scenes and uses vanishing
points to reduce the landmark detection complexity. This method is based on edge detection
and texture measurement. The algorithm computes an edge segment image and applies two
relaxation processes to match segments and segment pairs in order to detect landmarks.
Our landmark detection software is still in its early stages. We plan to integrate it as a
landmark extraction module in our robot architecture. We will used an algorithm similar to
that proposed in [16].

Landmarks in an image can be identified using an hierarchical approach. A first step
identifies the environment type, and a second step the Landmarks in the image [26].
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The learning database is a function of the environment type. Techniques for image
classification as a whole can be used as environment recognition method. In the first step
the type of environment is determined (i.e, an office, a lab, etc), and in the second step an
appropriated database (which corresponds to the environment type) is used; making it easier
to label the elements in the image with a reduced number of classes.

Once an image region has been detected as a potential landmark, a Bayes classifier can
be used for recognition of the landmark. In particular, a region in the image is labeled
as a landmark if its probability of belonging to a given class is greater than a specified
threshold and if it has distinct characteristics (color, shape, etc) from surrounding objects
(regions) [25]. Furthermore, the classifier provides an estimate for pk, the probability of
correct classification of the landmark.

4.2 Extracting line segments to be stored

Since we use a laser range finder as our sensor, we recover lines that form the actual visibility
region from the points that the laser gives. In particular, we generate polylines with the laser
data obtained as an ordered list (by angle) of polar coordinates (r, θ) where obstacles are
found. We suppose that θ is an error free coordinate. The line fitting is done in two steps.
First we find clusters of points where the distance between two consecutive points is similar.
Then we apply the transformations u = cos(θ)/ sin(θ), v = 1/r sin(θ) as in [13]. We fit lines
to the laser data applying to each cluster a divide-and-conquer technique combined with a
least squares method.

The least squares technique has the advantage of removing noisy measurements. However,
it is not efficient in the number of lines it generates. For this reason we use a divide-and-
conquer approach. We convert the generated vertices in the (u, v) space to a Cartesian
space. Then, we apply a classical divide-and-conquer recursive technique to the vertices
of each cluster to find the lines that fit the set of vertices. Thus, unnecessary vertices are
eliminated. A cluster with a stand alone point or with very few points should be considered
as a small object [13], a sensor error or the result of a small free space between two occlusions.
In any case, those should not be taken into account when the divide-and-conquer algorithm
is applied.

The lines generated are considered as full edges, while the line that may be formed
between two consecutive clusters is considered as a free edge.

4.3 Fusing data from multiple views

The partial Hausdorff distance is used to find the best alignment between the previously
explored region and the new one. The Hausdorff distance is computed on the original laser
data of the polylines previously computed.

Given two sets of points P and Q, the Hausdorff distance is defined as (see [18]):

H(P, Q) = max(h(P, Q), h(Q, P )) (3)
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where
h(P, Q) = max

p∈P
min
q∈Q
‖p− q‖ (4)

and ‖.‖ is a norm for measuring the distance between two points p and q. The function
h(P, Q) (distance from set P to Q) is a measure of the degree in which each point in P is
near to a point in Q. A small value of h(P, Q) implies that every point in P is close to a point
in Q. The Hausdorff distance is the maximum among h(P, Q) and h(Q, P ). The Hausdorff
distance measures the degree to which each point of P is near a point in Q and vice versa.
By computing the Hausdorff distance in this way we are obtaining the most mismatched
point between the two shapes compared, consequently, it is very sensitive to the presence of
any outlying points. For this reason it is often appropriate to use a more general measure,
which replaces the maximization operation with the calculation of the mean of the values.
This measure (partial Hausdorff distance) is defined as:

hk = Mp∈P min
q∈Q
‖p− q‖ (5)

where Mp∈Pf(p) denotes the statistical mean value of f(p) over the set P .
One interesting property of the Hausdorff distance and the “partial Hausdorff distance”

is the inherent asymmetry in the computation. The fact that every point of P (or subset of
P ) is near some point of Q says nothing about whether every point of Q (or subset of Q)
is near some point of P . In other words, hk1(P, Q) and hk2(Q, P ) can attain very different
values. In fact each one of the two values give different information.
The term hk1(P, Q) is the unidirectional partial distance from the previously explored region
to the current perception, and hk2(Q, P ) is the unidirectional partial distance from the cur-
rent perception to the previously explored region. The maximum of these two values defines
the partial Hausdorff distance. The partial Hausdorff distance is function of a transformation
composed by translation and rotation. The transformation that maximize the metric will
determine the best alignment.

5 Map Building Algorithm

Algorithms 1 and 2 show our map building procedure. In Algorithm 2, T is given by
Equation (1). As mentioned above, visibility is used to bias the sampling process. For a
point robot, visibility is enough to guarantee a free path. If the robot is inside its visibility
region, it is collision free. In real experiments, given that the actual robot occupies finite
area, that is not enough to guarantee a free path. This area has to be subtracted along the
boundary of the computed visibility region to determine if the robot can traverse through the
sensed environment. The remaining region is guaranteed to be collision free. The samples
are generated close to the free edges. Only the samples inside the observer visibility regions
are considered. Thus, the generated samples will have a better chance to be useful. Since
the samples are inside the visibility region of the robot, it is guaranteed that a straight line
path between the current and next robot positions is collision free. Additionally, the samples
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Algorithm 1 Exploration(R,W)

Input:
R: Robot configuration
W: Environment

Output:
M Environment map

Pn current robot perception
Uf List of free edge labels

1: Uf ← 1
2: while Uf 6= ∅ do
3: Pn ← TAKE PERCEPTION(R, W)
4: M.add(Pn)
5: Uf ← ID UNXP AREAS(M)
6: if Uf 6= ∅ then
7: [x, y, θ]←SELECT NEW CONF(Uf , R,M)
8: R.move(x, y, θ)
9: else

10: ReturnM, OK
11: Uf ← ∅
12: end if
13: end while

Algorithm 2 Select New Conf(Uf , R,M)

Input:
R: Robot configuration
M Environment map
Uf List of free edge labels

Output:
qnbv Robot configuration for the next best view
n number of samples per free edge

ln list of robot configurations per free edge
Lq list of all candidate robot configurations

1: for uf ∈ Uf do
2: ln ←SAMPLES(n, uf , R,M)
3: Lq = Lq ∪ ln
4: end for
5: qnbv ←MAXIMIZE(T , Lq)
6: Return qnbv
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generated close to the free edges will have a good chance of seeing unknown environment,
because they are close to the border between the explored an unexplored environment. If
the robot goes to those samples pointing toward the free edges it will perceive unexplored
environment. Previously chosen samples are kept in the graph since they could be reused to
reach other new samples in the future. The robot takes advantage of this by traveling in the
backtracking graph. Sampling generation is illustrated in Figure 4.

Figure 4: Sampling generation

5.1 Several steps ahead exploration: An efficient algorithm

Suppose that at some time during the exploration, the robot is at a certain position, rini =
(xini, yini, θini), and there remain n frontiers (free edges) to be visited. After the sampling
process, there will be several configurations for each free edge. The robot has two options to
define the motion strategy: either it considers only one step ahead or considers more than
one.

If it considers only one step ahead, the robot will move to the best evaluated configura-
tion, according to the utility function. In this case, after the robot has reached the desired
configuration, the robot will start the sampling process all over again, considering the re-
maining free edges. Otherwise, the robot will need to find a path for visiting the n free
edges. In this case, both an ordering for visiting the free edges and a configuration for each
free edge need to be established. This visiting order yields the maximal utility. We illustrate
how our algorithm works for finding a visiting order through out an example.

Fig. 5 shows a situation where the robot has three new free edges to explore, denoted
by A, B and C. We suppose there are two configurations for each of the free edges. For the
free edge A the configurations are a1 and a2. In this case, the robot is at pini, so in the next
step the robot can visit one of the six configurations from a1 to c2. Let us suppose that the
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Figure 5: Robot in front of three free edges.

robot goes to b1 in the first step. Then the robot can go to configurations a1, a2, c1 and c2

in the second step. Configuration b2 is thus not an admissible configuration for this latter
step, because the free edge B has been already explored.

Figure 6: Three for searching a path.

We can model all possible paths that the robot may pursue to exploring the free edges
using a tree. Each node represents one robot configuration. Each node’s descendants repre-
sent the configurations that can be visited. Each arc represents a step in time. The tree for
the running example is shown in Fig. 6. In this case, there are 3 levels pending from the
root node. Note that in this case we have imposed one constraint for building the tree: the
robot cannot return to a free edge that has been explored on a previous step. This means
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that if a node labeled p1 is at level 1 all the branches pending from this node will not have
the node p1 in the subsequent levels. Furthermore, the branches pending for node p1 will not
have nodes that represent configurations lying in the same free edge of p1. The root node
will have n levels pending from it according to the n free edges that will be visited.

This is not the only exploration strategy. There is also the possibility to allow the robot
to return to a previously visited free edge for establishing an ordering. However we do not
consider this case.

For building a tree like the one shown in Fig. 6, we need to know all the paths that
can be possibly formed by permuting every robot configuration without repeating visited
configurations. Our utility function is used to assign a cost to every edge. Once found, the
cost of each path between two configuration in two different free edges is calculated using
the utility function. Once the tree has been built, we can use a search algorithm for finding
the configurations the robot must reach in order to visit all the free edges at minimum cost.

Figure 7: Searching tree considering the states of the robot.

We consider that the robot can be in one of two possible states: sensing in the configura-
tion previously reached and traveling to the next configuration. Going back to our running
example, suppose that the robot has selected the following path for visiting all free edges:
rini, b1, a2, c1. In this case the robot will have the following sequence of states during the
execution of the path: sensing at rini, then traveling to b1, then sensing at b1, then traveling
to a2, then sensing at a2, then traveling to c1 and finally sensing at c1. We can see here that
for each node in the path, we have two states for the robot, except for the root node, in
which there is only a sensing state. Considering this, we can split each node in the tree in
two nodes each one for the corresponding state (traveling, sensing) and we will obtain a tree

15



like the one shown in Fig. 7. The notation used in Fig. 7 is the following: S − a1 means
sensing at a1 and T − b1 means traveling to b1. The cost calculated with the utility function
will be assigned to the edges going from a sensing state to a traveling state, and the weight
for an edge going from a traveling state to a sensing state will be zero. So we are assuming
that sensing yields no cost, which is not always the case.

The representation of the states in the tree may seem unnecessary, but this scheme is
useful for extending our approach to the multi-robot case as will be shown below (see section
6.1).

5.1.1 Branch reduction heuristic

Suppose that at some time, the robot has n free edges to visit and there are exactly m
configurations for each free edge. There will be n · m nodes pending from the root node.
For the second level of the tree, there will be (n− 1) ·m children for each node, because the
robot has already visited a free edge. So at level two the robot has to choose from the n− 1
unvisited free edges. For the third level of the tree, there will be (n− 2) ·m children for each
node, and so on and so forth.

We can see here, that the tree grows exponentially according to n and m, so as n and
m are larger, the search for the optimal path is intractable. Note that the whole tree has n
levels, this is the maximum depth. In this case, we can reduce the search space pruning the
tree using a branch and bound algorithm [1].

Figure 8: The big triangle represents the whole tree until max. depth, the gray part represent
the reduced tree.

The idea with the branch and bound algorithm is to build the tree to a level w < n. At
this point, we select the leaf with the minimum cost and continue expanding the tree only
from that leaf on. This idea is represented in Fig. 8.

6 Multi-Robot Map Building

We have developed, implemented and simulated a planner for multi-robot map building. Our
approach consists in a centralized planner. The position and current visibility from every
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robot is assumed to be known by the planner.
We denote by V (qk) the visibility polygon of a robot at configuration qk. A robot is

free to move in the interior of its visibility polygon, so long as it does not collide with an
obstacle. We denote by F(qk) the visibility polygon reduced by the robot radius, i.e., F(qk)
is a safe region for navigation that is visible from configuration qk. We define Vtot as the
total visibility region for the ensemble of robots, and Ftot as the total visible region region
in which any robot can move, i.e.,

Vtot =
⋃

k

V (qk) and Ftot =
⋃

k

F(qk).

In our multi-robot map building strategy a robot at configuration qk has as a priority to
visit those free edges that lie within F(qk). Associating each robot with its visibility region
reduces the complexity of the problem. If there are no free edges visible from qk, then the
robot is free to explore free edges that lie in Ftot. In this case, a sampling-based evaluation
determines which free edge will be visited by the robot. In all the cases, the decision is taken
by evaluating Equation (1). Since Equation (1) estimates the size of the unexplored space
by using the size of the free edges, exploring the unknown space is equivalent to sending a
robot to visit a free edge.

6.1 Multi-robot several steps ahead exploration

The proposed exploration strategy described in section 5.1 has been extended to the multi-
robot case. We have a search tree to find a plan for all robots. This plan consists in finding
which robot should visit a free edge i considering it is at configuration xi, yi, θi at some time.
We consider that only one robot is moving at any time while the rest are sensing. The
state of the multi-robot system is defined as a vector having the states of each robot. For
example one possible state of the system can be: (Robot 1 traveling, Robot 2 sensing, Robot
3 sensing). We also consider that once a free edge has been explored by one robot, none of
the others will go to that edge.

Fig. 9 shows an example of a search tree for two robots with three free edges. We
suppose that there is only one configuration for each free edge, so there are in total three
configurations, denoted a1, b1 and c1. As an example of the notation used for describing the
state of the system consider R1−T − a1, R2−S− c1. They respectively mean that Robot 1
is traveling to configuration a1 on free edge A, and that Robot 2 is sensing at configuration
c1.

The root node represents the initial state where all robots are sensing at their correspond-
ing initial configuration. After that, there are six different nodes in the first level: Either
robot can move to one of a1, b1 or c1 while the other one is sensing. Suppose that the selected
next state is Robot 1 traveling to b1 while Robot 2 remains sensing. After this move, there
are two possible states: Robot 2 traveling to a1 or Robot 2 traveling to c1. In any case,
Robot 1 will be sensing at b1

1. As only one robot moves at a time, the cost assigned to any

1Note that in Fig. 9, we have only developed the first two nodes of the second level
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Figure 9: Search tree for two robots having two free edges and only one configuration for
each free edge.

one arc corresponds to the cost associated with the moving robot. For example if the system
is at state (R1 − S − a1, R2 − T − b1) and if the next state is (R1 − T − c1, R2 − S − b1) the
cost for going from one state to the other is the cost associated with moving the Robot 1
from configuration a1 to configuration c1.

Once the tree has been defined, we can apply any search algorithm and also we can apply
the branch and bound algorithm to reduce the search space.

7 Robot Architecture and Experiments

We are using a Pioneer mobile robot (See Figure 10) with an on-board PC 400 MHz processor.
It is equipped with a Sony EVI-30 CCD moving camera for landmark identification. The
robot is also equipped with a Sick laser range sensor. This sensor uses a time-of-flight
technique to measure distances.

The software consists of several modules executing specialized functions and commu-
nicating using TCP/IP socket communications under a client/server protocol. The main
modules in our robot architecture are: Frame server, sick laser server, line fitting module,
model matching module, landmark identification server, motion planner, motion controller,
and system coordinator.

We are currently developing and integrating the robot architecture necessary to perform
our whole approach in a real robot. Up to now we have totally developed the frame server,
motion planner, line fitting, sick laser server, model matching, motion controller and system
coordinator modules. We are working on the landmark identification module.

A computer simulation of this planner has been done. The software is written in C++
and uses geometric functions available in the LEDA 4.2 library. The simulation shows that
this approach produces good results for the model building task.
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Figure 10: Indoor mobile robot and sensors

In our simulation landmarks are represented with dark disks, the robot with a light
square and the road-map with lines. The robot is placed anywhere inside the map, and
begins exploring. As the robot moves across the map it takes every visibility area from the
positions selected by the utility function to construct the model incrementally. The road map
is constructed at the same time. The final map is constituted by polygons (which represent
walls or obstacles), landmarks, and a road-map, constituted by a graph. When the robot
ends exploring an area, it is capable to go back since it remembers past unexplored areas.
This backtracking is based on navigation across the backtracking graph.

Figure 11 shows how the utility function works: in Figure 11 the robot has to take a
decision between going to a large free edge, which means seeing as much of the as-yet-unseen

(a) (b)

Figure 11: (a) Utility function selection of next view (b) Robot going to the landmark
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Figure 12: Exploration result using genetic algorithms to optimize utility function selection

environment as possible or going to a landmark to re-localize itself. In our simulation, the
robot chose to improve its localization by going to the landmark (Figure 11(b)) and then go
back and explore the unknown environment. In these figures the current visibility region is
showed by a dotted line semi-circle.

Genetic algorithms have been also used as an optimization method in probabilistic based
motion planning methods [2, 23]. An implementation of the utility function here proposed
have been done using genetic algorithms. The genetic algorithm uses the Vasconcelos deter-
ministic model for individuals crossing and the parameters like population size, crossing and
mutation probabilities are self-adapting. Results are shown in Figure 12. The red lines in-
dicates the robot path, the blue objects are landmarks. This implementation gives as result
fewer sensing operations and rotations. However, this implementation takes considerable
more computational running time (several hours).

Figure 13 shows multi-robot map building. The colors in the map are used to associate a
part of the map to the robot that has explored it. It can be seen that the map is uniformly
distributed among the robots in the environment. The landmarks are shown in the figure
as a blue disk (a column) or blue segments on the walls which represent posters. In Figure
13(a) the environment is explored using non-limited range sensor and a 360 degree visibility
capability. It can be seen that with such conditions, the number of created milestones for
sensing operations is smaller and the robot trajectory much simpler and shorter than in
Figure 13(b) where a limited range sensor and a visibility of 180 degrees was chosen.

Figure 14 shows a simulation with 8 robots in environment composed of a central hall and
several narrow corridors. It can be seen that every robot has explored a different corridor.
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(a) (b)

Figure 13: Multi-robot map building: (a) case of an omni-directional and infinite range
sensor (b) case of 180 degrees field of view and limited range

Figure 14: multi-robot map building
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7.1 One single step ahead vs. several steps ahead optimization

Properties one robot/one single step one robot/several steps
path length 517.0367 637.2925

number of stops 51 58
number of sensing locations 20 18
total turn angle (degrees) 1406.735 879.578

Properties two robots/one single step two robots/several steps
path length 260.71756 461.5974

number of stops 27 57
number of sensing locations 15 20
total turn angle (degrees) 1323.924 1903.179

Table 2: One single step ahead vs. several steps ahead optimization

In this section, we compare a one single step optimization scheme vs. our partial greedy
algorithm, capable of exploring several steps ahead. We consider two scenarios: One single
robot and two robots exploration. The parameters used to make the comparison are path
length, number of robot turns, number of robot stops and number of sensing locations. In
all these simulations the robots have limited range sensor and an omnidirectional sensing.

The robots paths and the perimeter of the current visibility regions are shown in all
figures. Figures 15 a), b) and c) show the evolution of an exploration simulation with one
robot and an optimization schema with only one single step ahead. Conversely, figures 15 d),
e) and f) show a simulation with one robot an an optimization schema considering several
steps ahead. Similarly, figures 16 a), b) and c) and figures 16 d), e) and f) respectively show
an experiment with two robots and an optimization schema with only one single step ahead
and with several steps.

The robots paths are qualitatively more complex when more than one step are used in
the optimization. Table 2 shows quantitative results in terms of path properties and number
of sensing locations. In general, the results are better with a totally greedy exploration.
That is, the path length is shorter, the total angle turned by the robot, the number of robot
stops and the number of sensing location are smaller. In a several steps ahead optimization,
the robots make a long term plan. That plan returns the ordering to visit all the current
free edges. The same strategy is repeated until all free edges are explored. This planning
process yields unnecessary motions.

As soon as new free edges appear (which have not been considered in the original plan),
the robot will need to come back to locations near to other locations already visited. The
interpretation of these results is that making long term plans with partial and dynamic
information will result in a waste of resources.
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a) b) c)

d) e) f)

Figure 15: one robot exploration

7.2 Experiments with real robots

Figure 17 shows an experiment on the real robot. The robot has chosen to go to the free
edge in the front left because it represents the next best view according to the Equation (1).
Note that the robot has not chosen to turn around to see the free edge behind it, because
this configuration has a low value according to the Equation (1). Actually, this configuration
is bad because it is not possible to perform model matching and therefore deal with robot
localization. Figure 18 shows the environment map at time t and the robot location at time
t and t + 1. Figure 18 shows the environment map and robot location at time t + 2. In both
cases, the visibility robot region is shown in yellow, the free edges in red and the full edges
in blue. Figure 19 shows the laser data at time t + 2 and Figure 20 shows the robot going
to the next best view.

Currently our global architecture is not complete yet. For the experiments performed on
the robot, we are using only data obtained from the laser. The camera is not used.

Figure 21(a) shows a picture of a more complex map building experiment. Figure 21(b)
shows the map built at time t, the robots visibility region is shown in yellow, the free edges
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a) b) c)

d) e) f)

Figure 16: two robots exploration

in red, and the full edges in blue. In this figure it is also shown the robots location a time t
(blue disk) and the next position where the robot has to move at time t + 1 (red disk). This
location has been computed using Equation (1), but taking into account only the parameters
related to the laser data.

Figure 22(a) shows the laser data at time t and t + 1 without registration. Laser data
obtained at time t are in blue and those obtained at time t + 1 in red. Figure 22(b) shows
the map matching obtained by using Equation (4). The transformation (rotation and trans-
lation) related to the matching is used to improve robot localization. Figure 23(a) shows the
polygonal model of the environment and the last two robot locations. The road-map used
by the robot is shown in the figure by using brown dotted lines. When the robot gets back
to a previous location (traveling through the backtracking graph) a localization procedure is
executed at each graph node using the model matching result. Figure 23(b) shows the laser
final map.

Our experiments were conducted in environments with clear polygonal shapes. This is
still of interest since we are not proposing new algorithms to deal with complex noisy data.
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Figure 17: Experiment on a real robot

(a) (b)

Figure 18: (a) Environment map at time t, (b) Environment map at time t + 2

Figure 19: Laser data
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Figure 20: Robot going to the next best view

(a) (b)

Figure 21: (a) Experiment with a mobile robot, (b) The robot is going to explore a free edge
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(a) (b)

Figure 22: (a) Laser data, (b) Model matching

(a) (b)

Figure 23: (a) The multi-representational map, (b) The final model
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We have focused on the problem of planning optimal exploration strategies for SLAM. We
believe that our experiments show that our proposed algorithms go beyond unrealistic the-
oretical assumptions. More sophisticated SLAM techniques can deal with more complex
data. For instance, for large and complicate noisy environments a global optimization data
matching would produce more precise maps. In general, we believe that SLAM algorithms
and algorithms devoted to output exploration strategies solve two distinct and complemen-
tary aspects of the model building problem. In this vain, we claim that our algorithm makes
it easier for an feature-based slam algorithm to integrate the information collected during
navigation into the most accurate possible map.

8 Comparing our Approach with other Works about

Exploration and Mapping

In this section, we compare our approach with other works devoted to map building and
exploration.

8.1 González-Baños et al’s. Approach

The exploration strategy presented in [15] is based on the computation of the next best
view and the use of randomized motion planning. Our approach follows this research line.
In [15] the concept of the next best view is based mainly on two factors: Estimated area of
unexplored environment and distance traveled for the robot to reach a new sensing location.
Visibility type methods [28, 30] are used to estimated information gain.

There are three main improvements of our work over the one presented in [15]. First, we
consider the case of multi-robot exploration

Second, we have taken into account uncertainty (cost) due to control errors. This is
contrast with [15], where the cost of a next sensing location is based only on the distance
traveled by the robot. Experimentally, we have found out that uncertainty due to control
errors (at least for our robots) increases faster when the robot rotates than when it translates.
Location errors also increase faster when the robot changes its velocity. Thus, minimizing
the number of robot stops to arrive at an unexplored area amounts to minimizing the robot
position error. Our utility function reflects these facts

Third, overlapping between a local perception (local map) and the current global map
may be necessary (but not sufficient) to merge a local map with the global one. In [15] the
amount of overlapping between a local map and the global one is measured using the size
of the common perimeter between them. However, measuring overlapping as an estimator
of the ability of merging maps may not be enough. For instance, in corridors bounded
by parallel featureless walls, a matching procedure only corrects positioning errors in the
direction perpendicular to the walls. Our approach will try to avoid sensing locations, where
the environment has that unwanted property. Our utility function will prefer sensing location
from where corners or landmarks are visible making easier for a registration procedure (in
our case the Hausdorff distance) to align the maps.
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8.2 Makarenko et al’s Approach

The work of [22] has proposed concepts that are similar to ours. We underline that both
approaches have been proposed independently. Even though similar, these approaches are
also different in several senses. First, we use a feature based modeling, as opposed to a
grid. In our approach obstacles are modeled as polygons, while in [22], the environment is
represented with a grid. We used original laser data to align local maps with the global
one. The best transformation according to our metric (the Hausdorff distance) is used to
correct the robot position and merge the maps. But, at the end the stored map is composed
of polylines obtained through line fitting of the original laser points. Thus, the memory
required to store the map is drastically reduced in comparison with grid based maps. It
is well known that when the size of the environment is large, grid based models become
difficult to handle. Additionally, feature based map are more suitable for path planing and
free space visualization. We believe that our proposed environment representation is more
useful to several robotics tasks, specially visibility-based ones such as target tracking and
target finding.

Second, in our approach the use of landmarks is proposed to better localize the robot and
merge partial maps. We also use landmarks as a pivotal feature to align partial maps. For
any given candidate robot destination, the more landmarks the robot is able to sense in it,
the more rewards it will get. We distinguish between landmarks and features. Landmarks
can be uniquely identified by the robot, while features are geometric entities without specific
identities. In general a landmark should be more useful than a feature to solve the data
association problem. By comparison, in [22] the use of landmarks is not integrated to evaluate
the utility of a next sensing location.

Third, our utility function is much better at balancing opposite factors. This is because
it has multiplicative form. The utility function of [22], however, is a summation. Thus in
our approach a robot configuration with a very low value on at least one of factors will be
discarded regardless of having a very good value on the others.

Fourth, the approach presented in [22] does not consider muti-robot exploration.

8.3 Simmons et al’s Approach

Similar to the work presented in [31] our approach also defines a utility value over candidate
sensing locations. For the information gain we take into account two factors: i) the size
of the frontier between explored and unexplored environment and ii) the distance between
the obstacles and the robot. By comparison, in [31] the information gain is based on a
probabilistic estimation of the frontier size, but does not consider the distance between the
robot and the obstacles. This is a limitation as many sensors become blind when the objects
are very near to them. Thus, in this respect, our approach surpasses Simmons et al’s since it
captures the information gain better. Same as [13,15], in [31] the cost associated to a sensing
location is defined as the distance that the robot would travel to reach that location. As
argued before, we believe that our utility function provides a more realistic estimation of this
cost. In [31] a central executive tries to maximize the total utility minimizing the overlapping
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between the areas that will be explored. In our approach the robot team coordination is
similar. Each robot is assigned to one unexplored area, but only one robot moves at each
time to avoid possible collision among moving robots.

8.4 Newman et al’s Approach

The approach presented in [27] has some similarities with ours. In both works visibility
computation is used to estimate the pertinence of a next robot sensing location and both
approaches use feature-based maps.

In our approach sensor parameters (range and field of view) are input to the planner.
The planner returns a path that depends on those parameters. Thus, a plan for a robot
with stronger sensor capabilities will result in a smaller number of milestones for sensing
operations and shorter trajectories than a plan for a robot with weaker sensor capabilities.
This adaptation capability is not presented in [27]. Furthermore, Newman et al do not
consider neither the distance nor the control errors as a cost to be integrated to the utility
of a sensing location. Our work does take into account that cost.

In contrast, in [27], it is assumed that the location of a feature is uncertain and represented
by a set of probability distribution functions. Associating uncertainty with feature locations
seems to better capture real world situations. This is not considered in our approach and
has been left as part of our future research.

8.5 Feder et al’s Approach

The work presented in [11] proposes a metric for adaptive sensing that is defined in terms
of Fisher information. That approach does not consider neither path planning nor obstacle
avoidance. In our work a road map is built as the exploration progress. When the robot
ends exploring an area, it is capable to go back since it remembers where the unexplored
areas are. This backtracking is based on navigation across the road-map. We use the robot
visibility polygon reduced by the robot radius F(qk) to avoid robot collisions. F(qk) is a safe
region for navigation that is visible from configuration qk.

9 Conclusions and Future research

In this paper, we presented a motion planning approach for building a map of the environ-
ment. Our motion planning algorithms are all based on sampling.

From the path planning point of view, the originality of our work comes from the fact
that the robot goal has to be determined at every single iteration of the algorithm. Unlike
classical motion planning techniques, ours does not assume to know the exact robot position.

A planner that selects the next robot position is proposed. It works by maximizing a novel
utility function. This function was especially designed to combine geometric information
with an intensive usage of the results obtained from perceptual algorithms. The crux of
our method is a sampling-based motion planner algorithm that, given a partial map of the
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environment, selects where to move the robot next. We balance the desire to see as much
of the as-yet-unseen environment as possible, while having enough overlap and landmark
information with the scanned part of the building to guarantee good registration and robot
localization. The final result of the exploration is a multi-representational map constituted
by polygons, landmarks and a road-map.

Our approach improves existing methods in that the robot plans motions in such a
way that its uncertainty localization is minimized. At the same time, the motion strategy
takes into account that the robot must discover unexplored environment regions minimizing
energy consumption. The proposed robot motion strategy generates a fast and reliable map
building.

In the SLAM problem the main goal is to integrate the information collected during
navigation into the most accurate possible map. In our work we want to provide a robot
path through sensing locations. These location have been chosen to provide both the best
possible sensor inputs and the minimal cost (both given maximal utility) to reach them in
terms of energy and induced uncertainty.

Our algorithm does take into account the chosen map representation and sensor capabil-
ities. Thus, our motion strategy will prefer sensing location with large overlap between the
partial and the global maps and from where corners or landmarks are visible making easier
for a registration procedure to align the local map with the global one.

The quality and success of the generated paths depend significantly on the sensing robot
capabilities. Studying the plan’s dependency on the high level parameters describing the
sensors (e.g., max. distance sensed, field of view) is an important part of our work.

Additionally, the uncertainty in the robot location will depend on the controls applied to
the robot. Some path properties such as: path length, number of robot turns and number of
robot stops will directly influence the magnitude of uncertainty in the robot location. Our
algorithm will chose the robot path that minimizes unwanted types of controls.

We have proposed an efficient algorithm driven by our utility function. This algorithm
is able to explore several steps ahead without incurring too high a computational cost. We
have compared that exploration strategy with a totally greedy algorithm that optimizes a
cost function with a one-step-look ahead. In general, the results are better with a totally
greedy exploration. The interpretation of these results is that making long term plans with
partial and dynamic information may often result in a waste of resources.

In general our algorithms will output a set of sensing location and robot path to reach
them that makes it easier for an feature-based slam algorithm to integrate the information
collected during navigation into the most accurate possible map.

In summary, our work fills in some gaps between exact geometrical approaches and ap-
proaches that consider uncertainty by taking advantage of perceptual information - from
data registration up to scene understanding - to reduce the robot position uncertainty.

Multi-robot coordination algorithms were presented as well. The proposed algorithms
have been implemented and experiments on real robots are included. The quality of the
plans mainly depends on the number of generated samples and the robot sensing capabilities.

While significant, our work leaves room for improvements. Further work should consider
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a more sophisticated algorithm for coordinating a team of robots to explore the environment,
specially one where more than one robot moves simultaneously. Further work should also
consider that a feature location is uncertain and should be represented with a set of proba-
bility distribution functions, as in [27]. We want to complete our global robot architecture
including a video camera to extract landmarks from visual data. We want also to make
multi-robot map building experimentation. We are planning to use our 2D model to help
selecting “good” locations where to perform 3D sensing operations to construct a 3D model
of the environment.
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